Automatic Enforcement of Expressive Security Policies using Enclaves

Citation

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:30168300

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.
Automatic Enforcement of Expressive Security Policies using Enclaves

Anitha Gollamudi
and
Stephen Chong

TR-02-16

Computer Science Group
Harvard University
Cambridge, Massachusetts
Automatic Enforcement of Expressive Security Policies using Enclaves

Anitha Gollamudi     Stephen Chong
Harvard University, Cambridge, MA, USA
agollamudi@g.harvard.edu  chong@seas.harvard.edu

Abstract
Hardware-based enclave protection mechanisms, such as Intel’s SGX, ARM’s TrustZone, and Apple’s Secure Enclave, can protect code and data from powerful low-level attackers. In this work, we use enclaves to enforce strong application-specific information security policies.

We present IMP, a novel calculus that captures the essence of SGX-like enclave mechanisms, and show that a security-type system for IMP can enforce expressive confidentiality policies (including erasure policies and delimited release policies) against powerful low-level attackers, including attackers that can arbitrarily corrupt non-enclave code, and, under some circumstances, corrupt enclave code.

We present a translation from an expressive security-typed calculus (that is not aware of enclaves) to IMP. The translation automatically places code and data into enclaves to enforce the security policies of the source program.

Categories and Subject Descriptors D.3.3 [Programming Languages]: Language Constructs and Features; D.4.6 [Operating Systems]: Security and Protection—Information flow controls

Keywords Enclave programs, information erasure, declassification, security-type system, information-flow control, language-based security.

1. Introduction
Language-based techniques for security can enforce expressive information security policies for applications. Enforceable policies include ensuring that application-level adversaries learn nothing about confidential information [29, 38], that some clearly specified confidential information may be released under controlled circumstances [31], and that sensitive information is correctly removed from the system at appropriate times [7, 10]. However, these language-based guarantees may fail to hold in the presence of low-level attackers, such as attackers that observe execution at the level of operating-system or hardware abstractions, or attackers that can inject arbitrary code into a process.

Recent hardware-based enclave protection mechanisms (including Intel’s SGX [24], ARM’s TrustZone [4], and Apple’s Secure Enclave [2]) can protect code and data from low-level attacks, including compromised kernels. These new mechanisms present an opportunity to extend strong application-specific information security guarantees to hold against low-level attackers.

We take advantage of this opportunity: we present a language model that captures the essence of enclave protection mechanisms, and give a security-type system for this language that enforces strong non-interference-based information security guarantees [12, 18], including delimited release [30] and information erasure [9]. Moreover, we provide a translation from a non-enclave source language that automatically infers which code and data to place in enclaves in order to enforce expressive security policies.

As an example of application-specific information security requirements, consider code that authenticates a user. The user provides a guess that is checked against the actual password. If the guess matches the password, the user is authenticated and the computation continues. After authentication, the guess is no longer needed, and the subsequent computation should in no way depend on the guess. This information security requirement can be expressed as an erasure policy [9] that requires restrictions on the use of sensitive information (i.e., the user’s guess) after certain conditions are satisfied (i.e., the user is successfully authenticated). Language-based techniques can ensure that these restrictions are respected by the subsequent computation (e.g., [7, 23]).

However, these techniques typically enforce security against a language-level attacker that passively observes the program’s output or perhaps provides code that is subject to similar enforcement mechanisms as the program itself (e.g., [3, 23]). The desired security guarantees may fail to hold in settings where an attacker has privileged access to a machine (such as in cloud services or on mobile devices) or an attacker is able to exploit vulnerabilities to observe more data than anticipated (such as in the Heartbleed attack) or inject arbitrary code into the program’s process (such as in buffer overrun attacks). In these cases, an attacker that compromises the system sometime after the user has authenticated may be able to learn the user’s password. For example, even though the program may not in any way use...
the user’s guess in the subsequent computation, the bits represent-
ing the guess may still be present in physical or virtual memory, and accessible to a low-level attacker [20][21].

Enclave protection mechanisms can secure code and data against powerful attackers, including malicious code within the same process or a malicious operating system. Intel’s SGX extends the x86 instruction set with additional instructions that allow a contiguous region of memory within a process’s address space to be established as an enclave, and subsequently uses hardware-enforced access control to ensure that code outside of an enclave is unable to access data within an enclave. Moreover, execution may enter an enclave only via specified entry points. Memory within an enclave is encrypted before being paged out.

But leveraging enclaves to enforce application-specific information security guarantees is hard. Enclave mechanisms place the onus on the programmer to secure an application by effectively decoupling the security-critical parts of the application from the non-critical and/or untrusted parts of the application. Hardening an application to carefully isolate the dependencies requires non-trivial effort [32, 35].

In this paper we consider the automatic enforcement of application-specific information security policies using enclaves. We make several contributions.

1. We present IMPe, a novel calculus that captures the essence of SGX-like enclave mechanisms (Section 2).
2. We show that a security-type system for IMPe can enforce expressive confidentiality policies (including erasure policies and delimited release policies) against several attackers, including attackers that can arbitrarily corrupt non-enclave code, and, under certain circumstances, corrupt enclave code (Sections 3 and 4).
3. We present a translation from a non-enclave source language to IMPe (Sections 5 and 6). The programmer can focus on the correct handling of information in the source language, and the translation will automatically infer appropriate placement of code and data into enclaves to ensure security guarantees against powerful low-level attackers. The translation can be configured to optimize various criteria, including reducing the size of the trusted computing base, reducing the runtime performance impact of using enclave mechanisms, or removing erased data as soon as possible.

In addition, we validate the translation and the expressiveness of IMPe by implementing several simple models of applications with application-specific security guarantees (Section 8).

2. IMPe: A Calculus for Enclaves

We present IMPe, an imperative higher-order calculus that captures the key features of enclaves and moreover supports the specification of information security policies, including policies for information erasure.

2.1 Security Levels and Policies

We use a set of security levels \( L = \{L, H, T\} \) to express confidentiality restrictions on information. Security level \( L \) ("low security") is for public information that anyone, including an attacker, is permitted to learn. Security level \( H \) ("high security") is for confidential information that only trusted entities are permitted to learn. Security level \( T \) is for information so confidential that no-one is permitted to learn it. Ideally, the system never contains information with security level \( T \).

Let partial order \( \sqsubseteq \) be the smallest reflexive and transitive relation such that \( L \sqsubseteq H \) and \( H \sqsubseteq T \). Intuitively, if \( \ell_1 \sqsubseteq \ell_2 \), then information with security level \( \ell_2 \) is at least as confidential as information with security level \( \ell_1 \). Security levels ordered by \( \sqsubseteq \) form a lattice.

The security level to enforce on information may change over time. In this paper, we focus on information erasure: the requirement that when a specific condition is met, information needs to become more confidential.

Security policies describe how the security level of information must change over time. A security level policy \( \ell \) simply means that information must be handled with security level \( \ell \) at all times. An erasure policy \( \ell_1 \xrightarrow{\text{cnd}} \ell_2 \) means that initially information can be handled according to security level \( \ell_1 \). However, when condition cnd is met, the information must be handled according to security level \( \ell_2 \), where \( \ell_1 \sqsubseteq \ell_2 \). Conditions are used to express when information must be “erased” or made more restrictive. In general, conditions for erasure can be arbitrary state predicates [9]. However, we encode conditions using mutable memory locations: a condition cnd is represented by a single memory location, and the condition is regarded as satisfied exactly when the location contains a non-zero value. The program is responsible for setting the condition location to a non-zero value to correctly reflect the intended meaning of the condition. Once set (i.e., assigned a non-zero value), we do not allow a condition to be unset. This approach is sufficiently expressive and simplifies specification and reasoning about erasure policies [7].

We write \( P \) to denote the set of policies, and use metavariables \( p, q \) to range over policies. We refer to any information labeled with a policy more restrictive than \( L \) as confidential information.

Consider a program that authenticates a password. Let password be a memory location that stores password input from a user. Once authentication succeeds, it is desirable to erase password entirely from the memory. If end is a condition that indicates whether the authentication session has ended, a suitable policy for password can be \( L \xrightarrow{\text{end}} T \). The policy says that the confidentiality level of password is initially \( L \), and once end is set, it must be \( T \).
e ::= n | x | e_1 ⊕ e_2 | l | *e | isunset(cnd) | λ^µ.c
v ::= λ^µ.c | n | l
c ::= skip | x := e | x :=: declassify(e) | e_1 ← e_2
     | output e to ℓ | call(e) | set(cnd) | enclave(i, c)
     | kill(i) | c_1;...;c_n | if e then c_2 else c_2 | while e do c
l ∈ Loc  cnd ∈ Cond  Cond ⊂ Loc
x ∈ Vars  i, n ∈ N
µ ∈ Mode = {N, E_1, E_2, ...}

---

2.2 Syntax

IMPE is a simple imperative language. However, it includes first-class locations and functions, output commands, and models enclaves. An enclave consists of code and memory locations. Memory locations within an enclave can be accessed only by that enclave’s code. Control can be transferred to code inside an enclave only through a predefined set of entry points. Thus, data stored inside an enclave’s memory locations is protected from non-enclave code (and also from code in other enclaves). In IMPE, enclaves provide a simple yet expressive model of architectural features—such as Intel’s SGX [24]—that can provide strong isolation guarantees for code and data from other code within the same process or machine.

We allow an arbitrary number of enclaves, indexed with natural numbers. We use modes to indicate which enclave code or data exists in, or whether it is outside of any enclave. Specifically, we use metavariable µ to range over the set Mode = {N, E_1, E_2, ...}, where E_i indicates the ith enclave and N indicates non-enclave (or “normal”) mode.

Figure 1 shows the syntax of IMPE. Expressions e include integers n, variables x, and memory locations l. All variables have global scope. Variables are analogous to registers: they are mutable locations, but are not first-class values. By contrast, memory locations are first-class, and can be passed as values. Conditions Cond are a subset of the memory locations and cnd ranges over conditions. We write Loc for the set of memory locations.

Operator ⊕ ranges over arbitrary (total) binary operations over integers. Dereference *e evaluates e to a memory location and evaluates to the contents of that location.

Expression isunset(cnd) tests whether condition cnd has been set, and evaluates to 1 if it is not set, 0 otherwise. Although this expression is semantically equivalent to *cnd ≠ 0, our type system gains precision through the use of isunset(cnd).

Expression λ^µ.c is a first-class function. It can be thought of as a code pointer to command c. Arguments to the function are given via variables and memory locations, as are any values returned by the function. Annotation µ indicates the mode in which the function is defined. It can be thought of as indicating whether the code pointer is to an enclave or non-enclave region of memory. The annotation is used to restrict how functions can be invoked, to ensure that non-enclave code cannot enter an enclave by invoking a function that resides in the enclave.

Values v in IMPE include integers, memory locations (including conditions), and first-class functions.

Commands in IMPE include standard imperative commands (skip, x := e, if e then c_1 else c_2, and while e do c). We assume sequences c_1;...;c_n are flattened (i.e., that none of c_1;...;c_n are sequence commands), and for convenience assume that all sub-commands are sequences (possibly of length 1). Indirect assignment e_1 ← e_2 evaluates e_1 to a memory location, and updates the contents of that location with the result of e_2. We further require that e_1 does not evaluate to a condition. Command set(cnd) updates the contents of cnd to 1. Conditions can be updated only with a set command.

Command output e to ℓ evaluates e to a value and outputs it to channel ℓ. Output commands model observations by trusted and untrusted entities. We restrict ℓ to be either L or H. Intuitively, an output to channel L may be observed by an untrusted entity, such as an attacker, whereas output to channel H may be observed only by trusted entities.

Command x := declassify(e) is semantically equivalent to assignment x := e, but indicates a declassification, which is relevant for both our semantic security conditions (Section 3.2) and type system (Section 4). To simplify our semantic security condition, we require that expression e does not contain any variables (although it may contain memory locations). Command call(e) evaluates e to a function, and invokes the function.

Command enclave(i, c) defines an entry point for the enclave E_i. That is, command c is code that resides inside enclave E_i, and non-enclave code is permitted to execute c. We require that c does not contain any subcommands of the form enclave(i', c'), i.e., enclave commands cannot be nested, regardless of whether for the same enclave or a different enclave. Commands not lexically nested in an enclave(i, ...) are non-enclave code.

We allow an enclave to have multiple entry points. That is, a program may contain multiple commands of the form enclave(i, c) with the same enclave identifier i.

Command kill(i) tears down enclave E_i. Once killed, an enclave cannot be used: its memory locations cannot be accessed, nor can its code be executed.

2.3 Operational Semantics

A configuration (c, r, m, K) describes the current state of the system. Command c is the rest of the program to execute. Register file r maps variables to values, and memory m maps locations to values. Kill set K is the set of enclaves that have been killed so far in the execution.
The judgment is parameterized by mode $\mu$, which indicates whether command $c$ is executing in normal mode ($\mu = N$) or in an enclave ($\mu = E_i$). Initially, program execution always starts in normal mode (since all enclave code is inside enclave ($i, \ldots$) commands).

The judgment is also parameterized by function $\delta : Loc \rightarrow Mode$ which indicates for each memory location which enclave, if any, it belongs to. If $\delta(l) = E_i$ then location $l$ is in enclave $E_i$, and if $\delta(l) = N$ then $l$ is not in an enclave.

Judgment $\mu \vdash \delta \langle c, r, m, K \rangle \downarrow r'; m'; K' \triangleright t'$ can be read as configuration $\langle c, r, m, K \rangle$ executes in mode $\mu$ and terminates with register file $r'$, memory $m'$, kill set $K'$, and during execution produces trace $t'$.

Evaluation of commands makes use of an additional judgment to evaluate expressions: $\mu \vdash \delta \langle e, r, m, K \rangle \downarrow v$. This judgment means that, given register file $r$, memory $m$, and kill set $K$, expression $e$ evaluates in mode $\mu$ to value $v$. Expression evaluation does not modify the register file, memory, or the kill set.
Rule **KILL** tears down enclave \( E_i \) and adds it to the kill set. Once an enclave is killed, it is inactive and can no longer be used. Enclaves can be killed only in normal mode.

The following code illustrates how password authentication can be modeled in IMPE:

```impe
eclause(1, status := *password = *guess);
output status to L
```

The code uses two locations, password and guess, containing the password and user’s input respectively. Assume \( \delta(password) = E_1 \) and \( \delta(guess) = N \), i.e., password belongs to enclave \( E_1 \) and guess is not in an enclave. The program enters enclave \( E_1 \) checks if the password matches the guess by dereferencing the corresponding locations, sets variable status to the result, and exits the enclave. Variable status is then output on channel \( L \). Note that dereferencing password would fail if done outside enclave \( E_1 \).

### 3. Attacker Model and Security

In this section we define security for the IMPE language for a variety of attackers. We consider a passive attacker that can only observe outputs on certain channels, an active attacker that can arbitrarily corrupt non-enclave computation, and an active attacker that can, under certain conditions, corrupt computation both outside and inside enclaves.

The definition of security is that at all times, an attacker knows no more than what the attacker is permitted to know. What the attacker is permitted to know is determined by the security policies on information, which conditions are set when, and what declassifications the program performs.

We model active attackers by allowing additional transitions in the operational semantics of IMPE. Thus, the definition of security is parameterized on variants of the operational semantics of IMPE.

---

**Figure 3.** Large-step semantics for select IMPE commands
We assume the only source of confidential information is the initial memory. A security specification \( \gamma \) maps locations to policies and indicates the policy to enforce on information in an initial memory. For example, if \( \gamma(l) = \ell_1 \rightarrow_\gamma \ell_2 \) and \( m \) is the memory from which we start an execution, then we should enforce erasure policy \( \ell_1 \rightarrow_\gamma \ell_2 \) on the data in \( m(l) \). We say that a security specification \( \gamma \) is well-formed if \( \forall l \in \text{Loc}. \, \gamma(l) \neq \top \) (since security level \( \top \) is for information so confidential that it should not be on the machine).

### 3.1 Attacker Knowledge

We associate an attacker with a security level \( \ell \in \mathcal{L} \) and assume the attacker is able to observe outputs on any channel \( \ell' \) such that \( \ell' \subseteq \ell \). Given trace \( t \), \( [t]_\ell \) is the output events that an attacker at level \( \ell \) can observe.

\[
[t]_\ell = \begin{cases} 
\text{Out}(\ell', v) \cdot [t']_\ell & \text{if } t = \text{Out}(\ell', v) \cdot t' \text{ and } \ell' \subseteq \ell \\
[t']_\ell & \text{if } t = \text{Out}(\ell', v) \cdot t' \text{ and } \ell' \not\subseteq \ell \\
\emptyset & \text{if } t = \alpha \cdot t' \land \alpha \neq \text{Out}(\ell', v)
\end{cases}
\]

Given an execution of program \( c \), an attacker at level \( \ell \) observes some portion of the execution (i.e., some subsequence \( t_{\text{obs}} \) of the trace produced during execution). The knowledge of the attacker is the set of initial memories for which execution of \( c \) could produce a trace \( t \) such that some subsequence of \( t \) looks the same to the attacker as \( t_{\text{obs}} \). That is, an attacker’s knowledge is the set of initial memories that the attacker believes are possible. Thus, the smaller the attacker’s knowledge, the more precise is the attacker’s knowledge.

We base our definition of attacker knowledge on that of Askarov et al. [7] by parametrizing it on the large-step semantics. That is, we will instantiate \( \downarrow_{\text{kind}} \) with different large-step semantics that represent different attackers. We assume that all initial configurations use a register file \( r_{\text{init}} \) that maps all variables to zero.

**Definition 1 (Attacker knowledge).** Given program \( c \), security level \( \ell \), large-step semantics \( \downarrow_{\text{kind}} \), and trace \( t_{\text{obs}} \), attacker knowledge is defined as:

\[
k_{\ell}^\text{kind}(c, t_{\text{obs}}) = \{ m \mid N \vdash (c, r_{\text{init}}, m, \emptyset) \downarrow_{\text{kind}} r' ; m' ; K' \triangleright t \\
\land \exists t_0, t_1, t_2. t = t_0 \cdot t_1 \cdot t_2 \land \lceil t_{\text{obs}} \rceil_x = \lceil t_1 \rceil_x \}
\]

Consider the password authentication example from Section 2.2. Let \( c \) be the program, \( m_0 \) be the initial memory and \( t_{\text{obs}} = \text{Mem}(m_0) \cdot \text{Out}(L, 1) \) be the trace produced by the program executed with semantics \( \downarrow \). The knowledge of a passive attacker at security level \( L \) is the set of all initial memories such that the contents of locations password and guess are equal. More formally, \( k_L^L(c, t_{\text{obs}}) = \{ m' \mid m'(\text{password}) = m'(\text{guess}) \} \).

### 3.2 Security

The intuition for knowledge-based security conditions [5][7] is that an attacker should know only what it is permitted to know. We thus define what an attacker is permitted to know.

We are concerned with attackers that may observe only a portion of a program’s execution. Thus, an attacker at level \( \ell \) that starts observing the execution after condition \( \text{conde}\) has been set should in general not be able to learn anything about information with erasure policy \( \ell_1 \rightarrow_\gamma \ell_2 \) where \( \ell_2 \not\subseteq \ell \). However, an attacker is permitted to learn information that has already been declassified, including declassifications that occurred before the attacker started observing the execution.

**Permitted knowledge via erasure policies** Whether an attacker at level \( \ell \) is permitted to observe information with policy \( p \) depends on which conditions have been set. Let \( U \subseteq \text{Cond} \) be the currently unset conditions. Write \( \text{cur}(p, U) \) for the security level that should currently be enforced on information with policy \( p \). If \( p \) is an erasure policy \( \ell_1 \rightarrow_\gamma \ell_2 \), then we should enforce security level \( \ell_1 \) if \( \text{conde} \in U \) and enforce \( \ell_2 \) if \( \text{conde} \not\in U \). Formally:

\[
\text{cur}(p, U) = \begin{cases} 
\ell_1 & \text{if } p = \ell \\
\ell_2 & \text{if } p = \ell_1 \rightarrow_\gamma \ell_2 \text{ and } \text{conde} \in U \\
\ell_2 & \text{if } p = \ell_1 \rightarrow_\gamma \ell_2 \text{ and } \text{conde} \not\in U
\end{cases}
\]

Based on the current security level to enforce on information, we define equivalence classes of initial memories that an attacker at level \( \ell \) should not be allowed to distinguish. Intuitively, if initial memories \( m \) and \( m' \) are identical at every location \( l \) for which the current security level permits the attacker to learn information (i.e., \( \text{cur}(\gamma(l), U) \not\subseteq \ell \)), then the attacker should not be allowed to distinguish \( m \) and \( m' \).

**Definition 2 (Indistinguishable Memories).** Given memory \( m \), security specification \( \gamma \), unset conditions \( U \), and security level \( \ell \), we define \( \text{ind}_\ell(m, \gamma, U) \) as:

\[
\{ m' \mid \forall l \in \text{Loc}. \, \text{cur}(\gamma(l), U) \not\subseteq \ell \implies m(l) = m'(l) \}
\]

Given an execution from initial memory \( m_0 \) where an attacker at level \( \ell \) starts observing the execution when \( U \) are the unset conditions, then the attacker should not learn whether the initial memory for the execution was \( m_0 \) or some memory in \( \text{ind}_\ell(m_0, \gamma, U) \). That is, the attacker’s knowledge should be a superset of \( \text{ind}_\ell(m_0, \gamma, U) \).

**Permitted knowledge via escape hatches** Declassifications permit an attacker to learn more information. Following Sabelfeld and Myers [30], we use escape hatches to characterize what information declassification commands \( x := \text{declassify}(e) \) reveal. An escape hatch is a computation over confidential information such that attackers are permitted to learn the result of the computation. In our setting, an escape hatch is an expression \( e \) evaluated against the initial memory. Recall that confidential information is input
to a program only via the initial memory. Thus, by evaluating escape hatch expression $e$ against the initial memory, $e$ describes a computation over confidential inputs that is permitted to be declassified.

We connect declassification events $\text{Decl}(e, m)$ (where $m$ is the current memory at the time of declassification, and expression $e$ contains only operations over constants and memory locations) to escape hatches by requiring that the evaluation of $e$ using $m$ produces the same value as the evaluation of $e$ using the initial memory. If so, the attacker is permitted to learn the result of $e$, otherwise we do not allow the declassification event to release any information. We capture this in the definition of escape-hatch indistinguishability below.

**Definition 3** (Escape-hatch indistinguishability). Given initial memory $m_0$, current memory $m$, semantics $\psi_{\text{kind}}$ and escape hatch $e$, we define $\text{Esc}^{\psi_{\text{kind}}}(m_0, m, e)$ as

$$\{m' | \exists \mu. (\mu \vdash_\delta (e, r_{\text{init}}, m_0, \emptyset) \psi_{\text{kind}} v \land \mu \vdash_\delta (e, r_{\text{init}}, m, \emptyset) \psi_{\text{kind}} v) \implies \mu \vdash_\delta (e, r_{\text{init}}, m', \emptyset) \psi_{\text{kind}} v\}$$

Given semantics $\psi_{\text{kind}}$, declassification event $\text{Decl}(e, m)$, and initial memory $m_0$, $\text{Esc}^{\psi_{\text{kind}}}(m_0, m, e)$ is equal to the set of all initial memories if expression $e$ evaluates to different values in $m$ and $m_0$ (i.e., the attacker should not learn any information from the declassification), and otherwise is equal to all initial memories $m'$ such that $e$ evaluates to the same value in $m'$ as it does in $m_0$ (i.e., the attacker is permitted to learn the result of evaluating $e$).

**Security definition** We define $[t]_{\text{mem}} = \{m | \text{Mem}(m) \in t\}$ to be the set of memory events that occur in trace $t$ and $[t]_{\text{exec}} = \{(e, m) | \text{Decl}(e, m) \in t\}$ to be the set of tuples corresponding to the declassification events in trace $t$.

Suppose we have an execution from initial memory $m_0$ with specification $\gamma$ that produces trace $t \cdot t_{\text{obs}} \cdot t'$, where an attacker at level $\ell$ observes $t_{\text{obs}}$. Then the attacker is permitted to learn any information that a memory $m'' \in [t_{\text{obs}}]_{\text{mem}}$ permits. That is, the intersection of the sets $\text{ind}_{\ell}(m_0, \gamma, \{\text{cnd} | m'(\text{cnd}) = 0\})$ for $m' \in [t_{\text{obs}}]_{\text{mem}}$ describes what information the attacker is permitted to know based on the current security levels of information.

Moreover, the attacker is allowed to learn declassified information. The intersection of sets $\text{Esc}^{\psi_{\text{kind}}}(m_0, m', e')$ for $(e', m') \in [t \cdot t_{\text{obs}}]_{\text{exec}}$ describes what information the attacker is permitted to know based on declassifications that occurred before or during the attacker observation.

A program is secure if the attacker’s knowledge is indeed no more precise than the information the attacker is permitted to know. Definition 4 captures this intuition.

**Definition 4** (Security). Program $c$ is secure at security level $\ell$ for security specification $\gamma$ and large-step semantics $\psi_{\text{kind}}$ if for all initial memories $m_0$ and all executions

$$N \vdash_\delta (c, r_{\text{init}}, m_0, \emptyset) \psi_{\text{kind}} r; m; K \triangleright t \cdot t_{\text{obs}} \cdot t'$$

where $t_{\text{obs}} = \text{Mem}(m'') \cdot t''$ for some memory $m''$ and trace $t''$, we have

$$\forall \ell' \exists \gamma \exists m' \cdot \bigcup_{m'' \in [t_{\text{obs}}]_{\text{mem}}} \text{Esc}^{\psi_{\text{kind}}}(m_0, m', e') \supseteq \left(\bigcap_{m'' \in [t_{\text{obs}}]_{\text{mem}}} \text{ind}_{\ell}(m_0, \gamma, \{\text{cnd} | m'(\text{cnd}) = 0\})\right) \bigcap_{(e', m') \in [t \cdot t_{\text{obs}}]_{\text{exec}}} \text{Esc}^{\psi_{\text{kind}}}(m_0, m', e')$$

Note that this definition is termination- and progress-insensitive [6]. We can modify the definition to be termination- and progress-sensitive, but this results in a more complicated definition that does not provide additional insight into the issues explored in this paper. We thus refrain from doing so.

Note that the definition quantifies over all possible observations $t_{\text{obs}}$. The definition requires that the first event in the observed trace $t_{\text{obs}}$ is a memory event to ensure we know the current security level to enforce on information as at the start of the attacker’s observation. This is without loss of generality, since every output event is immediately preceded by a memory event (see rule OUTPUT in Figure 3).

For example, let $c$ be the password authentication program modified to set condition end on enclave exit.

$$\text{enclave}(1, \text{status} := \text{+password} = \ast\text{guess}); \text{set}(\text{end}); \text{output status to } L$$

The program is insecure for the specification $\gamma$, where $\gamma(\text{guess}) = L \land \forall c,t \rightarrow \top$ and $\gamma(\text{password}) = H$. Intuitively, for initial memory $m_0$ and $t_{\text{obs}} = \text{Mem}(m_0[\text{end} \rightarrow 1]) \cdot \text{Out}(L, 1)$ produced by execution with semantics $\psi$, then the lower bound $\text{ind}_L(m_0, \gamma, \emptyset)$ on the knowledge of an attacker at security level $L$ is the set of all memories. However, the attacker learns that password and guess are equal.

Suppose we now modify the program to include declassification:

$$\text{enclave}(1, \text{status} := \text{declassify}(\text{+password} = \ast\text{guess}); \ast\text{guess}); \ast\text{guess}; \ast\text{guess}; \ast\text{guess}; \ast\text{guess}$$

The declassification event induces a new lower bound: $\{m' | m'(\text{password}) = m'(\text{guess})\}$ which is same as the attacker’s knowledge. The program is now secure for an attacker at security level $L$.

### 3.3 Attackers

A passive attacker simply observes the execution of a program and attempts to learn information about confidential input. By contrast, an active attacker can modify or influence the execution of a program. Active attackers represent many malicious behaviors, including attacks that can modify execution arbitrarily (e.g., by gaining control of the program counter or overwriting code) or modify some set of memory locations (e.g., by buffer overflows or by providing malicious input to a program).
We consider three attackers: (1) A passive attacker that can only observe output on the $L$ channel; (2) A non-enclave active attacker that can observe output on the $L$ channel and arbitrarily modify non-enclave code; and (3) An enclave active attacker that can observe output on the $L$ and $H$ channels, and can arbitrarily modify (enclave and non-enclave) code but only under certain conditions.

We use different operational semantics to represent the different attackers. The passive attacker corresponds to the semantics $\downarrow$ (Figure 3). That is, programs execute as written, and the attacker passively observes output. We define two new semantics to capture the abilities of the active attackers.

**Non-enclave active attacker** Relation $\Downarrow_{\text{N-chaos}}$ allows the attacker to arbitrarily change non-enclave code. Inference rules for judgment $\mu \vdash_{\text{µ}} \langle c, r, m, K \rangle \Downarrow_{\text{N-chaos}} r'; m'; K' \triangleright t$ include all rules from Figure 3 (appropriately adapted) and the rule in Figure 4. This new rule allows command $c$ to change to command $c'$, so long as both commands have the same enclave code, expressed by relation $c \equiv_{\text{enc}} c'$ (defined in Appendix A). This corresponds to an attacker that can exploit a vulnerability in non-enclave code but is unable to corrupt code within enclaves. Since modifying the program is a security relevant action, an event $A(c \equiv_{\text{enc}} c')$ is emitted to the trace (and we modify $\downarrow_{\ell}$ to include events of the form $A(c \equiv_{\text{enc}} c')$).

If a program is secure for $\Downarrow_{\text{N-chaos}}$ then it is secure for $\downarrow$. The converse does not necessarily hold. For example, consider the following program, where $\delta(\text{hi}) = \text{E}_1$ and $\gamma(\text{hi}) = H$.

$$c \equiv_{\text{enc}} \text{enclave}(1, x := +\text{hi}); \text{output } 1 \text{ to } L$$

The program is secure at level $L$ for specification $\gamma$ and semantics $\Downarrow_{\text{µ}}$ but is insecure for semantics $\Downarrow_{\text{N-chaos}}$. Suppose the active attacker modifies the program to $c' \equiv_{\text{enc}} \text{enclave}(1, x := +\text{hi}); \text{output } x \text{ to } L$. Note that $c \equiv_{\text{enc}} c'$, since the code in enclaves for both $c$ and $c'$ is the same: $\text{enclave}(1, x := +\text{hi})$. Suppose we execute $c'$ with an initial memory that maps hi to 42. The knowledge of an attacker observing output on channel $L$ is $\{ m' \mid m'(\text{hi}) = 42 \}$. However the permitted lower bound on attacker’s knowledge is the set of all initial memories (i.e., the attacker is not permitted to learn anything about the confidential data). So the program is not secure at level $L$ for $\gamma$ and $\Downarrow_{\text{N-chaos}}$.

**Enclave active attacker** Given a set of enclaves $I \subseteq \{ E_1, E_2, \ldots \}$, relation $\Downarrow_{E_1-\text{chaos}}$ allows the attacker to arbitrarily change (enclave and non-enclave) code but only after all enclaves in $I$ are killed. This corresponds to a setting

$$\begin{array}{c}
\text{Figure 4. Additional inference rule for } \Downarrow_{\text{N-chaos}} \\
\text{Figure 5. Additional inference rule for } \Downarrow_{E_1-\text{chaos}} \\
\text{Figure 6. IMPE types}
\end{array}$$
cape hatches, i.e., that declassified expressions are not modified prior to declassification. All conditions are mutable. We explain function types $\Gamma^+, K^+, U \vdash_{\Delta} \Gamma^+, K^+$ after explaining the type judgment.

A security type $\tau = \sigma_p$ is a base type $\sigma$ annotated with a security policy $p$. Intuitively, data with type $\sigma_p$ should have security policy $p$ or a more restrictive policy enforced on it.

A type environment $\Gamma$ maps variables to security types, and non-condition locations to pairs $(\tau, rt)$ of a security type and immutability annotation, where $\tau$ is the type of the location’s contents, and $rt$ describes the location’s immutability. For simplicity, we assume that whether a condition is set is public information, and so for any $\text{end} \in \text{Cond}$, the type of $\text{end}$ is $\text{cond}_\mu^\delta$ for some mode $\mu$ where $\delta(\text{end}) = \mu$. Thus, we exclude $\text{Cond}$ from the domain of $\Gamma$.

A type environment is well-typed for $\delta$ if all locations containing confidential information belong to some enclave. Since security level $\top$ is meant to indicate information that is too confidential to be stored on the machine, we also require that well-typed environments do not map any variable or location to a type $\sigma_\top$. The following definition formally states the well-typedness of environment $\Gamma$ for $\delta$.

**Definition 5 (Well-Typed Environment).** A type environment $\Gamma$ is well-typed for $\delta$, denoted as $\Gamma \vdash_{\delta} \text{ok}$, if

\[
\forall l \in \text{Loc} \setminus \text{Cond}. \Gamma(l) = (\sigma_p, rt) \land p \not\subseteq L \\
\implies \delta(\text{end}) \neq N \land p \neq \top
\]

and

\[
\forall x \in \text{Vars}. \Gamma(x) = \sigma_p \implies p \neq \top
\]

The IMPE type system is flow-sensitive in that the type of variables may differ at different program points. Also, our type system tracks the set of killed enclaves to ensure that no code or data inside a killed enclave is accessed. To ensure that erasure policies are correctly enforced, our type system tracks the set of conditions that are definitely unset.

The typing judgment for commands has the form

\[
\text{pc}, \mu, \Gamma, K, U \vdash_{\delta} c : \Gamma', K'
\]

where:

- $\Gamma$ and $\Gamma'$ are, respectively, the type environments immediately before and after execution of command $c$;
- $K$ and $K'$ are, respectively, the set of killed enclaves immediately before and after execution of $c$;
- $U$ is the set of conditions that are known to be not set immediately before the execution of $c$;
- $\mu$ indicates whether $c$ executes in normal mode ($\mu = N$) or in an enclave ($\mu = E_j$);
- $\text{pc}$ is a policy representing an upper bound on the information that influences the decision to execute $c$, and is also a lower bound on the side-effects of $c$. This program counter policy $[29, 38]$ is used to prevent implicit flows [14], i.e., information flows via the control decisions of a program.

- $\delta$ is a function which indicates for each memory location which enclave, if any, it belongs to.

The type judgment for expressions is $\mu, \Gamma \vdash e : \tau$, meaning that in mode $\mu$ under type environment $\Gamma$, expression $e$ has type $\tau$.

A function type $\Gamma^+, K^+, U \vdash_{\Delta} \Gamma^+, K^+$ indicates the type environment $\Gamma^+$ that must hold before the function is invoked, and the type environment $\Gamma^+$ that will hold immediately after function invocation. These environments may be partial functions, since the function may use only a subset of variables. Well-typedness of functions will ensure that $\text{dom}(\Gamma^-) \subseteq \text{dom}(\Gamma^+)$. Kill set $K^+$ is the set of killed enclaves the function expects at invocation, and $K^+$ is the set of killed enclaves after function invocation. Set $U$ is the set of conditions that the function assumes are unset upon function invocation. Mode $\mu$ is the mode in which the function was defined, and policy $p$ is a lower bound on the side-effects of the function.

We define subtyping on security types based on the relative restrictiveness of security policies. Given policies $p$ and $q$, we say that $q$ is at least as restrictive as $p$, written $p \leq q$, if policy $q$ imposes at least as many restrictions on the use of data as policy $p$. The relation $\leq$ on policies forms a lattice. We write $\sqcup$ for the join operation. We overload the symbol $\leq$ and write $\sigma_1 \leq \sigma_2$ when base type $\sigma_1$ is a subtype of base type $\sigma_2$, and write $\tau_1 \leq \tau_2$ when security type $\tau_1$ is a subtype of security type $\tau_2$. We lift subtyping to type environments and define $\Gamma_1 \leq \Gamma_2$ if and only if $\text{dom}(\Gamma_1) = \text{dom}(\Gamma_2)$ and $\forall y \in \text{dom}(\Gamma_1). \Gamma_1(y) \leq \Gamma_2(y)$. Function types are contravariant in the pre-environment, and the side-effect bound, covariant in the post-environment, and invariant otherwise. Inference rules for the subtyping ($\leq$) relation are presented in Appendix [8].

Figure [7] shows typing rules for expressions. As is standard in security-type systems, constants (including integers, conditions, references, and function definitions) are given policy $L$, the most permissive security policy.

Dereferencing an expression may reveal information about both which location is dereferenced and the contents of that location. Thus in rule T-Deref the result of a $*e$ expression has a security policy that is at least as restrictive as the policy on the reference and the contents of the reference. The premise $\mu' \neq N \implies \mu = \mu'$ (in both T-Deref and T-Sunset) requires that locations in enclaves can be accessed only by code in the same enclave.

Most of the commands follow the standard security typing rules for an imperative language (including subsumption). The rules further ensure that killed enclaves are never accessed (premise $\mu \not\in K$ in many rules) and that enclave locations are accessed only by code in the appropri-
ate enclave, that only public information (i.e., with security policy $L$) can be accessed outside of enclaves (premise $p \not< L \implies \mu' \neq N$ in many rules), and that the program does not store information at security level $T$ (premise $p \not< T$ in many rules). To ensure that kill sets are tracked precisely, we require that both branches of conditionals kill the same enclaves, and that the body of loops kill no enclaves. We also require functions that expect non-empty $U$ to in an enclave. This prevents non-enclave attackers from violating the assumption on $U$ when invoking a function.

Figure 7 presents typing rules for commands $\mathcal{F}$. Rules $\text{T-Skip}$, $\text{T-Assign}$, $\text{T-Sub}$, $\text{T-Seq}$, $\text{T-If-Else}$, $\text{T-While}$ are mostly standard. Rule $\text{T-Decl}2$ checks that condition $\text{cnd}$ can be set only if it is not currently assumed to be unset, i.e., $\text{cnd} \not< U$.

Rule $\text{T-Call}$ ensures that the preconditions for calling the function are satisfied, namely that the kill set and unset conditions assumed by the function is equal to the current kill set and unset conditions, and that the assumptions of the function’s type environment are satisfied ($\forall y \in \text{dom}(\Gamma^+), \Gamma(y) \leq \Gamma^-(y)$). The program counter policy $pc$ and the information revealed by which function to invoke ($q$) must be no more restrictive than $p$, the lower bound on the function’s side effects. The premise $U \not= \emptyset \implies \mu \not= N$ prevents a non-enclave active attacker from directly invoking a function and violating the assumption on set $U$. The type environment after the function call respects the function’s post-environment: $\forall y \in \text{dom}(\Gamma^+), \Gamma^+(y) \leq \Gamma^-(y)$. Since $\Gamma^-$ and $\Gamma^+$ are partial, we require that the types of variables not in $\text{dom}(\Gamma^+)$ (which is a superset of $\text{dom}(\Gamma^-)$) remain unchanged: $\forall y \in \text{dom}(\Gamma^-) \setminus \text{dom}(\Gamma^+), \Gamma(y) = \Gamma^-$. After the function invocation, the kill set is $K^+$.

Type Soundness Program execution starts with a known initial register file ($r_{\text{init}}$) that maps all variables to constant zero. We say that type environment $\Gamma$ corresponds to security specification $\gamma$ if policies on locations agree with $\gamma$ and $\Gamma$ maps all variables to $\text{int}_L$ (since $r_{\text{init}}$ maps every variable

\begin{align*}
\text{T-Int} & \quad \mu, \Gamma \vdash_3 n : \text{int}_L \\
\text{T-Var} & \quad \Gamma(x) = \sigma_p \\
& \quad \mu, \Gamma \vdash_3 x : \sigma_p \\
\text{T-Deref} & \quad \mu, \Gamma \vdash_3 e : \sigma'_p \text{ ref}^t \\
& \quad \mu' \neq N \implies \mu = \mu' \\
& \quad \mu, \Gamma \vdash_3 e : \sigma_{\text{plq}} \\
\text{T-Function} & \quad p, \mu, \Gamma', K', U \vdash_3 c : \Gamma^+, K^+ \\
& \quad \mu, \Gamma \vdash_3 \lambda^\mu c : (\Gamma^-, \Gamma^+, U \text{ add } \Gamma^+, K^+) \\
\text{T-Op} & \quad \mu, \Gamma \vdash_3 e_1 : \text{int}_p \\
& \quad \mu, \Gamma \vdash_3 e_2 : \text{int}_q \\
& \quad \mu, \Gamma \vdash_3 e_1 \oplus e_2 : \text{int}_p \text{plq} \\
\end{align*}
to zero). Formally, \( \Gamma \) corresponds to security specification \( \gamma \) if \( \forall l \in \text{dom}(\gamma), \gamma(l) = p \implies \Gamma(l) = \sigma_p \) and \( \forall x' \in \text{Vars}, \Gamma(x) = \text{int}_L \).

Given a type environment \( \Gamma \) that corresponds to a well-formed security specification \( \gamma \) and is also well-typed for \( \delta \), the type system is sound. That is, a well-typed program is secure against all the attackers described in Section 3.3.

**Theorem 1.** Let \( \gamma \) be a well-formed security specification and \( \Gamma \) be a type environment that corresponds to \( \gamma \) and is well-typed for \( \delta \). If \( L, N, \Gamma, \emptyset \vdash \gamma \vdash \Gamma' \), then:

- \( c \) is secure at security level \( L \) for specification \( \gamma \) and semantics \( \downarrow \)
- \( c \) is secure at security level \( L \) for specification \( \gamma \) and semantics \( \downarrow_{N, \text{chaos}} \)

**Figure 8.** IMPE typing rules for commands

- For all \( I \subseteq \{ E_1, E_2, \ldots \} \), define

\[
\gamma'(l) = \begin{cases} 
\gamma(l) & \text{if } \delta(l) \in I \\
L & \text{otherwise}
\end{cases}
\]

**Command** \( c \) **is secure at security level** \( H \) **for specification** \( \gamma' \) **and semantics** \( \downarrow_{E_1, \text{chaos}} \)

Note that for an enclave active attacker that can attack enclaves in set \( I \) only after those enclaves have been killed, Theorem[1] states that command \( c \) is secure for security specification \( \gamma' \) derived from \( \gamma \). Specification \( \gamma' \) is the same as \( \gamma \) for all locations placed in enclaves in \( I \), but for all other locations does not enforce any security restrictions (i.e., \( \gamma'(l) = L \) if \( \delta(l) \notin I \)). That is, we can protect information placed in enclaves in \( I \) against an enclave active at-
We use \( \text{declassify}(e) \) | \( e_1 \leftarrow e_2 \) | \( \text{output} \ e \ \text{to} \ \ell \) | \( \text{call}(e) \) | \( \text{set}(\text{cnd}) \) | \( c_1; \ldots; c_n \) to distinguish commands based on modes.

The large-step semantic judgment for \( E \) has the form

\[
E \vdash \sigma' \Rightarrow \mu, \Gamma, K, \delta, e', \Gamma', K' \]

We ensure that if \( pc, \sigma_p \vdash e' : \sigma_p \) holds and \( e' \) is the translated \( \text{IMPE} \) expression such that, provided the constraints are satisfied, \( pc, \mu, \Gamma, K, U \vdash e : \Gamma', K' \).

Instead of the translation judgment explicitly producing a set of constraints, for brevity we present inference rules for the judgment such that constraints are implied by premises that restrict modes, mode annotations, kill sets, etc.

The translation judgment for expressions has the form

\[
G, e, \sigma_p \vdash \mu, \Gamma, K, \delta, e', \sigma_p \text{ where } e \text{ is an \( \text{IMPE} \) expression such that } G, e ::= e' : \sigma_p \text{ holds and } e' \text{ is the translated } \text{IMPE} \text{ expression such that, provided the constraints are satisfied, } pc, \mu, \Gamma, K, U \vdash e : \Gamma', K' \]

The judgment for translating base types is \( \sigma \Rightarrow \sigma_p \). It states that an \( \text{IMPS} \) base type \( \sigma \) is translated to an \( \text{IMPE} \) base type \( \sigma_p \). It is parametrized by \( \delta \) to ensure that type environments for functions types are translated appropriately.

Figure 10 shows the type translation. In the rule for type environments, premise \( \forall l \in \text{dom}(\sigma). G(l) = (\sigma_p, rt) \wedge p \nsubseteq L \implies \delta(l) \neq N \) ensures that all confidential locations
They enforce the invariant that a location in enclave for expressions proceeds by first translating the types. have appropriate enclave assignments (even if these locations are not used by the program).

Figure[11] shows the translation for expressions. Translation for expressions proceeds by first translating the types. They enforce the invariant that a location in enclave $E_i$ is accessed in the same mode $E_i$. Rules TR-INT, TR-VAR, TR-LOC, TR-CND, and TR-OP are straightforward.

Rule TR-DEREF translates a dereference expression. The premise $\mu' \neq N \implies \mu = \mu'$ generates a conditional constraint such that if the dereferenced location is in an enclave ($\mu' \neq N$) then the expression is evaluated in the same enclave ($\mu = \mu'$). Similarly, rule TR-UNSET ensures that if a condition location is dereferenced, then the mode in which the expression is evaluated is appropriate.

Rule TR-FUNCTION requires that if the post type environment $\Gamma'$ has any variables with policies more restrictive than $L$ (isVarLowContext($\Gamma'$)), then the function is defined in an enclave ($\mu \neq N$). Intuitively, any data left in variables at the end of the function invocation may be observable by the code that invoked the function. If that data includes confidential information, then the function should not be invoked by non-enclave code.

Figure[12] shows the inference rules for translating commands. Most of these rules are straightforward and closely follow the premises of the corresponding typing rules. Premise $\mu \not\in K$ occurs in many of the rules, and ensures that code in killed enclaves cannot be executed.

Rule TR-SEQ drives the entire translation. Intuitively, given a sequence $c_1; \ldots; c_n$, it translates each sub-command $c_i$ by assigning them a different mode variable $\mu_i$. If the translation infers that $\mu_0 = N$ but $\mu_i \neq N$, then the translated sub-command $c'_i$ is placed inside an enclave. Variable $K_i$ is the kill set immediately before the execution of $c'_i$, $K'_i$ is the kill set immediately after the execution of $c'_i$, and $K''_i$ is the set of enclaves (if any) that can be safely killed after executing $c'_i$. Thus, we have that $K_{i+1} = K'_i \cup K''_i$.

Constraint $K'_i \cap K''_i = \emptyset$ ensures that an enclave is not killed more than once. Constraint $\mu_0 \neq N \implies (\mu_0 = \mu_i \land K''_i = \emptyset)$ states that if sequence executes entirely in an enclave ($\mu_0 \neq N$) then all sub-commands are in the same enclave and no enclaves are killed. Constraint $\mu_i \neq N \land \mu_i = \mu_{i+1} \implies K''_i = \emptyset$ ensures that no enclave can be killed between sequences executing in same enclave.

Rule TR-SEQ uses utility function processSeqOutput which inserts enclave and kill commands appropriately into the translation. Intuitively, enclave is introduced for a command $c'_i$ if there is a mode change. Command kill($j$) is inserted after command $c'_i$ if $j \in K''_i$. Pseudo code for processSeqOutput is presented in Appendix[2] Rule TR-IF-ELSE requires that same sets of enclaves are killed in both the branches. Also, if variables contain confidential information on exit of either branch, then the outer mode should not be normal. Rule TR-IF-UNSET always places the command in an enclave to ensure that the premises of typing rule T-IF-UNSET are met. Rule TR-WHILE requires that no enclave is killed in the loop body. Rule TR-CALL requires that if set $U$ is non-empty, then the function is defined in an enclave.

Soundness of Translation Successful translation of well-typed IMPS program produces a well-typed IMPE program.

Theorem 2 (Soundness of Translation). Let $G$ be a well-typed IMPS environment and $\Gamma$ be an IMPE environment that is well-typed for $\delta$. For all commands $c \in$ IMPS, if $pc, G, U \vdash c : G'$ and $pc, G, K, c, G' \leadsto \mu, \Gamma, U, \delta, c', \Gamma', K'$ then $pc, \mu, \Gamma, K, U \vdash_\delta c' : \Gamma', K'$.
preserving transformation that zeroes-out variables as soon as they are dead.

6.2 Constraint Solution and Optimization

The constraints used in the translation of IMPs programs to IMPE can be expressed as a Boolean SAT instance, assuming that the mode set \( \text{Mode} = \{N, E_1, E_2, \ldots \} \) is of a fixed finite size. Specifically, the constraints restrict modes of locations and code, and kill sets (which are sets of enclaves). All constraints generated during translation can be encoded straightforwardly in a SAT formula. For a program of size \( n \) with \( m \) locations where \( |\text{Mode}| = k \), the size of SAT formula is \( O((n+m)^2 + nk) \).

There may be many possible translations of a given IMPs program without any of them being clearly the “best” translation. Naively, we could try to place the entire program and all locations in a single enclave. However, even if successful, this is not always desirable for at least two reasons. First, an enclave may have size restrictions and a program can be too large to fit. Second, even if the program can fit inside an enclave, it may be desirable to have as little code as possible in enclaves, to reduce the trusted computing base (i.e., the code that must be assumed to be correct; security for a program without any of them being clearly the “best” transformation that zeroes-out variables as soon as they are dead.

data inside enclaves (which corresponds to minimizing the trusted computing base (TCB)), reducing the lifetime of confidential data by killing enclaves as soon as possible, or minimizing the performance penalty of enclaves.\(^3\)

We can cast our translation as a constraint optimization problem that optimizes an objective function that approximates TCB-size, lifetime of enclaves, performance penalty, or a combination of these.

A pseudo-Boolean function \( f : \{0,1\}^n \rightarrow \mathbb{R} \) is a real-valued function of a finite number of 0-1 valued variables. A pseudo-Boolean constraint is an equality or inequality between pseudo-Boolean functions. Pseudo-Boolean optimization (PBO) optimizes a pseudo-Boolean function subject to pseudo-Boolean constraints. PBO is 0-1 multilinear integer programming and is NP-hard.\(^4\) We can encode the SAT formula for a translation as a pseudo-Boolean constraint and express TCB size and performance as pseudo-Boolean functions to be minimized.

We can compute the TCB cost by counting the number of non-sequence commands placed in enclaves.

Killing an enclave as soon as possible reduces the window of vulnerability. This can be achieved by maximizing the size of kill sets at all program points, which effectively kills enclaves as soon as possible. Moreover, we can facilitate killing enclaves as early as possible by using more enclaves, i.e., partitioning code and data into enclaves at fine granularity. This is also optimized by maximizing the size of kill sets. Note that to avoid spuriously putting public data into enclaves to increase the total number of enclaves that can be killed, we require that each killed enclave has at least some confidential data stored in it.

\(^3\)Intuitively, \((n+m)\) mode variables, pairs of which are constrained to be either equal or different are generated, resulting in at most \((n+m)^2\) constraints. Additionally, \(nk\) kill set constraints (e.g., \(K_{i+1} = K'_i \cup K''_i\) in TR-\text{SEQ}) are generated. Thus the size of the SAT formula is \(O((n+m)^2 + nk)\).

\(^4\)On some models, SGX enclaves have a maximum size of \(2^{31}\) bits.\(^5\) In Intel SGX, entering or exiting an enclave flushes all TLB entries.\(^6\)

---

\(^{24}\)Figure 11. Translation of expressions

\[^{24}\] In Intel SGX, entering or exiting an enclave flushes all TLB entries.
Figure 12. Translation for commands
Enclave entry and exit is expensive and penalizes the run-time performance. Although we have not implemented it, we could approximate the run-time cost using a Control Flow Graph (CFG) and approximating how frequently execution enters and exits enclaves.

7. Comparison with SGX

Although there are several hardware-enforced enclave-like mechanisms, IMP is most heavily influenced by SGX. We discuss how IMP relates to SGX.

First, we assume that enclaves are isolated from each other: code in enclave $E_i$ can not access memory in enclave $E_j$ when $i \neq j$. SGX does enforce this via an access control mechanism, but uses a single encryption key to protect the contents of all enclaves. Some enclave mechanisms (such as TrustZone) do not provide multiple enclaves.

Second, we assume that once an enclave is killed, the contents of the enclave can never be recovered, thus providing forward secrecy. However, the current design of SGX bases access control decisions on the initial measurement of an enclave. That is, if another enclave is created that has the exact same initial contents as the killed enclave, a replay attack may be possible, whereby the new enclave decrypts memory pages from the killed enclave.

Third, our model assumes inputs to an execution are provided in the initial memory and output channels exist for security levels $L$ and $H$. Our model can be easily modified to use channels for input instead of the initial memory. Secure channels from an SGX enclave to remote parties can be straightforwardly implemented using cryptographic mechanisms. However, SGX currently provides little support for secure output to local devices and no support for secure local input, possibly making it unsuitable for, e.g., securely checking a locally-entered password. However, support for secure local I/O is emerging, such as TrustZone’s Trusted User Interface [17]. This supports our modeling choice to allow the enclave to receive and send confidential information, which can represent (remote or local) secure I/O.

8. Evaluation

We implement six case studies (many inspired by related work [7, 16, 34, 36]) to evaluate the expressiveness of security policies, and the translation from IMPs to IMP. The translator and case studies are available online [19]. All case studies are implemented as (well-typed) IMP programs which translate successfully to IMP programs. Thus all case studies are secure against passive, enclave, and non-enclave active attackers.

We extend the calculi with strings, pairs, and arrays. The types of IMP and IMPs are extended as follows.

$$\sigma ::= \cdots \mid \text{string} \mid \sigma_1 \times \sigma_2 \mid \tau^{\mu} \mid \tau^{rt}$$

$$\bar{\sigma} ::= \cdots \mid \text{string} \mid \sigma_1 \times \sigma_2 \mid \bar{\tau} \mid \tau^{rt}$$

An array is a sequence of locations with the constraint that all elements of the array are in the same enclave (or all elements are in no enclave). IMP array type $\tau^{\mu} | \tau^{rt}$ indicates an array that contains values of type $\tau$, mode $\mu$ indicates in which enclave (if any) the array is placed and $rt$ indicates if the contents of array are mutable. The IMPs array type is similar except that there is no mode annotation. Types for strings and pairs are straightforward.

Password Authentication: Recall the password authentication example (with declassification) from Section 3.2. Consider an IMPs version (i.e., without any enclave annotations). Translating it with our tool gives the following.

```plaintext```
```
\textbf{enclave}(1, \text{status} := \text{declassify}(\ast \text{password} = \ast \text{guess}));
\textbf{kill}(1); \text{set}(\text{end}); \text{output status to L}
```
```
```
```
```
```
The translation assigns enclave $E_1$ to locations password and guess (i.e., translated locations have type $\textbf{int}_{E_1} \ \textbf{ref}^{\text{mutable}}$ and guess : $\textbf{int}_{E_1} \ \textbf{and} \ \tau^{\text{ref}}$). The declassification is placed inside $E_1$ because it reads password and guess. The translation kills the enclave immediately after exiting the enclave. This is as early as possible, thus minimizing the window of vulnerability.

Private Browsing: A private session of a web browser allows a user to browse the web with the assurance that the browsing history cannot be retrieved after the private session has ended. However, private browsing implementations are error prone, and many leak information from private sessions [1, 33]. We model a private browsing session where the user starts a private session, browses, then ends the session. The security requirement can be expressed as an erasure policy that states that all private browsing data (and data derived from it) should be erased when a condition marking the end of the session is set.

Since our calculi model input as the initial memory, we assume that the initial memory contains the user’s input to the private session (e.g., an array of URLs to visit). The user’s input has erasure policy $H \ \textbf{and} \ \tau$, where condition end is set at the end of the private session. During the private session, output is sent to channel $H$. Once the session ends, we model normal browsing by output to channel $L$.

Translation assigns enclave $E_1$ to all the locations containing the user’s input to the private session. It also places all code related to the private browsing session inside enclave $E_1$ and generates a kill instruction before resuming normal browsing.

Secure Calculator: We implement a secure calculator that performs public operations on confidential data. This is a model of, for example, a tax computation, where well-known operations (the tax computation) are performed on confidential input (an individual’s financial information). The operations are chosen dynamically (i.e., public inputs specify which operations to perform). The result of the computation is output to channel $H$. The initial memory contains an array of operations to perform (with security policy
We model columns name and wages as arrays, with policies $L$ and $H$ respectively. Row selection chooses all indices of array name that are equal to key “alice”. Summing computes the sum of all wages corresponding to the selected indices.

The translation places array wages in enclave $E_1$, but leaves array name outside of any enclave. The row selection computation is placed outside an enclave, and the summing operation is placed inside enclave $E_1$. Our automated translation places the same data and computation in enclaves as the (manually coded) case study of Sinha et al.

**Secure Chat Client** We model a secure chat client, inspired by the case study of Askarov et al. [7]. Messages sent and received by the client are emitted to a log. When the user enters a “clear” command, messages (including the log) should be erased. We model messages sent and received and commands entered by the user as data in the initial memory. We model logging as an update to location log. We give messages and the log the erasure policy $L \rightsquigarrow \top$, which states that the contents of log are erased when condition clear is set. The condition is set only when a “clear” command is issued. The translation places log in an enclave, as well as all code that updates the log.

**Models for Secure Hardware Architecture and Compilation** Fournet and Planul [16] securely compile imperative programs into distributed programs using cryptography and hardware mechanisms (such as Trusted Platform Modules (TPM) and secure boot) to enforce noninterference for confidentiality and integrity. They emulate secure memory (that cannot be accessed by adversaries) and enforce control-flow restrictions on the distributed program. The compiled program is proven to be at least as secure as the source program: for every attack on the compiled program there is a corresponding attack on the source program, with the same information leakage. By contrast, we focus on expressive security policies (erasure and declassification) that go beyond noninterference. Their system doesn’t provide erasure guarantees. We target a single machine and use enclave mechanisms that directly provide secure memory (instead of emulating secure memory via cryptographic mechanisms). Both our work and theirs shield the programmer from the mechanisms used to enforce security. Although we do not focus on integrity guarantees in this work, we rely on enclaves to provide integrity guarantees on code running inside enclaves (cf. security against non-enclave active attackers). We believe that our target calculus IMPe can be extended to provide integrity guarantees about computation inside enclaves.

VC3 [34] enables distributed map-reduce computations in untrusted cloud environments while keeping code and data secret, using SGX enclaves to protect against adversaries that might control the entire software stack of the cloud provider’s infrastructure. We instead focus on provid-
ing confidentiality for general programs in the presence of an attacker controlling the entire software stack of a single system. In VC3, all data is confidential (i.e., equivalent to our policy $H$) and all map-reduce computation of a given node is placed inside a single enclave on that node. By contrast, we use expressive security policies (i.e., declassification and erasure) and infer enclave placement to optimize various objective functions. VC3 ensures that only address-taken variables are read and written. The region-self-integrity mechanism prevents unintended disclosure of information due to low-level errors (e.g., buffer overflow). This can be used as a defense-in-depth mechanism in our work to reduce the possibility of an enclave active attacker exploiting vulnerabilities in enclave code.

Moat [35] models SGX using BoogiePL [13] and verifies the confidentiality of binary SGX programs in the presence of “havocing” adversaries capable of modifying non-enclave code. A havocing adversary is analogous to our non-enclave attacker, which can arbitrarily modify non-enclave code. Thus, ensuring confidentiality against a havocing adversary corresponds to security for a non-enclave active attacker. Our work also considers enclave active attackers, which are more powerful than havocing adversaries. Our work differs from Moat in shielding developers from low-level enclave-specific details.

Ironclad [22] provides verifiable remote equivalence: an application running on an untrusted server is indistinguishable from its high-level abstract state machine. Ironclad uses secure hardware (e.g., TPM) as the root of trust and to enable secure channels from verified software to remote clients. Our work could potentially be used in an Ironclad-like setting to reduce verification effort: enclave inference can be used to identify and minimize the security-critical parts of an application, which reduces the code that must be verified.

Sinha et al. [37] enforce confidentiality by placing an entire application inside an SGX enclave and restricting its communication with external memory through a narrow interface to a trusted library. They enforce Information Release Confinement, which ensures that the application satisfies a form of control-flow integrity and never directly accesses non-enclave memory. This work is complementary to ours, and could be used for defense-in-depth in our work, making it harder for an enclave active attacker to exploit vulnerabilities in enclave code.

Patrignani et al. [20] provide a fully-abstraction secure compilation scheme for compiling strongly typed object-oriented languages to protected module architectures (PMAs) that offer memory isolation mechanisms and are similar to enclaves. Objects containing private methods are placed inside protected modules thus preventing a low-level attacker from bypassing encapsulation mechanisms. The compilation scheme is proven to preserve and reflect the encapsulation of the source program. Their low-level attacker is similar to the non-enclave active attacker in our model. Though we do not aim for full abstraction, our work provides a stronger information flow guarantee for applications with more expressive security requirements against different attackers.

None of the above works consider applications using multiple enclaves whereas our programming model supports multiple enclaves seamlessly.

Language-based Information-Flow Control Much work in language-based information-flow control is concerned with enforcing application-specific security guarantees [14] [25] [29] [38]. Our work extends these techniques to a setting where the underlying software stack is not trusted. That is, we consider strong low-level attackers that are capable of arbitrary corruption of some parts of a program.

Information Erasure A key emphasis in our work is the enforcement of information erasure using SGX-like mechanisms. Information erasure is related to data deletion, but requires that the observable behavior of a system reveals nothing about the deleted data, which may, for example, require tracking and deletion of data derived from the deleted data. Language-based information erasure was introduced by Chong and Myers [9], and several works present techniques for enforcing erasure (e.g., [7] [10] [23]). By contrast with these previous language-based approaches, we protect against more powerful lower-level attackers.

Other work uses language- and system-based techniques to ensure data deletion at the system- or architectural-level of abstraction. Chow et al. [11] enforce data deletion by analyzing the lifetime of sensitive data, and automatically zeroing out data in memory. Perlman [27] proposes a file system that uses cryptographic techniques to reliably delete files. These approaches may fail to remove derived data, and thus will not enforce information erasure. Lacuna [13] runs sensitive computations in a “private session” and can securely delete all session data at the end of the session (including data used to communicate with peripheral devices). Provided all sensitive information is contained within a private session, Lacuna can enforce both data deletion and information erasure.

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. 1054172.

References


A. Enclave Equivalence $\equiv_{\text{enc}}$

Equivalence relation $\equiv_{\text{enc}}$ is used to characterize the ability of an active attacker. Intuitively, given commands $c$ and $c'$, we have $c \equiv_{\text{enc}} c'$ if $c$ and $c'$ have the same code in enclaves, but may differ arbitrarily on non-enclave code. We define $\equiv_{\text{enc}}$ using function $\chi$ which syntactically extracts enclave code.

**Definition 6 (Enclave Equivalence).** Two IMPs programs $c_1$ and $c_2$ are enclave equivalent, denoted $c_1 \equiv_{\text{enc}} c_2$, iff

$$\chi(c_1) = \chi(c_2)$$

where

$$\chi(\text{enclave}(j, c)) = \{(E_j, c)\}$$

$$\chi(\lambda^E_i.c) = \{(E_j, \lambda^{E_j}.c)\}$$

$$\chi(\lambda^N_i.c) = \chi(c)$$

and all atomic expressions and commands return the empty set, e.g.,

$$\chi(\text{skip}) = \emptyset$$

$$\chi(n) = \emptyset$$

and all other expressions and commands recurse on sub-expressions and sub-commands, e.g.,

$$\chi(e_1; \ldots; e_n) = \chi(e_1) \cup \cdots \cup \chi(e_n)$$

$$\chi(e_1 \oplus e_2) = \chi(e_1) \cup \chi(e_2)$$

For example, given $c_1 = \text{enclave}(1, \text{output 42 to } L)$ and $c_2 = l \leftarrow 1; \text{enclave}(1, \text{output 42 to } L)$, we have $\chi(c_1) = \chi(c_2) = \{(E_1, \text{output 42 to } L)\}$. The programs $c_1$ and $c_2$ are thus enclave equivalent.

B. IMPs Type System

Figure 13 defines the relabeling relation $\leq_{\text{enc}}$ on policies.

\[
\begin{align*}
\ell_1 \subseteq \ell_2 & \quad p_1 \leq \ell_2 \\
\ell_1 \subseteq \ell_2 & \quad p_1 \leq \ell_2 \quad \ell_1^{\text{end}} \subseteq \ell_2^{\text{end}} \\
\ell_1 \subseteq \ell_2 & \quad \ell_1 \subseteq \ell_2 \\
\ell_1^{\text{end}} \subseteq \ell_2^{\text{end}} & \quad \ell_1^{\text{end}} \subseteq \ell_2^{\text{end}} \\
\sigma \leq \sigma' & \quad p \leq q \\
\sigma_p \leq \sigma_q & \quad \sigma \leq \sigma
\end{align*}
\]

**Figure 13.** Policy ordering and subtyping

### C. IMPs Type System

Subtyping for IMPs types closely follows the subtyping of IMPe types. Figures 14 and 15 describe the type system.

### D. Pseudo Code

Function processKill inserts kill($j$) whenever an enclave $E_j$ is killed and function processSeqOutput wraps the largest sequence of code with mode $E_j$ in enclave.$(j, \ldots)$

```
processKill(K) =
    match K with
      | k U k' -> kill(k); processKill(K')
      | 0 -> ()

processSeqOutput(c'_0, μ_0, μ'_0, K'_0) =
    match (μ_0, μ'_0, K'_0) with
      | μ', (μ' \ldots μ'), (θ \ldots θ) -> c'_1; \ldots; c'_z
      | N, (N, μ'_{2:z}), (K', K'_{2:z}) ->
```


<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST-Skip</td>
<td>$G(x) = \sigma_q \triangleright e : \sigma_p$</td>
</tr>
<tr>
<td>pc, $G, U \vdash \text{skip} : G'$</td>
<td>$G[x \mapsto \sigma_{pc,l}p]$</td>
</tr>
<tr>
<td>ST-Declassify</td>
<td>$G(x) = \sigma_q \triangleright e : \sigma_p$</td>
</tr>
<tr>
<td>pc = $L$ hasNoVars(e) allLocImmutable(e)</td>
<td>$pc, G, U \vdash x := \text{declassify}(e) : G[x \mapsto \sigma_l]$</td>
</tr>
<tr>
<td>ST-Update</td>
<td>$G \triangleright e_1 : (\sigma_p \text{ref}^t)_q \triangleright e_2 : \sigma_p'$</td>
</tr>
<tr>
<td>$p' \cup q \cup pc \leq p$ rt = mut $p, p', q \neq \top$</td>
<td>$pc, G, U \vdash e_1 \leftarrow e_2 : G'$</td>
</tr>
<tr>
<td>ST-Seq</td>
<td>$\forall i \in {1 \ldots n} : pc, G_{i-1}, U \vdash c_i : G_i$</td>
</tr>
<tr>
<td>pc, $G_0, 0 \vdash c_1 \ldots c_n : G_n$</td>
<td>$pc, G, U \vdash \text{set}(\text{cnd}) : G'$</td>
</tr>
<tr>
<td>ST-SetCnd</td>
<td>$G \triangleright e : \sigma_p \triangleright e \triangleright e : \top  $</td>
</tr>
<tr>
<td>pc, $G, U \vdash \text{set}(\text{cnd}) : G'$</td>
<td>$pc, G, U \vdash \text{output} e \text{ to } \ell : G$</td>
</tr>
<tr>
<td>ST-If-Isunset</td>
<td>$G \triangleright \text{isunset}(\text{cnd}) : \text{int}_l$</td>
</tr>
<tr>
<td>pc, $G, U \cup {\text{cnd}} \vdash c_1 : G' \triangleright pc, G, U \vdash c_2 : G'$</td>
<td>$pc, G, U \vdash \text{if isunset}(\text{cnd})\text{ then } c_1 \text{ else } c_2 : G'$</td>
</tr>
<tr>
<td>ST-If-Else</td>
<td>$pc' G, U \vdash c_1 : G' \triangleright e : \text{int}_p$</td>
</tr>
<tr>
<td>$pc \cup p \leq pc'$ $pc', G, U \vdash e_2 : G' \triangleright p \neq \top$</td>
<td>$pc, G, U \vdash \text{if } e \text{ then } c_1 \text{ else } c_2 : G'$</td>
</tr>
<tr>
<td>ST-Sub</td>
<td>pc, $G_1, U_1 \vdash c : G'_1 \quad pc_2 \leq pc_1$</td>
</tr>
<tr>
<td>$G_2 \leq G_1 \quad U_2 \supset U_1 \quad G'_1 \leq G'_2$</td>
<td>$pc_2, G_2, U_2 \vdash e : G'_2$</td>
</tr>
<tr>
<td>ST-While</td>
<td>$\mu G \vdash e : \text{int}_p \quad pc', G, U \vdash c : G$</td>
</tr>
<tr>
<td>$pc \cup p \leq pc'$ $p \neq \top$</td>
<td>$pc, G, U \vdash \text{while } e \text{ do } c : G$</td>
</tr>
<tr>
<td>ST-Call</td>
<td>$G \triangleright e : (G^* U P, G') \eta$</td>
</tr>
<tr>
<td>$pc \cup q \leq p \quad \forall y \in \text{dom}(G'), G(y) \leq G^*(y)$</td>
<td>$\forall y \in \text{dom}(G') \cup \text{dom}(G*) : G(y) = G_{out}(y)$</td>
</tr>
<tr>
<td>pc, $G, U \vdash \text{call}(e) : G_{out}$</td>
<td>$q \neq \top$</td>
</tr>
</tbody>
</table>

Figure 15. IMPS typing rules for commands
E. Proofs

We first prove the soundness of IMP type system, Theorem 1 in Section E.1 and then prove the soundness of translation, Theorem 2 in Section E.2.

E.1 Soundness of IMP Type System

The proof for Theorem 1 follows the technique of Pottier and Simonet [28]. The language IMP$^2$ extends IMP to include value pairs.

\[ v ::= \ldots | (v_1 | v_2) \]

The pair construct represents values that may arise in two different executions of a program. They are used to track how registers and memories differ in different executions of a program. Register (Memory) in IMP is a function from variables (locations) to value pairs. We use \( (c, r, m, K) \) to denote IMP$^2$ configuration. It has the same meaning as the IMP configuration except that the register \( r \) and memory \( m \) now refer to IMP$^2$ register and memory functions.

We define the semantics of IMP$^2$ with a large step operational semantics denoted by \( \triangleright^2 \). The judgment for the evaluation of commands has the following form is similar to the large step defined in Section 2.3.

\[ \mu \vdash (c, r, m, K) \triangleright^2 \text{com} \ r' ; m' ; K \triangleright t' \]

Most of the rules are similar to the semantics defined in Figure 3. Rule SQ-SEQ is a straight-forward adapation of the rule SEQ. Rule SQ-IF-DIV states that if the conditional evaluates to pair value, then the final configuration is the result of merging the corresponding configurations on each projection. Figure 16 defines the merge operation on locations, registers, traces and kill sets. Similarly, rules SQ-WHILE-DIV and SQ-CALL-DIV state that if the expression evaluates to a pair value, then the final configuration is the result of merging the corresponding configurations on each projection.

**SQ-SEQ**

\[ \forall i \in \{1 \ldots z\}, \mu \vdash (c_i, r_{i-1}, m_{i-1}, K_{i-1}) \triangleright^2 \text{com} \ r_i ; m_i ; K_i \triangleright t_i \]

**SQ-IF-DIV**

\[ \mu \vdash (e, r, m, K) \triangleright^2 \text{exp} \ (v_0 | v_1) \quad c_{\text{left}} = (v_0 == 1)?c_0 : c_1 \quad c_{\text{right}} = (v_1 == 1)?c_0 : c_1 \]

**SQ-WHILE-DIV**

\[ \mu \vdash (e, r, m, K) \triangleright^2 \text{while} \ (v_0 | v_1) \quad c_{\text{left}} = (v_0 == 1)?\text{skip} c : \text{skip} \quad c_{\text{right}} = (v_1 == 1)?\text{skip} c : \text{skip} \]

**SQ-CALL-DIV**

\[ \mu \vdash (e, r, m, K) \triangleright^2 \text{call} (\lambda^\alpha.c_1 | \lambda^\alpha.c_2) \quad (\lambda^\alpha.c_1) \]

Figure 17 defines the projection on pairs of locations, registers, traces and kill sets for \( i \in \{1, 2\} \). Recall that \( \alpha \) ranges over events.

For notation simplicity, we define the command projection of an IMP$^2$ trace to represent the changes made by the attacker to the program in \( i^{th} \) projection.

\[ [t]_{i,cmd} = [\{t\}_{i}]_{cmd} \]
merge(m_1, m_2, l) = \begin{cases} v & \text{if } m_1(l) = m_2(l) = v \\ (v_1 | v_2) & \text{if } m_i(l) = v_i \text{ and } v_1 \neq v_2 \end{cases}

merge(m_1, m_2) = m | \forall l \in \text{Loc. } m(l) = merge(m_1, m_2, l)

merge(r_1, r_2, x) = \begin{cases} v & \text{if } r_1(x) = r_2(x) = v \\ (v_1 | v_2) & \text{if } r_1(x) = v_1 \text{ and } v_1 \neq v_2 \end{cases}

merge(r_1, r_2) = r | \forall x \in \text{Vars. } r(x) = merge(r_1, r_2, x)

merge(t_1, t_2) = \begin{cases} (\alpha_1 | \alpha_2) \cdot \text{merge}(t'_1, t'_2) & \text{if } t_i = \alpha_i \cdot t'_i \land \alpha_i \neq \epsilon \\ (\alpha_1 | \epsilon) \cdot \text{merge}(t'_1, \epsilon) & \text{if } t_1 = \alpha_1 \cdot t'_1 \land \alpha_2 = \epsilon \\ (\epsilon | \alpha_2) \cdot \text{merge}(\epsilon, t'_2) & \text{if } t_2 = \alpha_2 \cdot t'_2 \land \alpha_1 = \epsilon \\ \epsilon & \text{o.w} \end{cases}

merge(K_1, K_2) = (K_1|K_2)

---

**Figure 16. Definition of merge**

[r]_i(x) = \begin{cases} v & \text{if } r(x) = v \\ v_i & \text{if } r(x) = (v_1|v_2) \end{cases}

[m]_i(x) = \begin{cases} v & \text{if } m(x) = v \\ v_i & \text{if } m(x) = (v_1|v_2) \end{cases}

[t]_i = \begin{cases} \text{Mem}([m]_i) \cdot [t']_i & \text{if } t = \text{Mem}(m) \cdot t' \\ \text{Decl}(e, [m]_i) \cdot [t']_i & \text{if } t = \text{Decl}(e, m) \cdot t' \\ \text{Out}(\ell, [v]_i) \cdot [t']_i & \text{if } t = \text{Out}(\ell, v) \cdot t' \\ \text{A}(c) \cdot [t']_i & \text{if } t = \text{A}(c) \cdot t' \\ \text{A}(c_1 \succeq c_2) \cdot [t']_i & \text{if } t = \text{A}(c_1 \succeq c_2) \cdot t' \\ \alpha_i \cdot [t']_i & \text{if } t = (\alpha_1 | \alpha_2) \cdot t' \\ \epsilon & \text{o.w} \end{cases}

[K]_i = K_i \text{ if } K = (K_1|K_2)

---

**Figure 17. Definition of projections**

protected(p, S) = \begin{cases} true & \text{if } p = H \text{ or } \top \\ true & \text{if } p = L \text{ and } \ell_2 \text{ and } \text{cnd } \in S \\ true & \text{if } p = \ell_1 \text{ and } \text{cnd } \notin L \\ false & \text{o.w} \end{cases}
E.1.1 Adequacy
The language IMPE\(^2\) is adequate for reasoning about executions of two IMPE programs. We show that execution of IMPE\(^2\) program is sound, (large-step by a IMPE\(^2\) program corresponds to large-steps taken by its projections) and complete (given two IMPE executions, there exists an IMPE\(^2\) execution).

**Lemma 1** (IMPE\(^2\) is Sound). If \( \mu \vdash (c, r, m, K) \bullet \downarrow_\text{com}^2 r^*; m^*; K^* \triangleright t^* \bullet \), then \( \mu \vdash_\delta (c, [r_i], [m_i], [K_i]) \downarrow [r^*_i]; [m^*_i]; [K^*_i] \triangleright [t^*_i] \) for \( i \in \{1, 2\} \).

**Proof Sketch.** Proof is by induction on the derivation of \( \mu \vdash (c, r, m, K) \bullet \downarrow_\text{com}^2 r^*; m^*; K^* \triangleright t^* \bullet \).

**Lemma 2** (IMPE\(^2\) is Complete). If \( \mu \vdash_\delta (c, [r_i], [m_i], [K_i]) \downarrow r_i^*; m_i^*; K_i^* \triangleright t_i^* \), then \( \exists (r^*, m^*, K^*, t^*) \text{ such that } \mu \vdash (c, r, m, K) \bullet \downarrow_\text{com}^2 r^*; m^*; K^* \triangleright t^* \bullet \) and prove that we can construct \( r^*, m^*, K^* \) and \( t^* \) such that \( (r_i^*, m_i^*, K_i^*, t_i^*) \) for \( i \in \{1, 2\} \).

**Proof Sketch.** We use induction on the derivation of \( \mu \vdash_\delta (c, [r_i], [m_i], [K_i]) \downarrow r_i^*; m_i^*; K_i^* \triangleright t_i^* \) and prove that we can construct \( r^*, m^*, K^* \) and \( t^* \) such that \( (r_i^*, m_i^*, K_i^*, t_i^*) \) for \( i \in \{1, 2\} \).

Interesting cases are SQ-IF-DIV, SQ-WHILE-DIV and SQ-CALL-DIV. We give intuition for SQ-IF-DIV, the rest follow the same argument.

Given \( \mu \vdash_\delta (c, r, m, K) \bullet \downarrow_\text{com}^2 r^*; m^*; K^* \triangleright t^* \bullet \). Let

\[
\begin{align*}
  r^* &= \text{merge}(r_1^*, r_2^*) \\
  m^* &= \text{merge}(m_1^*, m_2^*) \\
  t^* &= \text{merge}(t_1^*, t_2^*) \\
  K^* &= \text{merge}(K_1^*, K_2^*)
\end{align*}
\]

From the premise of SQ-IF-DIV, we thus have \( \mu \vdash (c, r, m, K) \bullet \downarrow_\text{com}^2 r^*; m^*; K^* \triangleright t^* \bullet \).

E.1.2 IMPE\(^2\) Type System
Let \( S \) be the set of conditions set during some observed trace \( t_{obs} \), \( \mathcal{H} \) be the set of escape hatches in the observed trace and \( m_0 \) be the initial IMPE\(^2\) memory. The IMPE\(^2\) type system is parametrized by \( \delta, S, \mathcal{H} \) and \( m_0 \). The typing judgment for commands and expressions is shown below.

\[
pc, \mu, \Gamma, K, U \vdash_{\delta\mathcal{S}\mathcal{H}m_0} c : \Gamma', K' \\
\mu, \Gamma \vdash_{\delta\mathcal{S}\mathcal{H}m_0} e : \sigma_p
\]

The typing rules are similar to Figure 8 with 2 extra rules for typing configurations shown in Figure 18. Rule T-SQ-CONFIG says that a configuration \( (c, r, m, K) \) is well-typed (or is ok) if:

- Command \( c \) is well-typed;
- all conditions in set \( U \) are unset;
- Security policy on any register mapped to a paired value is protected;
- Security policy on any location (that does not belong to the set of conditions) mapped to a paired value is protected;
- evaluation of an escape hatch with current memory results in a value that is same as evaluating it with initial memory;
- Kill sets are same on both sides of the executions.

Rule T-SQ-VALUE says when a final configuration \( \langle r, m, K \rangle \) is well-typed (or is ok) and is similar to rule T-SQ-CONFIG.

Lemma 3 proves that if an IMPE program is well-typed according to IMPE type system, then for also well-typed according to IMPE\(^2\) type system.

**Lemma 3 (Type System).** If \( L, N, \Gamma, \emptyset, 0 \vdash_\delta c : \Gamma', K' \), then \( pc, \mu, \Gamma, K, U \vdash_{\delta\mathcal{S}\mathcal{H}m_0} c : \Gamma', K' \).

**Proof.** Proof is by straight forward induction on the derivation of the typing judgment \( \mu, \Gamma \vdash_\delta e : \sigma_p \).

**Lemma 4 (Value Type Preservation).** If \( \mu, \Gamma \vdash_{\delta\mathcal{S}\mathcal{H}m_0} e : \sigma_p \) and \( \mu \vdash (e, r, m, K) \bullet \downarrow_\text{exp}^2 v \), then \( \mu, \Gamma \vdash_{\delta\mathcal{S}\mathcal{H}m_0} v : \sigma_p \).

**Proof.** Proof is by straight forward induction on the derivation of the typing judgment \( \mu, \Gamma \vdash_{\delta\mathcal{S}\mathcal{H}m_0} e : \sigma_p \).
Lemma 5 (IMP\textsuperscript{2} Final Configuration Preservation). Let $\Gamma$ be an environment that is well-typed for $\delta$, $\mathcal{H}$ be the set of escape hatches and $\bar{m}_0$ be the initial IMP\textsuperscript{2} memory such that $l \in \text{locations}(e)$ \iff $e \in \mathcal{H}$, $\bar{m}_0(l) \neq (v_1 \mid v_2)$, i.e., not a pair value. If $pc, \mu, \Gamma, U \vdash_{\delta} Sh_{\mathcal{H}_0} (e, r, m, K) : \Gamma', K' \triangleright ok$ and $\mu \vdash (\langle e, c, r, m, K \rangle \cdot \psi_{exp}^2 v) \triangleright ok$, then $\Gamma' \vdash_{\delta} Sh_{\mathcal{H}_0} (r', m', K') \triangleright ok$.

**Proof.** The proof is by induction on the derivation of the large-step $\mu \vdash (\langle e, r, m, K \rangle \cdot \psi_{exp}^2 v) \triangleright ok$. For each case, we prove that the final configuration preserves the well-typedness of IMP\textsuperscript{2} value configuration.

**Case $\textbf{SQ-Skip}$:** Given $pc, \mu, \Gamma, U \vdash_{\delta} Sh_{\mathcal{H}_0} (\langle \text{skip}, r, m, K \rangle : \Gamma', K' \triangleright ok$ and $\mu \vdash (\langle \text{skip}, r, m, K \rangle \cdot \psi_{com}^2 r; m; K \triangleright e \triangleright e)$. Configuration is not changed.

**Case $\textbf{SQ-Assign}$:** Given $pc, \mu, \Gamma, U \vdash_{\delta} Sh_{\mathcal{H}_0} (\langle x := e, r, m, K \rangle : \Gamma', K' \triangleright ok$ and $\mu \vdash (\langle x := e, r, m, K \rangle \cdot \psi_{exp}^2 v)$ such that $\mu \vdash (\langle e, r, m, K \rangle \cdot \psi_{exp}^2 v)$ and $r' = r[x \mapsto v]$. We have to prove that $\Gamma' \vdash_{\delta} Sh_{\mathcal{H}_0} (r', m', K') \triangleright ok$.

From the initial configuration, we have $\Gamma \vdash_{\delta} Sh_{\mathcal{H}_0} (r, m, K) \triangleright ok$. Register files $r$ and $r'$ differ only in variable $x$. Let $v = (v_1 \mid v_2)$. If $\mu, \Gamma \vdash_{\delta} Sh_{\mathcal{H}_0} e : \sigma_p$, we have $\Gamma' \vdash \sigma_{pc,p}$. Hence proved.

**Case $\textbf{SQ-Declassify}$:** Given $pc, \mu, \Gamma, U \vdash_{\delta} Sh_{\mathcal{H}_0} (\langle \text{declassify}(x)e, r, m, K \rangle : \Gamma', K' \triangleright ok$ and $\mu \vdash (\langle \text{declassify}(x)e, r, m, K \rangle \cdot \psi_{com}^2 r; m; K \triangleright e \triangleright e)$ such that $\mu \vdash (\langle e, r, m, K \rangle \cdot \psi_{exp}^2 v)$ and $\mu \vdash (\langle e, r, m, K \rangle \cdot \psi_{exp}^2 v)$. Also expression $e$ has no variables syntactically present (large-step hasNoVars(e)), We have to prove that $\Gamma' \vdash_{\delta} Sh_{\mathcal{H}_0} (r', m', K) \triangleright ok$.

From the initial configuration, we have $\Gamma' \vdash_{\delta} Sh_{\mathcal{H}_0} (r, m, K) \triangleright ok$. Register files $r$ and $r'$ differ only for $x$. Let $v = (v_1 \mid v_2)$ for some $v_1$ and $v_2$. If $\mu, \Gamma \vdash_{\delta} Sh_{\mathcal{H}_0} e : \sigma_p$, we have $\Gamma' \vdash \sigma_{pc,p}$. Hence proved.

**Case $\textbf{SQ-Update}$:** Given $pc, \mu, \Gamma, U \vdash_{\delta} Sh_{\mathcal{H}_0} (e_1 \leftarrow e_2, r, m, K) : \Gamma', K' \triangleright ok$ and $\mu \vdash (\langle e_1 \leftarrow e_2, r, m, K \rangle \cdot \psi_{com}^2 r; m; K \triangleright e \triangleright e)$ such that $\mu \vdash (\langle e_1, r, m, K \rangle \cdot \psi_{exp}^2 l, m, K \triangleright e_2, r, m, K \rangle \cdot \psi_{exp}^2 m' \triangleright m[l \mapsto v]$.

We have to prove that $\Gamma \vdash_{\delta} Sh_{\mathcal{H}_0} (r', m', K) \triangleright ok$.

From the premise of T-SQ-CONFIG, we have $\Gamma \vdash_{\delta} Sh_{\mathcal{H}_0} (r, m, K) \triangleright ok$, $\mu, \Gamma \vdash_{\delta} Sh_{\mathcal{H}_0} e_1 : (\sigma_p^{\mu} \text{ ref } t)_{q}$ and $\mu, \Gamma \vdash_{\delta} Sh_{\mathcal{H}_0} e_2 : \sigma_p^{\mu}$ such that $p' \cup q \cup p \leq p$

**Case $l = (l_1 \mid l_2)$:** We have $\Gamma' \vdash_{\delta} Sh_{\mathcal{H}_0} (r, m, K) \triangleright ok$.

**Case $l \neq (l_1 \mid l_2)$:** Same as above.

**Case $l = (l_1 \mid l_2), v \neq (v_1 \mid v_2)$:** We have $\Gamma' \vdash_{\delta} Sh_{\mathcal{H}_0} (r, m, K) \triangleright ok$.

**Case $l \neq (l_1 \mid l_2), v \neq (v_1 \mid v_2)$:** Trivially $\Gamma \vdash_{\delta} Sh_{\mathcal{H}_0} (r, m, K) \triangleright ok$.

**Case $\textbf{SQ-Output}$:** Given $pc, \mu, \Gamma, U \vdash_{\delta} Sh_{\mathcal{H}_0} (\langle \text{output}(e) \rangle \ell, r, m, K) : \Gamma', K' \triangleright ok$ and $\mu \vdash (\langle \text{output}(e) \rangle \ell, r, m, K) \cdot \psi_{com}^2 r; m; K \triangleright \text{Mem}(m) \cdot \text{Out}(\ell, v)$. From the premise of T-SQ-CONFIG, we have $\Gamma \vdash_{\delta} Sh_{\mathcal{H}_0} (r, m, K) \triangleright ok$. Large-step does not modify register file, memory or killset. Hence proved.

**Case $\textbf{SQ-SetCnd}$:** Given $pc, \mu, \Gamma, U \vdash_{\delta} Sh_{\mathcal{H}_0} (\langle \text{set}(cnd) \rangle, r, m, K) : \Gamma', K' \triangleright ok$ and $\mu \vdash (\langle \text{set}(cnd) \rangle, r, m, K) \cdot \psi_{com}^2 r; m'; K \triangleright \text{Mem}(m')$. Such that $m' = m[cnd \mapsto 1]$ We have to prove that $\Gamma \vdash_{\delta} Sh_{\mathcal{H}_0} (r', m', K) \triangleright ok$. From the premise

Figure 18. Typing IMP\textsuperscript{2} configurations
of T-SQ-CONF, we have \( \Gamma \vdash_{\text{T-SQ-CONF}} (r, m, K) \). Since \( m \) and \( m' \) do not differ (set(cnd) always sets cnd to a non-pair value), we have \( \Gamma \vdash_{\text{T-SQ-CONF}} (r, m, K) \).

**Case SQ-KILL:** Given \( pc, \mu, \Gamma, U \vdash_{\text{T-SQ-CONF}} (\text{kill}(i), r, m, K) : \Gamma' \), \( K' \) ok and \( N \vdash (\text{kill}(i), r, m, K) \) if \( \Gamma \cup \{ E_i \} \). We have to prove that \( \Gamma \vdash_{\text{T-SQ-CONF}} (r, m, K) \). From the premise of T-SQ-CONF, we have \( \Gamma \vdash_{\text{T-SQ-CONF}} (r, m, K) \) ok. Since \( [K[1]] = [K[2]] \), we therefore have \( \{ K \cup \{ E_i \} \} = [K \cup \{ E_i \}] \). Hence proved.

**Case SQ-SEQ:** Given \( pc, N, U \vdash_{\text{T-SQ-CONF}} (c_1 : \cdots : c_i, \ell_1 : m_1, K_0) : \Gamma, K' \) ok and \( N \vdash (c_1 : \cdots : c_i, \ell_1 : m_1, K_0) \). We have to prove that \( N \vdash_{\text{T-SQ-CONF}} (r_n, m_n, K_n) \) ok. From the premise of T-NSQ-CONF, we have \( \Gamma_0 \vdash_{\text{T-SQ-CONF}} (r_n, m_n, K_n) \) ok. Since the types of locations change throughout the program, we have that if \( K_0 \) is well-typed for \( \delta \) then \( K_1 \) is also well-typed for \( \delta \). Applying induction hypothesis, we thus have \( \mu_1, \Gamma_1 \vdash_{\text{T-SQ-CONF}} (r_{n_1}, m_{n_1}, K_{1}) \) ok. Since the types of locations change throughout the program, we have that if \( K_0 \) is well-typed for \( \delta \) then \( K_1 \) is also well-typed for \( \delta \). Applying induction hypothesis continuously, we thus have \( N, \Gamma_1 \vdash_{\text{T-SQ-CONF}} (r_{n_1}, m_{n_1}, K_{1}) \) ok.

**Case SQ-ENCLAVE:** Given \( pc, \mu, \Gamma, U \vdash_{\text{T-SQ-CONF}} (\text{enclave}(i, c), r, m, K) : \Gamma', K' \) ok and \( N \vdash \langle \text{enclave}(i, c), r, m, K \rangle \) if \( \Gamma \cup \{ \text{enclave}(i, c), r, m, K \} \). We have to prove that \( \Gamma \vdash_{\text{T-SQ-CONF}} (r, m', K') \) if \( \Gamma \cup \{ \text{enclave}(i, c), r, m, K \} \). From the premise of T-SQ-CONF, we have \( \Gamma \vdash_{\text{T-SQ-CONF}} (r, m, K) \) ok and \( pc, E_i, \Gamma, K, \emptyset : \Gamma \vdash_{\text{T-SQ-CONF}} (c : \Gamma', K') \). So, \( pc, \mu, \Gamma, K \vdash_{\text{T-SQ-CONF}} (r, m, K) \). Also, \( E_i \vdash (c, r, m, K) \). Applying induction hypothesis, we thus have \( \Gamma \vdash_{\text{T-SQ-CONF}} (r, m', K') \).

**Case SQ-IF-ELSE:** Given \( pc, \mu, \Gamma, U \vdash_{\text{T-SQ-CONF}} (\text{if } e \text{ then } c_1 \text{ else } c_2, r, m, K) : \Gamma', K' \) ok and \( pc, \mu, \Gamma, \emptyset : \Gamma \vdash_{\text{T-SQ-CONF}} (e : \Gamma', K') \). We have to prove that \( \Gamma \vdash_{\text{T-SQ-CONF}} (r, m', K') \). From the premise of T-SQ-CONF, we have \( \Gamma \vdash_{\text{T-SQ-CONF}} (r, m, K) \) ok and \( pc, \mu, \Gamma, K, U \vdash_{\text{T-SQ-CONF}} (c_1 : \Gamma', K') \) for \( i = \{ 1, 2 \} \) and \( pc, \mu, \Gamma, U \vdash_{\text{T-SQ-CONF}} (r, m, K) \). Also, \( \mu \vdash (e, r, m, K) \). Applying induction hypothesis, we thus have \( \Gamma \vdash_{\text{T-SQ-CONF}} (r, m', K') \).

**Case SQ-IF-ELSE:** Given \( pc, \mu, \Gamma, U \vdash_{\text{T-SQ-CONF}} (\text{while } e \text{ do } c, r, m, K) : \Gamma', K' \) ok and \( pc, \mu, \Gamma, K \vdash_{\text{T-SQ-CONF}} (e : \Gamma', K') \). We have to prove that \( \Gamma \vdash_{\text{T-SQ-CONF}} (r, m', K') \) ok. From the premise of T-SQ-CONF, we have \( \Gamma \vdash_{\text{T-SQ-CONF}} (r, m, K) \) ok and \( pc, \mu, \Gamma, K, U \vdash_{\text{T-SQ-CONF}} (c : \Gamma', K) \) for \( pc, \mu, \Gamma, U \vdash_{\text{T-SQ-CONF}} (r, m, K) \). Also, \( \mu \vdash (e, r, m, K) \). Applying induction hypothesis, we thus have \( \Gamma \vdash_{\text{T-SQ-CONF}} (r, m', K') \).

**Case SQ-CALL:** Given \( pc, \mu, \Gamma, U \vdash_{\text{T-SQ-CONF}} (\text{call}(c), r, m, K) : \Gamma', K' \) ok and \( pc, \mu, \Gamma, K, U \vdash_{\text{T-SQ-CONF}} (c : \Gamma', K') \). From the premise of T-SQ-CONF, we have \( \Gamma \vdash_{\text{T-SQ-CONF}} (r, m, K) \) ok and \( pc, \mu, \Gamma, K, \emptyset : \Gamma \vdash_{\text{T-SQ-CONF}} (c : \Gamma', K') \). By subsumption, \( \mu \vdash (c, r, m, K) \). Applying induction hypothesis to \( \mu \vdash (c, r, m, K) \), we thus have \( \Gamma' \vdash_{\text{T-SQ-CONF}} (r, m', K') \).

**Case SQ-IF-DIV:** Given \( pc, \mu, \Gamma, U \vdash_{\text{T-SQ-CONF}} (\text{if } e \text{ then } c_0 \text{ else } c_1, r, m, K) : \Gamma', K' \) ok and \( pc, \mu, \Gamma, K \vdash_{\text{T-SQ-CONF}} (e : \Gamma', K') \). From the premise of T-SQ-CONF, we have \( \mu \vdash (e, r, m, K) \). Applying induction hypothesis to \( \mu \vdash (e, r, m, K) \), we thus have \( \Gamma' \vdash_{\text{T-SQ-CONF}} (r, m', K') \).

From the initial configuration, we have \( pc, \mu, \Gamma, K, U \vdash_{\text{T-SQ-CONF}} (c : \Gamma', K') \) and \( \Gamma, K \vdash_{\text{T-SQ-CONF}} (e : \text{intf}, pc, \mu, \Gamma, K, U \vdash_{\text{T-SQ-CONF}} (c : \Gamma', K') \). Let \( i \) be such that \( z(i) = (v_1 \mid v_2) \). Since \( \Gamma' \vdash_{\text{T-SQ-CONF}} (r, m', K') \), we thus have \( (v_1 \mid v_2) \). So protected(p,s) and protected(pc',s).

From the initial configuration, we have \( \Gamma \vdash_{\text{T-SQ-CONF}} (r, m, K) \) ok, \( pc', \mu, \Gamma, K, U \vdash_{\text{T-SQ-CONF}} (c : \Gamma', K') \). From the premise of T-SQ-CONF, we have \( \mu \vdash (c, r, m, K) \). Applying induction hypothesis to \( \mu \vdash (c, r, m, K) \), we thus have \( \Gamma' \vdash_{\text{T-SQ-CONF}} (r, m', K') \).

From the initial configuration, we have \( \Gamma' \vdash_{\text{T-SQ-CONF}} (r, m, K) \) ok, \( pc', \mu, \Gamma, K, U \vdash_{\text{T-SQ-CONF}} (c : \Gamma', K') \). From the premise of T-SQ-CONF, we have \( \mu \vdash (c, r, m, K) \). Applying induction hypothesis to \( \mu \vdash (c, r, m, K) \), we thus have \( \Gamma' \vdash_{\text{T-SQ-CONF}} (r, m', K') \).

Similarly, let \( \tilde{m}(l) = (v_1 \mid v_2) \) and \( \Gamma' \vdash_{\text{T-SQ-CONF}} (r, m', K') \). Since the type of location is invariant throughout the program, from the initial configuration we have \( \text{protected}(q, S) \). A well-typed escape hatch has immutable locations and thus evaluates to the same initial value. Killsets are unmodified. So \( [K_1] = [K_2] \). Hence proved.
Case SQ-CALL-DIV: Given $pc, \mu, \Gamma, U \vdash_{SHnio} \langle \text{call}(e), r, m, K \rangle : \Gamma', K' \times ok$ and $\mu \vdash \langle \text{call}(e), r, m, K \rangle \downarrow \downarrow_{\text{com}} \hat{r}; \hat{m}; \hat{K} \triangleright t \diamond$. We have to prove that $\Gamma \vdash_{SHnio} (\hat{r}, \hat{m}, K) \times ok$.

From the initial configuration, we have $\Gamma \vdash_{SHnio} \langle r, m, K \rangle \times ok$, $\mu, \Gamma \vdash_{SHnio} e : (\Gamma', K', U \downarrow_{\text{div}} \Gamma^{t'}, K^{t'})$ and so $p, \mu, \Gamma', K', U \vdash_{SHnio} c : \Gamma', K'$ such that $K = K', K' = K$ and $\Gamma = \Gamma'$, $\Gamma' = \Gamma$. From the premise of SQ-CALL-DIV, we have $\mu \vdash \langle c, r, m, K \rangle \downarrow \downarrow_{\text{exp}} (v_1 \mid v_2)$. So protected($q, S$) and since $q \leq p$, protected($p, S$) follows.

Let $z$ be such that $\hat{r}(z) = (v_1 \mid v_2)$. If $r(z) = (v_1 \mid v_2)$ and $\Gamma(z) = \sigma_y$, then from the premise of T-Sq-CONF, we already have protected($y, S$). If $r(z) \neq (v_1 \mid v_2)$ i.e., not a pair value, and $\Gamma(z) = \sigma_y$, then from the well-typedness $p, \mu, \Gamma, K', U \vdash_{SHnio} c : \Gamma', K'$, we have protected($p, S$) and so protected($y, S$) (because an assignment is at least as restrictive as $p$). Similarly, let $\hat{m}(l) = (v_1 \mid v_2)$ and $\Gamma(l) = \sigma_y$.

Since the type of location is invariant throughout the program, from the initial configuration we have protected($y, S$). A well-typed escape hatch has immutable locations and thus evaluates to the same initial value. From the function type, post killsets are same. So $|\hat{K}|_1 = |\hat{K}|_2$. Hence proved.

Lemma 6 (IMPE$^2$ Type Preservation). Let $\Gamma$ be a well-formed typing context and $pc, \mu, \Gamma, U \vdash_{SHnio} \langle c, r, m, K \rangle : \Gamma', K' \times ok$. If $e' \vdash \langle c', r', m', K' \rangle \downarrow \downarrow_{\text{com}} r'; \hat{m}; K' \triangleright t \diamond$, then $\exists p, \Gamma, U, \Gamma \vdash_{SHnio} \langle c', r', m', K' \rangle : \Gamma', K' \times ok$.

Proof. The proof is by induction on the derivation of the large step $\mu \vdash \langle c, r, m, K \rangle \downarrow \downarrow_{\text{com}} r'; \hat{m}; K' \triangleright t \diamond$. Since rules SQ-ASSIGN, SQ-SKIP, SQ-UPDATE, SQ-OUT, SQ-SET, SQ-IF-DIV, SQ-WHILE-DIV and SQ-CALL-DIV do not have IMPE$^2$ command premises, the only relevant cases are case EQ-ENCLAVE, SQ-IF, SQ-WHILE, SQ-SEQ, SQ-CALL.

Case SQ-ENCLAVE: Given $pc, \mu, \Gamma, U \vdash_{SHnio} \langle \text{enclave}(i, c), r, m, K \rangle : \Gamma', K' \times ok$. From the premises of T-Sq-CONF, we have $E_i, \Gamma, K \vdash_{SHnio} c : \Gamma', K'$. From the premises of the IMPE$^2$ large-step, we have $E_i \vdash \langle c, r, m, K \rangle \downarrow \downarrow_{\text{com}} r'; \hat{m}; K' \triangleright t \diamond$. Hence $pc, \emptyset, \Gamma, E_i \vdash_{SHnio} \langle c, r, m, K \rangle : \Gamma', K' \times ok$.

Case SQ-IF: Given $pc, \mu, \Gamma, U \vdash_{SHnio} \langle \text{if e then c else c'}, r, m, K \rangle : \Gamma', K' \times ok$. From the premises of the IMPE$^2$ large-step, we have $\mu \vdash \langle c, r, m, K \rangle \downarrow \downarrow_{\text{com}} r'; \hat{m}; K' \triangleright t \diamond$. From the premises of T-Sq-CONF, we have $\Gamma \vdash_{SHnio} \langle r, m, K \rangle \times ok$ and $pc', \mu, \Gamma, K, U \vdash_{SHnio} c_i : \Gamma', K'$ for $i = \{1, 2\}, pc \leq pc'$. Hence $pc', \mu, \Gamma, U \vdash_{SHnio} \langle c_1, r, m, K \rangle : \Gamma', K' \times ok$. Note that if $e = \text{isunset}(\text{cdn})$, then we have $pc', \mu, \Gamma, U \cup \{\text{cdn}\} \vdash_{SHnio} \langle c_1, r, m, K \rangle : \Gamma', K' \times ok$ and $pc', \mu, \Gamma, U \vdash_{SHnio} \langle c_2, r, m, K \rangle : \Gamma', K' \times ok$.

Case SQ-WHILE: Given $pc, \mu, \Gamma, U \vdash_{SHnio} \langle \text{while e do c'}, r, m, K \rangle : \Gamma, K \times ok$. From the premises of the IMPE$^2$ large-step, we have $\mu \vdash \langle c', r, m, K \rangle \downarrow \downarrow_{\text{com}} r'; \hat{m}; K' \triangleright t \diamond$ and $\mu \vdash \langle \text{while e do c'}, r', m', K' \rangle \downarrow \downarrow_{\text{com}} r' \times m'; K'' \times t \diamond$. From the premises of T-Sq-CONF, we have $\Gamma \vdash_{SHnio} \langle r, m, K \rangle \times ok$ and $pc', \mu, \Gamma, K, U \vdash_{SHnio} c : \Gamma', K$ for $pc \leq pc'$. We thus have $K = K' = K''$ and $pc, \mu, \Gamma, U \vdash_{SHnio} \langle c', r, m, K \rangle : \Gamma', K' \times ok$. Applying Lemma 5 to $pc', \mu, \Gamma, U \vdash_{SHnio} \langle c', r, m, K \rangle : \Gamma, K \times ok$, we have $\Gamma \vdash_{SHnio} \langle r', m', K \rangle \times ok$. Hence $pc', \mu, \Gamma, U \vdash_{SHnio} \langle c, r', m', K \rangle : \Gamma, K \times ok$.

Case SQ-CALL: Given $pc, \mu, \Gamma, U \vdash_{SHnio} \langle \text{call}(e), r, m, K \rangle : \Gamma', K' \times ok$. From the premises of the IMPE$^2$ large-step, we have $\mu \vdash \langle c, r, m, K \rangle \downarrow \downarrow_{\text{com}} r'; \hat{m}; K' \triangleright t \diamond$. From the premises of T-Sq-CONF, we have $\Gamma \vdash_{SHnio} \langle r, m, K \rangle \times ok$ and $\mu \vdash_{SHnio} e : \langle \Gamma, K, U \downarrow_{\text{div}} \Gamma^{t'}, K^{t'} \rangle$. So, $K = K', K' = K$ and $\Gamma = \Gamma', \Gamma' = \Gamma'$. We also have $p, \mu, \Gamma, K, U \vdash_{SHnio} \langle c : \Gamma, K \rangle : \Gamma', K' \times ok$.

Case SQ-SEQ: Given $pc, \mu, \Gamma, U \vdash_{SHnio} \langle \text{seq}(e_1, \ldots, c_n, r_0, m_0, K_0) : \Gamma_n, K_n \times ok$. From the premises of the IMPE$^2$ large-step, we have $\mu \vdash \langle c_1, r_1, m_1, K_1 \rangle \downarrow \downarrow_{\text{com}} r_1 \times m_1; K_1 \times t \diamond$. From the premises of T-Sq-CONF, we have $\Gamma \vdash_{SHnio} \langle r_0, m_0, K_0 \rangle \times ok$ and $pc, \mu, \Gamma, K_1, K_1, U \vdash_{SHnio} c_i : \Gamma_i, K_i$ for $i = \{1, \ldots, n\}$. We already have $pc, U, \Gamma_0, \mu \vdash_{SHnio} \langle c_1, r_0, m_0, K_0 \rangle : \Gamma_1, K_1 \times ok$. Applying Lemma 5 we have $\Gamma \vdash_{SHnio} \langle r_1, m_1, K_1 \rangle \times ok$. Hence $pc, U, \Gamma_n, \mu \vdash_{SHnio} \langle c_2, r_1, m_1, K_1 \rangle : \Gamma_2, K_2 \times ok$. Repeatedly applying the above argument for $n$ times, we thus have $pc, U, \Gamma_n, \mu \vdash_{SHnio} \langle r_n, r_{n-1}, m_{n-1}, K_{n-1} \rangle : \Gamma_n, K_n \times ok$.

Hence proved.

Using Lemma 5 and Lemma 6, we prove the first part of Theorem 1.

Proof. Given $L, \mu, \Gamma, K, \emptyset \vdash c : \Gamma', K'$. Let $m_1$ be some initial memory for which $N \vdash_{\text{div}} \langle c, r_{\text{init}}, m_1, K \rangle \downarrow \downarrow_{\text{com}} r'; \hat{m}; K' \triangleright t \times t_{\text{obs}} \times t$ where $t_{\text{obs}} = m' \times t''$ for some memory $m'$ and trace $t''$, and if $t''$ is not empty then the last element of $t''$ is an output event. Note that the attacker actually observes only low-events i.e., $|t_{\text{obs}}|_L$. We need to show that $k_L^\Phi(c, t_{\text{obs}}) \succeq M$. 

□
Lemma 7 (Observational Equivalence is Preserved)

Let $\mathcal{S}$ be the set of conditions that are set at the beginning of $t_{\text{obs}}$, i.e., $\mathcal{S} = \{\text{cnd} \mid m'(\text{cnd}) = 1\}$. If $Q \setminus \mathcal{S}$ is the set of conditions that are unset at some time during the observed trace. Also let $\mathcal{H}$ be the set of all escape hatches that are declassified till the last event of $t_{\text{obs}}$ i.e. $\mathcal{H} = \{e \mid (e, m) \in [t \cdot t_{\text{obs}}]_{\text{exec}}\}$.

Let $m_2 \in M$. Also let $N \vdash \langle e, r_{\text{init}}, m_2, K \rangle \downarrow r'_2; m'_2; K'_2 \triangleright t_2$. To ensure $k^E_L(c, t_{\text{obs}}) \supseteq M$, we need to show that

$m_2 \in k^E_L(c, t_{\text{obs}})$

Note that $m_1$ and $m_2$ differ only in locations with policies that are protected by set $\mathcal{S}$. That is, for all locations $l \in \text{Loc}$, if $m_1(l) \neq m_2(l)$ then $l'(l) = \sigma_p$ $\implies$ protected($p, \mathcal{S}$). Why? Suppose for some $l$, s.t. $l'(l) = (\sigma_p, r) \triangleright m_1(l) \neq m_2(l)$ and $\neg$protected($p, \mathcal{S}$). So, $p = L$ or $L \cap l'_2 \text{ s.t. } \text{cnd} \notin \mathcal{S}$. Then for some $m_j \in M$, we have $m_1(l) = m_j(l)$. Since $M$ is computed by the intersection of all such memories, every memory $m'' \in M$ should satisfy $m''(l) = m_1(l)$. This implies $m_2(l) = m_1(l)$ which is a contradiction. Thus protected($p, \mathcal{S}$) must hold.

Also note that $m_1$ and $m_2$ satisfy

$$\forall e \in \mathcal{H}, \mu \vdash \langle e, r_{\text{init}}, m_1, K \rangle \downarrow v \Leftrightarrow \mu \vdash \langle e, r, m_2, K \rangle \downarrow v$$

We will construct an IMPE execution that represents the IMPE executions starting from $m_0$ and $m_2$. Type-preservation of IMPE$^2$ (Lemma 5) will ensure that both executions produce the same observable trace, thus showing that $m_2 \in k^E_L(c, t_{\text{obs}})$.

Let IMPE$^2$ memory $m = \text{merge}(m_1, m_2)$. If $\mu \vdash \langle e, r_{\text{init}}, m, K \rangle \psi^E_{\text{com}} r^*; m^*; K^* \triangleright t^*, \text{by the adequacy of IMPE}^2$ (Lemma 2), we have that the IMPE$^2$ execution represents IMPE executions with $m_1$ and $m_2$ as initial memories.

Let $t^* = t^*_{\text{pre}} \cdot t^*_{\text{obs}} \cdot t^*_{\text{post}}$ for some $t^*_{\text{obs}}$ such that $|t^*_{\text{obs}}|_1 = t_{\text{obs}}$. Define observation overlapped by an IMPE$^2$ trace $t^*$ as:

$$\text{obsOverlap}(t^*, t^*_{\text{pre}}, t^*_{\text{obs}}, t^*_{\text{post}}) = \begin{cases} \epsilon & \text{if } t^* \leq t^*_{\text{pre}} \\ t^*_{\text{obs}} & \text{if } t^*_{\text{pre}} \cdot t^*_{\text{obs}} \leq t^* \\ t^*_{\text{post}} & \text{if } t^* = t^*_{\text{pre}} \cdot t^*_{\text{post}} \text{ and } t^*_{\text{post}} \leq t^*_{\text{obs}} \\ \end{cases}$$

Intuitively, $\text{obsOverlap}(t^*, t^*_{\text{pre}}, t^*_{\text{obs}}, t^*_{\text{post}})$ defines part of input trace $t^*$ that overlaps with an observed trace $t^*_{\text{obs}}$.

Since $L, \mu, \Gamma, K, \emptyset \vdash e : \Gamma', K'$, we have $L, \mu, \Gamma, K, \emptyset \vdash \mathcal{S}_{\text{Int}} e : \Gamma', K'$. Note that our initial configuration satisfies $L, N, \Gamma, \emptyset \vdash \mathcal{S}_{\text{Int}} \langle e, r_{\text{init}}, m, \emptyset \rangle : \Gamma', K', \text{ok}$.

Lemma 7 (Observational Equivalence is Preserved). Let $\mathcal{S}$ be the set of conditions that are set(non-zero) in some observed trace $t_{\text{obs}}$. If $pc, \mu, \Gamma, U \vdash \mathcal{S}_{\text{Int}} \langle e, r, m, K \rangle : \Gamma', K' \text{ and } \mu \vdash \langle e, r, m, K \rangle \psi^E_{\text{com}} \hat{r}; \hat{m}; K \triangleright \hat{\bullet}$, then

$$|\text{obsOverlap}(\hat{t}, t^*_{\text{pre}}, t^*_{\text{obs}}, t^*_{\text{post}})|_1 \approx_L \mathcal{S}_{\text{Int}} |\text{obsOverlap}(\hat{t}, t^*_{\text{pre}}, t^*_{\text{obs}}, t^*_{\text{post}})|_2$$

Proof. The proof follows by induction on the derivation of $\mu \vdash \langle e, r, m, K \rangle \psi^E_{\text{com}} \hat{r}; \hat{m}; K \triangleright \hat{\bullet}$.

Case Sq-Skip: Emitted trace is empty.
Case Sq-Assign: Emitted trace is empty.
Case Sq-Declassify: Emitted trace does not include out event.
Case Sq-Update: Emitted trace is empty.
Case Sq-Kill: Emitted trace is empty.
Case Sq-SetCnd: Emitted trace does not include out event.
Case Sq-Output: Given $pc, \mu, \Gamma, U \vdash \mathcal{S}_{\text{Int}} \langle e, r, m, K \rangle : \Gamma', K' \text{ ok and } \mu \vdash \langle e, r, m, K \rangle \psi^E_{\text{com}} r; m, K \triangleright \text{Mem}(m) \cdot \text{Out}(\ell, v) \cdot \hat{\bullet}$. Let $\hat{t} = \text{Mem}(m) \cdot \text{Out}(\ell, v)$. From the premise of T-Sq-CONFIG, we have $pc, \mu, \Gamma, K, U \vdash \hat{\bullet}$ output $e$ to $\ell : \Gamma, K$ and so $\mu, \Gamma \vdash \mathcal{S}_{\text{Int}} e : \sigma_p$ and $\text{cur}(p, U) \cup \text{cur}(p, U) \subseteq \ell$.

Case $v = (v_1 | v_2)$: We have protected($p, \mathcal{S}$) and so $\ell \neq L$.
Case $v \neq (v_1 | v_2)$: In this case $\ell = \{L, H\}$.
In both the cases, we have

$$\text{Case Sq-If-Else: Given } p, \mu, \Gamma, U \vdash_{\text{SHTrio}} (\text{if } e \text{ then } c_1 \text{ else } c_2, r, m, K) : \Gamma', K' \text{ ok and } \mu \vdash (\text{if } e \text{ then } c_1 \text{ else } c_2, r, m, K) \downarrow v \text{ such that } v \text{ is not a pair, applying induction hypothesis to the premises of SQ-IF-ELSE gives us}$$

$$\text{Case Sq-Call: Given } p, \mu, \Gamma, U \vdash_{\text{SHTrio}} (\text{call } e, r, m, K) : \Gamma', K' \text{ ok and } \mu \vdash (\text{call } e, r, m, K) \downarrow v \text{ such that } v \text{ is not a pair, applying induction hypothesis to the premise of SQ-CALL gives us}$$

$$\text{Case Sq-Seq: Given } p, \mu, \Gamma, U \vdash_{\text{SHTrio}} (\text{seq } r; m'; K' \triangleright t' \bullet). \text{ From the premises of T-SQ-CONFIG, we have } K = K' = K'' \text{. Since } \mu \vdash (e, r, m, K) \downarrow v \text{ such that } v \text{ is not a pair, applying induction hypothesis to the premise of SQ-SEQ gives us}$$

$$\text{From Lemma } [\text{we have } p, \mu, \Gamma, U \vdash_{\text{SHTrio}} (\text{while } e \text{ do } c, r', m', K) : \Gamma, K \text{ ok}. \text{ Applying induction hypothesis to }$$

$$\text{Hence}$$

$$\text{Case Sq-While: Given } p, \mu, \Gamma, U \vdash_{\text{SHTrio}} (\text{while } e \text{ do } c, r', m', K) : \Gamma, K \text{ ok. From the premises of T-SQ-CONFIG, we have }$$

$$\text{Case Sq-If-Div: Given } p, \mu, \Gamma, U \vdash_{\text{SHTrio}} (\text{if } e \text{ then } c_1 \text{ else } c_2, r, m, K) \downarrow v \text{ such that } v \text{ is a pair, we have protected}(p, S). \text{ From the well-typedness, command } c \text{ does not emit any } out \text{ events to } L \text{ channel. Hence}$$

$$\text{Case Sq-Call-Div: Given } p, \mu, \Gamma, U \vdash_{\text{SHTrio}} (\text{call } e, r, m, K) : \Gamma', K' \text{ ok and } \mu \vdash (\text{call } e, r, m, K) \downarrow v \text{ such that } v \text{ is a pair, we have protected}(p, S). \text{ From the well-typedness, command } c \text{ does not emit any } out \text{ events to } L \text{ channel. Hence}$$

$$\text{Case Sq-Seq: Given } p, \mu, \Gamma_0, U \vdash_{\text{SHTrio}} (\text{seq } r_n; m_n; K_0 \triangleright t_1 \bullet \ldots t_n \triangleright t_n). \text{ From the premises of T-SQ-CONFIG, we have }$$

$$\text{Applying induction hypothesis to the premise, } \mu \vdash (c_1; \ldots; c_n, r_0, m_0, K_0) \downarrow r_n; m_n; K_n \triangleright t_1 \bullet \ldots t_n \triangleright t_n. \text{ From the premises of T-SQ-CONFIG, we have }$$

$$\text{Hence}$$

$$\text{From Lemma } [\text{we have } p, \mu, \Gamma_1, U \vdash_{\text{SHTrio}} (\text{call } e_2, r_1, m_1, K_1) : \Gamma_2, K_2 \text{ ok. Applying inductive hypothesis to the next premise, } \mu \vdash (e_2, r_1, m_1, K_1) \downarrow v \text{, we have}$$

$$\text{Applying the inductive hypothesis continuously thus gives,}$$
Case Sq-Enclave: Given \(pc, \mu, \Gamma, U \vdash_{\delta} S_{\delta \epsilon \mu \iota \sigma} (\text{enclave}(i, c), r, m, K) : \Gamma', K' \bullet ok\) and \(N =_{\delta} \langle\text{enclave}(i, c), r, m, K\rangle \downarrow r'; m'; K' \triangleright t'\). From the premises of T-Sq-Config, we have \(pc, \mu, \Gamma, K, U \vdash_{\delta} S_{\delta \epsilon \mu \iota \sigma} \text{enclave}(i, c) : \Gamma', K'.\) From Lemma 6 we have \(pc, E_i, \Gamma, 0 \vdash_{\delta} S_{\delta \epsilon \mu \iota \sigma} \langle c, r, m, K \rangle : \Gamma', K' \bullet ok\). Applying induction hypothesis to the premise \(E_i \vdash_{\delta} \langle c, r, m, K \rangle \downarrow r'; m'; K' \triangleright t'\)

\[
\begin{align*}
\{\text{obsOverlap}(t', t_{\text{pre}}^*, t_{\text{obs}}^*, t_{\text{post}}^*)\}_1 & \approx_L \{\text{obsOverlap}(t', t_{\text{pre}}^*, t_{\text{obs}}^*, t_{\text{post}}^*)\}_2
\end{align*}
\]

Since we have \(L, N, \Gamma, 0 \vdash_{\delta} S_{\delta \epsilon \mu \iota \sigma} \langle c, r_{\text{init}}, m, \emptyset \rangle : \Gamma', K', \bullet ok\), applying Lemma 7 on \(\mu \vdash \langle c, r_{\text{init}}, m, K \rangle \bullet 2_{\text{com}} r^*; m^*; K^* \triangleright t^*\), we have

\[
\{\text{obsOverlap}(t^*, t_{\text{pre}}^*, t_{\text{obs}}^*, t_{\text{post}}^*)\}_1 \approx_L \{\text{obsOverlap}(t^*, t_{\text{pre}}^*, t_{\text{obs}}^*, t_{\text{post}}^*)\}_2
\]

Hence proved that \(m_2 \in k^2_{\text{L}}(c, t_{\text{obs}})\).

We prove the second and third parts of Theorem 1 using similar approaches in Section E.1.3 and Section E.1.6.

E.1.3 Proofs for \(N\)-chaos Security

In this section we use a more permissive \(N\)-chaos type system and show that a IMPE program that is well-typed for the type system in Section 4 is also well-typed for \(N\)-chaos type system. Figure 19 presents the \(N\)-chaos type system. It relaxes the IMPE type system by unconstraining the commands running in normal mode. They can now read and write to memory locations with no restrictions on security policies. The new typing system relies on the guarantees provided by the operational semantics that a command running in normal mode does not access enclave memory. Typing rules for commands running in enclave mode are unchanged and are same as those presented in Figure 8.

Lemma 8 (Permissive Type System). If \(L, N, \Gamma, 0 \vdash_{\delta} c : \Gamma', K', then pc, \mu, \Gamma, K, U \vdash_{\delta \text{N-chaos}} c : \Gamma', K'.\)

Proof. Proof is by straightforward induction on the derivation of the typing judgment \(\mu, \Gamma \vdash_{\delta} c : \sigma_p\).

E.1.4 IMPE\(2\)-chaos Adequacy

The language IMPE\(2\)-chaos is adequate for reasoning about executions of two IMPE programs. We show that the execution of IMPE\(2\)-chaos program using semantics \(\parallel^{2}_{\text{N-chaos}}\) is sound (i.e., large-step taken by a IMPE\(2\)-chaos program corresponds to a large-step taken by either side of the execution) and complete (given two IMPE \(N\)-chaos executions, there exists an IMPE\(2\)-chaos execution).

Lemma 9 (IMPE\(2\)-chaos is Sound). If \(\mu \vdash \langle c, r, m, K \rangle \bullet \parallel^{2}_{\text{N-chaos}} r^*; m^*; K^* \triangleright t^*\), then \(\mu \vdash_{\delta} \langle c, [r]^*; \{m\}^*; \{K\}^*\rangle \parallel^{2}_{\text{N-chaos}} [r^*]_i^*; [m^*]_i^*; [K^*]_i^* \triangleright [t^*]_i^*\) for \(i \in \{1, 2\}\).

Proof Sketch. Proof is by induction on the derivation of \(\mu \vdash \langle c, r, m, K \rangle \bullet \parallel^{2}_{\text{com}} r^*; m^*; K^* \triangleright t^*\).

Lemma 10 (IMPE\(2\)-chaos is Complete). Let \(\mu \vdash_{\delta} \langle c, [r]^*; \{m\}^*; \{K\}^*\rangle \parallel^{2}_{\text{N-chaos}} r^*; m^*; K^* \triangleright t^*\) such that \([\parallel_{\text{L, cmd}} = [t^*]_i^*\) and \(\exists \langle r^*, m^*, K^*, t^*\rangle\) such that \(\mu \vdash \langle c, r, m, K \rangle \bullet \parallel^{2}_{\text{N-chaos}} r^*; m^*; K^* \triangleright t^*\) and \(\parallel^{2}_{\text{N-chaos}} r^*; m^*; K^* \triangleright t^*\).

Proof Sketch. Follows along the lines of proof of Lemma 2.

E.1.5 IMPE\(2\)-chaos \(N\)-chaos Type System

Let \(\mathcal{S}\) be the set of conditions set during some observed trace \(t_{\text{obs}}\), \(\mathcal{H}\) be the set of escape hatches till the observed trace and \(\hat{n}_0\) be the initial IMPE\(2\)-chaos memory. The IMPE\(2\)-chaos type system is parametrized by \(\delta, \mathcal{S}, \mathcal{H}\) and \(\hat{n}_0\). The typing judgment for commands and expressions is shown below.

\[
\begin{align*}
\text{pc, } \mu, \Gamma, K, U \vdash_{\delta} S_{\delta \epsilon \mu \iota \sigma} (\text{enclave}(i, c), r, m, K) : \Gamma', K' \bullet ok
\end{align*}
\]

\[
\begin{align*}
\mu, \Gamma \vdash_{\delta} S_{\delta \epsilon \mu \iota \sigma} (\text{enclave}(i, c), r, m, K) : \Gamma', K'.
\end{align*}
\]

The typing rules are similar to Figure 19 with 2 extra rules for typing configurations shown in Figure 20.

Lemma 11 (Value Type Preservation). If \(\mu, \Gamma \vdash_{\delta} S_{\delta \epsilon \mu \iota \sigma} (\text{enclave}(i, c), r, m, K) : \Gamma', K'\), then \(pc, \mu, \Gamma, K, U \vdash_{\delta} S_{\delta \epsilon \mu \iota \sigma} (\text{enclave}(i, c), r, m, K) : \Gamma', K'\).
Proof Sketch. Proof is by straightforward induction on the derivation of the typing judgment \( \mu, \Gamma \vdash_{\text{SHE}} e : \sigma_p \).

Lemma 12 (Protected Expression). Let \( \mu, \Gamma \vdash_{\text{SHE}} (r, m, K) \otimes c \). If \( \mu, \Gamma \vdash_{\text{SHE}} e : \sigma_p \) and \( \mu \vdash (e, r, m, K) \bullet \Downarrow_2^{N-\text{chaos}} \) \( v \), then \( \text{protected}(p, S) \) and \( \mu \neq \emptyset \).

Proof Sketch. Proof is by straightforward induction on the derivation of the typing judgment \( \mu, \Gamma \vdash_{\text{SHE}} e : \sigma_p \).

Figure 19. \( N-\text{chaos} \) typing rules for IMPE

Case CH-Skip-N:
\[
\frac{\text{pc}, N, \Gamma, K, U \vdash_{\text{N-chaos}} \text{skip} : \Gamma, K}{\mu, \Gamma \vdash_{\text{SHE}} e : \sigma_p}
\]

Case CH-Assign-N:
\[
\frac{\text{pc}, N, \Gamma, K, U \vdash_{\text{N-chaos}} x := e : \Gamma[x \rightarrow \sigma_{pL}] , K}{\mu, \Gamma \vdash_{\text{SHE}} e : \sigma_p}
\]

Case CH-Output-N:
\[
\frac{\text{pc}, N, \Gamma, K, U \vdash_{\text{N-chaos}} \text{output } e \text{ to } \ell : \Gamma, K}{\mu, \Gamma \vdash_{\text{SHE}} e : \sigma_p}
\]

Case CH-Seq-N:
\[
\begin{align*}
&\forall i \in \{1 \ldots n\}, \text{pc}, N, \Gamma, K, U \vdash_{\text{N-chaos}} e_i : \Gamma_i, K_i \\
&\frac{\text{pc}, N, \Gamma, K_0, U \vdash_{\text{N-chaos}} e_1 : \Gamma_1, K_1 \ldots e_n : \Gamma_n, K_n}{\mu, \Gamma \vdash_{\text{SHE}} e : \sigma_p}
\end{align*}
\]

Case CH-If-Isunset-N:
\[
\frac{\text{pc}, N, \Gamma, K, U \vdash_{\text{N-chaos}} \text{isunset}(\text{cond}) : \text{int}_L}{\mu, \Gamma \vdash_{\text{SHE}} e_i : \sigma_p}
\]

Case CH-If-Else-N:
\[
\frac{\text{pc}, N, \Gamma, K, U \vdash_{\text{N-chaos}} c_1 : \Gamma', K_1 \quad \mu, \Gamma \vdash_{\text{SHE}} e : \sigma_p \quad \text{pc}, N, \Gamma, K, U \vdash_{\text{N-chaos}} e_2 : \Gamma', K_2}{\mu, \Gamma \vdash_{\text{SHE}} e_i : \sigma_p}
\]

Case CH-While-N:
\[
\frac{\text{pc}, N, \Gamma, K, U \vdash_{\text{N-chaos}} \text{while } e \text{ do } c : \Gamma, K}{\mu, \Gamma \vdash_{\text{SHE}} e_i : \sigma_p}
\]

Case CH-Call-N:
\[
\frac{\text{pc}, N, \Gamma, K, U \vdash_{\text{N-chaos}} \text{call}(e) : \Gamma_{\text{out}}, K^\tau}{\mu, \Gamma \vdash_{\text{SHE}} e : (\Gamma', K, U, pN, K^\tau)}
\]

Case CH-Kill:
\[
\frac{E_i \notin K}{E_i \notin \Gamma}
\]

Case CH-Declassefy-N:
\[
\frac{\mu, \Gamma \vdash_{\text{SHE}} e : \sigma_p}{\mu, \Gamma \vdash_{\text{SHE}} e : \text{declassify}(e) : \Gamma[x \rightarrow \sigma_L], K}
\]

Case CH-Update-N:
\[
\frac{\mu, \Gamma \vdash_{\text{SHE}} e_1 : (\sigma_p^N \text{ ref}^T)_q \quad \mu, \Gamma \vdash_{\text{SHE}} e_2 : \sigma_p'}{\text{pc}, N, \Gamma, K, U \vdash_{\text{N-chaos}} e_1 \leftarrow e_2 : \Gamma, K}
\]

Case CH-SetCnd-N:
\[
\frac{\delta(\text{cond}) = N \quad \text{cond} \in \text{Cond} \setminus U}{\mu, \Gamma \vdash_{\text{SHE}} \text{set}(\text{cond}) : \Gamma, K}
\]

Case CH-SetCnd-N:
\[
\frac{\delta(\text{cond}) = N \quad \text{cond} \in \text{Cond} \setminus U}{\mu, \Gamma \vdash_{\text{SHE}} \text{set}(\text{cond}) : \Gamma, K}
\]
Case **NS-DECLASSIFY:** Given \( pc, \mu, \Gamma, U \vdash \delta_{\text{SH}^{\text{N}}_{\text{Nch}}} \langle \text{declassify}(x)e, r, m, K \rangle : \Gamma \cdot \text{ok} \) and \( \mu \vdash \langle \text{declassify}(x)e, r, m, K \rangle \cdot \|_{\text{N-chaos}} r'; m; K \triangleright \) such that \( \mu \vdash \langle e, r, m, K \rangle \cdot \|_{\text{N-chaos}} v \) and \( r' = r[x \mapsto v] \). Also expression \( e \) has no variables syntactically present (large-step has the premise hasNoVars(\( e \))). We have to prove that \( \mu, \Gamma' \vdash \delta_{\text{SH}^{\text{N}}_{\text{Nch}}} \langle r', m, K \rangle \cdot \text{ok} \).

From the initial configuration, we have \( \mu, \Gamma \vdash \delta_{\text{SH}^{\text{N}}_{\text{Nch}}} \langle r, m, K \rangle \cdot \text{ok} \). Register files \( r \) and \( r' \) differ only for variable \( x \). Let \( v = (v_1 | v_2) \) for some \( v_1 \) and \( v_2 \). We have \( \Gamma' = \Gamma[x \mapsto L] \). From the well-typedness, we have allLocImmutable(\( e \)). Thus \( e \in \mathcal{H} \) and so \( v \neq (v_1 | v_2) \) (not a pair value).

Hence proved.

Case **NS-UPDATE:** Given \( pc, \mu, \Gamma, U \vdash \delta_{\text{SH}^{\text{N}}_{\text{Nch}}} \langle e_1 \leftarrow e_2, r, m, K \rangle : \Gamma \cdot \text{ok} \) and \( \mu \vdash \langle e_1 \leftarrow e_2, r, m, K \rangle \cdot \|_{\text{N-chaos}} r'; m'; K \triangleright \) such that \( \mu \vdash \langle e_1, r, m, K \rangle \cdot \|_{\text{N-chaos}} l \), \( \mu \vdash \langle e_2, r, m, K \rangle \cdot \|_{\text{N-chaos}} v \) and \( m' = m[l \mapsto v] \). We have to prove that \( \mu, \Gamma \vdash \delta_{\text{SH}^{\text{N}}_{\text{Nch}}} \langle r', m', K \rangle \cdot \text{ok} \).

From the premise of T-NSQ-CONF, we have \( \mu, \Gamma \vdash \delta_{\text{SH}^{\text{N}}_{\text{Nch}}} \langle r, m, K \rangle \cdot \text{ok}, \mu, \Gamma \vdash \delta_{\text{SH}^{\text{N}}_{\text{Nch}}} \langle e_1 : (\sigma_p \ref{ref} \tau)_q \rangle \) and \( \mu, \Gamma \vdash \delta_{\text{SH}^{\text{N}}_{\text{Nch}}} \langle e_2 : \sigma_p' \rangle \) such that \( p' \cup q \cup pc \subseteq p \). In particular, \( p' \cap q = \emptyset \) and \( p' \cup q \cap pc = \emptyset \).

Case \( l = (l_1 | l_2), v = (v_1 | v_2) \): Applying Lemma \( \ref{lemma:abstract} \) we have protected(\( p', S \)) and \( \mu \neq N \). So protected(\( p, S \)). Since \( \mu, \Gamma \vdash \delta_{\text{SH}^{\text{N}}_{\text{Nch}}} \langle e_1 \leftarrow e_2, r, m, K \rangle \cdot \|_{\text{N-chaos}} r ; m ; K \triangleright \) from the well-typedness of environment, we have \( \delta(l) = \mu' \neq N \). Hence

\( \mu, \Gamma \vdash \delta_{\text{SH}^{\text{N}}_{\text{Nch}}} \langle r', m', K \rangle \cdot \text{ok} \).

Case \( l \neq (l_1 | l_2), v = (v_1 | v_2) \): Same as above.

Case \( l = (l_1 | l_2), v \neq (v_1 | v_2) \): Applying Lemma \( \ref{lemma:abstract} \) we have protected(\( q, S \)) and \( \mu \neq N \). So protected(\( p, S \)). Since \( \mu, \Gamma \vdash \delta_{\text{SH}^{\text{N}}_{\text{Nch}}} \langle e_1 \leftarrow e_2, r, m, K \rangle \cdot \|_{\text{N-chaos}} r ; m ; K \triangleright \) from the well-typedness of environment, we have \( \delta(l) = \mu' \neq N \). Hence

\( \mu, \Gamma \vdash \delta_{\text{SH}^{\text{N}}_{\text{Nch}}} \langle r', m', K \rangle \cdot \text{ok} \).

Case \( l \neq (l_1 | l_2), v \neq (v_1 | v_2) \): Trivially \( \mu, \Gamma \vdash \delta_{\text{SH}^{\text{N}}_{\text{Nch}}} \langle r, m, K \rangle \cdot \text{ok} \).

Case **NS-OUTPUT:** Given \( pc, \mu, \Gamma, U \vdash \delta_{\text{SH}^{\text{N}}_{\text{Nch}}} \langle \text{output } e, \ell, r, m, K \rangle : \Gamma \cdot \text{ok} \) and \( \mu \vdash \langle \text{output } e, \ell, r, m, K \rangle \cdot \|_{\text{N-chaos}} r ; m ; K \triangleright \) Mem(\( m \)) \cdot Out(\( \ell, v \)) \cdot From the premise of T-NSQ-CONF, we have \( \mu, \Gamma \vdash \delta_{\text{SH}^{\text{N}}_{\text{Nch}}} \langle r, m, K \rangle \cdot \text{ok} \).

Large-step does not modify register file, memory or killset.

Case **NS-SETCOND:** Given \( pc, \mu, \Gamma, U \vdash \delta_{\text{SH}^{\text{N}}_{\text{Nch}}} \langle \text{set } \text{cond }, r, m, K \rangle : \Gamma \cdot \text{ok} \) and \( \mu \vdash \langle \text{set } \text{cond }, r, m, K \rangle \cdot \|_{\text{N-chaos}} r ; m ; K \triangleright \) Mem(\( m \)) \cdot such that \( m = m[\text{cond } \mapsto 1] \) We have to prove that \( \mu, \Gamma \vdash \delta_{\text{SH}^{\text{N}}_{\text{Nch}}} \langle r, m, K \rangle \cdot \text{ok} \). From the premise of T-NSQ-CONF, we have \( \mu, \Gamma \vdash \delta_{\text{SH}^{\text{N}}_{\text{Nch}}} \langle r, m, K \rangle \cdot \text{ok} \). Since \( m \) and \( m' \) do not differ (set cond) always sets cond to a non-pair value), we have \( \mu, \Gamma \vdash \delta_{\text{SH}^{\text{N}}_{\text{Nch}}} \langle r, m, K \rangle \cdot \text{ok} \).

Case **NS-KILL:** Given \( pc, \mu, \Gamma, U \vdash \delta_{\text{SH}^{\text{N}}_{\text{Nch}}} \langle \text{kill } (i), r, m, K \rangle : \Gamma \cdot \text{ok} \) and \( N \vdash \langle \text{kill } (i), r, m, K \rangle \cdot \|_{\text{N-chaos}} r ; m ; K \cup \{E_i\} \triangleright \) \cdot We have to prove that \( \mu, \Gamma \vdash \delta_{\text{SH}^{\text{N}}_{\text{Nch}}} \langle r, m, K \cup \{E_i\} \rangle \cdot \text{ok} \). From the premise of T-NSQ-CONF, we have \( \mu, \Gamma \vdash \delta_{\text{SH}^{\text{N}}_{\text{Nch}}} \langle r, m, K \rangle \cdot \text{ok} \). Since \( [K]_1 = [K]_2 \), we therefore have \( [K \cup \{E_i\}]_1 = [K \cup \{E_i\}]_2 \). Hence proved.

Case **NS-SEQ:** Given \( pc, N, \Gamma, U \vdash \delta_{\text{SH}^{\text{N}}_{\text{Nch}}} \langle c_1; \ldots; c_n, r_0, m_0, K_0 \rangle : \Gamma \cdot \text{ok} \) and \( N \vdash \langle c_1; \ldots; c_n, r_0, m_0, K_0 \rangle \cdot \|_{\text{N-chaos}} r_n ; m_n ; K_n t n \) \cdot We have to prove that \( N, \Gamma_n \vdash \delta_{\text{SH}^{\text{N}}_{\text{Nch}}} \langle r_n, m_n, K_n \rangle \cdot \text{ok} \). From the premise of T-NSQ-CONF, we have \( \mu, \Gamma_0 \vdash \delta_{\text{SH}^{\text{N}}_{\text{Nch}}} \langle r_0, m_0, K_0 \rangle \cdot \text{ok} \) and \( pc, \mu, \Gamma_1, K_{i-1}, U \vdash \delta_{\text{SH}^{\text{N}}_{\text{Nch}}} \langle c_i, K_i \rangle \) for \( i \in \{1 \ldots n\} \). Applying induction hypothesis, we thus have \( \mu, \Gamma_1 \vdash \delta_{\text{SH}^{\text{N}}_{\text{Nch}}} \langle r_1, m_1, K_1 \rangle \cdot \text{ok} \). Since the types of locations are fixed throughout the program, we have that if \( \Gamma_0 \) is well-typed for \( \delta \) then \( \Gamma_1 \) is also well-typed for \( \delta \). Applying induction hypothesis continuously, we thus have \( N, \Gamma_n \vdash \delta_{\text{SH}^{\text{N}}_{\text{Nch}}} \langle r_n, m_n, K_n \rangle \cdot \text{ok} \).
Case NSQ-ENCLAVE: Given pc, N, \( \Gamma, U \vdash_{\text{SH\text{\text{\tiny{Nech}}}}} \langle \text{enclave}(i, c), r, m, K \rangle : \Gamma \Rightarrow \text{ok} \) and \( N \vdash \langle \text{enclave}(i, c), r, m, K \rangle \Rightarrow \text{ok} \). We have to prove that \( N \vdash \langle \text{enclave}(i, c), r, m, K \rangle \Rightarrow \text{ok} \) from the premise of T-NSQ-CONFIG, we have \( \mu, \Gamma \vdash_{\text{SH\text{\text{\tiny{Nech}}}}} \langle r, m, K \rangle \Rightarrow \text{ok} \). From the well-typedness, we have \( \Gamma' \vdash_{\text{SH\text{\text{\tiny{Nech}}}}} \langle r', m', K' \rangle \Rightarrow \text{ok} \). From the premise of T-NSQ-CONFIG, we have \( \mu, \Gamma \vdash_{\text{SH\text{\text{\tiny{Nech}}}}} \langle r, m, K \rangle \Rightarrow \text{ok} \) and \( pc, E_j, \Gamma, K, 0 \vdash_{\text{SH\text{\text{\tiny{Nech}}}}} c \vdash \Gamma', K' \). So, \( pc, E_j, \Gamma, K, 0 \vdash_{\text{SH\text{\text{\tiny{Nech}}}}} c \vdash \Gamma', K' \). From the premise of T-NSQ-CONFIG, we have \( \mu, \Gamma \vdash_{\text{SH\text{\text{\tiny{Nech}}}}} \langle r, m, K \rangle \Rightarrow \text{ok} \). Applying induction hypothesis, we thus have \( E_j, \Gamma \vdash_{\text{SH\text{\text{\tiny{Nech}}}}} \langle r', m', K' \rangle \Rightarrow \text{ok} \). Hence \( N, \Gamma \vdash_{\text{SH\text{\text{\tiny{Nech}}}}} \langle r', m', K' \rangle \Rightarrow \text{ok} \).

Case NSQ-IF-ELSE: Given pc, \( \mu, \Gamma, U \vdash_{\text{SH\text{\text{\tiny{Nech}}}}} \langle \text{ifThenElse}(\text{ifThenElse}(e, \text{true}, \text{true}), \text{false}, \text{false}), \text{true}, \text{true}, \text{false}, \text{false}) \rangle : \Gamma \Rightarrow \text{ok} \). From the well-typedness, we have \( \Gamma' \vdash_{\text{SH\text{\text{\tiny{Nech}}}}} \langle r', m', K' \rangle \Rightarrow \text{ok} \). From the premise of T-NSQ-CONFIG, we have \( \mu, \Gamma \vdash_{\text{SH\text{\text{\tiny{Nech}}}}} \langle r, m, K \rangle \Rightarrow \text{ok} \) and \( pc, \mu, \Gamma, U \vdash_{\text{SH\text{\text{\tiny{Nech}}}}} \langle c, r, m, K \rangle : \Gamma \Rightarrow \text{ok} \). Also, \( \mu \vdash \langle c, r, m, K \rangle \Rightarrow \text{ok} \). From the premise of T-NSQ-CONFIG, we have \( \mu, \Gamma \vdash_{\text{SH\text{\text{\tiny{Nech}}}}} \langle r, m, K \rangle \Rightarrow \text{ok} \). Applying induction hypothesis to the premise \( \mu \vdash \langle c, r, m, K \rangle \Rightarrow \text{ok} \), we have \( \Gamma' \vdash_{\text{SH\text{\text{\tiny{Nech}}}}} \langle r', m', K' \rangle \Rightarrow \text{ok} \). Hence \( N, \Gamma \vdash_{\text{SH\text{\text{\tiny{Nech}}}}} \langle r', m', K' \rangle \Rightarrow \text{ok} \).
of NSQ-CALL-DIV, we have $\mu \vdash \langle e, r, m, K \rangle \bullet N_{\text{chaos}} (v_0 \mid v_1)$. So $\mu \neq N$, protected($q, S$) and since $q \leq p$, protected($p, S$) follows.

Let $z$ be such that $\hat{r} \circ (v_1 \mid v_2)$. If $r(z) = (v_1 \mid v_2)$ and $\Gamma(z) = \sigma_y$, then from the premise of T-NSQ-CONF, we already have protected($y, S$). If $r(z) \neq (v_1 \mid v_2)$ i.e., not a pair value, and $\Gamma(z) = \sigma_y$, then from the well-typedness $p, \mu, \Gamma, K^*, U \vdash_{\delta,SH,\text{N-ch}} c : \Gamma^*, K^*$, we have protected($p, S$) and so protected($y, S$) (because an assignment is at lease as restrictive as $p$). Similarly, let $\bar{m}(l) = (v_1 \mid v_2)$ and $\Gamma(l) = \sigma_y$. Since the type of location is invariant throughout the program, from the initial configuration we have protected($y, S$). A well-typed escape hatch has immutable locations and thus evaluates to the same initial value. From the function type, post kills are same. So $\vec{K}_1 = \vec{K}_2$. Hence $\mu, \Gamma \vdash_{\delta, SH, \text{N-ch}} \langle \hat{r}, \bar{m}, K \rangle \bullet ok$.

Hence proved. \hfill $\square$

**Lemma 14** (IMP$^2_{N-\text{chaos}}$ N-chao$. Type Preservation). Let $\Gamma$ be a well-formed typing context and $pc, \mu, \Gamma, U \vdash_{\delta, SH, \text{N-ch}} \langle e, r, m, K \rangle : \Gamma' \bullet ok$. If $\mu \vdash \langle e', r', m', K' \rangle \bullet N_{\text{chaos}} r'; m'; \Gamma' \triangleright t' \bullet$ is an immediate (command) premise in the evaluation of $\mu \vdash \langle e, r, m, K \rangle \bullet N_{\text{chaos}} r; m; \Gamma \triangleright t \bullet$, then $\exists \bar{p}c, \bar{\Gamma}, \bar{t}, U, \bar{s}$, such that $pc \leq \bar{p}c$, either $U \subseteq \bar{U}$ or $\bar{U} = \emptyset$ and $\bar{p}c, \bar{\mu}, \bar{\Gamma}, \bar{U} \vdash_{\delta, SH, \text{N-ch}} \langle e', r', m', K' \rangle : \Gamma' \bullet ok$.

**Proof.** The proof is by induction on the derivation of the large step $\mu \vdash \langle e, r, m, K \rangle \bullet N_{\text{chaos}} r; m; \Gamma \triangleright t \bullet$. Since rules NSQ-ASSIGN, NSQ-SKIP, NSQ-UPDATE, NSQ-KILL, NSQ-OUTPUT, NSQ-SETCOND, NSQ-IF-DIV, NSQ-WHILE-DIV and NSQ-CALL-DIV do not have IMP$^2_{N-\text{chaos}}$ command premises, the only relevant cases are NSQ-ENCLAVE, NSQ-IF-ELSE, NSQ-WHILE, NSQ-SEQ, NSQ-CALL.

**Case NSQ-ENCLAVE:** Given $pc, \mu, \Gamma, U \vdash_{\delta, SH, \text{N-ch}} \langle \text{enclave}(i, c), r, m, K \rangle : \Gamma', K' \bullet ok$. From the premises of T-NSQ-CONF, we have $\mu, \Gamma \vdash_{\delta, SH, \text{N-ch}} \langle r, m, K \rangle \bullet ok$. And $pc, \mu, \Gamma, U \vdash_{\delta, SH, \text{N-ch}} \langle c, r, m, K \rangle : \Gamma' \bullet ok$. From the premises of the IMP$^2_{N-\text{chaos}}$ large-step, we have $E_i \vdash \langle c, r, m, K \rangle \bullet N_{\text{chaos}} r; m; K' \triangleright t' \bullet$. Hence $pc, \mu, \Gamma, U \vdash_{\delta, SH, \text{N-ch}} \langle c, r, m, K \rangle : \Gamma', K' \bullet ok$.

**Case NSQ-IF-ELSE:** Given $pc, \mu, \Gamma, U \vdash_{\delta, SH, \text{N-ch}} \langle i \text{ then } e \text{ else } e' \rangle \bullet \Gamma' \bullet ok$. From the premises of the IMP$^2_{N-\text{chaos}}$ large-step, we have $\mu \vdash \langle e, r, m, K \rangle \bullet N_{\text{chaos}} r'; m'; K' \triangleright t' \bullet$, and $\mu \vdash \langle e', r', m', K' \rangle \bullet N_{\text{chaos}} r'; m'; K' \triangleright t' \bullet$. Hence $pc, \mu, \Gamma, U \vdash_{\delta, SH, \text{N-ch}} \langle e', r', m', K' \rangle : \Gamma' \bullet ok$. From the premises of T-NSQ-CONF, we have $\mu, \Gamma \vdash_{\delta, SH, \text{N-ch}} \langle r, m, K \rangle \bullet ok$. And $pc, \mu, \Gamma, U \vdash_{\delta, SH, \text{N-ch}} \langle c, r, m, K \rangle : \Gamma' \bullet ok$. Applying Lemma [13] to $pc, \mu, \Gamma, U \vdash_{\delta, SH, \text{N-ch}} \langle c, r, m, K \rangle : \Gamma, K' \bullet ok$ and $pc, \mu, \Gamma, U \vdash_{\delta, SH, \text{N-ch}} \langle c, r, m, K \rangle : \Gamma, K \bullet ok$. Hence $pc, \mu, \Gamma, U \vdash_{\delta, SH, \text{N-ch}} \langle c, r, m, K \rangle : \Gamma', K' \bullet ok$.

**Case NSQ-CALL:** Given $pc, \mu, \Gamma, U \vdash_{\delta, SH, \text{N-ch}} \langle \text{call}(e), r, m, K \rangle : \Gamma' \bullet ok$. From the premises of the IMP$^2_{N-\text{chaos}}$ large-step, we have $\mu \vdash \langle e, r, m, K \rangle \bullet N_{\text{chaos}} r; m; K \text{ or } \mu \vdash \langle e, r, m, K \rangle \bullet N_{\text{chaos}} r; m; K' \triangleright t' \bullet$. From the premises of T-NSQ-CONF, we have $\mu, \Gamma \vdash_{\delta, SH, \text{N-ch}} \langle r, m, K \rangle \bullet ok$ and $pc, \mu, \Gamma, U \vdash_{\delta, SH, \text{N-ch}} \langle e, r, m, K \rangle : \Gamma \bullet ok$. Hence $pc, \mu, \Gamma, U \vdash_{\delta, SH, \text{N-ch}} \langle e, r, m, K \rangle : \Gamma' \bullet ok$.

**Case NSQ-SEQ:** Given $pc, \mu, \Gamma, U \vdash_{\delta, SH, \text{N-ch}} \langle c_1, \ldots, c_n, r_0, m_0, K_0 \rangle : \Gamma_n, K_n \bullet ok$. From the premises of the IMP$^2_{N-\text{chaos}}$ large-step, we have $\mu \vdash \langle c_i, r_i, m_i, K_i \rangle \bullet N_{\text{chaos}} r_i; m_i; K_i \triangleright t_i \bullet$. From the premises of T-NSQ-CONF, we have $\mu, \Gamma \vdash_{\delta, SH, \text{N-ch}} \langle r_0, m_0, K_0 \rangle \bullet ok$ and $pc, \mu, \Gamma, U \vdash_{\delta, SH, \text{N-ch}} \langle c_i, r_i, m_i, K_i \rangle : \Gamma, K \bullet ok$. From the premises of T-NSQ-CONF, we have $\mu, \Gamma \vdash_{\delta, SH, \text{N-ch}} \langle r_0, m_0, K_0 \rangle \bullet ok$. Applying Lemma [13], we have $pc, \mu, \Gamma \vdash_{\delta, SH, \text{N-ch}} \langle c_1, r_1, m_1, K_1 \rangle : \Gamma_1, K_1 \bullet ok$. Repeatedly applying the above argument for $n$ times, we thus have $pc, \mu, \Gamma \vdash_{\delta, SH, \text{N-ch}} \langle c_n, r_{n-1}, m_{n-1}, K_{n-1} \rangle : \Gamma_n, K_n \bullet ok$.

Hence proved. \hfill $\square$

Using Lemma [13] and Lemma [14], we prove the second part of Theorem [1] for semantics $\downarrow_{N-\text{chaos}}$ and security specification.
Proof. Given \( L, \mu, \Gamma, K, \emptyset \vdash_\delta c : \Gamma', K' \). Let \( m_1 \) be some initial memory for which \( N \vdash_\delta \langle c, r_{\text{init}}, m_1, K \rangle \uplus_{\text{chaostype}} r'_1; m'_1; K' \triangleright t \cdot t_{\text{obs}} \cdot t' \) where \( t_{\text{obs}} = m' \cdot t'' \) for some memory \( m' \) and trace \( t'' \), and if \( t'' \) is not empty then the last element of \( t'' \) is an output event. Note that the attacker actually observes only low-events i.e. \( [t_{\text{obs}}]_L \). We need to show that

\[
k_L^{N,\text{chaos}}(c, t_{\text{obs}}) \supseteq M
\]

where

\[
M = \left( \bigcap_{m' \in [t_{\text{obs}}]_{\text{mem}}} \text{ind}_t(m_0, \gamma, \{ \text{cnd} \mid m'(\text{cnd}) = 0 \}) \right) \cap \{ (e', m') \in (\forall t_{\text{obs}})_{\text{exec}} : \text{Esc}_{\text{kind}}(m_0, m', e') \}\]

Let \( \mathcal{S} \) be the set of conditions that are set at the beginning of \( t_{\text{obs}} \), i.e., \( \mathcal{S} = \{ \text{cnd} \mid m'(\text{cnd}) = 1 \} \). If \( \text{Cond} \) represents the set of all condition variables, then \( \text{Cond} \setminus \mathcal{S} \) is the set of conditions that are unset at some time during the observed trace. Also let \( \mathcal{H} \) be the set of all escape hatches that are declassified till the last event of \( t_{\text{obs}} \), i.e., \( \mathcal{H} = \{ e \mid (e, m) \in [t \cdot t_{\text{obs}}]_{\text{exec}} \} \).

Let \( m_2 \in M \). Also let \( N \vdash_\delta \langle c, r_{\text{init}}, m_2, K \rangle \uplus_{\text{chaos}} r'_2; m'_2; K' \triangleright t_2 \) such that

\[
[t_2]_{1,\text{cmd}} = [t_2]_{2,\text{cmd}}
\]

To ensure \( k_L^{N,\text{chaos}}(c, t_{\text{obs}}) \supseteq M \), we need to show that \( m_2 \in k_L^{N,\text{chaos}}(c, t_{\text{obs}}) \).

Note that \( m_1 \) and \( m_2 \) differ only in locations with policies that are protected by set \( \mathcal{S} \). That is, for all locations \( l \in \text{Loc} \), if \( m_1(l) \neq m_2(l) \) then \( \Gamma(l) = \sigma_p \implies \text{protected}(p, \mathcal{S}) \). Why? Suppose for some \( l \), s.t. \( \Gamma(l) = (\sigma_p, r_t) \) let \( m_1(l) \neq m_2(l) \) and \( \neg\text{protected}(p, \mathcal{S}) \). So, \( p = L \) or \( L \ni \text{cmd} \wedge K_{\text{pre}} \ni \text{cmd} \not\subseteq \mathcal{S} \). Then for some \( m_1 \in M \), we have \( m_1(l) = m_2(l) \). Since \( M \) is computed by the intersection of all such memories, every memory \( m'' \in M \) should satisfy \( m''(l) = m_1(l) \). This implies \( m_2(l) = m_1(l) \) which is a contradiction. Thus \( \text{protected}(p, \mathcal{S}) \) must hold.

Also note that \( m_1 \) and \( m_2 \) satisfy

\[
\forall e \in \mathcal{H}, \mu \vdash_\delta \langle e, r_{\text{init}}, m_1, K \rangle \Downarrow v \iff \mu \vdash_\delta \langle e, r, m_2, K \rangle \Downarrow v
\]

We will construct an \( \text{IMPE}^{2N,\text{chaos}} \) execution that represents the \( \text{IMPE} \) executions starting from \( m_0 \) and \( m_2 \). Type-preservation of \( \text{IMPE}^{2N,\text{chaos}} \) (Lemma 13) will ensure that both executions produce the same observable trace, thus showing that \( m_2 \in k_L^{N,\text{chaos}}(c, t_{\text{obs}}) \).

Let \( \text{IMPE}^{2N,\text{chaos}} \) memory \( m = \text{merge}(m_1, m_2) \). If \( \mu \vdash_\delta \langle c, r_{\text{init}}, m, K \rangle \bullet \uplus_{\text{chaos}} r^*; m^*; K^* \triangleright t^* \bullet \) such that the attacker modifies the program in the same way in both the executions. By the adequacy of \( \text{IMPE}^{2N,\text{chaos}} \) (Lemma 10), we have that the \( \text{IMPE}^{2N,\text{chaos}} \) execution represents \( \text{IMPE} \) executions with \( m_1 \) and \( m_2 \) as initial memories.

Let \( t^* = t^*_{\text{pre}} \cdot t^*_{\text{obs}} \cdot t^*_{\text{post}} \) for some \( t^*_{\text{obs}} \) such that \( [t^*_{\text{obs}}]_L = t_{\text{obs}} \). Define observation overlapped (same as the function defined in Section E.1.2 but repeated here for the ease of reference) by an \( \text{IMPE}^{2E,\text{chaos}} \) trace \( t^* \) as:

\[
\text{obsOverlap}(t^*, t^*_{\text{pre}}, t^*_{\text{obs}}, t^*_{\text{post}}) = \begin{cases} 
\text{c} & \text{if } t^* \leq_{\text{lex}} t^*_{\text{pre}} \\
[t^*_{\text{obs}}]_L & \text{if } t^*_{\text{pre}} \cdot t^*_{\text{obs}} \leq_{\text{lex}} t^* \\
[t^*_{\text{post}}]_L & \text{if } t^*_{\text{pre}} \cdot t^*_{\text{obs}} = t^* \text{ and } t^* \leq_{\text{lex}} t^*_{\text{post}} \\
[t^*_{\text{obs}}]_L & \text{if } t^*_{\text{pre}} \cdot t^*_{\text{obs}} \neq t^* \text{ and } t^* \leq_{\text{lex}} t^*_{\text{obs}} 
\end{cases}
\]

Intuitively, \( \text{obsOverlap}(t^*, t^*_{\text{pre}}, t^*_{\text{obs}}, t^*_{\text{post}}) \) defines part of input trace \( t^* \) that overlaps with an observed trace \( t^*_{\text{obs}} \).

Since \( L, \mu, \Gamma, K, \emptyset \vdash_\delta c : \Gamma', K' \), from Lemma 14, we have \( L, \mu, \Gamma, K, \emptyset \vdash_\delta \text{S}_{\text{Hin}}, c : \Gamma', K' \) and so \( L, \mu, \Gamma, K, \emptyset \vdash_\delta \text{S}_{\text{Hin}}, c : \Gamma', K' \). Note that our initial configuration satisfies

\[
L, N, \Gamma, \emptyset \vdash_\delta \text{S}_{\text{Hin}}, c : \Gamma', K' \cdot \text{ok}
\]

Lemma 15 (Observational Equivalence is Preserved). Let \( \mathcal{S} \) be the set of conditions that are set(non-zero) in some observed trace \( t_{\text{obs}} \). If \( pc, \mu, \Gamma, U \vdash_\delta \text{S}_{\text{Hin}}, c : \Gamma', K' \cdot \text{ok} \) and \( \mu \vdash_\delta \langle c, r, m, K \rangle \bullet \uplus_{\text{chaos}} r; m; K \triangleright i \cdot \), then

\[
[\text{obsOverlap}(t^*, t^*_{\text{pre}}, t^*_{\text{obs}}, t^*_{\text{post}})]_1 \approx_L [\text{obsOverlap}(t^*, t^*_{\text{pre}}, t^*_{\text{obs}}, t^*_{\text{post}})]_2
\]

Proof. The proof follows by induction on the derivation of \( \mu \vdash_\delta \langle c, r, m, K \rangle \bullet \uplus_{\text{chaos}} r; m; K \triangleright i \cdot \).
Case NSq-Skip: Emitted trace is empty.
Case NSq-Assign: Emitted trace is empty.
Case NSq-Declassify: Emitted trace does not include \(\text{out} \) event.
Case NSq-Update: Emitted trace is empty.
Case NSq-SetCnd: Emitted trace does not include \(\text{out} \) event.
Case NSq-Output: Given \(pc, \mu, \Gamma, U \vdash_{\delta S\text{H}_{\text{Nch}}} (c, e, r, m, K) : \Gamma', \ K' \circ \ \text{ok} \) and \(\mu \vdash \langle \text{output } e \text{ to } \ell, r, m, K \rangle \cdot \frac{\frac{\frac{\frac{1}{2}}{2}}{}{2}}{2}r, m; K \triangleright \text{Mem}(m) \cdot \text{Out}(\ell, v)\). Let \(\ell = \text{Mem}(m) \cdot \text{Out}(\ell, v)\). From the premise of T-NSq-CONFIG, we have \(pc, \mu, \Gamma, K, U \vdash \text{output } e \to \ell \cdot \Gamma, K\) and so \(\Gamma \vdash_{\delta S\text{H}_{\text{Nch}}} e : \sigma_p \) and \(\text{Cur}(p, U) \sqcup \text{Cur}(pc, U) \subseteq \ell\).

Case \(v = (v_1 \mid v_2)\): We have \(\text{protected}(p, S)\) and so \(\ell \notin L\).

Case \(v \neq (v_1 \mid v_2)\): In this case \(\ell = \{L, H\}\).

In the both the cases, we have

\[
\langle \text{obsOverlap}(\ell, \mathfrak{t}_{\text{pre}}, \mathfrak{t}_{\text{post}}, \mathfrak{t}_{\text{post}}) \rangle_2 \approx \langle \text{obsOverlap}(\ell, \mathfrak{t}_{\text{pre}}, \mathfrak{t}_{\text{post}}, \mathfrak{t}_{\text{post}}) \rangle_2
\]

Case NSq-If-Else: Given \(pc, \mu, \Gamma, U \vdash_{\delta S\text{H}_{\text{Nch}}} (\text{if } e \text{ then } c_1 \text{ else } c_2, r, m, K) : \Gamma', K' \circ \ \text{ok} \) and \(\mu \vdash \langle \text{if } e \text{ then } c_1 \text{ else } c_2, r, m, K \rangle \cdot \frac{\frac{\frac{1}{2}}{2}}{2}r, m'; K' \triangleright t'\cdot \). Let \(\ell = t'\). Since \(\mu \vdash (e, r, m, K) \cdot \frac{\frac{1}{2}}{2}v\) such that \(v\) is not a pair, applying induction hypothesis to the premises of NSQ-IF-ELSE gives us

\[
\langle \text{obsOverlap}(\ell, \mathfrak{t}_{\text{pre}}, \mathfrak{t}_{\text{post}}, \mathfrak{t}_{\text{post}}) \rangle_2 \approx \langle \text{obsOverlap}(\ell, \mathfrak{t}_{\text{pre}}, \mathfrak{t}_{\text{post}}, \mathfrak{t}_{\text{post}}) \rangle_2
\]

From Lemma \(\ref{lem:obsOverlap} \), we have \(pc, \mu, \Gamma, U \vdash_{\delta S\text{H}_{\text{Nch}}} (\text{while } e \text{ do } c, r, m, K) : \Gamma', K' \circ \ \text{ok} \) and \(\mu \vdash \langle \text{while } e \text{ do } c, r, m, K \rangle \cdot \frac{\frac{\frac{1}{2}}{2}}{2}r, m'; K' \triangleright t'\cdot \). Since \(\mu \vdash (e, r, m, K) \cdot \frac{\frac{1}{2}}{2}v\) such that \(v\) is not a pair, applying induction hypothesis to the premise of NSQ-WHILE gives us

\[
\langle \text{obsOverlap}(\ell, \mathfrak{t}_{\text{pre}}, \mathfrak{t}_{\text{post}}, \mathfrak{t}_{\text{post}}) \rangle_2 \approx \langle \text{obsOverlap}(\ell, \mathfrak{t}_{\text{pre}}, \mathfrak{t}_{\text{post}}, \mathfrak{t}_{\text{post}}) \rangle_2
\]

Hence

\[
\langle \text{obsOverlap}(\ell, \mathfrak{t}_{\text{pre}}, \mathfrak{t}_{\text{post}}, \mathfrak{t}_{\text{post}}) \rangle_2 \approx \langle \text{obsOverlap}(\ell, \mathfrak{t}_{\text{pre}}, \mathfrak{t}_{\text{post}}, \mathfrak{t}_{\text{post}}) \rangle_2
\]

Case NSq-Call: Given \(pc, \mu, \Gamma, U \vdash_{\delta S\text{H}_{\text{Nch}}} (\text{call}(e), r, m, K) : \Gamma', K' \circ \ \text{ok} \) and \(\mu \vdash \langle \text{call}(e), r, m, K \rangle \cdot \frac{\frac{\frac{1}{2}}{2}}{2}v\) such that \(v\) is not a pair, applying induction hypothesis to the premise of NSQ-CALL gives us

\[
\langle \text{obsOverlap}(\ell, \mathfrak{t}_{\text{pre}}, \mathfrak{t}_{\text{post}}, \mathfrak{t}_{\text{post}}) \rangle_2 \approx \langle \text{obsOverlap}(\ell, \mathfrak{t}_{\text{pre}}, \mathfrak{t}_{\text{post}}, \mathfrak{t}_{\text{post}}) \rangle_2
\]

Case NSq-If-Div: Given \(pc, \mu, \Gamma, U \vdash_{\delta S\text{H}_{\text{Nch}}} (\text{if } e \text{ then } c_1 \text{ else } c_2, r, m, K) : \Gamma', K' \circ \ \text{ok} \) and \(\mu \vdash \langle \text{if } e \text{ then } c_1 \text{ else } c_2, r, m, K \rangle \cdot \frac{\frac{\frac{1}{2}}{2}}{2}v\), \(\mathcal{K} > \mathcal{K}\). From the premises of T-NSQ-CONFIG, we have \(pc, \mu, \Gamma, K, U \vdash_{\delta S\text{H}_{\text{Nch}}} (\text{if } e \text{ then } c_1 \text{ else } c_2 : \Gamma', K'\cdot \). Since \(\mu \vdash \langle e, r, m, K \rangle \cdot \frac{\frac{1}{2}}{2}v\) such that \(v\) is a pair, we have \(\text{protected}(p, S)\). From the well-typedness, neither \(c_1\) nor \(c_2\) do emit any \text{out} events to \(L\) channel. Hence

\[
\langle \text{obsOverlap}(\ell, \mathfrak{t}_{\text{pre}}, \mathfrak{t}_{\text{post}}, \mathfrak{t}_{\text{post}}) \rangle_2 \approx \langle \text{obsOverlap}(\ell, \mathfrak{t}_{\text{pre}}, \mathfrak{t}_{\text{post}}, \mathfrak{t}_{\text{post}}) \rangle_2
\]

Case NSq-While-Div: Given \(pc, \mu, \Gamma, U \vdash_{\delta S\text{H}_{\text{Nch}}} (\text{while } e \text{ do } c, r, m, K) : \Gamma, K \circ \ \text{ok} \) and \(\mu \vdash \langle \text{while } e \text{ do } c, r, m, K \rangle \cdot \frac{\frac{\frac{1}{2}}{2}}{2}v\), \(\mathcal{K} > \mathcal{K}\). From the premises of T-NSQ-CONFIG, we have \(pc, \mu, \Gamma, K, U \vdash_{\delta S\text{H}_{\text{Nch}}} (\text{while } e \text{ do } c : \Gamma, K\cdot \). Since \(\mu \vdash \langle e, r, m, K \rangle \cdot \frac{\frac{1}{2}}{2}v\) such that \(v\) is a pair, we have \(\text{protected}(p, S)\). From the well-typedness, command \(c\) does not emit any \text{out} events to \(L\) channel. Hence

\[
\langle \text{obsOverlap}(\ell, \mathfrak{t}_{\text{pre}}, \mathfrak{t}_{\text{post}}, \mathfrak{t}_{\text{post}}) \rangle_2 \approx \langle \text{obsOverlap}(\ell, \mathfrak{t}_{\text{pre}}, \mathfrak{t}_{\text{post}}, \mathfrak{t}_{\text{post}}) \rangle_2
\]

Case NSq-Call-Div: Given \(pc, \mu, \Gamma, U \vdash_{\delta S\text{H}_{\text{Nch}}} (\text{call}(e), r, m, K) : \Gamma', K' \circ \ \text{ok} \) and \(\mu \vdash \langle \text{call}(e), r, m, K \rangle \cdot \frac{\frac{\frac{1}{2}}{2}}{2}v\), \(\mathcal{K} > \mathcal{K}\). From the premises of T-NSQ-CONFIG, we have \(pc, \mu, \Gamma, K, U \vdash_{\delta S\text{H}_{\text{Nch}}} (\text{call}(e) : \Gamma', K'\cdot \). Since \(\mu \vdash \langle e, r, m, K \rangle \cdot \frac{\frac{1}{2}}{2}v\) such that \(v\) is a pair, we have \(\text{protected}(p, S)\). From the well-typedness, command \(c\) does not emit any \text{out} events to \(L\) channel. Hence

\[
\langle \text{obsOverlap}(\ell, \mathfrak{t}_{\text{pre}}, \mathfrak{t}_{\text{post}}, \mathfrak{t}_{\text{post}}) \rangle_2 \approx \langle \text{obsOverlap}(\ell, \mathfrak{t}_{\text{pre}}, \mathfrak{t}_{\text{post}}, \mathfrak{t}_{\text{post}}) \rangle_2
\]
Case NSq-Seq: Given \(pc, \mu, \Gamma_0, U \vdash_S H_{\mu}^{N,ch} \langle c_1; \ldots; c_n, r_0, m_0, K_0 \rangle : \Gamma_n, K_n \bullet ok \) and \(\mu \vdash \langle c_1; \ldots; c_n, r_0, m_0, K_0 \rangle \). From the premises of T-NSq-CONFG, we have \(pc, \mu, \Gamma_0, K_0, U \vdash_S H_{\mu}^{N,ch} \langle c_1; \ldots; c_n : \Gamma_n, K_n\rangle\).

Applying induction hypothesis to the premise, \(\mu \vdash \langle c_1, r_0, m_0, K_0 \rangle \bullet \|_{N,chaos}^2 r_1, m_1, K_1 \triangleright t_1 \bullet\), we have

\[\text{obsOverlap}(t_1, t_{pre}^*, t_{obs}^*; t_{post}^*)]_1 \cong_L \text{obsOverlap}(t_1, t_{pre}^*, t_{obs}^*; t_{post}^*)]_2\]

From Lemma [14] we have \(pc, \mu, \Gamma_1, U \vdash_S H_{\mu}^{N,ch} \langle c_2; r_1, m_1, K_1 \rangle : \Gamma_2, K_2 \bullet ok\). Applying inductive hypothesis to the next premise, \(\mu \vdash \langle c_2, r_1, m_1, K_1 \rangle \bullet \|_{N,chaos}^2 r_2, m_2; K_2 \triangleright t_2 \bullet\), we have

\[\text{obsOverlap}(t_2, t_{pre}^*, t_{obs}^*; t_{post}^*)]_1 \cong_L \text{obsOverlap}(t_2, t_{pre}^*, t_{obs}^*; t_{post}^*)]_2\]

Applying the inductive hypothesis continuously thus gives,

\[\text{obsOverlap}(t_{n}, t_{pre}^*, t_{obs}^*; t_{post}^*)]_1 \cong_L \text{obsOverlap}(t_{n}, t_{pre}^*, t_{obs}^*; t_{post}^*)]_2\]

Case NSq-Enclave: Given \(pc, \mu, \Gamma, U \vdash_S H_{\mu}^{N,ch} \langle \text{enclave}(i), c, r, m, K \rangle : \Gamma', K' \bullet ok \) and \(N \vdash \langle \text{enclave}(i), c, r, m, K \rangle \). From the premises of T-NSq-CONFG, we have \(pc, \mu, \Gamma, K, U \vdash_S H_{\mu}^{N,ch} \langle c, r, m, K \rangle : \Gamma', K' \bullet ok\). Applying induction hypothesis to the premise \(E_i \vdash \langle c, r, m, K \rangle \bullet \|_{N,chaos}^2 r^*, m^*; K^* \triangleright t^* \bullet\), we have

\[\text{obsOverlap}(t^*, t_{pre}^*, t_{obs}^*; t_{post}^*)]_1 \cong_L \text{obsOverlap}(t^*, t_{pre}^*, t_{obs}^*; t_{post}^*)]_2\]

Since we have \(L, N, \Gamma, \emptyset \vdash_S H_{\mu}^{N,ch} \langle c, r_{init}, m, \emptyset \rangle : \Gamma' \bullet ok\), applying Lemma [15] on \(\mu \vdash \langle c, r_{init}, m, K \rangle \bullet \|_{N,chaos}^2 r^*, m^*; K^* \triangleright t^* \bullet\), we have

\[\text{obsOverlap}(t^*, t_{pre}^*, t_{obs}^*; t_{post}^*)]_1 \cong_L \text{obsOverlap}(t^*, t_{pre}^*, t_{obs}^*; t_{post}^*)]_2\]

Hence proved that \(m_2 \in \|_{N,chaos}^2 (c, t_{obs})\).

\(\square\)

E.1.6 Proofs for \(E_1\)-chaos Security

In this section we use an even more permissive \(E_1\)-chaos type system and show that a IMPE program that is well-typed for the type system in Section 4 is also well-typed for \(E_1\)-chaos type system. Figure 21 presents the \(E_1\)-chaos type system. It further relaxes the \(N\)-chaos type system from Section E.1.3 by unconstraining the commands running both in the normal mode and killed enclave modes. They can now read and write to memory locations with no restrictions on security policies. The new typing system relies on the guarantees provided by the operational semantics that a command running in normal mode does not access enclave memory, and that a location from a killed enclave is inaccessible. Typing rules for commands running in enclave mode are unchanged and are same as those presented in Figure 19.

**Lemma 16** (Permissive Type System 2). Let \(I\) be the set of enclaves killed. If \(L, N, \Gamma, \emptyset, \emptyset \vdash_S c : \Gamma', K'\), then \(pc, \mu, \Gamma, K, U \vdash_S E_{I,r}^{ch} c : \Gamma', K'\).

**Proof Sketch.** Proof is by straightforward induction on the derivation of the typing judgment \(\mu, \Gamma \vdash_S c : \sigma_p\).  

\(\square\)

E.1.7 IMPE\(^{E_2E_1\text{-chaos}}\) Adequacy

The language IMPE\(^{E_2E_1\text{-chaos}}\) is adequate for reasoning about executions of two IMPE programs. We show that the execution of IMPE\(^{E_2E_1\text{-chaos}}\) program using semantics \(\|_{E_2E_1\text{-chaos}}^2\) is sound (i.e., large-step taken by a IMPE\(^{E_2E_1\text{-chaos}}\) program corresponds to a large-step taken by either side of the execution) and complete (given two IMPE\(^{E_1\text{-chaos}}\) executions, there exists an IMPE\(^{E_2E_1\text{-chaos}}\) execution).

**Lemma 17** (IMPE\(^{E_2E_1\text{-chaos}}\) is Sound). If \(\mu \vdash \langle c, r, m, K \rangle \bullet \|_{E_2E_1\text{-chaos}}^2 r^*; m^*; K^* \triangleright t^* \bullet\), then \(\mu \vdash_S \langle c, r_{init}, m, [K]_{init} \rangle \vdash_{E_1\text{-chaos}} [r_{init}^*]; [m_{init}^*]; [K_{init}^*] \triangleright [t_{init}^*]\) for \(i \in \{1, 2\}\).

**Proof Sketch.** Proof is by induction on the derivation of the judgement \(\mu \vdash \langle c, r, m, K \rangle \bullet \|_{E_2E_1\text{-chaos}}^2 r^*; m^*; K^* \triangleright t^* \bullet\).

\(\square\)

**Lemma 18** (IMPE\(^{E_2E_1\text{-chaos}}\) is Complete). If \(\mu \vdash_S \langle c, r_{init}, m_{init}, [K]_{init} \rangle \vdash_{E_1\text{-chaos}} r_{init}^*; m_{init}^*; K_{init}^* \triangleright t_{init}^*\) such that \([t_{init}^*]_{1, cmd} = [t_{init}^*]_{2, cmd}\) then \(\mathcal{L}(r^*, m^*, K^*, t^*)\) such that \(\mu \vdash \langle c, r, m, K \rangle \bullet \|_{E_2E_1\text{-chaos}}^2 r^*; m^*; K^* \triangleright t^* \bullet\) and \([r_{init}^*]; [m_{init}^*]; [K_{init}^*] \triangleright [t_{init}^*]\) (\(r_i^*, m_i^*, K_i^*, t_i^*)\) for \(i \in \{1, 2\}\).

**Proof Sketch.** Follows along the lines of proof of Lemma 2.

\(\square\)
The definition differs from protected according to ...

\[ \delta \in \mathbb{N} \]

EI-Skip-N

\[ pc, N, \Gamma, K, U \vdash_{\text{EI}} e : \sigma_p \quad \mu \notin I \]

EI-Assign

\[ pc, \mu, \Gamma, K, U \vdash_{\text{EI}} x := e : \Gamma ; x \mapsto \sigma_{pc, \mu}, K \]

EI-Output

\[ pc, \mu, \Gamma, K, U \vdash_{\text{EI}} \text{output} e \quad \ell : \Gamma, K \]

EI-Seq

\[ \forall i \in \{ 1 \ldots n \}, pc, \mu, \Gamma_{i-1}, K_{i-1}, U \vdash_{\text{EI}} c_i : \Gamma_i, K_i \]

EI-If-Isunset

\[ pc, \mu, \Gamma, K, U \vdash_{\text{EI}} \text{isunset}(cnd) : \Gamma_L \]

EI-If-Else

\[ pc', N, \Gamma, K, U \vdash_{\text{EI}} c_1 : \Gamma', K_1 \]

EI-While

\[ pc, \mu, \Gamma, K, U \vdash_{\text{EI}} \text{while} e \quad \ell : \Gamma, K \]

EI-Call

\[ pc, \mu, \Gamma, K', U \vdash_{\text{EI}} \text{call}(e) : \Gamma_{out}, K^+ \]

\[ E_i \notin K \]

EI-Kill

\[ pc, N, \Gamma, K, U \vdash_{\text{EI}} \text{kill}(i) : \Gamma, K \cup \{ E_i \} \]

EI-Declassefy

\[ pc, \mu, \Gamma, K, U \vdash_{\text{EI}} \text{declassify}(e) : \Gamma \quad \ell : \Gamma, K \]

EI-Update

\[ pc, \mu, \Gamma, K, U \vdash_{\text{EI}} \text{declassify}(e) : \Gamma \]

EI-SetCnd

\[ pc, \mu, \Gamma, K, U \vdash_{\text{EI}} \text{set}(cnd) : \Gamma, K \]

Figure 21. \( E_1 \)-chaos typing rules for IMPE

E1.8 IMPE\(^{E_1\text{-chaos}}\) \( E_1 \)-chaos Type System

Let \( S \) be the set of conditions set during some observed trace \( t_{obs} \), \( H \) be the set of escape hatches till the observed trace and \( m_0 \) be the initial IMPE\(^{E_1\text{-chaos}}\) memory. A policy is now protected if it is either \( \top \) or \( \ell \) \( \gamma \nvdash \top \) s.t. \( m \in S \). We define \( \text{protected}_1(p, S) \) as follows:

\[
\text{protected}_1(p, S) = \begin{cases} 
\text{true} & \text{if } p = \top \\
\text{true} & \text{if } p = \ell \gamma \nvdash \top \text{ and } \gamma \in S \\
\text{false} & \text{o.w}
\end{cases}
\]

The definition differs from \( \text{protected}(p, S) \) defined earlier in that an erasure policy is protected if the confidentiality level is raised to \( \top \) only (after some condition \( \gamma \in S \) is set).

The IMPE\(^{E_1\text{-chaos}}\) type system is parametrized by \( \delta, S, H \) and \( m_0 \). The typing judgment for commands and expressions is shown below.

\[ pc, \mu, \Gamma, K, U \vdash_{\text{S,H,m_0,E_1}} c : \Gamma', K' \]

\[ \mu, \Gamma \vdash_{\delta \text{S,H,m_0,E_1}} e : \sigma_p \]

The typing rules are shown in Figure 21 and ensure that commands running in enclaves that aren’t killed are well-typed according to IMPE\(^{E_1}\) type system. Rules for typing configurations are shown in Figure 22 and are similar to T-NSQ-CONFIG and T-NSQ-VALUE.
∀cnd ∈ U, m(cnd) = 0 \quad \forall c, \mu, \Gamma, K, U ⊢_{δSH|m_i} e : \Gamma', K'

∀x ∈ Vars, r(x) = (v_1 | v_2) and Γ(x) = σ_p \implies protected_1(p, S) and μ ∈ I

∀l ∈ Loc \setminus Cond, m(l) = (v_1 | v_2) and Γ(l) = (σ_p, rt) \implies protected_1(p, S) and δ(l) ∈ I

∀e ∈ H, μ ⊢ (e, r_{init}, m_0, K) \cdot \frac{2}{E_{chaos}} v \implies μ ⊢ (e, r, m, K) \cdot \frac{2}{E_{chaos}} v

T-ESQ-CONFIG

\[
\begin{align*}
p c, \mu, \Gamma, U &\vdash_{δSH|m_i} e : \Gamma' \bullet \text{ok} \\
\forall x \in Vars, r(x) &\vdash (v_1 | v_2) \text{ and } Γ(x) = \sigma_p \implies protected_1(p, S) \\
\forall l \in Loc \setminus Cond, m(l) &\vdash (v_1 | v_2) \text{ and } Γ(l) = (σ_p, rt) \implies protected_1(p, S) \text{ and } μ ∈ I \\
∀e ∈ H, μ &\vdash (e, r_{init}, m_0, K) \cdot \frac{2}{E_{chaos}} v \implies μ \vdash (e, r, m, K) \cdot \frac{2}{E_{chaos}} v \text{ and } δ(l) ∈ I
\end{align*}
\]

T-ESQ-VALUE

Γ ⊢_{δSH|m_i} (e, r, m, K) \bullet \text{ok}

Figure 22. $E_{chaos}$ Typing $\text{LMP}^{2E_{chaos}}$ configurations

Lemma 19 ($E_{chaos}$ Value Type Preservation). If $μ, Γ \vdash_{δSH|m_i} e : σ_p$ and $μ \vdash (e, r, m, K) \cdot \frac{2}{E_{chaos}} v$, then $μ, Γ \vdash_{δSH|m_i} v : σ_p$.

Proof Sketch. Proof is by straightforward induction on the derivation of the typing judgment $μ, Γ \vdash_{δSH|m_i} e : σ_p$.

Lemma 20 ($E_{chaos}$ Protected Expression). Let $Γ \vdash_{δSH|m_i} (e, r, m, K) \bullet \text{ok}$. If $μ, Γ \vdash_{δSH|m_i} e : σ_p$ and $μ \vdash (e, r, m, K) \cdot \frac{2}{E_{chaos}} v$ such that $v = (v_1 | v_2)$ for some values $v_1$ and $v_2$, then $protected_1(p, S) \text{ and } μ ∈ I$.

Proof Sketch. Proof is by straightforward induction on the derivation of the typing judgment $μ, Γ \vdash_{δSH|m_i} e : σ_p$.

Lemma 21 ($\text{LMP}^{2E_{chaos}} E_{chaos}$ Final Configuration Preservation). Let $I$ be the set of enclaves killed, $γ$ be the security specification such that $γ(l) = L \land δ(l) = I$ and $Γ$ be an environment that corresponds to $γ$ and is well-typed for $δ$. Also let $H$ be the set of escape hatches and $m_0$ be the initial $\text{LMP}^{2E_{chaos}}$ memory such that $l \in \{\text{locations}(e) | e ∈ H\}$, $m_0(l) \neq (v_1 | v_2)$, i.e., not a pair value. If $pc, μ, Γ, U \vdash_{δSH|m_i} (e, r, m, K) : Γ' \bullet \text{ok}$ and $μ \vdash (e, r, m, K) \cdot \frac{2}{E_{chaos}} v$ and $r' = r[x \mapsto v]$, then $μ, Γ' \vdash_{δSH|m_i} (e, r, m', K') \bullet \text{ok}$.

Proof. The proof is by induction on the derivation of the large step $μ \vdash (e, r, m, K) \cdot \frac{2}{E_{chaos}} v$.

Case ESQ-SKIP: Given $pc, μ, Γ, U \vdash_{δSH|m_i} (\text{skip}, r, m, K) : Γ' \bullet \text{ok}$ and $μ \vdash (\text{skip}, r, m, K) \cdot \frac{2}{E_{chaos}} v$.

Configuration is not changed.

Case ESQ-ASSIGN: Given $pc, μ, Γ, U \vdash_{δSH|m_i} (x := e, r, m, K) : Γ' \bullet \text{ok}$ and $μ \vdash (x := e, r, m, K) \cdot \frac{2}{E_{chaos}} v$ and $r' = r[x \mapsto v]$.

We have to prove that $μ, Γ' \vdash_{δSH|m_i} (r', m, K) \bullet \text{ok}$.

From the initial configuration, we have $μ, Γ \vdash_{δSH|m_i} (r, m, K) \bullet \text{ok}$.

Register files $r$ and $r'$ differ only in variable $x$. Let $v = (v_1 | v_2)$. If $μ, Γ \vdash_{δSH|m_i} e : σ_p$, we have $\text{protected_1}(p, S)$. $Γ' = Γ[x \mapsto σ_{pc, e}]$. Applying Lemma 20, we have protected_1(pc ∪ q, S) and $μ ∈ I$. Hence proved.

Case ESQ-DECLASSIFY: Given $pc, μ, Γ, U \vdash_{δSH|m_i} (\text{declassify}(x)e, r, m, K) : Γ' \bullet \text{ok}$ and $μ \vdash (\text{declassify}(x), e, r, m, K) \cdot \frac{2}{E_{chaos}} v$.

Also expression $e$ has no variables syntactically present (large-step has the premise hasNoVars(e)). We have to prove that $μ, Γ' \vdash_{δSH|m_i} (r', m, K) \bullet \text{ok}$.

From the initial configuration, we have $μ, Γ \vdash_{δSH|m_i} (r, m, K) \bullet \text{ok}$. Register files $r$ and $r'$ differ only for $x$. Let $v = (v_1 | v_2)$ for some $v_1$ and $v_2$. We have $Γ' = Γ[x \mapsto L]$. From the well-typedness, we have allLocImmutable(e). Thus $e ∈ H$ and so $v ≠ (v_1 | v_2)$ (not a pair value).

Hence proved.

Case ESQ-UPDATE: Given $pc, μ, Γ, U \vdash_{δSH|m_i} (e_1 ← e_2, r, m, K) \cdot \frac{2}{E_{chaos}} v$ and $μ \vdash (e_1 ← e_2, r, m, K) \cdot \frac{2}{E_{chaos}} v$.

We have to prove that $μ, Γ' \vdash_{δSH|m_i} (r, m', K) \bullet \text{ok}$. 

From the premise of T-ESQ-CONFIG, we have $\mu, \Gamma \vdash_{\Delta SH_{mio,E_i}^{ch}} \langle r, m, K \rangle \cdot ok$, $\mu, \Gamma \vdash_{\Delta SH_{mio,E_i}^{ch}} e_1 : (\sigma_p^{r'} ref^r t_i) q$ and $\mu, \Gamma \vdash_{\Delta SH_{mio,E_i}^{ch}} e_2 : \sigma_p q$ such that $p' \cup \{q \mid p \subseteq p \}$.

Case $l = (l_1 \mid l_2)$, $v = (v_1 \mid v_2)$: Applying Lemma 20 we have protected$_I(p', S)$ and $\mu \in I$. So protected$_I(p, S)$.

Since $\mu, \Gamma \vdash_{\Delta SH_{mio,E_i}^{ch}} l : (\sigma_p^{r'} ref^r t_i)_L'$ from the well-typedness of environment, we have $\delta(l) = \mu' \in I$. Hence $\mu, \Gamma \vdash_{\Delta SH_{mio,E_i}^{ch}} \langle r, m', K \rangle \cdot ok$.

Case $l \neq (l_1 \mid l_2)$, $v = (v_1 \mid v_2)$: Same as above.

Case $l = (l_1 \mid l_2)$, $v \neq (v_1 \mid v_2)$: Applying Lemma 20 we have protected$_I(q, S)$ and $\mu \in I$. So protected$_I(p, S)$.

Since $\mu, \Gamma \vdash_{\Delta SH_{mio,E_i}^{ch}} l : (\sigma_p^{r'} ref^r t_i)_L'$ from the well-typedness of environment, we have $\delta(l) = \mu' \in I$. Hence $\mu, \Gamma \vdash_{\Delta SH_{mio,E_i}^{ch}} \langle r, m', K \rangle \cdot ok$.

Case $l \neq (l_1 \mid l_2)$, $v \neq (v_1 \mid v_2)$: Trivially $\mu, \Gamma \vdash_{\Delta SH_{mio,E_i}^{ch}} \langle r, m', K \rangle \cdot ok$.

**Case ESQ-OUTPUT**: Given $pc, \mu, \Gamma, U \vdash_{\Delta SH_{mio,N^ch}} \{\text{out} e \to \ell, r, m, K\} : \Gamma' \cdot ok$ and $\mu \vdash \{\text{out} e \to \ell, r, m, K\} \vdash_{E_i} \langle r, m, K \rangle \cdot Mem(m) \cdot Out(\ell, v)$. From the premise of T-ESQ-CONFIG, we have $\mu, \Gamma \vdash_{\Delta SH_{mio,E_i}^{ch}} \langle r, m, K \rangle \cdot ok$.

Large-step does not modify register file, memory or killset.

**Case ESQ-SETCND**: Given $pc, \mu, \Gamma, U \vdash_{\Delta SH_{mio,N^ch}} \{\text{set} \langle \text{cond} \rangle \} r, m, K : \Gamma' \cdot ok$ and $\mu \vdash \{\text{set} \langle \text{cond} \rangle \} r, m, K \cdot \vdash_{E_i} \langle r, m', K \rangle \cdot ok$. We have to prove that $\mu, \Gamma \vdash_{\Delta SH_{mio,E_i}^{ch}} \langle r, m', K \rangle \cdot ok$. From the premise of T-ESQ-CONFIG, we have $\mu, \Gamma \vdash_{\Delta SH_{mio,E_i}^{ch}} \langle r, m, K \rangle \cdot ok$. Since $m$ and $m'$ do not differ (set/cond always sets cond to a non-pair value), we have $\mu, \Gamma \vdash_{\Delta SH_{mio,E_i}^{ch}} \langle r, m, K \rangle \cdot ok$.

**Case ESQ-KILL**: Given $pc, \mu, \Gamma, U \vdash_{\Delta SH_{mio,N^ch}} \{\text{kill}(i) \} r, m, K : \Gamma' \cdot ok$ and $\mu \vdash \{\text{kill}(i) \} r, m, K \cdot \vdash_{E_i} \langle r, m', K \rangle \cdot ok$. From the premise of T-ESQ-CONFIG, we have $\mu, \Gamma \vdash_{\Delta SH_{mio,E_i}^{ch}} \langle r, m, K \rangle \cdot ok$. Since $[\Gamma] = [\Gamma]_2$, we therefore have $[\Gamma \cup \{E_i\}]_1 = [\Gamma \cup \{E_i\}]_2$. Hence $\mu, \Gamma \vdash_{\Delta SH_{mio,E_i}^{ch}} \langle r, m, K \rangle \cdot ok$.

**Case ESQ-SEQ**: Given $pc, \mu, \Gamma, U \vdash_{\Delta SH_{mio,N^ch}} \{\text{enclave}(i, e) \} r, m, K : \Gamma' \cdot ok$ and $\mu \vdash \{\text{enclave}(i, e) \} r, m, K \cdot \vdash_{E_i} \langle r, m', K' \rangle \cdot \tau.$ We have to prove that $\mu, \Gamma \vdash_{\Delta SH_{mio,E_i}^{ch}} \langle r, m', K' \rangle \cdot \tau.$ From the premise of T-ESQ-CONFIG, we have $\mu, \Gamma \vdash_{\Delta SH_{mio,E_i}^{ch}} \langle r, m, K \rangle \cdot ok$ and $pc, \mu, \Gamma, U \vdash_{\Delta SH_{mio,E_i}^{ch}} \langle \{\text{enclave}(i, e) \} r, m, K \rangle \cdot \vdash_{E_i} \langle r, m', K' \rangle \cdot \tau.$ Applying induction hypothesis, we thus have $\mu, \Gamma \vdash_{\Delta SH_{mio,E_i}^{ch}} \langle r, m, K \rangle \cdot ok$.

**Case ESQ-ENVCL**: Given $pc, \mu, \Gamma, U \vdash_{\Delta SH_{mio,N^ch}} \{\text{envcl}(i) \} r, m, K : \Gamma' \cdot ok$ and $\mu \vdash \{\text{envcl}(i) \} r, m, K \cdot \vdash_{E_i} \langle r, m', K' \rangle \cdot \tau.$ Applying induction hypothesis, we thus have $\mu, \Gamma \vdash_{\Delta SH_{mio,E_i}^{ch}} \langle r, m, K \rangle \cdot ok$.

**Case ESQ-IF-ELSE**: Given $pc, \mu, \Gamma, U \vdash_{\Delta SH_{mio,E_i}^{ch}} \{(\text{if } e \text{ then } c_1 \text{ else } c_2) \} r, m, K : \Gamma' \cdot ok$ and $\mu \vdash \{(\text{if } e \text{ then } c_1 \text{ else } c_2) r, m, K \} \cdot \vdash_{E_i} \langle r, m', K' \rangle \cdot \tau.$ We have to prove that $\mu, \Gamma \vdash_{\Delta SH_{mio,E_i}^{ch}} \langle r, m', K' \rangle \cdot \tau.$ From the premise of T-ESQ-CONF, we have $\mu, \Gamma \vdash_{\Delta SH_{mio,E_i}^{ch}} \langle r, m, K \rangle \cdot ok$ and $pc, \mu, \Gamma, U \vdash_{\Delta SH_{mio,E_i}^{ch}} \langle c_1 r, m, K \rangle : \Gamma' \cdot ok$.

**Case ESQ-WHILE**: Given $pc, \mu, \Gamma, U \vdash_{\Delta SH_{mio,N^ch}} \{\text{while } e \text{ do } c \} r, m, K : \Gamma' \cdot ok$ and $\mu \vdash \{\text{while } e \text{ do } c \} r, m, K \cdot \vdash_{E_i} \langle r, m', K' \rangle \cdot \tau.$ We have to prove that $\mu, \Gamma \vdash_{\Delta SH_{mio,E_i}^{ch}} \langle r, m', K' \rangle \cdot \tau.$ From the premise of T-ESQ-CONF, we have $\mu, \Gamma \vdash_{\Delta SH_{mio,E_i}^{ch}} \langle r, m, K \rangle \cdot ok$ and $pc, \mu, \Gamma, U \vdash_{\Delta SH_{mio,E_i}^{ch}} \langle \text{while } e \text{ do } c \} r, m', K \rangle : \Gamma' \cdot ok$.

**Case ESQ-CALL**: Given $pc, \mu, \Gamma, U \vdash_{\Delta SH_{mio,N^ch}} \{\text{call}(e) \} r, m, K : \Gamma' \cdot ok$ and $\mu \vdash \{\text{call}(e) \} r, m, K \cdot \vdash_{E_i} \langle r, m', K' \rangle \cdot \tau.$ We have to prove that $\mu, \Gamma \vdash_{\Delta SH_{mio,E_i}^{ch}} \langle r, m', K' \rangle \cdot \tau.$ Also from the premise of ESQ-CALL, we have $\mu \vdash \langle e, r, m, K \rangle \cdot \vdash_{E_i} \langle r, m', K' \rangle \cdot \tau.$
From the premise of T-ESQ-CONFIG, we have $\mu, \Gamma \vdash_{\delta S H \pi_0} (r, m, K) \cdot ok$ and $pc, \mu, \Gamma, K, U \vdash_{\delta S H \pi_0} \text{call}(e) : \Gamma^*, K^*$ such that $\Gamma \leq \Gamma^*, \Gamma^* \leq \Gamma$ and $K = K^*$. From subsumption, $p, \mu, \Gamma, U \vdash_{\delta S H \pi_0} (c, r, m, K) : \Gamma^* \cdot ok$. From $\Gamma^* \cdot K^*$ applying induction hypothesis to $\mu \vdash (c, r, m, K) \cdot \psi^2_{E_{1-chaos}} r' : m', K' \triangleright t \cdot$. we thus have $\mu, \Gamma \vdash_{\delta S H \pi_0} \psi^2_{E_{1-chaos}} r' : m', K' \cdot ok$.

**Case ESQ-IF-DIV:** Given $pc, \mu, \Gamma, U \vdash_{\delta S H \pi_0} (\text{if } e \text{ then } c_0 \text{ else } c_1, r, m, K) : \Gamma^* \cdot ok$ and $\mu \vdash (\text{if } e \text{ then } c_0 \text{ else } c_1, r, m, K) \cdot \psi^2_{E_{1-chaos}} r ; m ; K \triangleright \text{if} \cdot$. We have to prove that $\mu, \Gamma^* \vdash_{\delta S H \pi_0} (\text{if } e \text{ then } r \cdot m \cdot K) \cdot ok$.

From the initial configuration, we have $pc', \mu, \Gamma, K, U \vdash_{\delta S H \pi_0} \psi_2 (c_2 : \Gamma', K')$ and $\mu, \Gamma \vdash e : \int_p$. From the premise of ESQ-IF-DIV, we have $\mu \vdash (\text{if } e \text{ then } c_0 \text{ else } c_1, r, m, K) \cdot \psi^2_{E_{1-chaos}} (v_0 | v_1)$. So $\mu \in I$, protected$(I, p, S)$ and protected$(I, pc', S)$.

Let $z$ be such that $r(z) = (v_1 | v_2)$. If $\Gamma(z) = \sigma_q$, then either $\Gamma(z) = \sigma_q$ or there is an assignment to $z$ in $c_i$ for some $i \in \{0, 1\}$. If the former holds, then we already have protected$(I, q, S)$. If the latter holds, then we have protected$(I, q, S)$ (because an assignment is atleast as restrictive as $pc'$).

Let $m(l) = (v_1 | v_2)$ and $\Gamma(l) = \sigma_q$. Since the type of location is invariant throughout the program, from the initial configuration we have protected$(q, S)$. A well-typed escape hatch has immutable locations and thus evaluates to the same initial value. Since, both branches $c_0$ and $c_1$ have same killsets, we have $K_1 = K_2$. So $[K_1] = [K_2]$. Hence $\mu, \Gamma \vdash_{\delta S H \pi_0} \psi^2_{E_{1-chaos}} (\text{if } r, m, K) \cdot ok$.

**Case ESQ-WHILE-DIV:** $pc, \mu, \Gamma, U \vdash_{\delta S H \pi_0} \psi^2_{E_{1-chaos}} (\text{while } e \text{ do } c, r, m, K) : \Gamma, K \cdot ok$ and $\mu \vdash (\text{while } e \text{ do } c, r, m, K) \cdot \psi^2_{E_{1-chaos}} r \cdot m \cdot K \triangleright \text{while} \cdot$. We have to prove that $\mu, \Gamma \vdash_{\delta S H \pi_0} \psi^2_{E_{1-chaos}} (\text{while } e \cdot m \cdot K) \cdot ok$.

From the initial configuration, we have $pc', \mu, \Gamma, K, U \vdash_{\delta S H \pi_0} \psi_2 (c : \Gamma, K)$ and $\mu, \Gamma \vdash e : \int_p \leq pc$. From the premise of ESQ-WHILE-DIV, we have $\mu \vdash (\text{while } e \text{ do } c, r, m, K) \cdot \psi^2_{E_{1-chaos}} (v_0 | v_1)$. So $\mu \in I$, protected$(I, p, S)$ and protected$(I, pc', S)$.

Let $z$ be such that $r(z) = (v_1 | v_2)$. If $r(z) = (v_1 | v_2)$ and $\Gamma(z) = \sigma_q$, then from the premise of T-ESQ-CONFIG, we already have protected$(I, q, S)$. If $r(z) = (v_1 | v_2)$ i.e., not a pair value, and $\Gamma(z) = \sigma_q$, then from the well-typedness, $pc', \mu, \Gamma, K, U \vdash_{\delta S H \pi_0} \psi_2 (c : \Gamma, K)$, we have protected$(I, pc', S)$ and so protected$(I, q, S)$ (because an assignment is atleast as restrictive as $pc'$). Similarly, let $\hat{m}(l) = (v_1 | v_2)$ and $\Gamma(l) = \sigma_q$. Since the type of location is invariant throughout the program, from the initial configuration we have protected$(q, S)$. A well-typed escape hatch has immutable locations and thus evaluates to the same initial value. Killsets are unmodified. So $[K_1] = [K_2]$. Hence $\mu, \Gamma \vdash_{\delta S H \pi_0} \psi^2_{E_{1-chaos}} (\text{while } r, m, K) \cdot ok$.

**Case ESQ-CALL-DIV:** Given $pc, \mu, \Gamma, U \vdash_{\delta S H \pi_0} \psi^2_{E_{1-chaos}} (\text{call}(e), r, m, K) : \Gamma', K' \cdot ok$ and $\mu \vdash (\text{call}(e), r, m, K) \cdot \psi^2_{E_{1-chaos}} r \cdot m \cdot K \triangleright \text{call} \cdot$. We have to prove that $\mu, \Gamma \vdash_{\delta S H \pi_0} \psi^2_{E_{1-chaos}} (\text{call}(e) \cdot m \cdot K) \cdot ok$.

From the initial configuration, we have $pc, \mu, \Gamma \vdash_{\delta S H \pi_0} \psi^2_{E_{1-chaos}} (c, r, m, K) \cdot ok$ and so $pc, \mu, \Gamma, K, U \vdash_{\delta S H \pi_0} \psi_2 (c : \Gamma^*, K^*)$ such that $K = K^*, K' = K^*$ and $\Gamma = \Gamma^*, \Gamma = \Gamma^*$. From the premise of ESQ-CALL-DIV, we have $\mu \vdash (c, r, m, K) \cdot \psi^2_{E_{1-chaos}} (v_0 | v_1)$. So $\mu \in I$, protected$(I, q, S)$ and since $q \leq p$, protected$(p, S)$ follows.

Let $z$ be such that $r(z) = (v_1 | v_2)$. If $r(z) = (v_1 | v_2)$ and $\Gamma(z) = \sigma_q$, then from the premise of T-ESQ-CONFIG, we already have protected$(I, y, S)$. If $r(z) = (v_1 | v_2)$ i.e., not a pair value, and $\Gamma(z) = \sigma_q$, then from the well-typedness of $p, \mu, \Gamma, K, U \vdash_{\delta S H \pi_0} \psi_2 (c : \Gamma^*, K^*)$, we have protected$(I, p, S)$ and so protected$(I, y, S)$ (because an assignment is atleast as restrictive as $p$). Similarly, let $\hat{m}(l) = (v_1 | v_2)$ and $\Gamma(l) = \sigma_q$. Since the type of location is invariant throughout the program, from the initial configuration we have protected$(y, S)$. A well-typed escape hatch has immutable locations and thus evaluates to the same initial value. From the function type, post killsets are same. So $[K_1] = [K_2]$. Hence $\mu, \Gamma \vdash_{\delta S H \pi_0} \psi^2_{E_{1-chaos}} (\text{call}(e), r, m, K) \cdot ok$.

Hence proved.

**Lemma 22 (IMPE$^{2E_{1-chaos}}$ Chaos Type Preservation).** Let $I$ be the set of enclaves killed, $\gamma$ be the security specification such that $\gamma(l) = L \forall \delta(l) = I$ and $\Gamma$ be an environment that corresponds to $\gamma$ and is well-typed for $\delta$. Also let $H$ be the set of escape hatches and $\hat{m}_0$ be the initial IMPE$^{2E_{1-chaos}}$ memory such that $l \in \{\text{locations}(e) | e \in H\}$, $\hat{m}_0(l) \neq (v_1 | v_2)$, i.e., not a pair value and $pc, \mu, \Gamma, U \vdash_{\delta S H \pi_0} (c, r, m, K) : \Gamma \cdot ok$. If $\mu \vdash (c', r', m', K') \cdot \psi^2_{E_{1-chaos}} r' \cdot m' ; K' \triangleright \text{if} \cdot$. $\exists \hat{pc}, \Gamma, U, \text{protected}(p, S)$, such that $pc \leq \hat{pc}$, either $U \subseteq U$ or $U = \emptyset$ and $\hat{pc}, \mu, \Gamma, U \vdash_{\delta S H \pi_0} \psi^2_{E_{1-chaos}} (c', r', m', K') : \Gamma' \cdot ok$.

**Proof.** The proof is by induction on the derivation of the large step $\mu \vdash (c, r, m, K) \cdot \psi^2_{E_{1-chaos}} r' : m'; K' \triangleright t \cdot$. Since rules ESQ-ASSIGN, ESQ-SKIP, ESQ-UPDATE, ESQ-KILL, ESQ-OUTPUT, ESQ-SETCND, ESQ-IF-DIV, ESQ-WHILE-DIV and
ESQ-CALL-DIV do not have $\text{IMPE}_{E1-\text{chaos}}$ command premises, the only relevant cases are ESQ-ENCLAVE,ESQ-IF,ESQ-WHILE, ESQ-SEQ, ESQ-CALL.

Case ESQ-ENCLAVE: Given $pc, \mu, \Gamma, U \vdash \delta SH_{\mu_0}E^{\text{chaos}} \langle \text{enclave}(c), r, m, K \rangle : \Gamma' \cdot \text{ok}$. From the premises of T-SQ-CONFIG, we have $\Gamma' \vdash \delta SH_{\mu_0}E^{\text{chaos}} \langle r, m, K \rangle \cdot \text{ok}$ and $pc, E_1, \Gamma, K, 0 \vdash \delta SH_{\mu_0}E^{\text{chaos}} c : \Gamma', K'$. From the premises of the $\text{IMPE}_{E1-\text{chaos}}$ large-step, we have $E_1 \vdash \langle c, r, m, K \rangle \cdot \downarrow_{E1-\text{chaos}}^2 r'; m'; K' \triangleright t' \cdot \text{ok}$. Hence $pc, \emptyset, \Gamma, E_1 \vdash \delta SH_{\mu_0}E^{\text{chaos}} \langle c, r, m, K \rangle : \Gamma' \cdot \text{ok}$. 

Case ESQ-IF-ELSE: Given $pc, \mu, \Gamma, U \vdash \delta SH_{\mu_0}E^{\text{chaos}} \langle \text{if } e \text{ then } c_1 \text{ else } c_2, r, m, K \rangle : \Gamma' \cdot \text{ok}$. From the premises of the $\text{IMPE}_{E1-\text{chaos}}$ large-step, we have $\mu \vdash \langle c_1, r, m, K \rangle \cdot \downarrow_{E1-\text{chaos}}^2 r'; m'; K' \triangleright t' \cdot \text{ok}$. From the premises of T-SQ-CONFIG, we have $\Gamma' \vdash \delta SH_{\mu_0}E^{\text{chaos}} \langle r, m, K \rangle \cdot \text{ok}$ and $pc, \mu, \Gamma, U \vdash \delta SH_{\mu_0}E^{\text{chaos}} c_1 : \Gamma', K'$ for $i = \{1, 2\}$ and $pc \leq pc'$. Hence $pc', \mu, \Gamma, U \vdash \delta SH_{\mu_0}E^{\text{chaos}} \langle c_2, r, m, K \rangle : \Gamma' \cdot \text{ok}$.

Note that if $e = \text{isunset}(\text{cnd})$, then we have $pc', \mu, \Gamma, U \cup \{ \text{cnd} \} \vdash \delta SH_{\mu_0}E^{\text{chaos}} \langle c_1, r, m, K \rangle : \Gamma' \cdot \text{ok} \text{ and } pc', \mu, \Gamma, U \vdash \delta SH_{\mu_0}E^{\text{chaos}} \langle c_2, r, m, K \rangle : \Gamma' \cdot \text{ok}$.

Case ESQ-WHILE: Given $pc, \mu, \Gamma, U \vdash \delta SH_{\mu_0}E^{\text{chaos}} \langle \text{while } e \text{ do } c \rangle, r, m, K \rangle : \Gamma' \cdot \text{ok}$. From the premises of the $\text{IMPE}_{E1-\text{chaos}}$ large-step, we have $\mu \vdash \langle e, r, m, K \rangle \cdot \downarrow_{E1-\text{chaos}}^2 r'; m'; K' \triangleright t' \cdot \text{ok} \text{ and } \mu \vdash \langle \text{while } e \text{ do } c, r', m', K' \rangle \cdot \downarrow_{E1-\text{chaos}} r''; m''; K'' \triangleright t'' \cdot \text{ok}$. From the premises of T-SQ-CONFIG, we have $\Gamma' \vdash \delta SH_{\mu_0}E^{\text{chaos}} \langle r, m, K \rangle \cdot \text{ok}$ and $pc, \mu, \Gamma, U \vdash \delta SH_{\mu_0}E^{\text{chaos}} \langle c', r, m, K \rangle : \Gamma' \cdot \text{ok}$. Applying Lemma 21 to $pc', \mu, \Gamma, U \vdash \delta SH_{\mu_0}E^{\text{chaos}} \langle e, r, m, K \rangle : \Gamma', K' \cdot \text{ok}$, we have $\mu, \Gamma, U \vdash \delta SH_{\mu_0}E^{\text{chaos}} \langle c', r, m, K \rangle : \Gamma', K' \cdot \text{ok}$ for $pc \leq pc'$.

Case ESQ-CALL: Given $pc, \mu, \Gamma, U \vdash \delta SH_{\mu_0}E^{\text{chaos}} \langle \text{call}(e), r, m, K \rangle : \Gamma', K' \cdot \text{ok}$. From the premises of the $\text{IMPE}_{E1-\text{chaos}}$ large-step, we have $\mu \vdash \langle e, r, m, K \rangle \cdot \downarrow_{E1-\text{chaos}}^2 \mu \cdot \text{c} \cdot \text{and } \mu \vdash \langle e, r, m, K \rangle \cdot \downarrow_{E1-\text{chaos}} r'; m'; K' \triangleright t' \cdot \text{ok}$. From the premises of T-SQ-CONFIG, we have $\Gamma' \vdash \delta SH_{\mu_0}E^{\text{chaos}} \langle r, m, K \rangle \cdot \text{ok}$ and $pc, \mu, \Gamma, U \vdash \delta SH_{\mu_0}E^{\text{chaos}} \langle e, r, m, K \rangle : \Gamma' \cdot \text{ok}$. Applying Lemma 21 we have $pc', \mu, \Gamma, U \vdash \delta SH_{\mu_0}E^{\text{chaos}} \langle c, r, m, K \rangle : \Gamma', K' \cdot \text{ok}$ for $pc \leq pc'$.

Case ESQ-SEQ: Given $pc, \mu, \Gamma, 0 \vdash \delta SH_{\mu_0}E^{\text{chaos}} \langle c_1; \ldots ; c_n, r_0, m_0, K_0 \rangle : \Gamma_n, K_n \cdot \text{ok}$. From the premises of the $\text{IMPE}_{E1-\text{chaos}}$ large-step, we have $\mu \vdash \langle c_i, r_{i-1}, m_{i-1}, K_{i-1} \rangle \cdot \downarrow_{E1-\text{chaos}}^2 r_i, m_i; K_i \triangleright t_i \cdot \text{ok}$. From the premises of T-SQ-CONFIG, we have $\Gamma' \vdash \delta SH_{\mu_0}E^{\text{chaos}} \langle 0, m_0, K_0 \rangle \cdot \text{ok}$ and $pc, \mu, \Gamma, 1 \vdash \delta SH_{\mu_0}E^{\text{chaos}} c_i : \Gamma_i, K_i$ for $i = \{1, \ldots , n\}$. We already have $pc, U, \Gamma_0, 0 \vdash \delta SH_{\mu_0}E^{\text{chaos}} \langle c_1, r_0, m_0, K_0 \rangle : \Gamma_1, K_1 \cdot \text{ok}$. Applying Lemma 21 we have $pc, \mu, \Gamma \vdash \delta SH_{\mu_0}E^{\text{chaos}} \langle r_1, m_1, K_1 \rangle \cdot \text{ok}$. Hence $pc, \mu, U, \Gamma_1, 1 \vdash \delta SH_{\mu_0}E^{\text{chaos}} \langle c_2, r_1, m_1, K_1 \rangle : \Gamma_2, K_2 \cdot \text{ok}$. Repeatedly applying the above argument for $n$ times, we thus have $pc, U, \Gamma_{n-1}, n \vdash \delta SH_{\mu_0}E^{\text{chaos}} \langle c_n, r_{n-1}, m_{n-1}, K_{n-1} \rangle : \Gamma_n, K_n \cdot \text{ok}$.

Hence proved.

Using Lemma 21 and Lemma 22, we prove the final part of Theorem 1 for semantics $\downarrow_{E1-\text{chaos}}$ and specification $\gamma'$.

Proof. Given $L, \mu, \Gamma, K, 0 \vdash e : \Gamma', K'$. Let $m_1$ be some initial memory for which $N \vdash \langle c, r_{\text{init}}, m_1, K \rangle \downarrow_{E1-\text{chaos}} r'_1; m'_1; K' \triangleright t \cdot t_{\text{obs}} \cdot t'$, where $t_{\text{obs}} = m' \cdot t''$ for some memory $m'$ and trace $t''$, and if $t''$ is not empty then the last element of $t''$ is an output event. Note that the attacker actually observes only low-events i.e. $|t_{\text{obs}}|_L$. We need to show that

$$k_L^\downarrow_{E1-\text{chaos}}(c, t_{\text{obs}}) \succeq M$$

where

$$M = \left( \bigcap_{m' \in \{t_{\text{obs}}\}_{\text{mem}}} \text{ind}(m_0, \gamma', \{cnd | m'(\text{cnd}) = 0\}) \cap \{e', m' \in \{t_{\text{obs}}\}_{\text{exec}} \text{ESE}_{\text{obs}}(m_0, m', e')\} \right)$$

Let $S$ be the set of conditions that are set at the beginning of $t_{\text{obs}}$, i.e., $S = \{\text{cnd} | m'(\text{cnd}) = 1\}$. If $\text{Cond}$ represents the set of all condition variables, then $\text{Cond} \setminus S$ is the set of conditions that are unset at some time during the observed trace. Also let $\mathcal{H}$ be the set of all escape hatches that are classifiable till the last event of $t_{\text{obs}}$ i.e. $\mathcal{H} = \{e | (c, m) \in \{t \cdot t_{\text{obs}}\}_{\text{exec}}\}$.

Let $m_2 \in M$. Also let $N \vdash \langle c, r_{\text{init}}, m_2, K \rangle \downarrow_{E1-\text{chaos}} r'_2; m'_2; K'_2 \triangleright t_2$ such that

$$[t_2]_{1, \text{cnd}} = [t_2]_{2, \text{cnd}}$$
To ensure $k^\mathcal{E}_1^-chaos(c,t_{obs}) \supseteq M$, we need to show that $m_2 \in k^\mathcal{E}_1^-chaos(c,t_{obs})$

Note that $m_1$ and $m_2$ differ only in locations with policies that are protected by set $S$. That is, for all locations $l \in Loc$, if $m_1(l) \neq m_2(l)$ then $\Gamma(l) = \sigma_p \implies protected_l(p,S)$. Why? Suppose for some $l$, s.t. $\Gamma(l) = (\sigma_p, r_l)$ let $m_1(l) \neq m_2(l)$ and $\neg protected_l(p,S)$. So, $p = \ell$ or $t_{obs}^L \ell \not\in S$. Then for some $m_j \in M$, we have $m_1(l) = m_j(l)$. Since $M$ is computed by the intersection of all such memories, every memory $m'' \in M$ should satisfy $m''(l) = m_1(l)$. This implies $m_2(l) = m_1(l)$ which is a contradiction. Thus protected_l(p,S) must hold.

Also note that $m_1$ and $m_2$ satisfy

$$\forall e \in H, \mu \vdash_\delta \langle e , r_{init} , m_1 , K \rangle \Downarrow v \iff \mu \vdash_\delta \langle e , r , m_2 , K \rangle \Downarrow v$$

We will construct an IMPE$^2_{E_1^-chaos}$ execution that represents the IMPE executions starting from $m_1$ and $m_2$. Type-preservation of IMPE$^2_{E_1^-chaos}$ (Lemma 21) will ensure that both executions produce the same observable trace, thus showing that $m_2 \in k^\mathcal{E}_1^-chaos(c,t_{obs})$.

Let IMPE$^2_{E_1^-chaos}$ memory $m = merge(m_1, m_2)$ and $\mu \vdash \langle e, r_{init}, m, K \rangle$ \Downarrow $r^*; m^*; K \triangleright t^*$. such that the attacker modifies the program in the same way in both the executions. By the adequacy of IMPE$^2_{E_1^-chaos}$ (Lemma 18), we have that the IMPE$^2_{E_1^-chaos}$ execution represents IMPE executions with $m_1$ and $m_2$ as initial memories.

Let $t^* = t^*_{pre} \cdot t^*_{obs} \cdot t^*_{post}$ for some $t^*_{obs}$ such that $[t^*_{obs}]_1 = t_{obs}$. Define observation overlapped (same as the function defined in Section [E.1.3] but repeated here for the ease of reference) by an IMPE$^2_{E_1^-chaos}$ trace $t^*$ as:

$$\text{obsOverlap}(t^*, t^*_{pre}, t^*_{obs}, t^*_{post}) = \left\{ \begin{array}{ll}
\epsilon & \text{if } t^* \leq t^*_{pre} \\
\Downarrow \mu & \text{if } t^*_{pre} \cdot t^*_{obs} \leq t^* \\
\Downarrow \mu & \text{if } t^*_{obs} = t^*_{pre} \cdot t^*_{obs} \text{ and } t^* \leq t^*_{obs}
\end{array} \right.$$ \hspace{1cm}

Intuitively, $\text{obsOverlap}(t^*, t^*_{pre}, t^*_{obs}, t^*_{post})$ defines part of input trace $t^*$ that overlaps with an observed trace $t^*_{obs}$.

Since $L, \mu, \Gamma, \emptyset \vdash c : \Gamma', \emptyset'$ from Lemma 16 we have $L, \mu, \Gamma, K, \emptyset \vdash_{\mathcal{E}_1^-chaos} c : \Gamma', K \triangleright \check{t} \triangleright m, K \triangleright \check{t} \triangleright$. Note that our initial configuration satisfies

$$L, \mu, \Gamma, K, \emptyset \vdash_{\mathcal{E}_1^-chaos} \langle c , r_{init} , m , \emptyset \rangle : \Gamma' \triangleright \check{t} \triangleright \check{t} \triangleright$$

**Lemma 23 (Observational Equivalence is Preserved).** Let $S$ be the set of conditions that are set(non-zero) in some observed trace $t_{obs}$. If $pc, \mu, \Gamma, U \vdash_{\mathcal{E}_1^-chaos} \langle c , r , m , K \rangle : \Gamma', K' \triangleright \check{t} \triangleright m, K \triangleright \check{t} \triangleright$ and so $L, \mu, \Gamma, K, \emptyset \vdash_{\mathcal{E}_1^-chaos} c : \Gamma', \emptyset'$, then

$$[\text{obsOverlap}(\check{t}, t^*_{pre}, t^*_{obs}, t^*_{post})]_1 \approx_L [\text{obsOverlap}(\check{t}, t^*_{pre}, t^*_{obs}, t^*_{post})]_2$$

**Proof.** The proof follows by induction on the derivation of $\mu \vdash (c, r, m, K) \vdash_\mathcal{E}_1^-chaos \check{t} \triangleright m, K \triangleright \check{t} \triangleright$.

**Case ESq-Skip**: Emitted trace is empty.

**Case ESq-Assign**: Emitted trace is empty.

**Case ESq-Declassify**: Emitted trace does not include out event.

**Case ESq-Update**: Emitted trace is empty.

**Case ESq-Kill**: Emitted trace is empty.

**Case ESq-SetCondEnd**: Emitted trace does not include out event.

**Case ESq-Output**: Given $pc, \mu, \Gamma, U \vdash_{\mathcal{E}_1^-chaos} \langle c , r , m , K \rangle : \Gamma', K' \triangleright \check{t} \triangleright m, K \triangleright \check{t} \triangleright$ and $\mu \vdash (\text{output } e \to \ell, r, m, K) \vdash_\mathcal{E}_1^-chaos r; m; K \triangleright \check{t} \triangleright m, K \triangleright \check{t} \triangleright$. Let $\check{t} = \text{Mem}(m) \cdot \text{Out}(\ell, v)$. From the premise of T-ESq-CONFIG, we have $pc, \mu, \Gamma, U \vdash_{\mathcal{E}_1^-chaos} \langle c , r , m , K \rangle \triangleright \check{t} \triangleright m, K \triangleright \check{t} \triangleright$. We have protected$_l(p, S)$ and so $\ell \neq L$.

**Case ESq-If-Else**: Given $pc, \mu, \Gamma, U \vdash_{\mathcal{E}_1^-chaos} \langle (i f \text{ then } c_1 \text{ else } c_2 , r , m , K \rangle : \Gamma', K' \triangleright \check{t} \triangleright \check{t} \triangleright$. Let $\check{t} = t'$. Since $\mu \vdash_\mathcal{E}_1^-chaos (c , r , m , K) \downarrow v$ such that $v$ is not a pair, applying induction hypothesis to the premises of ESQ-IF-ELSE gives us

$$[\text{obsOverlap}(\check{t}, t^*_{pre}, t^*_{obs}, t^*_{post})]_1 \approx_L [\text{obsOverlap}(\check{t}, t^*_{pre}, t^*_{obs}, t^*_{post})]_2$$
Case ESq-While: Given $p, \mu, \Gamma, U \vdash_{\delta \mathcal{SH} \text{Hino}, N \text{ch}} \prec (e \text{ do } c, r, m, K) : \Gamma, K \bullet ok$ and $\mu \vdash \prec (\text{while } e \text{ do } c, r, m, K) \bullet \frac{\mu}{2}_{E_1} r''; m''; K'' \triangleright \bullet$. From the premises of T-ESq-CONFIG, we have $K = K' = K''$. Since $\mu \vdash (e, r, m, K) \bullet \frac{\mu}{2}_{E_1} c_v$ such that $v$ is not a pair, applying induction hypothesis to the premise of ESQ-WHILE gives us

$$\frac{\mu}{2}_{E_1} c_v \vdash \frac{\mu}{2}_{E_1} c_v$$

From Lemma 22, we have $p, \mu, \Gamma, U \vdash_{\delta \mathcal{SH} \text{Hino}, N \text{ch}} \prec (e \text{ do } c, r', m', K) : \Gamma, K \bullet ok$. Applying induction hypothesis to

$$\frac{\mu}{2}_{E_1} c_v \vdash \frac{\mu}{2}_{E_1} c_v$$

Hence

$$\frac{\mu}{2}_{E_1} c_v \vdash \frac{\mu}{2}_{E_1} c_v$$

Case ESq-Call: Given $p, \mu, \Gamma, U \vdash_{\delta \mathcal{SH} \text{Hino}, N \text{ch}} \prec \langle \text{call}(e), r, m, K \rangle : \Gamma', K' \bullet ok$ and $\mu \vdash \prec \langle e, r, m, K \rangle \bullet \frac{\mu}{2}_{E_1} c_v$ such that $v$ is not a pair, applying induction hypothesis to the premise of ESQ-CALL gives us

$$\frac{\mu}{2}_{E_1} c_v \vdash \frac{\mu}{2}_{E_1} c_v$$

Case ESq-If-Def: Given $p, \mu, \Gamma, U \vdash_{\delta \mathcal{SH} \text{Hino}, N \text{ch}} \prec \langle e \text{ then } c_1 \text{ else } c_2, r, m, K \rangle : \Gamma', K' \bullet ok$ and $\mu \vdash \prec \langle e \text{ then } c_1 \text{ else } c_2, r, m, K \rangle \bullet \frac{\mu}{2}_{E_1} c_v$ such that $v$ is not a pair, applying induction hypothesis to the premise of ESQ-CONFIG gives us

$$\frac{\mu}{2}_{E_1} c_v \vdash \frac{\mu}{2}_{E_1} c_v$$

Case ESq-While-Def: Given $p, \mu, \Gamma, U \vdash_{\delta \mathcal{SH} \text{Hino}, N \text{ch}} \prec \langle e \text{ do } c, r, m, K \rangle : \Gamma, K \bullet ok$ and $\mu \vdash \prec \langle e \text{ do } c, r, m, K \rangle \bullet \frac{\mu}{2}_{E_1} c_v$ such that $v$ is not a pair, applying induction hypothesis to the premise of ESQ-CONFIG gives us

$$\frac{\mu}{2}_{E_1} c_v \vdash \frac{\mu}{2}_{E_1} c_v$$

Case ESq-Call-Def: Given $p, \mu, \Gamma, U \vdash_{\delta \mathcal{SH} \text{Hino}, N \text{ch}} \prec \langle e \text{ do } c, r, m, K \rangle : \Gamma', K' \bullet ok$ and $\mu \vdash \prec \langle e \text{ do } c, r, m, K \rangle \bullet \frac{\mu}{2}_{E_1} c_v$ such that $v$ is not a pair, applying induction hypothesis to the premise of ESQ-CONFIG gives us

$$\frac{\mu}{2}_{E_1} c_v \vdash \frac{\mu}{2}_{E_1} c_v$$

Case ESq-Seq: Given $p, \mu, \Gamma_0, U \vdash_{\delta \mathcal{SH} \text{Hino}, N \text{ch}} \prec (c_1; \ldots ; c_n, r_0, m_0, K_0) : \Gamma_n, K_n \bullet ok$ and $\mu \vdash \prec (c_1; \ldots ; c_n, r_0, m_0, K_0) \bullet \frac{\mu}{2}_{E_1} c_v$ such that $v$ is not a pair, applying induction hypothesis to the premise of ESQ-CONFIG gives us

$$\frac{\mu}{2}_{E_1} c_v \vdash \frac{\mu}{2}_{E_1} c_v$$

From Lemma 22, we have $p, \mu, \Gamma_1, U \vdash_{\delta \mathcal{SH} \text{Hino}, N \text{ch}} \prec (c_2, r_1, m_1, K_1) : \Gamma_2, K_2 \bullet ok$. Applying induction hypothesis to the next premise, $\mu \vdash \prec (c_2, r_1, m_1, K_1) \bullet \frac{\mu}{2}_{E_1} c_v$ such that $v$ is not a pair, applying induction hypothesis to the premise of ESQ-IN gives us

$$\frac{\mu}{2}_{E_1} c_v \vdash \frac{\mu}{2}_{E_1} c_v$$

Applying the induction hypothesis continuously thus gives,

$$\frac{\mu}{2}_{E_1} c_v \vdash \frac{\mu}{2}_{E_1} c_v$$
Case ESq-Enclave: Given $pc, \mu, \Gamma, U \vdash_{\text{ESqN-ch}} \langle \text{enclave}(i, c), r, m, K \rangle : \Gamma', K' \bullet ok$ and $N \vdash \langle \text{enclave}(i, c), r, m, K \rangle \bullet \mu \vdash_{\text{ESq-chaos}} r'; m' \vdash' t'$. From the premises of T-ESQ-CONFIG, we have $pc, \mu, \Gamma, K, U \vdash_{\text{ESqN-ch}} \langle c, r, m, K \rangle : \Gamma', K' \bullet ok$. Applying induction hypothesis to the premise $E_1 \vdash \langle c, r, m, K \rangle \bullet \mu \vdash_{\text{ESq-chaos}} r'; m' \vdash' t'$

\[ \{ \text{obsOverlap}(t', t^*_\text{pre}, t^*_\text{obs}, t^*_\text{post}) \}_1 \approx_L \{ \text{obsOverlap}(t', t^*_\text{pre}, t^*_\text{obs}, t^*_\text{post}) \}_2 \]  

Since we have $L, N, \Gamma, \emptyset \vdash_{\text{ESqN-ch}} \langle c, r_init, m, \emptyset \rangle : \Gamma' \bullet ok$, applying Lemma 23 on $\mu \vdash \langle c, r_init, m, K \rangle \bullet \mu \vdash_{\text{ESq-chaos}} r'; m' \vdash' t'$, we have

\[ \{ \text{obsOverlap}(t', t^*_\text{pre}, t^*_\text{obs}, t^*_\text{post}) \}_1 \approx_L \{ \text{obsOverlap}(t', t^*_\text{pre}, t^*_\text{obs}, t^*_\text{post}) \}_2 \]

Hence proved that $m_2 \in k_L^{\langle c, t \text{obs} \rangle}$.

E.2 Translation is Sound

**Lemma 24.** Let $\mathcal{G}$ be an IMPS type environment that corresponds to $\gamma$ and is well-typed for $\delta$. Also let $pc, \mathcal{G}, \emptyset \vdash c: \mathcal{G}'$ and $c_{\text{sub}}$ is a sub-command of $c$. If $pc', \mathcal{G}, U \vdash c_{\text{sub}}: \mathcal{G}'$ such that $U \neq \emptyset$ then $\exists c', c_1, c_2, \text{cnd. such that}$

\[ c'_{\text{def}} = \begin{cases} \text{if isunset(\text{cnd}) then } c_1 \text{ else } c_2 \\ \lambda c_1 \end{cases} \]

is a sub-command of $c$ and $c_{\text{sub}}$ is a sub-command of $c_1$.

**Proof.** Given $pc, \mathcal{G}, \emptyset \vdash c: \mathcal{G}'$. It is easy to see that the only typing judgments that add to the set $U$ for the subcommands are T-FUNCTION and T-IF-ISUNSET. The remaining judgments T-ASSIGN, T-UPDATE, SEQ, T-IF-ELSE T-WHILE, T-SETND, T-CALL and T-KILL do not change the set $U$ for their subcommands. Rule T-ENCLAVE nullifies the set $U$ for its subcommands.

Also given $pc', \mathcal{G}, U \vdash c_{\text{sub}}: \mathcal{G}'$ such that $U \neq \emptyset$. This is possible only if $c_{\text{sub}}$ is a sub-command for some $\{ \text{if isunset(\text{cnd}) then } c_1 \text{ else } c_2, \lambda c_1 \}$.

Hence proved.

We now present the proof for Theorem 2.

**Proof.** The proof is by mutual induction on the translation derivation of expressions and commands.

1. For all expressions $e \in \text{IMPS}$, if $\mathcal{G} \vdash e: \sigma_p$ and $\mathcal{G}, e, \sigma_p \rightsquivalence \mu, \Gamma, \delta, e', \sigma_p$ then $\mu, \Gamma \vdash \delta e' : \sigma_p$.
2. For all commands $c \in \text{IMPS}$, if $pc, \mathcal{G}, U \vdash c: \mathcal{G}'$ and $pc, \mathcal{G}, K, c, c' \vdash \mu, \Gamma, \delta, e', \Gamma', \mu' \vdash \mu, \Gamma, K, U \vdash c' : \Gamma', \mu'$

**Case TR-INT:** Given $\mathcal{G}, n, \text{int}_p \rightsquivalence \mu, \Gamma, \delta, n, \text{int}_p$. From T-INT, we have $\mu, \Gamma \vdash n : \text{int}_p$.

**Case TR-VAR:** Given $\mathcal{G}, x, \sigma_p \rightsquivalence \mu, \Gamma, \delta, x, \sigma_p$. Hence $\Gamma(x) = \sigma_p$. From T-VAR, we thus have $\mu, \Gamma \vdash x : \sigma_p$.

**Case TR-LOC:** Given $\mathcal{G}, l, (\sigma_p' \text{ ref}\_t) \rightsquivalence \mu, \Gamma, \delta, l, (\sigma_p' \text{ ref}\_t) \rightsquivalence q$. From the premises, $\Gamma(l) = \sigma_p$ and $\delta(l) = \mu'$. From T-LOC, we thus have $\mu, \Gamma \vdash l : (\sigma_p' \text{ ref}\_t) \rightsquivalence L$.

**Case TR-CND:** Given $\mathcal{G}, \text{cnd}, \text{cond}_p \rightsquivalence \mu, \Gamma, \delta, \text{cnd}, \text{cond}_p'$. From premise, $\delta(\text{cnd}) = \mu'$. Since $\text{cnd} \in \text{Cond}$, from T-CND, we thus have $\mu, \Gamma \vdash \text{cond}_p' : \text{cond}_p$.

**Case TR-DEREF:** Given $\mathcal{G}, e, \text{cond}_p \rightsquivalence \mu, \Gamma, \delta, \text{cnd}_p' \rightsquivalence \mu, \Gamma, \delta, e', \text{cnd}_p'$. Applying induction hypothesis to the premise, we have $\mu, \Gamma \vdash \delta e' : (\sigma_p' \text{ ref}\_t)$. Also, $\mu' \neq N \implies \mu = \mu'$. From T-DEREF, we thus have $\mu, \Gamma \vdash \delta e' : \text{cnd}_p'$.

**Case TR-ISUNSET:** Given $\mathcal{G}, \text{isunset}(\text{cnd}), \text{int}_p \rightsquivalence \mu, \Gamma, \delta, \text{isunset}(\text{cnd}), \text{int}_p$. From the premises, $\delta(\text{cnd}) = \mu'$ and $\mu' \neq N \implies \mu = \mu'$. From T-ISUNSET, we thus have $\mu, \Gamma \vdash \delta(\text{cnd}) : \text{int}_p$.

**Case TR-FUNCTION:** Given $\mathcal{G}, \lambda \text{c.} (\mathcal{G}'(c^\_U, \mathcal{G}'^\_p) \rightsquivalence \mu, \Gamma, \delta, \lambda^\_e, \mathcal{G}'^\_p, (\Gamma, K', U \_p, \Gamma^+, K^+, K^+) \rightsquivalence q$. Since $\mathcal{G} \vdash \lambda \text{c.} : \mathcal{G}'(c^\_U, \mathcal{G}'^\_p)$, we have $q = L$. Applying induction hypothesis to the premise, we have $p, \mu, \Gamma, K', U \_p, \Gamma^+, K^+, K^+$. Since, We also have $q = L$. From T-FUNCTION, we thus have $\mu, \Gamma \vdash \lambda^\_e : (\Gamma, K', U \_p, \Gamma^+, K^+, K^+) \rightsquivalence L$.

**Case TR-OP:** Given $\mathcal{G}, e_1 \oplus e_2, \text{cond}_p \rightsquivalence \mu, \Gamma, \delta, e_1 \oplus e_2, \text{cond}_p'$. Applying induction hypothesis to the premises, we have $\mu, \Gamma \vdash e_1 : \text{int}_p$ and $\mu, \Gamma \vdash e_2 : \text{int}_p$. From T-OP, we thus have $\mu, \Gamma \vdash e_1 \oplus e_2 : \text{int}_p$.

**Case TR-SKIP:** Given $pc, \mathcal{G}, U, \text{skip} \rightsquivalence \mu, \Gamma, \delta, \text{skip}, \Gamma, K$. From T-SKIP, we thus have $pc, \mu, \Gamma, K, U \vdash \text{skip} : \Gamma, K$. 


Case TR-ASSIGN: Given $pc, G, U, x := e, G[x \mapsto \sigma_{pc, \text{eq}}] \Rightarrow \mu, \Gamma, K, \delta, x := e', \Gamma[x \mapsto \sigma_{pc, \text{eq}}], K$. From the well-typedness of IMPS expression $e$, i.e., $G \vdash e : \sigma_q$, we have $q \neq \top$. Applying induction hypothesis to the premise we have $\mu, \Gamma \vdash e' : \sigma_q$. From the premises, $(pc \sqcup q) \not\subseteq L \implies \mu \neq N, \mu \notin K$ and T-ASSIGN, we thus have $pc, \mu, \Gamma, K, U \vdash x := e' : \Gamma[x \mapsto \sigma_{pc, \text{eq}}], K$.

Case TR-DECLASSIFY: Given $L, G, U, x := \text{declasify}(e), G[x \mapsto \sigma_I] \Rightarrow \mu, \Gamma, K, \delta, x := \text{declasify}(e'), \Gamma[x \mapsto \sigma_k], K$. From the well-typedness of IMPS expression $e$, i.e., $G \vdash e : \sigma_q$, we have $q \neq \top$. Applying induction hypothesis to the premise we have $\mu, \Gamma \vdash e' : \sigma_q$. From the premises, $(pc \sqcup q) \not\subseteq L \implies \mu \neq N, \mu \notin K$ and T-DECLASSIFY, we thus have $pc, \mu, \Gamma, K, U \vdash x := \text{declasify}(e') : \Gamma[x \mapsto \sigma_I], K$.

Case TR-OUTP: Given $pc, G, U$, output $e$ to $t, G \Rightarrow \mu, \Gamma, K, \delta, output e' to $t', \Gamma, K$. From the well-typedness of IMPS expression $e$, i.e., $G \vdash e : \sigma_q$, we have $p \neq \top$. Applying induction hypothesis to the premise we have $\mu, \Gamma \vdash e' : \sigma_q$. From the premises and T-OUTPUT, we thus have $pc, \mu, \Gamma, K, U \vdash output e' \Rightarrow \sigma_k, t', \Gamma, K$.

Case TR-SET/CND: Given $pc, G, U, \text{set}(\text{cnd}), G \Rightarrow \mu, \Gamma, K, \delta, \text{set}(\text{cnd}), \Gamma, K$. From the well-typedness of IMPS commands set(conditional), i.e., $pc, G, U \vdash \text{set}(\text{cnd}) : G$, we have $\text{cnd} \in \text{Cond} \setminus U$. From the premises and T-SET/CND, we thus have $pc, \mu, \Gamma, K, U \vdash \text{set}(\text{cnd}) : \Gamma, K$.

Case TR-UPDATE: Given $pc, G, U, e_1 \leftarrow e_2, G \Rightarrow \mu, \Gamma, K, \delta, e_1' \leftarrow e_2', \Gamma, K$. From the well-typedness of IMPS command $e_1 \leftarrow e_2$, i.e., $G \vdash e_1 \leftarrow e_2 : G$, we have $p, p', q \neq \top$. Applying induction hypothesis to the premises, we have $\mu, \Gamma \vdash e_1 : (\sigma_{p, \text{ref}}')$ and $\mu, \Gamma \vdash e_2 : \sigma_{p, \text{ref}}'$. From the remaining premises and T-UPDATE, we thus have $pc, \mu, \Gamma, K, U \vdash e_1 \leftarrow e_2 : \Gamma, K$.

Case TR-SEQ: Given $pc, G_0, U, e_1, \ldots, e_n, G_n \Rightarrow \mu_0, \Gamma_0, K_0, \delta, e'_n, \Gamma_n, K_{n+1}$. Applying induction hypothesis to the premises, we have $\forall i \in \{1, \ldots, n\}, pc, \mu_i, \Gamma_{i-1}, K_{i-1}, U \vdash e_i : \Gamma_i, K_i$.

Consider the case when processSeqOutput $(\bar{c}_1, \ldots, \bar{c}_n, \bar{\mu}_1, \ldots, \bar{\mu}_n, K_{m-2})$ when $(\mu_0, \mu_1, \ldots, \mu_m, 0, \ldots, 0, K_{m-1}, K_{m-2})$. To show that the output $\text{enclave}(j, c'_1, \ldots, c'_{m-1})$; processKill($K_{m-1}$) is well-typed, we first show that $pc, \mu_0, \Gamma_0, K_0, U \vdash \text{enclave}(j, c'_1, \ldots, c'_{m-1}) : \Gamma_{m-1}, K_{m-1}$. If $U \neq \emptyset$, from Lemma 24 we have that $c'_1, \ldots, c'_{m-1}$ is a sub-command of some if isusnt(cnd) then $s_1$ else $s_2$. However, rule TR-IF-ISUSNET ensures that $\mu_0 \neq N$ which is a contradiction (since $\mu_0 = N$). Hence $U = \emptyset$. Premise $\mu_0 \neq N \implies (\mu_0 = \mu_i \land K''_i = \emptyset)$ ensures that $K_1 = K_2 = \cdots = K_{m-1} = K''_{m-1}$. From T-ENCLAVE, we thus have $pc, \mu_0, \Gamma_0, K_1, U \vdash \text{enclave}(j, c'_1, \ldots, c'_{m-1}) : \Gamma_{m-1}, K''_{m-1}$.

Next we show that $pc, \mu_0, \Gamma_i, K''_{i-1}, U \vdash \text{kill}(j) : \Gamma_i, K''_{i-1} \cup K''_{i-1}$. Consider the case when processKill($K$) matches $k \cup K'$. From premise $K''_i \cap K' = \emptyset$ we have $k \notin K''_{i-1}$. Also, premise $\mu_0 \neq N \implies (\mu_0 = \mu_i \land K''_i = \emptyset)$ ensures that $\mu_0 = N$. From T-KILL, we have $pc, \mu_0, \Gamma_i, K''_{i-1}, U \vdash \text{kill}(j) : \Gamma_i, K''_{i-1} \cup K''_{i-1}$. Thus the output $\text{enclave}(j, c'_1, \ldots, c'_{m-1})$; processKill($K_{m-1}$) is well-typed.

For the remaining cases, no enclave or kill statements are inserted. From T-SEQ, we thus have $pc, \mu, \Gamma_0, K_0, U \vdash \bar{c}_1, \ldots, \bar{c}_n : \Gamma_n, K_n$.

Case TR-ELSE: Given $pc, G, U$, if $e$ then $c_1$ else $c_2, G' \Rightarrow \mu, \Gamma, K, \delta, if e' then c_1' else c_2', \Gamma', K'$. Applying induction hypothesis to the premises, we have $\mu, \Gamma \vdash e : \text{int}_p$ and $pc, \mu, \Gamma, K, U \vdash c_i : \Gamma', K'$ for $i = \{1, 2\}$. From the remaining premises and T-ELSE, we thus have $pc, \mu, \Gamma, K, U \vdash e : \text{int}_p$ and $pc, \mu, \Gamma, K, U \vdash c_i : \Gamma', K'$ for $i = \{1, 2\}$.

Case TR-ISUSNET: Given $pc, G, U$, if isusnet(cnd) then $c_1 = \text{cnd}, G', \delta, if isusnet(cnd) then c_1' = \text{cnd}, \Gamma', K'$. Applying induction hypothesis to the premises, we have $\mu, \Gamma \vdash \text{isusnet}(cnd) \Rightarrow \sigma_k$. From the remaining premises and T-ISUSNET, we thus have $pc, \mu, \Gamma, K, U \vdash \text{isusnet}(cnd) \Rightarrow \sigma_k$.

Case TR-WHILE: Given $pc, G, U$, while $e do c, G, \delta \Rightarrow \mu, \Gamma, K, \delta, while e do c', \Gamma, K$. Applying induction hypothesis to the premises, we have $\mu, \Gamma \vdash e : \text{int}_p$ and $pc, \mu, \Gamma, K, U \vdash c : \Gamma, K$. From the remaining premises and T-WHILE, we thus have $pc, \mu, \Gamma, K, U \vdash while e do c : \Gamma, K$.

Case TR-CALL: Given $pc, G, U, \text{call}(e), G_{out} \Rightarrow \mu, \Gamma, K, \delta, call(e'), G_{out}, K_{out}$. Applying induction hypothesis to the premise, we have $\mu, \Gamma \vdash e : (\Gamma', K\text{'}, pc, \mu, \Gamma, K, U \vdash c : \Gamma', K')$. From the remaining premises and T-CALL, we thus have $pc, \mu, \Gamma, K, U \vdash \text{call}(e) : \Gamma_{out}, K$.

Case TR-SUB: Given $pc_2, G_2, U, e, G_2' \Rightarrow \mu, \Gamma, K, \delta, e', \Gamma_2', K'$. Applying induction hypothesis to the premise, we have $pc_2, \mu, \Gamma, K, U \vdash e : \Gamma_2', K'$. Also from translation of typing environment in Figure 10 we have $\Gamma_i \otimes \delta_i \otimes ok$ for $i = \{1, 2\}$.

From the remaining premises and T-SUB, we thus have $pc_2, \mu, \Gamma, K, U \vdash e : \Gamma_2', K'$.