
Automatic Enforcement of Expressive Security
Policies using Enclaves

Citation
Gollamudi, Anitha and Stephen Chong. 2016. Automatic Enforcement of Expressive Security
Policies using Enclaves. Harvard Computer Science Group Technical Report TR-02-16.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:30168300

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:30168300
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Automatic%20Enforcement%20of%20Expressive%20Security%20Policies%20using%20Enclaves&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=c53ba5255a00b05683e1e244ad1b7e25&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Automatic Enforcement of Expressive
Security Policies using Enclaves

Anitha Gollamudi
and

Stephen Chong

TR-02-16

Computer Science Group
Harvard University

Cambridge, Massachusetts

Automatic Enforcement of Expressive
Security Policies using Enclaves

Anitha Gollamudi Stephen Chong
Harvard University, Cambridge, MA, USA

agollamudi@g.harvard.edu chong@seas.harvard.edu

Abstract
Hardware-based enclave protection mechanisms, such as In-
tel’s SGX, ARM’s TrustZone, and Apple’s Secure Enclave,
can protect code and data from powerful low-level attackers.
In this work, we use enclaves to enforce strong application-
specific information security policies.

We present IMPE, a novel calculus that captures the
essence of SGX-like enclave mechanisms, and show that a
security-type system for IMPE can enforce expressive con-
fidentiality policies (including erasure policies and delim-
ited release policies) against powerful low-level attackers,
including attackers that can arbitrarily corrupt non-enclave
code, and, under some circumstances, corrupt enclave code.

We present a translation from an expressive security-
typed calculus (that is not aware of enclaves) to IMPE. The
translation automatically places code and data into enclaves
to enforce the security policies of the source program.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features; D.4.6
[Operating Systems]: Security and Protection—Information
flow controls

Keywords Enclave programs, information erasure, declas-
sification, security-type system, information-flow control,
language-based security.

1. Introduction
Language-based techniques for security can enforce expres-
sive information security policies for applications. Enforce-
able policies include ensuring that application-level adver-
saries learn nothing about confidential information [29, 38],
that some clearly specified confidential information may be
released under controlled circumstances [31], and that sensi-
tive information is correctly removed from the system at ap-
propriate times [7, 10]. However, these language-based guar-
antees may fail to hold in the presence of low-level attack-
ers, such as attackers that observe execution at the level of
operating-system or hardware abstractions, or attackers that
can inject arbitrary code into a process.

Recent hardware-based enclave protection mechanisms
(including Intel’s SGX [24], ARM’s TrustZone [4], and Ap-

ple’s Secure Enclave [2]) can protect code and data from
low-level attacks, including compromised kernels. These
new mechanisms present an opportunity to extend strong
application-specific information security guarantees to hold
against low-level attackers.

We take advantage of this opportunity: we present a lan-
guage model that captures the essence of enclave protec-
tion mechanisms, and give a security-type system for this
language that enforces strong non-interference-based infor-
mation security guarantees [12, 18], including delimited re-
lease [30] and information erasure [9]. Moreover, we provide
a translation from a non-enclave source language that auto-
matically infers which code and data to place in enclaves in
order to enforce expressive security policies.

As an example of application-specific information secu-
rity requirements, consider code that authenticates a user.
The user provides a guess that is checked against the actual
password. If the guess matches the password, the user is au-
thenticated and the computation continues. After authentica-
tion, the guess is no longer needed, and the subsequent com-
putation should in no way depend on the guess. This infor-
mation security requirement can be expressed as an erasure
policy [9] that requires restrictions on the use of sensitive
information (i.e., the user’s guess) after certain conditions
are satisfied (i.e., the user is successfully authenticated).
Language-based techniques can ensure that these restrictions
are respected by the subsequent computation (e.g., [7, 23]).

However, these techniques typically enforce security
against a language-level attacker that passively observes the
program’s output or perhaps provides code that is subject
to similar enforcement mechanisms as the program itself
(e.g., [3, 25]). The desired security guarantees may fail to
hold in settings where an attacker has privileged access to
a machine (such as in cloud services or on mobile devices)
or an attacker is able to exploit vulnerabilities to observe
more data than anticipated (such as in the Heartbleed attack)
or inject arbitrary code into the program’s process (such as
in buffer overrun attacks). In these cases, an attacker that
compromises the system sometime after the user has au-
thenticated may be able to learn the user’s password. For
example, even though the program may not in any way use

the user’s guess in the subsequent computation, the bits rep-
resenting the guess may still be present in physical or virtual
memory, and accessible to a low-level attacker [20, 21].

Enclave protection mechanisms can secure code and data
against powerful attackers, including malicious code within
the same process or a malicious operating system. Intel’s
SGX extends the x86 instruction set with additional instruc-
tions that allow a contiguous region of memory within a
process’s address space to be established as an enclave, and
subsequently uses hardware-enforced access control to en-
sure that code outside of an enclave is unable to access data
within an enclave. Moreover, execution may enter an enclave
only via specified entry points. Memory within an enclave is
encrypted before being paged out.

But leveraging enclaves to enforce application-specific
information security guarantees is hard. Enclave mecha-
nisms place the onus on the programmer to secure an appli-
cation by effectively decoupling the security-critical parts of
the application from the non-critical and/or untrusted parts
of the application. Hardening an application to carefully iso-
late the dependencies requires non-trivial effort [32, 35].

In this paper we consider the automatic enforcement of
application-specific information security policies using en-
claves. We make several contributions.

1. We present IMPE, a novel calculus that captures the
essence of SGX-like enclave mechanisms (Section 2).

2. We show that a security-type system for IMPE can en-
force expressive confidentiality policies (including era-
sure policies and delimited release policies) against sev-
eral attackers, including attackers that can arbitrarily cor-
rupt non-enclave code, and, under certain circumstances,
corrupt enclave code (Sections 3 and 4).

3. We present a translation from a non-enclave source lan-
guage to IMPE (Sections 5 and 6). The programmer can
focus on the correct handling of information in the source
language, and the translation will automatically infer ap-
propriate placement of code and data into enclaves to en-
sure security guarantees against powerful low-level at-
tackers. The translation can be configured to optimize
various criteria, including reducing the size of the trusted
computing base, reducing the runtime performance im-
pact of using enclave mechanisms, or removing erased
data as soon as possible.

In addition, we validate the translation and the expres-
siveness of IMPE by implementing several simple models
of applications with application-specific security guarantees
(Section 8).

2. IMPE: A Calculus for Enclaves
We present IMPE, an imperative higher-order calculus that
captures the key features of enclaves and moreover supports
the specification of information security policies, including
policies for information erasure.

2.1 Security Levels and Policies
We use a set of security levels L = {L,H,>} to express
confidentiality restrictions on information. Security level L
(“low security”) is for public information that anyone, in-
cluding an attacker, is permitted to learn. Security level H
(“high security”) is for confidential information that only
trusted entities are permitted to learn. Security level > is
for information so confidential that no-one is permitted to
learn it. Ideally, the system never contains information with
security level >.

Let partial orderv be the smallest reflexive and transitive
relation such that L v H and H v >. Intuitively, if
`1 v `2, then information with security level `2 is at least as
confidential as information with security level `1. Security
levels ordered by v form a lattice.

The security level to enforce on information may change
over time. In this paper, we focus on information erasure:
the requirement that when a specific condition is met, infor-
mation needs to become more confidential.

Security policies describe how the security level of infor-
mation must change over time. A security level policy ` sim-
ply means that information must be handled with security
level ` at all times. An erasure policy `1 cnd↗`2 means that
initially information can be handled according to security
level `1. However, when condition cnd is met, the informa-
tion must be handled according to security level `2, where
`1 v `2. Conditions are used to express when information
must be “erased” or made more restrictive. In general, con-
ditions for erasure can be arbitrary state predicates [9]. How-
ever, we encode conditions using mutable memory locations:
a condition cnd is represented by a single memory location,
and the condition is regarded as satisfied exactly when the
location contains a non-zero value. The program is respon-
sible for setting the condition location to a non-zero value
to correctly reflect the intended meaning of the condition.
Once set (i.e., assigned a non-zero value), we do not allow
a condition to be unset. This approach is sufficiently expres-
sive and simplifies specification and reasoning about erasure
policies [7].

We write P to denote the set of policies, and use metavari-
ables p, q to range over policies. We refer to any information
labeled with a policy more restrictive than L as confidential
information.

Consider a program that authenticates a password. Let
password be a memory location that stores password input
from a user. Once authentication succeeds, it is desirable
to erase password entirely from the memory. If end is a
condition that indicates whether the authentication session
has ended, a suitable policy for password can be L end↗>.
The policy says that the confidentiality level of password is
initially L, and once end is set, it must be >.

e ::= n | x | e1 ⊕ e2 | l | ∗e | isunset(cnd) | λµ.c
v ::= λµ.c | n | l
c ::= skip | x := e | x := declassify(e) | e1 ← e2

| output e to ` | call(e) | set(cnd) | enclave(i, c)
| kill(i) | c1; . . . ; cn | if e then c1 else c2 | while e do c
l ∈ Loc cnd ∈ Cond Cond ⊂ Loc
x ∈ Vars i, n ∈ N
µ ∈Mode = {N,E1, E2, . . . }

Figure 1. IMPE Syntax

2.2 Syntax
IMPE is a simple imperative language. However, it includes
first-class locations and functions, output commands, and
models enclaves. An enclave consists of code and mem-
ory locations. Memory locations within an enclave can be
accessed only by that enclave’s code. Control can be trans-
ferred to code inside an enclave only through a predefined set
of entry points. Thus, data stored inside an enclave’s mem-
ory locations is protected from non-enclave code (and also
from code in other enclaves). In IMPE, enclaves provide a
simple yet expressive model of architectural features—such
as Intel’s SGX [24]—that can provide strong isolation guar-
antees for code and data from other code within the same
process or machine.

We allow an arbitrary number of enclaves, indexed with
natural numbers. We use modes to indicate which enclave
code or data exists in, or whether it is outside of any en-
clave. Specifically, we use metavariable µ to range over the
set Mode = {N,E1, E2, . . . }, where Ei indicates the ith
enclave and N indicates non-enclave (or “normal”) mode.

Figure 1 shows the syntax of IMPE. Expressions e include
integers n, variables x, and memory locations l. All variables
have global scope. Variables are analogous to registers: they
are mutable locations, but are not first-class values. By con-
trast, memory locations are first class, and can be passed as
values. Conditions Cond are a subset of the memory loca-
tions and cnd ranges over conditions. We write Loc for the
set of memory locations.

Operator⊕ ranges over arbitrary (total) binary operations
over integers. Dereference ∗e evaluates e to a memory loca-
tion and evaluates to the contents of that location.

Expression isunset(cnd) tests whether condition cnd
has been set, and evaluates to 1 if it is not set, 0 other-
wise. Although this expression is semantically equivalent to
∗cnd 6= 0, our type system gains precision through the use
of isunset(cnd).

Expression λµ.c is a first-class function. It can be thought
of as a code pointer to command c. Arguments to the func-
tion are given via variables and memory locations, as are

any values returned by the function. Annotation µ indicates
the mode in which the function is defined. It can be thought
of as indicating whether the code pointer is to an enclave
or non-enclave region of memory. The annotation is used to
restrict how functions can be invoked, to ensure that non-
enclave code cannot enter an enclave by invoking a function
that resides in the enclave.

Values v in IMPE include integers, memory locations
(including conditions), and first-class functions.

Commands in IMPE include standard imperative com-
mands (skip, x := e, if e then c1 else c2, and while e do c).
We assume sequences c1; . . . ; cn are flattened (i.e., that none
of c1; . . . ; cn are sequence commands), and for convenience
assume that all sub-commands are sequences (possibly of
length 1). Indirect assignment e1 ← e2 evaluates e1 to a
memory location, and updates the contents of that location
with the result of e2. We further require that e1 does not eval-
uate to a condition. Command set(cnd) updates the contents
of cnd to 1. Conditions can be updated only with a set com-
mand.

Command output e to ` evaluates e to a value and outputs
it to channel `. Output commands model observations by
trusted and untrusted entities. We restrict ` to be either L
or H . Intuitively, an output to channel L may be observed
by an untrusted entity, such as an attacker, whereas output to
channel H may be observed only by trusted entities.

Command x := declassify(e) is semantically equivalent
to assignment x := e, but indicates a declassification, which
is relevant for both our semantic security conditions (Sec-
tion 3.2) and type system (Section 4). To simplify our se-
mantic security condition, we require that expression e does
not contain any variables (although it may contain memory
locations). Command call(e) evaluates e to a function, and
invokes the function.

Command enclave(i, c) defines an entry point for the
enclave Ei. That is, command c is code that resides inside
enclave Ei, and non-enclave code is permitted to execute
c. We require that c does not contain any subcommands
of the form enclave(i′, c′), i.e., enclave commands cannot
be nested, regardless of whether for the same enclave or
a different enclave. Commands not lexically nested in an
enclave(i, . . .) are non-enclave code.

We allow an enclave to have multiple entry points. That
is, a program may contain multiple commands of the form
enclave(i, c) with the same enclave identifier i.

Command kill(i) tears down enclave Ei. Once killed, an
enclave cannot be used: its memory locations can not be
accessed, nor can its code be executed.

2.3 Operational Semantics
A configuration 〈c, r,m,K〉 describes the current state of
the system. Command c is the rest of the program to execute.
Register file rmaps variables to values, and memorymmaps
locations to values. Kill set K is the set of enclaves that have
been killed so far in the execution.

INT

µ `δ 〈n, r,m,K〉 ⇓ n

LOC

µ `δ 〈l, r,m,K〉 ⇓ l

VAR
v = r(x)

µ `δ 〈x, r,m,K〉 ⇓ v

FUNCTION

µ `δ 〈λµ.c, r,m,K〉 ⇓ λµ.c

OP
µ `δ 〈e1, r,m,K〉 ⇓ v1
µ `δ 〈e2, r,m,K〉 ⇓ v2

v = v1 ⊕ v2
µ `δ 〈e1 ⊕ e2, r,m,K〉 ⇓ v

DEREF
µ `δ 〈e, r,m,K〉 ⇓ l

m(l) = v
δ(l) ∈ {N,µ} \K

µ `δ 〈∗e, r,m,K〉 ⇓ v

ISUNSET

µ `δ 〈∗cnd , r,m,K〉 ⇓ n v =

{
1 if n = 0

0 otherwise

µ `δ 〈isunset(cnd), r,m,K〉 ⇓ v

Figure 2. Large-step semantics for IMPE expressions

As a program executes, it performs observable actions
(i.e., outputting values on channels) and non-observable
security-relevant actions (such as declassifications). We refer
to these actions as events and use metavariable α to range
over events. A trace t = α1 . . . αn is a finite sequence of
events. We write ε for the empty trace, |t| for the length of
trace t, and t1 · t2 for the concatenation of traces t1 and t2.

We define the semantics of IMPE with a large step oper-
ational semantics. The judgment for the evaluation of com-
mands has the following form.

µ `δ 〈c, r,m,K〉 ⇓ r′;m′;K ′ . t′

The judgment is parameterized by mode µ, which indicates
whether command c is executing in normal mode (µ = N)
or in an enclave (µ = Ei). Initially, program execution
always starts in normal mode (since all enclave code is inside
enclave(i, . . .) commands).

The judgment is also parameterized by function δ :Loc→
Mode which indicates for each memory location which en-
clave, if any, it belongs to. If δ(l) = Ei then location l is in
enclave Ei, and if δ(l) = N then l is not in an enclave.

Judgment µ `δ 〈c, r,m,K〉 ⇓ r′;m′;K ′ . t′ can be
read as configuration 〈c, r,m,K〉 executes in mode µ and
terminates with register file r′, memory m′, kill set K ′, and
during execution produces trace t′.

Evaluation of commands makes use of an additional judg-
ment to evaluate expressions: µ `δ 〈e, r,m,K〉 ⇓ v. This
judgment means that, given register file r, memory m, and
kill set K, expression e evaluates in mode µ to value v. Ex-
pression evaluation does not modify the register file, mem-
ory, or the kill set.

Figure 2 presents the inference rules for expression eval-
uation. The rules are straightforward except for DEREF. Inte-
gers, locations, and functions are already values.

Rule DEREF evaluates expression e to a memory location
l and reads the contents of l. The premise δ(l) ∈ {N,µ}\K
states that in normal mode (i.e., µ = N), only normal
locations can be read; in enclave mode Ei (i.e., µ = Ei),
both normal and enclave Ei locations may be read (i.e.,
δ(l) ∈ {N,Ei}). Locations from a different enclave cannot
be read, and if an enclave has been killed (Ei ∈ K), then no
locations in that enclave can be read.

Rule ISUNSET returns 1 if the contents of condition cnd
is 0 (i.e., if cnd is not set), otherwise it evaluates to 0.

Rule FUNCTION requires that the mode annotation µ on
function λµ.c equals the mode of the expression evaluation.

Figure 3 shows the inference rules for command execu-
tion. Many rules have the premise µ 6∈ K, which collec-
tively ensure that code in killed enclaves can not be executed.
Rules SKIP, ASSIGN, SEQ, IF-ELSE, WHILE-T, and WHILE-F
are standard. We write r[x 7→ v] for the register file that
maps x to v but otherwise is the same as r. Similarly, mem-
ory m[l 7→ v] maps l to v but otherwise is the same as m.
The command call(e) evaluates expression e to a function
and invokes it. The modes of callee and caller should match.
This ensures that function calls cannot be used to amplify
privilege, and the only way execution can transition modes
is via an enclave(i, c) command.

Rule UPDATE updates a memory location, and like DEREF,
ensures that an enclave’s memory locations can be accessed
only by code within the enclave. This rule is used only for
non-condition locations. Rule SETCND is used to set condi-
tions. Since this is a security relevant action, SETCND pro-
duces event Mem(m′) in the trace wherem′ is the new mem-
ory. These events are used in the definition of the semantic
security conditions.

Rule DECLASSIFY declassifies expression e and assigns
the result to variable x. Operationally, it is similar to ASSIGN

but uses predicate hasNoVars(e) to enforce the syntactic re-
striction that expression e contains no variables: it may con-
tain expressions built from values and memory locations (in-
cluding conditions). Declassifications are security relevant
events, and so a declassification event Decl(e,m) is emit-
ted to the trace. Rule OUTPUT evaluates the expression e to
a value v, outputs v on channel `, and adds events Mem(m)
and Out(`, v) to the trace.

Rule ENCLAVE executes enclave code. Note that enclaves
can be entered only from normal mode (i.e., mode µ in the
conclusion must be N). This reflects the operation of Intel
SGX-like mechanisms: execution of enclave code occurs
only by non-enclave code jumping to a well-defined enclave
entry point; execution of enclave code ends only by exiting
the enclave, not by calling back to non-enclave code; code in
one enclave can not directly execute code in another enclave.

SKIP
µ 6∈ K

µ `δ 〈skip, r,m,K〉 ⇓ r;m;K . ε

KILL
Ei 6∈ K

N `δ 〈kill(i), r,m,K〉 ⇓ r;m;K ∪ {Ei} . ε

ASSIGN
µ `δ 〈e, r,m,K〉 ⇓ v

r′ = r[x 7→ v] µ 6∈ K
µ `δ 〈x := e, r,m,K〉 ⇓ r′;m;K . ε

DECLASSIFY
µ `δ 〈e, r,m,K〉 ⇓ v hasNoVars(e)

r′ = r[x 7→ v] µ 6∈ K
µ `δ 〈x := declassify(e), r,m,K〉 ⇓ r′;m;K . Decl(e,m)

UPDATE
µ `δ 〈e1, r,m,K〉 ⇓ l µ `δ 〈e2, r,m,K〉 ⇓ v µ 6∈ K
δ(l) ∈ {N,µ} \K l ∈ Loc \ Cond m′ = m[l 7→ v]

µ `δ 〈e1 ← e2, r,m,K〉 ⇓ r;m′;K . ε

SETCND
δ(cnd) ∈ {N,µ} \K cnd ∈ Cond

m′ = m[cnd 7→ 1] µ 6∈ K
µ `δ 〈set(cnd), r,m,K〉 ⇓ r;m′;K .Mem(m′)

OUTPUT
µ `δ 〈e, r,m,K〉 ⇓ v ` ∈ {L,H} µ 6∈ K

µ `δ 〈output e to `, r,m,K〉 ⇓ r;m;K .Mem(m) · Out(`, v)

CALL
µ `δ 〈e, r,m,K〉 ⇓ λµ.c

µ `δ 〈c, r,m,K〉 ⇓ r′;m′;K ′ . t′

µ `δ 〈call(e), r,m,K〉 ⇓ r′;m′;K ′ . t′

ENCLAVE
Ei `δ 〈c, r,m,K〉 ⇓ r′;m′;K ′ . t′

N `δ 〈enclave(i, c), r,m,K〉 ⇓ r′;m′;K ′ . t′

SEQ

∀i ∈ {1 . . . n} µ `δ 〈ci, ri−1,mi−1,Ki−1〉 ⇓ ri;mi;Ki . ti

µ `δ 〈c1; . . . ; cn, r0,m0,K0〉 ⇓ rn;mn;Kn . t1 · . . . · tn

IF-ELSE

µ `δ 〈e, r,m,K〉 ⇓ v i =

{
1 if v 6= 0

2 otherwise
µ `δ 〈ci, r,m,K〉 ⇓ r′;m′;K ′ . t′

µ `δ 〈if e then c1 else c2, r,m,K〉 ⇓ r′;m′;K ′ . t′

WHILE-T
µ `δ 〈e, r,m,K〉 ⇓ v v 6= 0
µ `δ 〈c, r,m,K〉 ⇓ r′;m′;K ′ . t′

µ `δ 〈while e do c, r′,m′,K ′〉 ⇓ r′′;m′′;K ′′ . t′′

µ `δ 〈while e do c, r,m,K〉 ⇓ r′′;m′′;K ′′ . t′ · t′′

WHILE-F
µ `δ 〈e, r,m,K〉 ⇓ 0 µ 6∈ K

µ `δ 〈while e do c, r,m,K〉 ⇓ r;m;K . ε

Figure 3. Large-step semantics for select IMPE commands

Rule KILL tears down enclave Ei and adds it to the kill
set. Once an enclave is killed, it is inactive and can no longer
be used. Enclaves can be killed only in normal mode.

The following code illustrates how password authentica-
tion can be modeled in IMPE.

enclave(1, status := ∗password = ∗guess);
output status to L

The code uses two locations, password and guess, con-
taining the password and user’s input respectively. Assume
δ(password) = E1 and δ(guess) = N , i.e., password be-
longs to enclave E1 and guess is not in an enclave. The
program enters enclave E1, checks if the password matches
the guess by dereferencing the corresponding locations, sets
variable status to the result, and exits the enclave. Variable
status is then output on channel L. Note that dereferencing
password would fail if done outside enclave E1.

3. Attacker Model and Security
In this section we define security for the IMPE language for
a variety of attackers. We consider a passive attacker that can
only observe outputs on certain channels, an active attacker
that can arbitrarily corrupt non-enclave computation, and an
active attacker that can, under certain conditions, corrupt
computation both outside and inside enclaves.

The definition of security is that at all times, an attacker
knows no more than what the attacker is permitted to know.
What the attacker is permitted to know is determined by
the security policies on information, which conditions are
set when, and what declassifications the program performs.
We model active attackers by allowing additional transitions
in the operational semantics of IMPE. Thus, the definition
of security is parameterized on variants of the operational
semantics of IMPE.

We assume the only source of confidential information is
the initial memory. A security specification γ maps locations
to policies and indicates the policy to enforce on information
in an initial memory. For example, if γ(l) = `1

cnd↗`2
and m is the memory from which we start an execution,
then we should enforce erasure policy `1

cnd↗`2 on the
data in m(l). We say that a security specification γ is well-
formed if ∀l ∈ Loc. γ(l) 6= > (since security level > is
for information so confidential that it should not be on the
machine).

3.1 Attacker Knowledge
We associate an attacker with a security level ` ∈ L and
assume the attacker is able to observe outputs on any channel
`′ such that `′ v `. Given trace t, btc` is the output events
that an attacker at level ` can observe.

btc` =

Out(`′, v) · bt′c` if t = Out(`′, v) · t′ and `′ v `
bt′c` if t = Out(`′, v) · t′ and `′ 6v `
bt′c` if t = α · t′ ∧ α 6= Out(`′, v)

ε otherwise

Given an execution of program c, an attacker at level ` ob-
serves some portion of the execution (i.e., some subsequence
tobs of the trace produced during execution). The knowledge
of the attacker is the set of initial memories for which execu-
tion of c could produce a trace t such that some subsequence
of t looks the same to the attacker as tobs . That is, an at-
tacker’s knowledge is the set of initial memories that the at-
tacker believes are possible. Thus, the smaller the attacker’s
knowledge, the more precise is the attacker’s knowledge.

We base our definition of attacker knowledge on that
of Askarov et al. [7] by parametrizing it on the large-step
semantics. That is, we will instantiate ⇓kind with different
large-step semantics that represent different attackers. We
assume that all initial configurations use a register file rinit
that maps all variables to zero.

Definition 1 (Attacker knowledge). Given program c, secu-
rity level `, large-step semantics ⇓kind , and trace tobs , at-
tacker knowledge is defined as:

k⇓kind` (c, tobs) =

{m | N ` 〈c, rinit ,m, ∅〉⇓kindr′;m′;K ′ . t
∧ ∃t0, t1, t2. t = t0 · t1 · t2 ∧ btobsc` = bt1c`}

Consider the password authentication example from Sec-
tion 2.3. Let c be the program, m0 be the initial memory
and tobs = Mem(m0) · Out(L, 1) be the trace produced by
the program executed with semantics ⇓. The knowledge of
a passive attacker at security level L is the set of all ini-
tial memories such that the contents of locations password
and guess are equal. More formally, k⇓L(c, tobs) = {m′ |
m′(password) = m′(guess)}.

3.2 Security
The intuition for knowledge-based security conditions [5, 7]
is that an attacker should know only what it is permitted to
know. We thus define what an attacker is permitted to know.

We are concerned with attackers that may observe only
a portion of a program’s execution. Thus, an attacker at
level ` that starts observing the execution after condition
cnd has been set should in general not be able to learn
anything about information with erasure policy `1

cnd↗`2
where `2 6v `. However, an attacker is permitted to learn
information that has already been declassified, including
declassifications that occurred before the attacker started
observing the execution.

Permitted knowledge via erasure policies Whether an at-
tacker at level ` is permitted to observe information with
policy p depends on which conditions have been set. Let
U ⊆ Cond be the currently unset conditions. We write
cur(p, U) for the security level that should currently be en-
forced on information with policy p. If p is an erasure pol-
icy `1 cnd↗`2, then we should enforce security level `1 if
cnd ∈ U and enforce `2 if cnd 6∈ U . Formally:

cur(p, U) =

` if p = `

`1 if p = `1
cnd↗`2 and cnd ∈ U

`2 if p = `1
cnd↗`2 and cnd /∈ U

Based on the current security level to enforce on informa-
tion, we define equivalence classes of initial memories that
an attacker at level ` should not be allowed to distinguish.
Intuitively, if initial memories m and m′ are identical at ev-
ery location l for which the current security level permits the
attacker to learn information (i.e., cur(γ(l), U) v `), then
the attacker should not be allowed to distinguish m and m′.

Definition 2 (Indistinguishable Memories). Given memory
m, security specification γ, unset conditions U , and security
level `, we define ind`(m, γ, U) as

{m′ | ∀l ∈ Loc. cur(γ(l), U) v ` =⇒ m(l) = m′(l)}

Given an execution from initial memory m0 where an
attacker at level ` starts observing the execution when U
are the unset conditions, then the attacker should not learn
whether the initial memory for the execution was m0 or
some memory in ind`(m0, γ, U). That is, the attacker’s
knowledge should be a superset of ind`(m0, γ, U).

Permitted knowledge via escape hatches Declassifica-
tions permit an attacker to learn more information. Fol-
lowing Sabelfeld and Myers [30], we use escape hatches
to characterize what information declassification commands
x := declassify(e) reveal. An escape hatch is a computation
over confidential information such that attackers are permit-
ted to learn the result of the computation. In our setting, an
escape hatch is an expression e evaluated against the ini-
tial memory. Recall that confidential information is input

to a program only via the initial memory. Thus, by evalu-
ating escape hatch expression e against the initial memory,
e describes a computation over confidential inputs that is
permitted to be declassified.

We connect declassification events Decl(e,m) (where m
is the current memory at the time of declassification, and ex-
pression e contains only operations over constants and mem-
ory locations) to escape hatches by requiring that the evalu-
ation of e usingm produces the same value as the evaluation
of e using the initial memory. If so, the attacker is permitted
to learn the result of e, otherwise we do not allow the declas-
sification event to release any information. We capture this
in the definition of escape-hatch indistinguishability below.

Definition 3 (Escape-hatch indistinguishability). Given ini-
tial memory m0, current memory m, semantics ⇓kind and
escape hatch e, we define Esc⇓kind (m0,m, e) as

{m′ | ∃µ. (µ `δ 〈e, rinit ,m0, ∅〉 ⇓kind v ∧
µ `δ 〈e, rinit ,m, ∅〉 ⇓kind v)

=⇒ µ `δ 〈e, rinit ,m′, ∅〉 ⇓kind v}

Given semantics ⇓kind , declassification event Decl(e,m),
and initial memory m0, Esc⇓kind (m0,m, e) is equal to the
set of all initial memories if expression e evaluates to differ-
ent values in m and m0 (i.e., the attacker should not learn
any information from the declassification), and otherwise is
equal to all initial memories m′ such that e evaluates to the
same value in m′ as it does in m0 (i.e., the attacker is per-
mitted to learn the result of evaluating e).

Security definition We define btcmem = {m | Mem(m) ∈
t} to be the set of memory events that occur in trace t and
btcesc = {(e,m) | Decl(e,m) ∈ t} to be the set of tuples
corresponding to the declassification events in trace t.

Suppose we have an execution from initial memory m0

with specification γ that produces trace t·tobs·t′, where an at-
tacker at level ` observes tobs. Then the attacker is permitted
to learn any information that a memorym′ ∈ btobscmem per-
mits. That is, the intersection of the sets ind`(m0, γ, {cnd |
m′(cnd) = 0}) for m′ ∈ btobscmem describes what infor-
mation the attacker is permitted to know based on the current
security levels of information.

Moreover, the attacker is allowed to learn declassified
information. The intersection of sets Esc⇓kind (m0,m

′, e′)
for (e′,m′) ∈ bt · tobscesc describes what information the
attacker is permitted to know based on declassifications that
occurred before or during the attacker observation.

A program is secure if the attacker’s knowledge is indeed
no more precise than the information the attacker is permit-
ted to know. Definition 4 captures this intuition.

Definition 4 (Security). Program c is secure at security level
` for security specification γ and large-step semantics ⇓kind
if for all initial memories m0 and all executions

N `δ 〈c, rinit ,m0, ∅〉 ⇓kind r;m;K . t · tobs · t′

where tobs = Mem(m′′) · t′′ for some memory m′′ and trace
t′′, we have

k⇓kind` (c, tobs) ⊇(⋂
m′∈btobscmem

ind`(m0, γ, {cnd | m′(cnd) = 0})

∩
⋂

(e′,m′)∈bt·tobscesc

Esc⇓kind (m0,m
′, e′)

)
Note that this definition is termination- and progress-

insensitive [6]. We can modify the definition to be termin-
ation- and progress-sensitive, but this results in a more com-
plicated definition that does not provide additional insight
into the issues explored in this paper. We thus refrain from
doing so.

Note that the definition quantifies over all possible obser-
vations tobs. The definition requires that the first event in the
observed trace tobs is a memory event to ensure we know the
current security level to enforce on information as at the start
of the attacker’s observation. This is without loss of gener-
ality, since every output event is immediately preceded by a
memory event (see rule OUTPUT in Figure 3).

For example, let c be the password authentication pro-
gram modified to set condition end on enclave exit.

enclave(1, status := ∗password = ∗guess); set(end);
output status to L

The program is insecure for the specification γ, where
γ(guess) = L end↗> and γ(password) = H . Intuitively,
for initial memory m0 and tobs = Mem(m0[end 7→ 1]) ·
Out(L, 1) produced by execution with semantics ⇓, then the
lower bound indL(m0, γ, ∅) on the knowledge of an attacker
at security level L is the set of all memories. However, the
attacker learns that password and guess are equal.

Suppose we now modify the program to include declassi-
fication:

enclave(1, status := declassify(∗password = ∗guess));

The declassification event induces a new lower bound: {m′ |
m′(password) = m′(guess)}which is same as the attacker’s
knowledge. The program is now secure for an attacker at
security level L.

3.3 Attackers
A passive attacker simply observes the execution of pro-
gram and attempts to learn information about confidential
input. By contrast, an active attacker can modify or influ-
ence the execution of a program. Active attackers represent
many malicious behaviors, including attacks that can mod-
ify execution arbitrarily (e.g., by gaining control of the pro-
gram counter or overwriting code) or modify some set of
memory locations (e.g., by buffer overflows or by providing
malicious input to a program).

N-CHAOS
c
enc
'c′ N `δ 〈c′, r,m,K〉 ⇓N -chaos r

′;m′;K′ . t′

N `δ 〈c, r,m,K〉 ⇓N -chaos r
′;m′;K′ .Mem(m) · A(c

enc
'c′) · t′

Figure 4. Additional inference rule for ⇓N -chaos

We consider three attackers: (1) A passive attacker that
can only observe output on the L channel; (2) A non-enclave
active attacker that can observe output on the L channel and
arbitrarily modify non-enclave code; and (3) An enclave ac-
tive attacker that can observe output on the L and H chan-
nels, and can arbitrarily modify (enclave and non-enclave)
code but only under certain conditions.

We use different operational semantics to represent the
different attackers. The passive attacker corresponds to the
semantics ⇓ (Figure 3). That is, programs execute as written,
and the attacker passively observes output. We define two
new semantics to capture the abilities of the active attackers.

Non-enclave active attacker Relation ⇓N -chaos allows the
attacker to arbitrarily change non-enclave code. Inference
rules for judgment µ `δ 〈c, r,m,K〉 ⇓N -chaos r

′;m′;K ′ . t
include all rules from Figure 3 (appropriately adapted) and
the rule in Figure 4. This new rule allows command c to
change to command c′, so long as both commands have
the same enclave code, expressed by relation c

enc'c′ (defined
in Appendix A). This corresponds to an attacker that can
exploit a vulnerability in non-enclave code but is unable to
corrupt code within enclaves. Since modifying the program
is a security relevant action, an event A(c

enc'c′) is emitted to
the trace (and we modify btc` to include events of the form
A(c

enc'c′)).
If a program is secure for ⇓N -chaos then it is secure for

⇓. The converse does not necessarily hold. For example,
consider the following program, where δ(hi) = E1 and
γ(hi) = H .

c ≡ enclave(1, x := ∗hi); output 1 to L

The program is secure at level L for specification γ and se-
mantics ⇓ but is insecure for semantics ⇓N -chaos. Suppose the
active attacker modifies the program to c′ ≡ enclave(1, x :=

∗hi); output x to L. Note that c
enc'c′, since the code in en-

claves for both c and c′ is the same: enclave(1, x := ∗hi).
Suppose we execute c′ with an initial memory that maps hi to
42. The knowledge of an attacker observing output on chan-
nel L is {m′ | m′(hi) = 42}. However the permitted lower
bound on attacker’s knowledge is the set of all initial memo-
ries (i.e., the attacker is not permitted to learn anything about
the confidential data). So the program is not secure at level
L for γ and ⇓N -chaos.

Enclave active attacker Given a set of enclaves I ⊆
{E1, E2, . . . }, relation ⇓EI -chaos allows the attacker to arbi-
trarily change (enclave and non-enclave) code but only after
all enclaves in I are killed. This corresponds to a setting

EI -CHAOS
I ⊆ K N `δ 〈c′, r,m,K〉 ⇓EI -chaos r

′;m′;K′ . t′

N `δ 〈c, r,m,K〉 ⇓EI -chaos r
′;m′;K′ .Mem(m) · A(c′) · t′

Figure 5. Additional inference rule for ⇓EI -chaos

σ ::= int | condµ | τµ refrt | Γ–,K–, U
p,µ−→ Γ+,K+

τ ::= σp

µ ∈Mode = {N,E1, E2, . . . } p, pc ∈ P
rt ∈ {mut, immut}

Figure 6. IMPE types

where enclaves and non-enclave code all have exploitable
vulnerabilities but the attacker does not immediately exploit
these vulnerabilities.

Inference rules for judgment µ `δ 〈c, r,m,K〉 ⇓EI -chaos

r′;m′;K ′ . t include all inference rules from Figure 3 (ap-
propriately adapted) and the rule in Figure 5. This new rule
allows command c to change to an arbitrary command c′ pro-
vided all enclaves in I are killed (I ⊆ K). Event A(c′) is
emitted to the trace (and we modify btc` to include events of
the form A(c′)).

Consider the following program that stores credit card
information in an enclave, where γ(ccard) = H end↗> (and
γ(l) = L for all other locations l) and δ(ccard) = E1.

enclave(1, output ∗ccard to H; set(end)); kill(1)

The program outputs the contents of ccard to the H channel
and sets condition cnd in enclaveE1. It then exits the enclave
E1 and kills it. The program is secure at security level H for
specification γ and semantics ⇓EI -chaos, where I = {E1}.
This means that if an enclave active attacker modifies the
program after kill(1) has been executed, it is unable to learn
anything about the contents of ccard. Note that when I = ∅,
the program is not secure for any subset of locations.

4. IMPE Type System
We introduce a security-type system [38] for IMPE that guar-
antees security, i.e., a well-typed program is secure against
all the attackers described in Section 3.3.

Figure 6 shows the syntax of types. Base types σ include
integers, conditions, references, and functions. Recall that
conditions are a subset of locations. We use type condµ for
conditions (i.e., values in the set Cond). A reference type
τµ refrt is a pointer to a memory location with contents of
type τ . Both condition types and reference types are anno-
tated with mode µ, indicating in which enclave, if any, the
memory location resides. Reference types also have a muta-
bility annotation rt ∈ {mut, immut}, indicating whether the
reference is mutable or immutable. We use immutable refer-
ences to ensure that declassified expressions are indeed es-

cape hatches, i.e., that declassified expressions are not modi-
fied prior to declassification. All conditions are mutable. We
explain function types Γ–,K–, U

p,µ−→ Γ+,K+ after explain-
ing the type judgment.

A security type τ = σp is a base type σ annotated with a
security policy p. Intuitively, data with type σp should have
security policy p or a more restrictive policy enforced on it.

A type environment Γ maps variables to security types,
and non-condition locations to pairs (τ, rt) of a security type
and immutability annotation, where τ is the type of the loca-
tion’s contents, and rt describes the location’s immutability.
For simplicity, we assume that whether a condition is set is
public information, and so for any cnd ∈ Cond, the type of
cnd is condµL for some mode µ where δ(cnd) = µ. Thus,
we exclude Cond from the domain of Γ.

A type environment is well-typed for δ if all locations
containing confidential information belong to some enclave.
Since security level> is meant to indicate information that is
too confidential to be stored on the machine, we also require
that well-typed environments do not map any variable or
location to a type σ>. The following definition formally
states the well-typedness of environment Γ for δ.

Definition 5 (Well-Typed Environment). A type environ-
ment Γ is well-typed for δ, denoted as `δ Γ ok, if

∀l ∈ Loc \ Cond. Γ(l) = (σp, rt) ∧ p 6≤ L
=⇒ δ(l) 6= N ∧ p 6= >

and
∀x ∈ Vars. Γ(x) = σp =⇒ p 6= >

The IMPE type system is flow-sensitive in that the type
of variables may differ at different program points.1 Also,
our type system tracks the set of killed enclaves to ensure
that no code or data inside a killed enclave is accessed. To
ensure that erasure policies are correctly enforced, our type
system tracks the set of conditions that are definitely unset.
The typing judgment for commands has the form

pc, µ,Γ,K, U δ̀ c : Γ′,K ′

where:

• Γ and Γ′ are, respectively, the type environments imme-
diately before and after execution of command c;

• K and K ′ are, respectively, the set of killed enclaves
immediately before and after execution of c;

• U is the set of conditions that are known to be not set
immediately before the execution of c;

• µ indicates whether c executes in normal mode (µ = N)
or in an enclave (µ = Ei);

• pc is a policy representing an upper bound on the infor-
mation that influences the decision to execute c, and is

1 The type system is not flow-sensitive for locations. Although this could be
achieved using alias information, for simplicity we assume that the types of
locations are fixed throughout the program.

also a lower bound on the side-effects of c. This pro-
gram counter policy [29, 38] is used to prevent implicit
flows [14], i.e., information flows via the control deci-
sions of a program.

• δ is a function which indicates for each memory location
which enclave, if any, it belongs to.

The type judgment for expressions is µ,Γ δ̀ e : τ,
meaning that in mode µ under type environment Γ, expres-
sion e has type τ .

A function type Γ–,K–, U
p,µ−→ Γ+,K+ indicates the type

environment Γ– that must hold before the function is in-
voked, and the type environment Γ+ that will hold imme-
diately after function invocation. These environments may
be partial functions, since the function may use only a sub-
set of variables. Well-typedness of functions will ensure that
dom(Γ–) ⊆ dom(Γ+). Kill set K– is the set of killed en-
claves the function expects at invocation, and K+ is the set
of killed enclaves after function invocation. Set U is the set
of conditions that the function assumes are unset upon func-
tion invocation. Mode µ is the mode in which the function
was defined, and policy p is a lower bound on the side-effects
of the function.

We define subtyping on security types based on the rela-
tive restrictiveness of security policies. Given policies p and
q, we say that q is at least as restrictive as p, written p ≤ q,
if policy q imposes at least as many restrictions on the use of
data as policy p. The relation ≤ on policies forms a lattice.
We write t for the join operation. We overload the symbol
≤ and write σ1 ≤ σ2 when base type σ1 is a subtype of base
type σ2, and write τ1 ≤ τ2 when security type τ1 is a subtype
of security type τ2. We lift subtyping to type environments
and define Γ1 ≤ Γ2 if and only if dom(Γ1) = dom(Γ2) and
∀y ∈ dom(Γ1). Γ1(y) ≤ Γ2(y). Function types are con-
travariant in the pre-environment, and the side-effect bound,
covariant in the post-environment, and invariant otherwise.
Inference rules for the subtyping (≤) relation are presented
in Appendix B.

Figure 7 shows typing rules for expressions. As is stan-
dard in security-type systems, constants (including integers,
conditions, references, and function definitions) are given
policy L, the most permissive security policy.

Dereferencing an expression may reveal information
about both which location is dereferenced and the contents
of that location. Thus in rule T-DEREF the result of a ∗e ex-
pression has a security policy that is at least as restrictive
as the policy on the reference and the contents of the refer-
ence. The premise µ′ 6= N =⇒ µ = µ′ (in both T-DEREF

and T-ISUNSET) requires that locations in enclaves can be
accessed only by code in the same enclave.

Most of the commands follow the standard security typ-
ing rules for an imperative language (including subsump-
tion). The rules further ensure that killed enclaves are never
accessed (premise µ 6∈ K in many rules) and that en-
clave locations are accessed only by code in the appropri-

T-INT

µ,Γ δ̀ n : intL

T-CND
µ′ = δ(cnd)
cnd ∈ Cond

µ,Γ δ̀ cnd : condµ
′

L

T-VAR

Γ(x) = σp

µ,Γ δ̀ x : σp

T-LOC
Γ(l) = (σp, rt) µ′ = δ(l)

l ∈ Loc \ Cond
µ,Γ δ̀ l : (σµ

′

p refrt)
L

T-DEREF

µ,Γ δ̀ e : σµ
′

p refrt
q

µ′ 6= N =⇒ µ = µ′

µ,Γ δ̀ ∗e : σptq

T-ISUNSET
µ′ = δ(cnd) cnd ∈ Cond

µ′ 6= N =⇒ µ = µ′

µ,Γ δ̀ isunset(cnd) : intL

T-FUNCTION
p, µ,Γ–,K–, U δ̀ c : Γ+,K+

µ,Γ δ̀ λ
µ.c : (Γ–,K–, U

p,µ−→ Γ+,K+)L

T-OP
µ,Γ δ̀ e1 : intp µ,Γ δ̀ e2 : intq

µ,Γ δ̀ e1 ⊕ e2 : intptq

Figure 7. IMPE typing rules for expressions

ate enclave, that only public information (i.e., with secu-
rity policy L) can be accessed outside of enclaves (premise
p 6≤ L =⇒ µ′ 6= N in many rules), and that the pro-
gram does not store information at security level> (premise
p 6= > in many rules). To ensure that kill sets are tracked pre-
cisely, we require that both branches of conditionals kill the
same enclaves, and that the body of loops kill no enclaves.
We also require functions that expect non-empty U to in an
enclave. This prevents non-enclave attackers from violating
the assumption on U when invoking a function.

Figure 8 presents typing rules for commands.2 Rules
T-SKIP, T-ASSIGN, T-SUB, T-SEQ, T-IF-ELSE, T-WHILE are
mostly standard. Rule T-DECLASSIFY ensures that a declas-
sification uses only immutable locations and has no vari-
ables (so that the value declassified is the same as the val-
uation of the expression in the initial memory, and so the
expression is an escape hatch). This is enforced by premises
hasNoVars(e) and allLocImmutable(e). The latter is for-
mally defined as ∀l ∈ e. l 6∈ Cond ∧ (Γ(l) = (σp, rt) =⇒
rt = immut). To ensure that the decision to declassify in-
formation does not reveal information, we require that the
program counter policy for a declassification is L. Note that
the result of the declassification has policy L (i.e., variable
x maps to σL).

2 For presentation purposes, these rules are non-algorithmic. They can be
easily adapted to enable syntax-directed type-checking algorithms.

Rule T-OUTPUT ensures that the current security level en-
forced on both a value output to a channel, and the decision
to perform the output, is permitted to be output (cur(p, U)t
cur(pc, U) v `).

Rule T-IF-ISUNSET is similar to T-IF-ELSE but is used
when the branch condition tests whether a condition is unset.
This allows the true branch to be type-checked under the
assumption that condition cnd is unset, which improves
precision, of, for example, output commands.

Rule T-ENCLAVE ensures that command enclave(i, c) can
be executed only in non-enclave mode µ = N , and type
checks c in mode Ei with an empty set of conditions that
are assumed to be unset. This is to ensure that an attacker
that can control non-enclave execution is unable to vio-
late an assumption made by enclave code. Also, premise
isVarLowContext(Γ′) ensures that at the end of the enclave
code, all variables contain only information with policy L
This ensures that at the end of execution of enclave code,
there is no confidential information remaining in variables
that could be leaked to an attacker.

Rule T-KILL requires that enclaves can only be killed
by non-enclave code (µ = N). This reflects the operation
of Intel’s SGX enclaves. Since killing an enclave may be
detectable by a non-enclave attacker, we ensure that the
decision to kill an enclave relies on only non-confidential
information (pc = L). Premise Ei 6∈ K ensures that an
enclave is not killed more than once.

Rule T-UPDATE is mostly standard, but like T-DEREF and
T-ISUNSET, requires that locations in enclaves can be ac-
cessed only by code in the same enclave.

Rule T-SETCND checks that condition cnd can be set only
if it is not currently assumed to be unset, i.e., cnd 6∈ U .

Rule T-CALL ensures that the preconditions for call-
ing the function are satisfied, namely that the kill set and
unset conditions assumed by the function is equal to the
current kill set and unset conditions, and that the assump-
tions of the function’s type environment are satisfied (∀y ∈
dom(Γ–),Γ(y) ≤ Γ–(y)). The program counter policy pc
and the information revealed by which function to invoke
(q) must be no more restrictive than p, the lower bound on
the function’s side effects. The premise U 6= ∅ =⇒ µ 6= N
prevents a non-enclave active attacker from directly invoking
a function and violating the assumption on set U . The type
environment after the function call respects the function’s
post-environment: ∀y ∈ dom(Γ+),Γ+(y) ≤ Γout(y). Since
Γ– and Γ+ are partial, we require that the types of variables
not in dom(Γ+) (which is a superset of dom(Γ–)) remain
unchanged: ∀y ∈ dom(Γ) \ dom(Γ+). Γ(y) = Γout(y).
After the function invocation, the kill set is K+.

Type Soundness Program execution starts with a known
initial register file (rinit) that maps all variables to constant
zero. We say that type environment Γ corresponds to security
specification γ if policies on locations agree with γ and Γ
maps all variables to intL (since rinit maps every variable

T-SKIP
µ 6∈ K

pc, µ,Γ,K, U δ̀ skip : Γ,K

T-KILL
Ei 6∈ K pc = L µ = N

pc, µ,Γ,K, U δ̀ kill(i) : Γ,K ∪ {Ei}

T-ASSIGN
µ,Γ δ̀ e : σp pc t p 6= >

(pc t p) 6≤ L =⇒ µ 6= N µ 6∈ K
pc, µ,Γ,K, U δ̀ x := e : Γ[x 7→ σpctp],K

T-DECLASSIFY
µ,Γ δ̀ e : σp µ 6∈ K p 6= >

pc = L hasNoVars(e) allLocImmutable(e)

pc, µ,Γ,K, U δ̀ x := declassify(e) : Γ[x 7→ σL],K

T-OUTPUT
µ,Γ δ̀ e : σp µ 6∈ K p 6= >

cur(p, U) t cur(pc, U) v `
pc, µ,Γ,K, U δ̀ output e to ` : Γ,K

T-UPDATE

µ,Γ δ̀ e1 : (σµ
′

p refrt)
q

µ,Γ δ̀ e2 : σp′ p′ t q t pc ≤ p
µ′ 6= N =⇒ µ = µ′ µ 6∈ K rt = mut p, p′, q 6= >

pc, µ,Γ,K, U δ̀ e1 ← e2 : Γ,K

T-SEQ

∀i ∈ {1 . . . n}. pc, µ,Γi−1,Ki−1, U δ̀ ci : Γi,Ki

pc, µ,Γ0,K0, U δ̀ c1; . . . ; cn : Γn,Kn

T-SETCND
µ′ = δ(cnd) pc = L cnd ∈ Cond \ U

µ′ 6= N =⇒ µ = µ′ µ 6∈ K
pc, µ,Γ,K, U δ̀ set(cnd) : Γ,K

T-IF-ISUNSET
µ,Γ δ̀ isunset(cnd) : intL pc, µ,Γ,K, U ∪ {cnd} δ̀ c1 : Γ′,K ′

pc, µ,Γ,K, U δ̀ c2 : Γ′,K ′

pc, µ,Γ,K, U δ̀ if isunset(cnd) then c1 else c2 : Γ′,K ′

T-IF-ELSE
pc′, µ,Γ,K, U δ̀ c1 : Γ′,K ′ µ,Γ δ̀ e : intp pc t p ≤ pc′
pc′, µ,Γ,K, U δ̀ c2 : Γ′,K ′ p 6≤ L =⇒ µ 6= N p 6= >

pc, µ,Γ,K, U δ̀ if e then c1 else c2 : Γ′,K ′

T-ENCLAVE
pc, Ei,Γ,K, ∅ δ̀ c : Γ′,K ′

isVarLowContext(Γ′) µ = N

pc, µ,Γ,K, U δ̀ enclave(i, c) : Γ′,K ′

T-WHILE
µ,Γ δ̀ e : intp pc′, µ,Γ,K, U δ̀ c : Γ,K
pc t p ≤ pc′ p 6≤ L =⇒ µ 6= N p 6= >

pc, µ,Γ,K, U δ̀ while e do c : Γ,K

T-SUB
pc1, µ,Γ1,K, U δ̀ c : Γ′1,K

′ pc2 ≤ pc1
Γ2 ≤ Γ1 Γ′1 ≤ Γ′2 `δ Γ2 ok `δ Γ′2 ok

pc2, µ,Γ2,K, U δ̀ c : Γ′2,K
′

T-CALL

µ,Γ δ̀ e : (Γ–,K–, U
p,µ−→ Γ+,K+)q pc t q ≤ p ∀y ∈ dom(Γ–),Γ(y) ≤ Γ–(y)

∀y ∈ dom(Γ+). Γ+(y) ≤ Γout(y) ∀y ∈ dom(Γ) \ dom(Γ+). Γ(y) = Γout(y) q 6= > U 6= ∅ =⇒ µ 6= N

pc, µ,Γ,K–, U δ̀ call(e) : Γout,K
+

Figure 8. IMPE typing rules for commands

to zero). Formally, Γ corresponds to security specification
γ if ∀l ∈ dom(γ). γ(l) = p =⇒ Γ(l) = σp and
∀x ∈ Vars. Γ(x) = intL.

Given a type environment Γ that corresponds to a well-
formed security specification γ and is also well-typed for δ,
the type system is sound. That is, a well-typed program is
secure against all the attackers described in Section 3.3.

Theorem 1. Let γ be a well-formed security specification
and Γ be a type environment that corresponds to γ and is
well-typed for δ. If L,N,Γ, ∅, ∅ δ̀ c : Γ′,K ′ then:

• c is secure at security level L for specification γ and
semantics ⇓; and

• c is secure at security level L for specification γ and
semantics ⇓N -chaos; and

• For all I ⊆ {E1, E2, . . . }, define

γ′(l) =

{
γ(l) if δ(l) ∈ I
L otherwise

Command c is secure at security levelH for specification
γ′ and semantics ⇓EI -chaos.

Note that for an enclave active attacker that can attack
enclaves in set I only after those enclaves have been killed,
Theorem 1 states that command c is secure for security spec-
ification γ′ derived from γ. Specification γ′ is the same
as γ for all locations placed in enclaves in I , but for all
other locations does not enforce any security restrictions
(i.e., γ′(l) = L if δ(l) 6∈ I). That is, we can protect infor-
mation placed in enclaves in I against an enclave active at-

e ::= n | x | e1 ⊕ e2 | l | ∗e | isunset(cnd) | λ.c
v ::= λ.c | n | l
c ::= skip | x := e | x := declassify(e) | e1 ← e2

| output e to ` | call(e) | set(cnd) | c1; . . . ; cn

| if e then c1 else c2 | while e do c
l ∈ Loc Cond ⊂ Loc cnd ∈ Cond

σ ::= int | cond | τ refrt | G–, U
p→ G+

τ ::= σp

rt ∈ {mut, immut}

Figure 9. IMPS syntax and types

tacker characterized by semantics ⇓EI -chaos, but can not pro-
vide guarantees about information placed in other enclaves.

5. IMPS: A Non-enclave Calculus
Enclaves are a powerful mechanism, but management of en-
claves may be error prone and distract the programmer from
implementing correct functionality. We present a language
IMPS that is similar to IMPE but removes all enclave-related
commands and abstractions and thus allows the program-
mer to focus on functionality and high-level security require-
ments. In Section 6 we translate from IMPS to IMPE, auto-
matically inferring appropriate enclaves.

The syntax for IMPS (Figure 9) is similar to IMPE, except
that functions are not annotated with mode and commands
enclave(i, c) and kill(i) are removed. An IMPS configuration
is a triple 〈c, r,m〉 where r and m are a register file and
memory, respectively, as defined in Section 2.3.

The large-step semantic judgment for IMPS has the form
〈c, r,m〉 ⇓s r′;m′ . t′, meaning configuration 〈c, r,m〉 ex-
ecutes and terminates with register file r′ and memory m′

and during execution produces trace t′. The judgment for
expression evaluation is 〈e, r,m〉 ⇓s v and can be read as
given register file r and memory m, expression e evaluates
to value v. Inference rules for these judgments are straight-
forward, and similar to those of IMPE, although without any
restrictions based on modes.

Types in IMPS (Figure 9) are similar to those of IMPE.
We underline types and type metavariables to distinguish
them from IMPE types. Unlike IMPE, conditions and refer-
ences do not have mode annotations, and function types have
neither mode nor kill set annotations. We use G to denote
type environments in IMPS. A type environment G is well-
typed if it does not map any location to type σ>. Similar to
Γ, we say that type environment G corresponds to security
specification γ, if G maps all variables to intL and policies
on locations agree with γ.

The type system is a simplified version of the IMPE type
system. Judgment pc,G, U ` c : G′ means that command c
is well-typed, where G and G′ are the type environments im-
mediately before and after execution of c, program counter
policy pc is an upper bound on the information that influ-
ences the decision to execute c, and set U are conditions that
are definitely unset.

Judgment G ` e : σp means expression e has type σp un-
der type environment G. All typing rules are straightforward
adaptations of the IMPE rules and are given in Appendix C.

6. Translation
We provide a translation of IMPS programs to IMPE that
automatically places code and locations into enclaves. Our
translation is constraint-based: a type-directed algorithm
produces a set of constraints, and any solution to the con-
straints provides a well-typed IMPE program. We consider
various criteria for choosing one translation over another.

6.1 Constraint-Based Translation
The constraints place restrictions on where locations may
be placed (i.e., on the function δ), on kill sets, on mode
annotations, and on which commands may be placed inside
an enclave.

The constraints ensure that any location that contains
confidential information (i.e., with a policy other than L)
is placed in an enclave, and that subsequent use of these
locations is consistent (i.e., accessed only by code in the
same enclave). The constraints also ensure that confidential
data cannot be accessed in non-enclave mode, and also that
enclaves are killed appropriately (i.e., no enclave is accessed
after it is killed, and enclaves are killed at most once).

The translation judgment for commands has the form

pc,G, U, c,G′ µ,Γ,K, δ, c′,Γ′,K ′

We ensure that if pc,G, U ` c : G′ for IMPS command c,
then c′ is the translated IMPE command such that, provided
the constraints are satisfied, pc, µ,Γ,K, U δ̀ c : Γ′,K ′.

Instead of the translation judgment explicitly producing a
set of constraints, for brevity we present inference rules for
the judgment such that constraints are implied by premises
that restrict modes, mode annotations, kill sets, etc.

The translation judgment for expressions has the form
G, e, σp µ,Γ, δ, e′, σp where e is an IMPS expression
such that G ` e : σp holds and e′ is the translated IMPE
expression such that, provided the constraints are satisfied,
µ,Γ δ̀ e

′ : σp holds.
The judgment for translating base types is σ

typ
 δ σ. It

states that an IMPS base type σ is translated to an IMPE
base type σ. It is parametrized by δ to ensure that type envi-
ronments for functions types are translated appropriately.

Figure 10 shows the type translation. In the rule for type
environments, premise ∀l ∈ dom(G). G(l) = (σp, rt)∧ p 6≤
L =⇒ δ(l) 6= N ensures that all confidential locations

int
typ
 δ int cond

typ
 δ cond

µ

σ
typ
 δ σ

σp ref
rt typ
 δ σ

µ
p refrt

G– typ
 δ Γ– G+ typ

 δ Γ+

G–, U
p→ G+ typ

 δ Γ–,K–, U
p,µ−→ Γ+,K+

dom(G) = dom(Γ)

∀y ∈ dom(G). G(y)
typ
 δ Γ(y)

∀l ∈ dom(G). G(l) = (σp, rt) ∧ p 6≤ L =⇒ δ(l) 6= N

G typ
 δ Γ

Figure 10. Type translation rules

have appropriate enclave assignments (even if these loca-
tions are not used by the program).

Figure 11 shows the translation for expressions. Transla-
tion for expressions proceeds by first translating the types.
They enforce the invariant that a location in enclave Ei
is accessed in the same mode Ei. Rules TR-INT, TR-VAR,
TR-LOC, TR-CND, and TR-OP are straightforward.

Rule TR-DEREF translates a dereference expression, The
premise µ′ 6= N =⇒ µ = µ′ generates a conditional
constraint such that if the dereferenced location is in an
enclave (µ′ 6= N) then the expression is evaluated in the
same enclave (µ = µ′). Similarly, rule TR-ISUNSET ensures
that if a condition location is dereferenced, then the mode in
which the expression is evaluated is appropriate.

Rule TR-FUNCTION requires that if the post type environ-
ment Γ+ has any variables with policies more restrictive than
L (¬isVarLowContext(Γ+)), then the function is defined in
an enclave (µ 6= N). Intuitively, any data left in variables at
the end of the function invocation may be observable by the
code that invoked the function. If that data includes confi-
dential information, then the function should not be invoked
by non-enclave code.

Figure 12 shows the inference rules for translating com-
mands. Most of these rules are straightforward and closely
follow the premises of the corresponding typing rules.
Premise µ 6∈ K occurs in many of the rules, and ensures
that code in killed enclaves cannot be executed.

Rule TR-SEQ drives the entire translation. Intuitively,
given a sequence c1; . . . ; cn, it translates each sub-command
ci by assigning them a different mode variable µi. If the
translation infers that µ0 = N but µi 6= N , then the trans-
lated sub-command c′i is placed inside an enclave. Variable
Ki is the kill set immediately before the execution of c′i, K

′
i

is the kill set immediately after the execution of c′i, and K ′′i
is the set of enclaves (if any) that can be safely killed after
executing c′i. Thus, we have that Ki+1 = K ′i ∪K ′′i .

Constraint K ′i ∩ K ′′i = ∅ ensures that an enclave is not
killed more than once. Constraint µ0 6= N =⇒ (µ0 =
µi ∧ K ′′i = ∅) states that if sequence executes entirely in
an enclave (µ0 6= N) then all sub-commands are in the same
enclave and no enclaves are killed. Constraint µi 6= N∧µi =
µi+1 =⇒ K ′′i = ∅ ensures that no enclave can be killed
between sequences executing in same enclave.

Constraint µi 6= N ∧ (µi 6= µi+1 ∨ K ′′i 6= ∅) =⇒
isVarLowContext(Γi) ensures that if execution exits an en-
clave (i.e., if command c′i executes in an enclave, but the
sequence itself is not in an enclave) then no variables con-
tain confidential information when the enclave exits. This
is required to enforce typing rule T-ENCLAVE. Notice that
an enclave exit after command ci does not necessarily mean
that µi+1 = N . It may signal the start of a different enclave,
hence we also state µi 6= µi+1 in the antecedent.

Rule TR-SEQ uses utility function processSeqOutput
which inserts enclave and kill commands appropriately into
the translation. Intuitively, enclave is introduced for a com-
mand c′i if there is a mode change. Command kill(j) is in-
serted after command c′i if j ∈ K ′′i . Pseudo code for pro-
cessSeqOutput is presented in Appendix D.

Rule TR-IF-ELSE requires that same sets of enclaves are
killed in both the branches. Also, if variables contain confi-
dential information on exit of either branch, then the outer
mode should not be normal. Rule TR-IF-ISUNSET always
places the command in an enclave to ensure that the premises
of typing rule T-IF-ISUNSET are met. Rule TR-WHILE re-
quires that no enclave is killed in the loop body. Rule
TR-CALL requires that if set U is non-empty, then the func-
tion is defined in an enclave.

Soundness of Translation Successful translation of well-
typed IMPS program produces a well-typed IMPE program.

Theorem 2 (Soundness of Translation). Let G be a well-
typed IMPS environment and Γ be an IMPE environment
that is well-typed for δ. For all commands c ∈ IMPS, if
pc,G, U ` c : G′ and pc,G,K, c,G′ µ,Γ, U, δ, c′,Γ′,K ′

then pc, µ,Γ,K, U δ̀ c
′ : Γ′,K ′

Given a well-typed IMPS program and environment G, if
the translation is successful using an IMPE environment Γ
that is well-typed for δ, then the translated IMPE program is
also well-typed. Since a well-typed IMPE program is secure
(Theorem 1), the translation thus guarantees security against
all the attackers described earlier.

Note that well-typedness of the translated program is con-
tingent on the success of translation. The only way that trans-
lation will fail is if predicate isVarLowContext(Γ′) does not
hold for Γ′ at enclave exit, i.e., a variable contains confiden-
tial information when the enclave exits. This is because the
trivial solution of putting all code and data inside a single en-
clave will succeed provided there is no confidential informa-
tion left in variables at the end of the program. One approach
to ensure translation always succeeds is to add a semantics-

TR-INT

G, n, intp µ,Γ, δ, n, intp

TR-VAR

σ
typ
 δ σ Γ(x) = σp

G, x, σp µ,Γ, δ, x, σp

TR-LOC

σp ref
rt typ
 δ σ

µ′

p refrt Γ(l) = σp δ(l) = µ′

G, l, (σp ref
rt)q µ,Γ, δ, l, (σµ

′

p refrt)q

TR-CND
δ(cnd) = µ′

G, cnd , condp µ,Γ, δ, cnd , condµ
′

p

TR-DEREF

G, e, (σp ref
rt)q µ,Γ, δ, e′, (σµ

′

p refrt)q µ′ 6= N =⇒ µ = µ′

G, ∗e, σptq µ,Γ, δ, ∗e′, σptq

TR-ISUNSET
δ(cnd) = µ′ µ′ 6= N =⇒ µ = µ′

G, isunset(cnd), intp µ,Γ, δ, isunset(cnd), intp

TR-OP
G, e1, σp µ,Γ, δ, e′1, σp G, e2, σq µ,Γ, δ, e′2, σq

G, e1 ⊕ e2, σptq µ,Γ, δ, e′1 ⊕ e′2, σptq

TR-FUNCTION

G–, U
p→ G+ typ

 δ Γ–,K–, U
p,µ−→ Γ+,K+

p,G–, U, c,G+ µ,Γ–,K–, δ, c′,Γ+,K+ ¬isVarLowContext(Γ+) =⇒ µ 6= N

G, λ.c, (G–, U
p→ G+)q µ,Γ, δ, λµ.c′, (Γ–,K–, U

p,µ−→ Γ+,K+)q

Figure 11. Translation of expressions

preserving transformation that zeroes-out variables as soon
as they are dead.

6.2 Constraint Solution and Optimization
The constraints used in the translation of IMPS programs to
IMPE can be expressed as a Boolean SAT instance, assum-
ing that the mode setMode = {N,E1, E2, . . . } is of a fixed
finite size. Specifically, the constraints restrict modes of lo-
cations and code, and kill sets (which are sets of enclaves).
All constraints generated during translation can be encoded
straightforwardly in a SAT formula. For a program of size n
with m locations where |Mode| = k, the size of SAT for-
mula is O((n+m)2 + nk).3

There may be many possible translations of a given IMPS
program without any of them being clearly the “best” trans-
lation. Naively, we could try to place the entire program and
all locations in a single enclave. However, even if success-
ful, this is not always desirable for at least two reasons. First,
an enclave may have size restrictions and a program can be
too large to fit.4 Second, even if the program can fit inside
an enclave, it may be desirable to have as little code as pos-
sible in enclaves, to reduce the trusted computing base (i.e.,
the code that must be assumed to be correct; security for a
non-enclave active attacker assumes that enclave code does
not contain exploitable vulnerabilities).

There are several possible criteria for comparing the
quality of translations, including minimizing the code and

3 Intuitively, (n + m) mode variables, pairs of which are constrained to
be either equal or different are generated, resulting in at most (n + m)2

constraints. Additionally, nk kill set constraints (e.g., Ki+1 = K′
i ∪K′′

i
in TR-SEQ) are generated. Thus the size of the SAT formula is O((n +
m)2 + nk).
4 On some models, SGX enclaves have a maximum size of 231 bits [24].

data inside enclaves (which corresponds to minimizing the
trusted computing base (TCB)), reducing the lifetime of con-
fidential data by killing enclaves as soon as possible, or min-
imizing the performance penalty of enclaves.5

We can cast our translation as a constraint optimization
problem that optimizes an objective function that approxi-
mates TCB-size, lifetime of enclaves, performance penalty,
or a combination of these.

A pseudo-Boolean function f : {0, 1}n → R is a real-
valued function of a finite number of 0-1 valued vari-
ables [8]. A pseudo-Boolean constraint is an equality or in-
equality between pseudo-Boolean functions. Pseudo-Bool-
ean optimization (PBO) optimizes a pseudo-Boolean func-
tion subject to pseudo-Boolean constraints. PBO is 0-1 mul-
tilinear integer programming and is NP-hard [8]. We can en-
code the SAT formula for a translation as a pseudo-Boolean
constraint and express TCB size and performance as pseudo-
Boolean functions to be minimized.

We can compute the TCB cost by counting the number of
non-sequence commands placed in enclaves.

Killing an enclave as soon as possible reduces the win-
dow of vulnerability. This can be achieved by maximizing
the size of kill sets at all program points, which effectively
kills enclaves as soon as possible. Moreover, we can facili-
tate killing enclaves as early as possible by using more en-
claves, i.e., partitioning code and data into enclaves at fine
granularity. This is also optimized by maximizing the size
of kill sets. Note that to avoid spuriously putting public data
into enclaves to increase the total number of enclaves that
can be killed, we require that each killed enclave has at least
some confidential data stored in it.

5 In Intel SGX, entering or exiting an enclave flushes all TLB entries [24].

TR-SKIP

G typ
 δ Γ µ 6∈ K

pc,G, U, skip,G µ,Γ,K, δ, skip,Γ,K

TR-ASSIGN

G typ
 δ Γ G, e, σq µ,Γ, δ, e′, σq

(pc t q) 6≤ L =⇒ µ 6= N µ /∈ K
pc,G, U, x := e,G[x 7→ σpctq] µ,Γ,K, δ, x := e′,Γ[x 7→ σpctq],K

TR-DECLASSIFY

G typ
 δ Γ G, e, σq µ,Γ, δ, e′, σq

(pc t q) 6≤ L =⇒ µ 6= N µ /∈ K
L,G, U, x := declassify(e),G[x 7→ σL] µ,Γ,K, δ, x := declassify(e′),Γ[x 7→ σL],K

TR-OUTPUT
G, e, σp µ,Γ, δ, e′, σp

G typ
 δ Γ µ 6∈ K

pc,G, U, output e to `,G µ,Γ,K, δ, output e′ to `,Γ,K

TR-SETCND
δ(cnd) = µ′ µ′ 6= N =⇒ µ = µ′

pc = L µ 6∈ K
pc,G, U, set(cnd),G µ,Γ,K, δ, set(cnd),Γ,K

TR-UPDATE

G, e1, σp ref
rt
q µ,Γ, δ, e′1, σ

µ′

p refrtq
G, e2, σp′ µ,Γ, δ, e′2, σp′

G typ
 δ Γ µ′ 6= N =⇒ µ = µ′ µ 6∈ K

pc,G, U, e1 ← e2,G µ,Γ,K, δ, e′1 ← e′2,Γ,K

TR-SEQ

Gi
typ
 δ Γi pc,Gi−1, U, ci,Gi µi,Γi−1,Ki, δ, c

′
i,Γi,K

′
i

∀i ∈ {1 . . . n}. Ki+1 = K ′i ∪K ′′i K ′′i ∩K ′i = ∅
µ0 6= N =⇒ (µ0 = µi ∧K ′′i = ∅) µ 6∈ K1

µi 6= N ∧ µi = µi+1 =⇒ K ′′i = ∅
µi 6= N ∧ (µi 6= µi+1 ∨K ′′i 6= ∅) =⇒ isVarLowContext(Γi)

c′ = processSeqOutput(~c′1:n, µ0, ~µ1:n, ~K ′′1:n)

pc,G0, U, c1; . . . ; cn,Gn µ0,Γ0,K1, δ, c
′,Γn,Kn+1

TR-IF-ELSE

G typ
 δ Γ G, e, intp µ,Γ, δ, e′, intp pc′,G, U, c1,G′ µ,Γ,K, δ, c′1,Γ

′,K ′

pc′,G, U, c2,G′ µ,Γ,K, δ, c′2,Γ
′,K ′ pc t p ≤ pc′ (¬isVarLowContext(Γ′) ∨ p 6≤ L) =⇒ µ 6= N µ 6∈ K

pc,G, U, if e then c1 else c2,G′ µ,Γ,K, δ, if e′ then c′1 else c
′
2,Γ
′,K ′

TR-IF-ISUNSET

G typ
 δ Γ G, isunset(cnd), intL µ,Γ, δ, isunset(cnd), intL

pc,G, U ∪ {cnd}, c1,G′ µ,Γ,K, δ, c′1,Γ
′,K ′ pc,G, U, c2,G′ µ,Γ,K, δ, c′2,Γ

′,K ′ µ /∈ {N} ∪K
pc,G, U, if isunset(cnd) then c1 else c2,G′ µ,Γ,K, δ, if isunset(cnd) then c′1 else c

′
2,Γ
′,K ′

TR-WHILE

G typ
 δ Γ G, e, intp µ,Γ, δ, e′, intp pc′,G, U, c,G µ,Γ,K, δ, c′,Γ,K

(¬isVarLowContext(Γ) ∨ p 6≤ L) =⇒ µ 6= N pc ≤ pc′ µ 6∈ K
pc,G, U,while e do c,G µ,Γ,K, δ,while e′ do c′,Γ,K

TR-CALL

G typ
 δ Γ Gout

typ
 δ Γout

G, e,G–, U
p→ G+ µ,Γ, δ, e′,Γ–,K–, U

p,µ−→ Γ+,K+

∀y ∈ dom(Γ+),Γ+(y) ≤ Γout(y)
∀y ∈ dom(Γ) \ dom(Γ+). Γ(y) = Γout(y)

∀y ∈ dom(Γ–),Γ(y) ≤ Γ–(y) U 6= ∅ =⇒ µ 6= N
K = K– Kout = K+ µ 6∈ K

pc,G, U, call(e),Gout µ,Γ,K, δ, call(e′),Γout,Kout

TR-SUB

G1
typ
 δ Γ1 G′1

typ
 δ Γ′1

G2
typ
 δ Γ2 G′2

typ
 δ Γ′2

Γ2 ≤ Γ1 Γ′1 ≤ Γ′2 pc2 ≤ pc1
pc1,G1, U, c,G′1 µ,Γ1,K, δ, c

′,Γ′1,K

pc2,G2, U, c,G′2 µ,Γ2,K, δ, c
′,Γ′2,K

Figure 12. Translation for commands

Enclave entry and exit is expensive and penalizes the run-
time performance. Although we have not implemented it, we
could approximate the run-time cost using a Control Flow
Graph (CFG) and approximating how frequently execution
enters and exits enclaves.

7. Comparison with SGX
Although there are several hardware-enforced enclave-like
mechanisms, IMPE is most heavily influenced by SGX. We
discuss how IMPE relates to SGX.

First, we assume that enclaves are isolated from each
other: code in enclave Ei can not access memory in enclave
Ej when i 6= j. SGX does enforce this via an access control
mechanism, but uses a single encryption key to protect the
contents of all enclaves. Some enclave mechanisms (such as
TrustZone) do not provide multiple enclaves.

Second, we assume that once an enclave is killed, the con-
tents of the enclave can never be recovered, thus providing
forward secrecy. However, the current design of SGX bases
access control decisions on the initial measurement of an en-
clave. That is, if another enclave is created that has the exact
same initial contents as the killed enclave, a replay attack
may be possible, whereby the new enclave decrypts memory
pages from the killed enclave.

Third, our model assumes inputs to an execution are pro-
vided in the initial memory and output channels exist for
security levels L and H . Our model can be easily modified
to use channels for input instead of the initial memory. Se-
cure channels from an SGX enclave to remote parties can be
straightforwardly implemented using cryptographic mecha-
nisms. However, SGX currently provides little support for
secure output to local devices and no support for secure local
input, possibly making it unsuitable for, e.g., securely check-
ing a locally-entered password. However, support for secure
local I/O is emerging, such as TrustZone’s Trusted User In-
terface [17]. This supports our modeling choice to allow the
enclave to receive and send confidential information, which
can represent (remote or local) secure I/O.

8. Evaluation
We implement six case studies (many inspired by related
work [7, 16, 34, 36]) to evaluate the expressiveness of se-
curity policies, and the translation from IMPS to IMPE.
The translator and case studies are available online [19].
All case studies are implemented as (well-typed) IMPS pro-
grams which translate successfully to IMPE programs. Thus
all case studies are secure against passive, enclave, and non-
enclave active attackers.

We extend the calculi with strings, pairs, and arrays. The
types of IMPE and IMPS are extended as follows.

σ ::= · · · | string | σ1 × σ2 | τµ []rt

σ ::= · · · | string | σ1 × σ2 | τ []rt

An array is a sequence of locations with the constraint that
all elements of the array are in the same enclave (or all ele-
ments are in no enclave). IMPE array type τµ []rt indicates
an array that contains values of type τ , mode µ indicates in
which enclave (if any) the array is placed and rt indicates
if the contents of array are mutable. The IMPS array type is
similar except that there is no mode annotation. Types for
strings and pairs are straightforward.

Password Authentication Recall the password authentica-
tion example (with declassification) from Section 3.2. Con-
sider an IMPS version (i.e., without any enclave annota-
tions). Translating it with our tool gives the following.

enclave(1, status := declassify(∗password = ∗guess));
kill(1);set(end); output status to L

The translation assigns enclave E1 to locations password
and guess (i.e., translated locations have types password :
intE1

H ref immut and guess : intE1

L
end↗> ref immut). The de-

classification is placed inside E1 because it reads password
and guess. The translation kills the enclave immediately af-
ter exiting the enclave. This is as early as possible, thus min-
imizing the window of vulnerability.

Private Browsing A private session of a web browser al-
lows a user to browse the web with the assurance that the
browsing history cannot be retrieved after the private ses-
sion has ended. However, private browsing implementations
are error prone, and many leak information from private ses-
sions [1, 33]. We model a private browsing session where the
user starts a private session, browses, then ends the session.
The security requirement can be expressed as an erasure pol-
icy that states that all private browsing data (and data derived
from it) should be erased when a condition marking the end
of the session is set.

Since our calculi model input as the initial memory, we
assume that the initial memory contains the user’s input to
the private session (e.g., an array of URLs to visit). The
user’s input has erasure policy H end↗>, where condition
end is set at the end of the private session. During the private
session, output is sent to channel H . Once the session ends,
we model normal browsing by output to channel L.

Translation assigns enclave E1 to all the locations con-
taining the user’s input to the private session. It also places
all code related to the private browsing session inside en-
clave E1 and generates a kill instruction before resuming
normal browsing.

Secure Calculator We implement a secure calculator that
performs public operations on confidential data. This is
a model of, for example, a tax computation, where well-
known operations (the tax computation) are performed on
confidential input (an individual’s financial information).
The operations are chosen dynamically (i.e., public inputs
specify which operations to perform). The result of the com-
putation is output to channel H . The initial memory con-
tains an array of operations to perform (with security policy

L), and a stack of confidential data (with security policy
H). The program iterates over the array of operations, per-
forming them on the stack of data. The following snippet is
illustrative of the code for this case study.

while (i < numOps)
if (∗ops[i] = “add”) then

stack[top− 1]← ∗stack[top− 1] + ∗stack[top];
else if (∗ops[i] = “sub”) then

...
top := top− 1;
output ∗stack[top] to H;
i := i + 1

The translation places the confidential data in enclave E1

and the array of operations outside the enclave. To minimize
the TCB, the translation places in the enclave each command
that reads or writes the confidential stack, but leaves all other
commands outside the enclave. For example:

if (∗ops[i] = “add”) then
enclave(1, stack[top− 1]←

∗stack[top− 1] + ∗stack[top]);

This reduces the amount of code in enclaves, but will
likely result in poor performance, due to frequent enclave
entries and exits. If this is a concern, the translation could
use a different objective function that balances estimated
performance with TCB size.

Secure Map-Reduce We model a word-count program that
takes a set of private documents, and computes word fre-
quencies, similar to a case study by Schuster et al. [34].
The program follows the map-reduce model, in which partial
counts of each word in a document are first emitted and the
partial counts are then combined. Each document is modeled
as an array of confidential strings doc : stringH []immut, and
the initial memory contains several such documents. A map
function takes a document as input and produces counts of
each word in the document; a reduce function takes as input
a specific word, and sums the partial counts of the word. The
output of the program wordcount : (string× int)H []mut is an
array of pairs of words and the frequency of that word.

The translation places the entire map and reduce func-
tions inside an enclave, as well as all of the documents. That
is, the entire computation is placed inside an enclave, as is
the hand-coded map-reduce computation of Schuster et al.
The enclave is killed after map-reduce computation.

Secure Query Processing We model query processing
over confidential data, similar to the Query Processing over
Encrypted Database case study by Sinha et al. [36]. Given a
database table with public keys (e.g., employee names, in the
column name) and confidential data (e.g., wage payments,
in column wages), the query selects rows that match a given
key, and sums the confidential data. The selection of rows
uses only non-confidential data but the subsequent summing
uses confidential data.

We model columns name and wages as arrays, with poli-
cies L andH respectively. Row selection chooses all indices
of array name that are equal to key “alice”. Summing com-
putes the sum of all wages corresponding to the selected in-
dices.

The translation places array wages in enclave E1, but
leaves array name outside of any enclave. The row selection
computation is placed outside an enclave, and the summing
operation is placed inside enclave E1. Our automated trans-
lation places the same data and computation in enclaves as
the (manually coded) case study of Sinha et al.

Secure Chat Client We model a secure chat client, in-
spired by the case study of Askarov et al. [7]. Messages sent
and received by the client are emitted to a log. When the user
enters a “clear” command, all messages (including the log)
should be erased. We model messages sent and received and
commands entered by the user as data in the initial memory.
We model logging as an update to location log. We give mes-
sages and the log the erasure policy L clear↗>, which states
that the contents of log are erased when condition clear is
set. The condition is set only when a “clear” command is is-
sued. The translation places log in an enclave, as well as all
code that updates the log.

9. Related Work
Models for Secure Hardware Architecture and Compila-
tion Fournet and Planul [16] securely compile imperative
programs into distributed programs using cryptography and
hardware mechanisms (such as Trusted Platform Modules
(TPM) and secure boot) to enforce noninterference for con-
fidentiality and integrity. They emulate secure memory (that
cannot be accessed by adversaries) and enforce control-flow
restrictions on the distributed program. The compiled pro-
gram is proven to be at least as secure as the source pro-
gram: for every attack on the compiled program there is a
corresponding attack on the source program, with the same
information leakage. By contrast, we focus on expressive se-
curity policies (erasure and declassification) that go beyond
noninterference. Their system doesn’t provide erasure guar-
antees. We target a single machine and use enclave mecha-
nisms that directly provide secure memory (instead of emu-
lating secure memory via cryptographic mechanisms). Both
our work and theirs shield the programmer from the mecha-
nisms used to enforce security. Although we do not focus
on integrity guarantees in this work, we rely on enclaves
to provide integrity guarantees on code running inside en-
claves (cf. security against non-enclave active attackers). We
believe that our target calculus IMPE can be extended to pro-
vide integrity guarantees about computation inside enclaves.

VC3 [34] enables distributed map-reduce computations
in untrusted cloud environments while keeping code and
data secret, using SGX enclaves to protect against adver-
saries that might control the entire software stack of the
cloud provider’s infrastructure. We instead focus on provid-

ing confidentiality for general programs in the presence of an
attacker controlling the entire software stack of a single sys-
tem. In VC3, all data is confidential (i.e., equivalent to our
policy H) and all map-reduce computation of a given node
is placed inside a single enclave on that node. By contrast,
we use expressive security policies (i.e., declassification and
erasure) and infer enclave placement to optimize various ob-
jective functions. VC3 ensures that only address-taken vari-
ables are read and written. The region-self-integrity mecha-
nism prevents unintended disclosure of information due to
low-level errors (e.g., buffer overflow). This can be used as a
defense-in-depth mechanism in our work to reduce the pos-
sibility of an enclave active attacker exploiting vulnerabili-
ties in enclave code.

Moat [36] models SGX using BoogiePL [13] and verifies
the confidentiality of binary SGX programs in the presence
of “havocing” adversaries capable of modifying non-enclave
code. A havocing adversary is analogous to our non-enclave
attacker, which can arbitrarily modify non-enclave code.
Thus, ensuring confidentiality against a havocing adversary
corresponds to security for a non-enclave active attacker.
Our work also considers enclave active attackers, which are
more powerful than havocing adversaries. Our work differs
from Moat in shielding developers from low-level enclave-
specific details.

Ironclad [22] provides verifiable remote equivalence: an
application running on an untrusted server is indistinguish-
able from its high-level abstract state machine. Ironclad uses
secure hardware (e.g., TPM) as the root of trust and to enable
secure channels from verified software to remote clients. Our
work could potentially be used in an Ironclad-like setting to
reduce verification effort: enclave inference can be used to
identify and minimize the security-critical parts of an appli-
cation, which reduces the code that must be verified.

Sinha et al. [37] enforce confidentiality by placing an en-
tire application inside an SGX enclave and restricting its
communication with external memory through a narrow in-
terface to a trusted library. They enforce Information Release
Confinement, which ensures that the application satisfies a
form of control-flow integrity and never directly accesses
non-enclave memory. This work is complementary to ours,
and could be used for defense-in-depth in our work, making
it harder for an enclave active attacker to exploit vulnerabil-
ities in enclave code.

Patrignani et al. [26] provide a fully-abstract secure com-
pilation scheme for compiling strongly typed object-oriented
languages to protected module architectures (PMAs) that
offer memory isolation mechanisms and are similar to en-
claves. Objects containing private methods are placed in-
side protected modules thus preventing a low-level attacker
from bypassing encapsulation mechanisms. The compilation
scheme is proven to preserve and reflect the encapsulation of
the source program. Their low-level attacker is similar to the
non-enclave active attacker in our model. Though we do not

aim for full abstraction, our work provides a stronger infor-
mation flow guarantee for applications with more expressive
security requirements against different attackers.

None of the above works consider applications using
multiple enclaves whereas our programming model supports
multiple enclaves seamlessly.

Language-based Information-Flow Control Much work
in language-based information-flow control is concerned
with enforcing application-specific security guarantees [14,
25, 29, 38] Our work extends these techniques to a setting
where the underlying software stack is not trusted. That is,
we consider strong low-level attackers that are capable of
arbitrary corruption of some parts of a program.

Information Erasure A key emphasis in our work is the
enforcement of information erasure using SGX-like mech-
anisms. Information erasure is related to data deletion, but
requires that the observable behavior of a system reveals
nothing about the deleted data, which may, for example, re-
quire tracking and deletion of data derived from the deleted
data. Language-based information erasure was introduced
by Chong and Myers [9], and several works present tech-
niques for enforcing erasure (e.g., [7, 10, 23]). By contrast
with these previous language-based approaches, we protect
against more powerful lower-level attackers.

Other work uses language- and system-based techniques
to ensure data deletion at the system- or architectural-level of
abstraction. Chow et al. [11] enforce data deletion by analyz-
ing the lifetime of sensitive data, and automatically zeroing
out data in memory. Perlman [27] proposes a file system that
uses cryptographic techniques to reliably delete files. These
approaches may fail to remove derived data, and thus will
not enforce information erasure. Lacuna [15] runs sensitive
computations in a “private session” and can securely delete
all session data at the end of the session (including data used
to communicate with peripheral devices). Provided all sen-
sitive information is contained within a private session, La-
cuna can enforce both data deletion and information erasure.

Acknowledgments
This material is based upon work supported by the National
Science Foundation under Grant No. 1054172.

References
[1] G. Aggarwal, E. Bursztein, C. Jackson, and D. Boneh. An

analysis of private browsing modes in modern browsers. In
Proceedings of the 19th USENIX Conference on Security,
2010.

[2] Apple. iOS security. https://www.apple.com/business/
docs/iOS_Security_Guide.pdf, Sept. 2015.

[3] O. Arden, M. D. George, J. Liu, K. Vikram, A. Askarov, and
A. C. Myers. Sharing mobile code securely with information
flow control. In Proceedings of the 2012 IEEE Symposium on
Security and Privacy, pages 191–205, 2012.

https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf

[4] ARM. ARM security technology — building a se-
cure system using TrustZone technology. http:

//infocenter.arm.com/help/topic/com.arm.

doc.prd29-genc-009492c/PRD29-GENC-009492C_

trustzone_security_whitepaper.pdf, 2009.

[5] A. Askarov and A. Sabelfeld. Tight enforcement of
information-release policies for dynamic languages. In Pro-
ceedings of the 2009 22nd IEEE Computer Security Founda-
tions Symposium, pages 43–59, 2009.

[6] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-
insensitive noninterference leaks more than just a bit. In
Proceedings of the 13th European Symposium on Research
in Computer Security, Oct. 2008.

[7] A. Askarov, S. Moore, C. Dimoulas, and S. Chong. Crypto-
graphic enforcement of language-based erasure. In Proceed-
ings of the 28th IEEE Computer Security Foundations Sympo-
sium, July 2015.

[8] E. Boros and P. L. Hammer. Pseudo-boolean optimization.
Discrete Applied Mathematics, 123(1-3):155–225, Nov. 2002.

[9] S. Chong and A. C. Myers. Language-based information era-
sure. In Proceedings of the 18th IEEE Workshop on Computer
Security Foundations, pages 241–254, 2005.

[10] S. Chong and A. C. Myers. End-to-end enforcement of erasure
and declassification. In Proceedings of the 21st IEEE Com-
puter Security Foundations Symposium, pages 98–111, June
2008.

[11] J. Chow, B. Pfaff, T. Garfinkel, and M. Rosenblum. Shredding
your garbage: Reducing data lifetime through secure dealloca-
tion. In USENIX Security, 2005.

[12] E. S. Cohen. Information transmission in computational sys-
tems. ACM SIGOPS Operating Systems Review, 11(5):133–
139, 1977.

[13] R. DeLine and K. R. M. Leino. BoogiePL: A typed procedural
language for checking object-oriented programs. Technical
Report MSR-TR-2005-70, Microsoft Research, Mar. 2005.

[14] D. E. Denning. A lattice model of secure information flow.
Communications of the ACM, 19(5):236–243, 1976.

[15] A. M. Dunn, M. Z. Lee, S. Jana, S. Kim, M. Silberstein, Y. Xu,
V. Shmatikov, and E. Witchel. Eternal sunshine of the spotless
machine: Protecting privacy with ephemeral channels. In
Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, pages 61–75, 2012.

[16] C. Fournet and J. Planul. Compiling information-flow security
to minimal trusted computing bases. In Proceedings of the
20th European Conference on Programming Languages and
Systems, pages 216–235, 2011.

[17] GlobalPlatform. Trusted user interface API specifi-
cation v1.0. http://www.globalplatform.org/

specificationsdevice.asp, 2013.

[18] J. A. Goguen and J. Meseguer. Security policies and security
models. In Proceedings of the IEEE Symposium on Security
and Privacy, pages 11–20, Apr. 1982.

[19] A. Gollamudi. Impslator. https://github.com/anithag/
impslator, June 2016.

[20] P. Gutmann. Data remanence in semiconductor devices. In
The Tenth USENIX Security Symposium Proceedings, pages
39–54, 2001.

[21] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson,
W. Paul, J. A. Calandrino, A. J. Feldman, J. Appelbaum,
and E. W. Felten. Lest we remember: Cold boot attacks on
encryption keys. In Proceedings of the 17th USENIX Security
Symposium, July 2008.

[22] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno,
D. Zhang, and B. Zill. Ironclad apps: End-to-end security via
automated full-system verification. In USENIX Symposium on
Operating Systems Design and Implementation, Oct. 2014.

[23] S. Hunt and D. Sands. Just forget it—the semantics and
enforcement of information erasure. In Proceedings of the
17th European Symposium on Programming, pages 239–253,
2008.

[24] Intel. Intel software guard extensions (Intel SGX) program-
ming reference. https://software.intel.com/sites/

default/files/managed/48/88/329298-002.pdf,
2014.

[25] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing
robust declassification. In Proceedings of the 17th IEEE
Computer Security Foundations Workshop, June 2004.

[26] M. Patrignani, P. Agten, R. Strackx, B. Jacobs, D. Clarke,
and F. Piessens. Secure compilation to protected module
architectures. ACM Transactions on Programming Languages
and Systems, 37(2):6, 2015.

[27] R. Perlman. File System Design with Assured Delete. In Pro-
ceedings of the Third IEEE International Security in Storage
Workshop, pages 83–88, 2005.

[28] F. Pottier and V. Simonet. Information flow inference for ml.
ACM Transactions on Programming Languages and Systems,
25(1):117–158, Jan. 2003.

[29] A. Sabelfeld and A. C. Myers. Language-based information-
flow security. IEEE Journal on Selected Areas in Communi-
cations, 21(1):5–19, Jan. 2003.

[30] A. Sabelfeld and A. C. Myers. A model for delimited release.
In Proceedings of the 2003 International Symposium on Soft-
ware Security, number 3233 in Lecture Notes in Computer
Science, pages 174–191, 2004.

[31] A. Sabelfeld and D. Sands. Dimensions and principles of
declassification. In Proceedings of the 18th IEEE Computer
Security Foundations Workshop, pages 255–269, June 2005.

[32] N. Santos, H. Raj, S. Saroiu, and A. Wolman. Using ARM
Trustzone to build a trusted language runtime for mobile ap-
plications. In Proceedings of the 19th International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, pages 67–80, 2014.

[33] K. Satvat, M. Forshaw, F. Hao, and E. Toreini. On the privacy
of private browsing - a forensic approach. Journal of Infor-
mation Security and Applications, 19(1), Feb. 2014.

[34] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado,
G. Mainar-Ruiz, and M. Russinovich. VC3: Trustworthy data
analytics in the cloud using SGX. In Proceedings of the
2015 IEEE Symposium on Security and Privacy, pages 38–54,
2015.

http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://www.globalplatform.org/specificationsdevice.asp
http://www.globalplatform.org/specificationsdevice.asp
https://github.com/anithag/impslator
https://github.com/anithag/impslator
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf

[35] M.-W. Shih, M. Kumar, T. Kim, and A. Gavrilovska. S-NFV:
Securing NFV states by using SGX. In Proceedings of the
2016 ACM International Workshop on Security in Software
Defined Networks & Network Function Virtualization, pages
45–48, 2016.

[36] R. Sinha, S. Rajamani, S. Seshia, and K. Vaswani. Moat: Ver-
ifying confidentiality of enclave programs. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Com-
munications Security, pages 1169–1184, 2015.

[37] R. Sinha, M. Costa, A. Lal, N. P. Lopes, S. Rajamani, S. A.
Seshia, and K. Vaswani. A design and verification method-
ology for secure isolated regions. In Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, pages 665–681, 2016.

[38] D. Volpano, C. Irvine, and G. Smith. A sound type system for
secure flow analysis. Journal of Computer Security, 4(2-3):
167–187, Jan. 1996.

A. Enclave Equivalence
enc'

Equivalence relation
enc' is used to characterize the ability

of an active attacker. Intuitively, given commands c and c′,
we have c

enc'c′ if c and c′ have the same code in enclaves,
but may differ arbitrarily on non-enclave code. We define

enc'
using function χ which syntactically extracts enclave code.

Definition 6 (Enclave Equivalence). Two IMPE programs c1
and c2 are enclave equivalent, denoted c1

enc'c2, iff

χ(c1) = χ(c2)

where

χ(enclave(j, c)) = {(Ej , c)}
χ(λEj .c) = {(Ej , λEj .c)}
χ(λN .c) = χ(c)

and all atomic expressions and commands return the empty
set, e.g.,

χ(skip) = ∅
χ(n) = ∅

and all other expressions and commands recurse on sub-
expressions and sub-commands, e.g.,

χ(c1; . . . ; cn) = χ(c1) ∪ · · · ∪ χ(cn)

χ(e1 ⊕ e2) = χ(e1) ∪ χ(e2)

For example, given c1 = enclave(1, output 42 to L)
and c2 = l ← 1; enclave(1, output 42 to L), we have
χ(c1) = χ(c2) = {(E1, output 42 to L)}. The programs
c1 and c2 are thus enclave equivalent.

B. IMPE Type System
Figure 13 defines the relabeling relation ≤ on policies.

`1 v `2
`1 ≤ `2

p1 ≤ `2
p1 ≤ `2 cnd↗`′2

`′1 ≤ p2
`1

cnd↗`′1 ≤ p2

`1 v `2 `′1 v `′2
`1

cnd↗`′1 ≤ `2 cnd↗`′2

σ ≤ σ′ p ≤ q
σp ≤ σ′q σ ≤ σ

Γ–
2 ≤ Γ–

1 p2 ≤ p1 Γ+
1 ≤ Γ+

2

Γ–
1,K

–, U
p1,µ−→ Γ+

1,K
+ ≤ Γ–

2,K
–, U

p2,µ−→ Γ+
2,K

+

Figure 13. Policy ordering and subtyping

ST-INT

G ` n : intL

ST-CND
cnd ∈ Cond
G ` cnd : condL

ST-VAR

G(x) = σp

G ` x : σp

ST-LOC
G(l) = (σp, rt) l ∈ Loc \ Cond

G ` l : (σp ref
rt)L

ST-DEREF

G ` e : σp ref
rt
q

G ` ∗e : σptq

ST-ISUNSET
cnd ∈ Cond

G ` isunset(cnd) : intL

ST-FUNCTION
p,G–, U ` c : G+

G ` λ.c : G–, U
p→ G+

L

ST-OP
G ` e1 : intp G ` e2 : intq
G ` e1 ⊕ e2 : intptq

Figure 14. IMPS typing rules for expressions

C. IMPS Type System
Subtyping for IMPS types closely follows the subtyping of
IMPE types. Figures 14 and 15 describe the type system.

D. Pseudo Code
Function processKill inserts kill(j) whenever an enclave Ej
is killed and function processSeqOutput wraps the largest
sequence of code with mode Ej in enclave(j, . . .)

processKill(K) =

matchK with

|k ∪K ′ → kill(k); processKill(K ′)

|∅ → ()

processSeqOutput(~c′1:z, µ0, ~µ1:z, ~K1:z) =

match (µ0, ~µ1:z, ~K1:z) with

| µ′, (µ′ . . . µ′), (∅ . . . ∅)→ c′1; . . . ; c′z

| N, (N, ~µ2:z), (K
′, ~K2:z)→

ST-SKIP

pc,G, U ` skip : G′

ST-ASSIGN
G(x) = σq G ` e : σp

p 6= >
pc,G, U ` x := e : G[x 7→ σpctp]

ST-DECLASSIFY
G(x) = σq G ` e : σp p 6= >

pc = L hasNoVars(e) allLocImmutable(e)

pc,G, U ` x := declassify(e) : G[x 7→ σL]

ST-UPDATE

G ` e1 : (σp ref
rt)q G ` e2 : σp′

p′ t q t pc ≤ p rt = mut p, p′, q 6= >
pc,G, U ` e1 ← e2 : G

ST-SEQ

∀i ∈ {1 . . . n}. pc,Gi−1, U ` ci : Gi
pc,G0, U ` c1; . . . ; cn : Gn

ST-SETCND
pc = L

cnd ∈ Cond \ U
pc,G, U ` set(cnd) : G

ST-OUTPUT
G ` e : σp p 6= >

cur(p, U) t cur(pc, U) v `
pc,G, U ` output e to ` : G

ST-IF-ISUNSET
G ` isunset(cnd) : intL

pc,G, U ∪ {cnd} ` c1 : G′ pc,G, U ` c2 : G′

pc,G, U ` if isunset(cnd) then c1 else c2 : G′

ST-IF-ELSE
pc′,G, U ` c1 : G′ G ` e : intp

pc t p ≤ pc′ pc′,G, U ` c2 : G′ p 6= >
pc,G, U ` if e then c1 else c2 : G′

ST-SUB
pc1,G1, U1 ` c : G′1 pc2 ≤ pc1
G2 ≤ G1 U2 ⊇ U1 G′1 ≤ G′2

pc2,G2, U2 ` c : G′2

ST-WHILE
µ,G δ̀ e : intp pc′,G, U ` c : G

pc t p ≤ pc′ p 6= >
pc,G, U ` while e do c : G

ST-CALL

G ` e : (G–, U
p→ G+)q

pc t q ≤ p ∀y ∈ dom(G–),G(y) ≤ G–(y)
∀y ∈ dom(G+). G+(y) ≤ Gout(y)

∀y ∈ dom(G) \ dom(G+). G(y) = Gout(y) q 6= >
pc,G, U ` call(e) : Gout

Figure 15. IMPS typing rules for commands

c′1; processKill(K ′);

processSeqOutput(~c′2:z, µ0, ~µ2:z, ~K2:z)

| N, (Ej , . . . , Ej , N, ~µm+1:z),

(∅, . . . ∅,Km−1, ~Km:z)→
enclave(j, c′1; . . . ; c′m−1); processKill(Km−1);

processSeqOutput(~c′m:z, µ0, ~µm:z, ~Km:z)

| N, (Ej , . . . , Ej , Eu, ~µm+1:z),

(∅, . . . ∅,Km−1, ~Km:z)→
enclave(j, c′1; . . . ; c′m−1); processKill(Km−1);

processSeqOutput(~c′m:z, µ0, ~µm:z, ~Km:z)

E. Proofs
We first prove the soundness of IMPE type system, Theorem 1, in Section E.1 and then prove the soundness of translation,
Theorem 2 in Section E.2.

E.1 Soundness of IMPE Type System
The proof for Theorem 1 follows the technique of Pottier and Simonet [28]. The language IMPE2 extends IMPE to include
value pairs.

v ::= · · · | (v1 | v2)

The pair construct represents values that may arise in two different executions of a program. They are used to track how registers
and memories differ in different executions of a program. Register (Memory) in IMPE is a function from variables (locations)
to value pairs. We use 〈c, r,m,K〉• to denote IMPE2 configuration. It has the same meaning as the IMPE configuration except
that the register r and memory m now refer to IMPE2 register and memory functions.

We define the semantics of IMPE2 with a large step operational semantics denoted by ⇓2. The judgment for the evaluation
of commands has the following form is similar to the large step defined in Section 2.3.

µ ` 〈c, r,m,K〉• ⇓2com r′;m′;K ′ . t′•

Most of the rules are similar to the semantics defined in Figure 3. Rule SQ-SEQ is a straight-forward adapation of the rule
SEQ. Rule SQ-IF-DIV states that if the conditional evaluates to pair value, then the final configuration is the result of merging
the corresponding configurations on each projection. Figure 16 defines the merge operation on locations, registers, traces and
kill sets. Similarly, rules SQ-WHILE-DIV and SQ-CALL-DIV state that if the expression evaluates to a pair value, then the final
configuration is the result of merging the corresponding configurations on each projection.

SQ-SEQ

∀i ∈ {1 . . . z}, µ ` 〈ci, ri−1,mi−1,Ki−1〉• ⇓2com ri;mi;Ki . ti•
µ ` 〈c1; . . . ; cz, r0,m0,K0〉• ⇓2com rz;mz;Kz . t0 · tz•

SQ-IF-DIV

µ ` 〈e, r,m,K〉• ⇓2exp (v0 | v1) cleft = (v0 == 1)?c0 : c1 cright = (v1 == 1)?c0 : c1
µ `δ 〈cleft, brc1, bmc1, bKc1〉 ⇓ r′1;m′1;K1 . t

′
1 µ `δ 〈cright, brc2, bmc2, bKc2〉 ⇓ r′2;m′2;K2 . t

′
2

r̂ = merge(r′1, r
′
2) m̂ = merge(m′1,m

′
2) t̂ = merge(t′1, t

′
2) K̂ = merge(K1,K2)

µ ` 〈if e then c0 else c1, r,m,K〉• ⇓2com r̂; m̂; K̂ . t̂•

SQ-WHILE-DIV

µ ` 〈e, r,m,K〉• ⇓2exp (v0 | v1) cleft = (v0 == 1)?c : skip cright = (v1 == 1)?c : skip
µ `δ 〈cleft, brc1, bmc1, bKc1〉 ⇓ r′1;m′1;K1 . t

′
1 µ `δ 〈cright, brc2, bmc2, bKc2〉 ⇓ r′2;m′2;K2 . t

′
2

r̂ = merge(r′1, r
′
2) m̂ = merge(m′1,m

′
2) t̂ = merge(t′1, t

′
2) K̂ = merge(K1,K2)

µ ` 〈while e do c, r,m,K〉• ⇓2com r̂; m̂; K̂ . t̂•

SQ-CALL-DIV

µ ` 〈e, r,m,K〉• ⇓2exp (λµ.c1 | λµ.c2)
µ `δ 〈c1, brc1, bmc1, bKc1〉 ⇓ r′1;m′1;K1 . t

′
1 µ `δ 〈c2, brc2, bmc2, bKc2〉 ⇓ r′2;m′2;K2 . t

′
2

r̂ = merge(r′1, r
′
2) m̂ = merge(m′1,m

′
2) t̂ = merge(t′1, t

′
2) K̂ = merge(K1,K2)

µ ` 〈call(e), r,m,K〉• ⇓2com r̂; m̂; K̂ . t̂•

Figure 17 defines the projection on pairs of locations, registers, traces and kill sets for i ∈ {1, 2}. Recall that α ranges over
events.

For notation simplicity, we define the command projection of an IMPE2 trace to represent the changes made by the attacker
to the program in ith projection.

btci,cmd = bbtciccmd

merge(m1,m2, l) =

{
v if m1(l) = m2(l) = v

(v1 | v2) if mi(l) = vi and v1 6= v2

merge(m1,m2) = m | ∀l ∈ Loc. m(l) = merge(m1,m2, l)

merge(r1, r2, x) =

{
v if r1(x) = r2(x) = v

(v1 | v2) if ri(x) = vi and v1 6= v2

merge(r1, r2) = r | ∀x ∈ Vars. r(x) = merge(r1, r2, x)

merge(t1, t2) =

(α1 | α2) ·merge(t′1, t
′
2) if ti = αi · t′i ∧

αi 6= ε

(α1 | ε) ·merge(t′1, ε) if t1 = α1 · t′1 ∧
α2 = ε

(ε | α2) ·merge(ε, t′2) if t2 = α2 · t′2 ∧
α1 = ε

ε o.w

merge(K1,K2) = (K1|K2)

Figure 16. Definition of merge

brci(x) =

{
v if r(x) = v

vi if r(x) = (v1|v2)

bmci(x) =

{
v if m(x) = v

vi if m(x) = (v1|v2)

btci =

Mem(bmci) · bt′ci if t = Mem(m) · t′

Decl(e, bmci) · bt′ci if t = Decl(e,m) · t′

Out(`, bvci) · bt′ci if t = Out(`, v) · t′

A(c) · bt′ci if t = A(c) · t′

A(c1
enc'c2) · bt′ci if t = A(c1

enc'c2) · t′

αi · bt′ci if t = (α1 | α2) · t′

ε o.w

bKci = Ki if K = (K1|K2)

protected(p,S) =

true if p = H or >
true if p = L cnd↗`2 and cnd ∈ S
true if p = `1

cnd↗`2 and `1 6≤ L
false o.w

Figure 17. Definition of projections

E.1.1 Adequacy
The language IMPE2 is adequate for reasoning about executions of two IMPE programs. We show that execution of IMPE2

program is sound, (large-step by a IMPE2 program coresponds to large-steps taken by its projections) and complete (given two
IMPE executions, there exists an IMPE2 execution).

Lemma 1 (IMPE2 is Sound). If µ ` 〈c, r,m,K〉• ⇓2com r∗;m∗;K∗ . t∗•, then µ `δ 〈c, brci, bmci, bKci〉 ⇓
br∗ci; bm∗ci; bK∗ci . bt∗ci for i ∈ {1, 2}.

Proof Sketch. Proof is by induction on the derivation of µ ` 〈c, r,m,K〉• ⇓2com r∗;m∗;K∗ . t∗•.

Lemma 2 (IMPE2 is Complete). If µ `δ 〈c, brci, bmci, bKci〉 ⇓ r∗i ;m∗i ;K
∗
i . t

∗
i , then ∃〈r∗,m∗,K∗, t∗〉, such that

µ ` 〈c, r,m,K〉• ⇓2com r∗;m∗;K∗ . t∗• and 〈br∗ci, bm∗ci, bK∗ci, bt∗ci〉 = 〈r∗i ,m∗i ,K∗i , t∗i 〉 for i ∈ {1, 2}.

Proof Sketch. We use induction on the derivation of µ `δ 〈c, brci, bmci, bKci〉 ⇓ r∗i ;m∗i ;K
∗
i . t

∗
i and prove that we can

construct r∗, m∗, K∗ and t∗ such that 〈br∗ci, bm∗ci, bK∗ci, bt∗ci〉 = 〈r∗i ,m∗i ,K∗i , t∗i 〉 for i ∈ {1, 2}.
Interesting cases are SQ-IF-DIV, SQ-WHILE-DIV and SQ-CALL-DIV. We give intuition for SQ-IF-DIV, the rest follow the same

argument.
Given µ `δ 〈if e then c1 else c2, brci, bmci, bKci〉 ⇓ r∗i ;m∗i ;K

∗
i . t

∗
i . Let

r∗ = merge(r∗1 , r
∗
2)

m∗ = merge(m∗1,m
∗
2)

t∗ = merge(t∗1, t
∗
2)

K∗ = merge(K∗1 ,K
∗
2)

From the premise of SQ-IF-DIV, we thus have µ ` 〈c, r,m,K〉• ⇓2com r∗;m∗;K∗ . t∗•

E.1.2 IMPE2 Type System
Let S be the set of conditions set during some observed trace tobs,H be the set of escape hatches in the observed trace and m̂0

be the initial IMPE2 memory. The IMPE2 type system is parametrized by δ, S,H and m̂0. The typing judgment for commands
and expressions is shown below.

pc, µ,Γ,K, U δ̀SHm̂0
c : Γ′,K ′

µ,Γ δ̀SHm̂0
e : σp

The typing rules are similar to Figure 8 with 2 extra rules for typing configurations shown in Figure 18. Rule T-SQ-CONFIG

says that a configuration 〈c, r,m,K〉 is well-typed (or is ok) if:

• Command c is well-typed;
• all conditions in set U are unset;
• Security policy on any register mapped to a paired value is protected;
• Security policy on any location (that does not belong to the set of conditions) mapped to a paired value is protected;
• evaluation of an escape hatch with current memory results in a value that is same as evaluating it with initial memory;
• Kill sets are same on both sides of the executions.

Rule T-SQ-VALUE says when a final configuration 〈r,m,K〉 is well-typed (or is ok) and is similar to rule T-SQ-CONFIG.
Lemma 3 proves that if an IMPE program is well-typed according to IMPE type system, then for also well-typed according

to IMPE2 type system.

Lemma 3 (Type System). If L,N,Γ, ∅, ∅ δ̀ c : Γ′,K ′, then pc, µ,Γ,K, U δ̀SHm̂0 c : Γ′,K ′.

Proof. Proof is by straight forward induction on the derivation of the typing judgment µ,Γ δ̀ e : σp.

Lemma 4 states that for well-typed expressions, evaluation preserves types.

Lemma 4 (Value Type Preservation). If µ,Γ δ̀SHm̂0
e : σp and µ ` 〈e, r,m,K〉• ⇓2exp v, then µ,Γ δ̀SHm̂0

v : σp.

Proof. Proof is by straight forward induction on the derivation of the typing judgment µ,Γ δ̀SHm̂0 e : σp.

T-SQ-CONFIG

∀cnd ∈ U,m(cnd) = 0
pc, µ,Γ,K, U δ̀SHm̂0 c : Γ′,K ′ ∀x ∈ Vars, r(x) = (v1|v2) and Γ(x) = σp =⇒ protected(p,S)

∀l ∈ Loc \ Cond,m(l) = (v1|v2) and Γ(l) = (σp, rt) =⇒ protected(p,S)
∀e ∈ H, µ ` 〈e, rinit , m̂0,K〉• ⇓2exp v =⇒ µ ` 〈e, r,m,K〉• ⇓2exp v

bKc1 = bKc2
pc, µ,Γ, U δ̀SHm̂0

〈c, r,m,K〉 : Γ′,K ′ • ok

T-SQ-VALUE

∀x ∈ Vars, r(x) = (v1|v2) and Γ(x) = σp =⇒ protected(p,S)
∀l ∈ Loc \ Cond,m(l) = (v1|v2) and Γ(l) = σp =⇒ protected(p,S)
∀e ∈ H, µ ` 〈e, rinit , m̂0,K〉• ⇓2exp v =⇒ µ ` 〈e, r,m,K〉• ⇓2exp v

bKc1 = bKc2
Γ δ̀SHm̂0

〈r,m,K〉 • ok

Figure 18. Typing IMPE2 configurations

Lemma 5 and Lemma 6 state that the well-typedness of configurations is preserved during the large-step evaluation. Both
the lemmas are used for proving Theorem 1.

Lemma 5 (IMPE2 Final Configuration Preservation). Let Γ be an environment that is well-typed for δ, H be the set of escape
hatches and m̂0 be the initial IMPE2 memory such that l ∈ {locations(e) | e ∈ H}, m̂0(l) 6= (v1 | v2), i.e., not a pair value. If
pc, µ,Γ, U δ̀SHm̂0

〈c, r,m,K〉 : Γ′,K ′ •ok and µ ` 〈c, r,m,K〉• ⇓2com r′;m′;K ′ .t′•, then Γ′ δ̀SHm̂0
〈r′,m′,K ′〉•ok.

Proof. The proof is by induction on the derivation of the large-step µ ` 〈c, r,m,K〉• ⇓2com r′;m′;K ′ . t′•. For each case,
we prove that the final configuration preserves the well-typedness of IMPE2 value configuration.

Case SQ-SKIP: Given pc, µ,Γ, U δ̀SHm̂0
〈skip, r,m,K〉 : Γ′,K ′ • ok and µ ` 〈skip, r,m,K〉• ⇓2com r;m;K . ε•.

Configuration is not changed.
Case SQ-ASSIGN: Given pc, µ,Γ, U δ̀SHm̂0

〈x := e, r,m,K〉 : Γ′,K ′ • ok and µ ` 〈x := e, r,m,K〉• ⇓2com r′;m;K .ε•
such that µ ` 〈e, r,m,K〉• ⇓2exp v and r′ = r[x 7→ v]. We have to prove that Γ′ δ̀SHm̂0 〈r′,m,K〉 • ok.
From the initial configuration, we have Γ δ̀SHm̂0 〈r,m,K〉 • ok. Register files r and r′ differ only in variable x. Let
v = (v1 | v2). If µ,Γ δ̀SHm̂0

e : σp, we have protected(p,S). Γ′ = Γ[x 7→ σpctp]. Hence protected(pc t q,S). Hence
proved.

Case SQ-DECLASSIFY: Given pc, µ,Γ, U δ̀SHm̂0
〈declassify(x)e, r,m,K〉 : Γ′,K ′ •ok and µ ` 〈declassify(x)e, r,m,K〉•

⇓2com r′;m;K.ε• such that µ ` 〈e, r,m,K〉• ⇓2exp v and r′ = r[x 7→ v]. Also expression e has no variables syntactically
present (large-step has the premise hasNoVars(e)), We have to prove that Γ′ δ̀SHm̂0 〈r′,m,K〉 • ok.
From the initial configuration, we have Γ δ̀SHm̂0 〈r,m,K〉 • ok. Register files r and r′ differ only for x. Let v = (v1 | v2)
for some v1 and v2. If µ,Γ δ̀SHm̂0

e : σp, we have protected(p,S). Γ′ = Γ[x 7→ L]. From the well-typedness, we have
allLocImmutable(e). Thus e ∈ H and so v 6= (v1 | v2) (not a pair value). Hence proved.

Case SQ-UPDATE: Given pc, µ,Γ, U δ̀SHm̂0
〈e1 ← e2, r,m,K〉 : Γ′,K ′ • ok and µ ` 〈e1 ← e2, r,m,K〉•

⇓2com r;m′;K . ε• such that µ ` 〈e1, r,m,K〉• ⇓2exp l, µ ` 〈e2, r,m,K〉• ⇓2exp v and m′ = m[l 7→ v]. We
have to prove that Γ δ̀SHm̂0 〈r,m′,K〉 • ok.
From the premise of T-SQ-CONFIG, we have Γ δ̀SHm̂0 〈r,m,K〉 • ok, µ,Γ δ̀SHm̂0 e1 : (σµ

′

p refrt)
q

and µ,Γ δ̀SHm̂0

e2 : σp′ such that p′ t q t pc ≤ p.
Case l = (l1 | l2), v = (v1 | v2): We have protected(p′,S) and so protected(p,S). Hence Γ δ̀SHm̂0

〈r,m′,K〉 • ok.
Case l 6= (l1 | l2), v = (v1 | v2): Same as above.
Case l = (l1 | l2), v 6= (v1 | v2): We have protected(q,S) and so protected(p,S). Hence Γ δ̀SHm̂0

〈r,m′,K〉 • ok.
Case l 6= (l1 | l2), v 6= (v1 | v2): Trivially Γ δ̀SHm̂0 〈r,m′,K〉 • ok.

Case SQ-OUTPUT: Given pc, µ,Γ, U δ̀SHm̂0
〈output e to `, r,m,K〉 : Γ′,K ′ • ok and µ ` 〈output e to `, r,m,K〉•

⇓2com r;m;K .Mem(m) · Out(`, v)• From the premise of T-SQ-CONFIG, we have Γ δ̀SHm̂0
〈r,m,K〉 • ok. Large-step

does not modify register file, memory or killset. Hence proved.
Case SQ-SETCND: Given pc, µ,Γ, U δ̀SHm̂0 〈set(cnd), r,m,K〉 : Γ′,K ′ • ok and µ ` 〈set(cnd), r,m,K〉• ⇓2com
r;m′;K .Mem(m′)• such that m′ = m[cnd 7→ 1] We have to prove that Γ δ̀SHm̂0 〈r,m′,K〉 • ok. From the premise

of T-SQ-CONFIG, we have Γ δ̀SHm̂0
〈r,m,K〉 • ok. Since m and m′ do not differ (set(cnd) always sets cnd to a non-pair

value), we have Γ δ̀SHm̂0
〈r,m′,K〉 • ok.

Case SQ-KILL: Given pc, µ,Γ, U δ̀SHm̂0
〈kill(i), r,m,K〉 : Γ′,K ′ • ok and N ` 〈kill(i), r,m,K〉• ⇓2com r;m;K ∪

{Ei} . ε• We have to prove that Γ δ̀SHm̂0 〈r,m,K ∪ {Ei}〉 • ok. From the premise of T-SQ-CONFIG, we have
Γ δ̀SHm̂0 〈r,m,K〉 • ok. Since bKc1 = bKc2, we therefore have bK ∪ {Ei}c1 = bK ∪ {Ei}c2. Hence proved.

Case SQ-SEQ: Given pc,N,Γ, U δ̀SHm̂0
〈c1; . . . ; cn, r0,m0,K0〉 : Γ,K ′ • ok and N ` 〈c1; . . . ; cn, r0,m0,K0〉•

⇓2com rn;mn;Kn . tn• We have to prove that N,Γn δ̀SHm̂0
〈rn,mn,Kn〉 • ok. From the premise of T-NSQ-CONFIG,

we have Γ0 δ̀SHm̂0
〈r0,m0,K0〉 • ok and pc, µ,Γi−1,Ki−1, U δ̀SHm̂0

ci : Γi,Ki for i ∈ {1 . . . n}. Applying induction
hypothesis, we thus have µ,Γ1 δ̀SHm̂0 〈r1,m1,K1〉 • ok. Since the types of locations are fixed throughout the program,
we have that if Γ0 is well-typed for δ then Γ1 is also well-typed for δ. Applying induction hypothesis continuously, we thus
have N,Γn δ̀SHm̂0

〈rn,mn,Kn〉 • ok.
Case SQ-ENCLAVE: Given pc, µ,Γ, U δ̀SHm̂0

〈enclave(i, c), r,m,K〉 : Γ′,K ′ • ok and N ` 〈enclave(i, c), r,m,K〉•
⇓2com r′;m′;K ′ . t′• We have to prove that Γ′ δ̀SHm̂0

〈r′,m′,K ′〉 • ok. From the premise of T-SQ-CONFIG, we have
Γ δ̀SHm̂0 〈r,m,K〉 • ok and pc, Ei,Γ,K, ∅ δ̀SHm̂0 c : Γ′,K ′. So, pc, µ,Γ, ∅ δ̀SHm̂0 〈c, r,m,K〉 : Γ′,K ′ • ok. Also,
Ei ` 〈c, r,m,K〉• ⇓2com r′;m′;K ′ . t′• . Applying induction hypothesis, we thus have Γ′ δ̀SHm̂0 〈r′,m′,K ′〉 • ok.

Case SQ-IF-ELSE: Given pc, µ,Γ, U δ̀SHm̂0
〈if e then c1 else c2, r,m,K〉 : Γ′,K ′•ok and µ ` 〈if e then c1 else c2, r,m,K〉•

⇓2com r′;m′;K ′ . t′• , We have to prove that Γ′ δ̀SHm̂0
〈r′,m′,K ′〉 • ok. From the premise of T-SQ-CONFIG,

we have Γ δ̀SHm̂0
〈r,m,K〉 • ok and pc′, µ,Γ,K, U δ̀SHm̂0

ci : Γ′,K ′ for i = {1, 2} and pc ≤ pc′. So,
pc, µ,Γ, U δ̀SHm̂0 〈ci, r,m,K〉 : Γ′,K ′ • ok. Also, µ ` 〈ci, r,m,K〉• ⇓2com r′;m′;K ′ . t′• . Applying induc-
tion hypothesis, we thus have Γ′ δ̀SHm̂0 〈r′,m′,K ′〉 • ok.

Case SQ-WHILE: Given pc, µ,Γ, U δ̀SHm̂0
〈while e do c, r,m,K〉 : Γ,K • ok and µ ` 〈while e do c, r,m,K〉•

⇓2com r′′;m′′;K ′′ . t′′• , We have to prove that Γ δ̀SHm̂0
〈r′′,m′′,K ′′〉 • ok. From the premise of T-SQ-CONFIG, we

have Γ δ̀SHm̂0
〈r,m,K〉 • ok and pc′, µ,Γ,K, U δ̀SHm̂0

c : Γ,K for pc ≤ pc′. So, pc′, µ,Γ, U δ̀SHm̂0
〈c, r,m,K〉 :

Γ,K •ok. Also, µ ` 〈c, r,m,K〉• ⇓2com r′;m′;K ′.t′• . From the well-typedness, we haveK = K ′. Applying induction
hypothesis, we have Γ δ̀SHm̂0 〈r′,m′,K〉 • ok. So, pc′, µ,Γ, U δ̀SHm̂0 〈while e do c, r′,m′,K ′〉 : Γ′,K ′ • ok. Also,
µ ` 〈while e do c, r′,m′,K ′〉• ⇓2com r′′;m′′;K ′′ . t′′• From the well-typedness, we have K = K ′′. Applying induction
hypothesis, we have Γ δ̀SHm̂0

〈r′′,m′′,K ′′〉 • ok.
Case SQ-CALL: Given pc, µ,Γ, U δ̀SHm̂0

〈call(e), r,m,K〉 : Γ′,K ′ •ok and µ ` 〈call(e), r,m,K〉• ⇓2com r′;m′;K ′ .t′•
, We have to prove that Γ′ δ̀SHm̂0

〈r′,m′,K ′〉 • ok. Also from the premise of SQ-CALL, we have µ ` 〈e, r,m,K〉• ⇓2exp
λµ.c and µ ` 〈c, r,m,K〉• ⇓2com r′;m′;K ′ . t′•
From the premise of T-SQ-CONFIG, we have Γ δ̀SHm̂0

〈r,m,K〉 • ok and pc, µ,Γ–,K–, U δ̀ call(e) : Γ+,K+ such that
Γ ≤ Γ–,Γ+ ≤ Γ′ and K = K–,K ′ = K+. By subsumption, p, µ,Γ, U δ̀SHm̂0

〈c, r,m,K〉 : Γ′,K ′ • okΓΓ′K ′. Applying
induction hypothesis to µ ` 〈c, r,m,K〉• ⇓2com r′;m′;K ′ . t′•, we thus have Γ′ δ̀SHm̂0 〈r′,m′,K ′〉 • ok.

Case SQ-IF-DIV: Given pc, µ,Γ, U δ̀SHm̂0 〈if e then c0 else c1, r,m,K〉 : Γ′,K ′•ok and µ ` 〈if e then c0 else c1, r,m,K〉•
⇓2com r̂; m̂; K̂ . t̂•. We have to prove that Γ′ δ̀SHm̂0

〈r̂, m̂, K̂〉 • ok.
From the initial configuration, we have pc′, µ,Γ,K, U δ̀SHm̂0

ci : Γ′,K ′ and µ,Γ δ̀SHm̂0
e : intp. From the premise of

SQ-IF-DIV, we have µ ` 〈e, r,m,K〉• ⇓2exp (v0 | v1). So protected(p,S) and protected(pc′,S).
Let z be such that r̂(z) = (v1 | v2). If Γ′(z) = σq , then either Γ(z) = σq or there is an assignment to z in ci for some
i = {0, 1}. If the former holds, then we already have protected(q,S). If the latter holds, then we have protected(q,S)
(because an assignment is atleast as restrictive as pc′). Let m̂(l) = (v1 | v2) and Γ′(l) = σq . Since the type of location is
invariant throughout the program, from the initial configuration we have protected(q,S). A well-typed escape hatch has
immutable locations and thus evaluates to the same initial value. Since, both branches c0 and c1 have same killsets, we have
K1 = K2. So bK̂c1 = bK̂c2. Hence proved.

Case SQ-WHILE-DIV: Given pc, µ,Γ, U δ̀SHm̂0 〈while e do c, r,m,K〉 : Γ,K • ok and µ ` 〈while e do c, r,m,K〉•
⇓2com r̂; m̂; K̂ . t̂•. We have to prove that Γ δ̀SHm̂0

〈r̂, m̂, K̂〉 • ok.
From the initial configuration, we have Γ δ̀SHm̂0 〈r,m,K〉 • ok, pc′, µ,Γ,K, U δ̀SHm̂0 c : Γ,K and µ,Γ δ̀SHm̂0 e :
intp for pc ≤ pc′. From the premise of SQ-WHILE-DIV, we have µ ` 〈e, r,m,K〉• ⇓2exp (v0 | v1). So protected(p,S)
and protected(pc′,S). Let z be such that r̂(z) = (v1 | v2). If r(z) = (v1 | v2) and Γ(z) = σq , then from the premise of
T-SQ-CONFIG, we already have protected(q,S). If r(z) 6= (v1 | v2) i.e., not a pair value, and Γ(z) = σq , then from the well-
typedness, pc′, µ,Γ,K, U δ̀SHm̂0

c : Γ,K, we have protected(pc′,S) and so protected(q,S) (because an assignment is
atleast as restrictive as pc′). Similarly, let m̂(l) = (v1 | v2) and Γ(l) = σq . Since the type of location is invariant throughout
the program, from the initial configuration we have protected(q,S). A well-typed escape hatch has immutable locations
and thus evaluates to the same initial value. Killsets are unmodified. So bK̂c1 = bK̂c2. Hence proved.

Case SQ-CALL-DIV: Given pc, µ,Γ, U δ̀SHm̂0 〈call(e), r,m,K〉 : Γ′,K ′•ok and µ ` 〈call(e), r,m,K〉• ⇓2com r̂; m̂; K̂ . t̂•.
We have to prove that Γ δ̀SHm̂0

〈r̂, m̂, K̂〉 • ok.
From the initial configuration, we have Γ δ̀SHm̂0

〈r,m,K〉 • ok, µ,Γ δ̀SHm̂0
e : (Γ–,K–, U

p,µ−→ Γ+,K+)q and so
p, µ,Γ–,K–, U δ̀SHm̂0 c : Γ+,K+ such thatK = K–,K ′ = K+ and Γ = Γ–,Γ′ = Γ+. From the premise of SQ-CALL-DIV,
we have µ ` 〈e, r,m,K〉• ⇓2exp (v0 | v1). So protected(q,S) and since q ≤ p, protected(p,S) follows.
Let z be such that r̂(z) = (v1 | v2). If r(z) = (v1 | v2) and Γ(z) = σy , then from the premise of T-SQ-CONFIG, we
already have protected(y,S). If r(z) 6= (v1 | v2) i.e., not a pair value, and Γ(z) = σy , then from the well-typednes
p, µ,Γ–,K–, U δ̀SHm̂0 c : Γ+,K+ , we have protected(p,S) and so protected(y,S) (because an assignment is atleast
as restrictive as p). Similarly, let m̂(l) = (v1 | v2) and Γ(l) = σy . Since the type of location is invariant throughout the
program, from the initial configuration we have protected(y,S). A well-typed escape hatch has immutable locations and
thus evaluates to the same initial value. From the function type, post killsets are same. So bK̂c1 = bK̂c2. Hence proved.

Lemma 6 (IMPE2 Type Preservation). Let Γ be a well-formed typing context and pc, µ,Γ, U δ̀SHm̂0 〈c, r,m,K〉 : Γ′,K ′•ok.
If µ′ ` 〈c′, r′,m′,K ′〉• ⇓2com r̂′; m̂′; K̂ ′ . t̂′• is an immediate (command) premise in the evaluation of µ ` 〈c, r,m,K〉•
⇓2com r̂; m̂; K̂ . t̂•, then ∃p̂c, Γ̂, Γ̂′, Û , such that pc ≤ p̂c, either U ⊆ Û or Û = ∅ and p̂c, Û , Γ̂, µ′ δ̀SHm̂0

〈c′, r′,m′,K ′〉 :
Γ̂′,K ′, •ok

Proof. The proof is by induction on the derivation of the large step µ ` 〈c, r,m,K〉• ⇓2com r′;m′;K ′ . t′•. Since rules
SQ-ASSIGN, SQ-SKIP, SQ-UPDATE, SQ-KILL, SQ-OUTPUT, SQ-SETCND, SQ-IF-DIV, SQ-WHILE-DIV and SQ-CALL-DIV do not
have IMPE2 command premises, the only relevant cases are SQ-ENCLAVE,SQ-IF,SQ-WHILE, SQ-SEQ, SQ-CALL.

Case SQ-ENCLAVE: Given pc, µ,Γ, U δ̀SHm̂0
〈enclave(i, c), r,m,K〉 : Γ′,K ′ • ok. From the premises of T-SQ-CONFIG, we

have Γ δ̀SHm̂0
〈r,m,K〉 • ok and pc, Ei,Γ,K, ∅ δ̀SHm̂0

c : Γ′,K ′. From the premises of the IMPE2 large-step, we
have Ei ` 〈c, r,m,K〉• ⇓2com r′;m′;K ′ . t′• . Hence pc, ∅,Γ, Ei δ̀SHm̂0

〈c, r,m,K〉 : Γ′,K ′, •ok.
Case SQ-IF: Given pc, µ,Γ, U δ̀SHm̂0 〈if e then c1 else c2, r,m,K〉 : Γ′,K ′•ok. From the premises of the IMPE2 large-step,

we have µ ` 〈ci, r,m,K〉• ⇓2com r′;m′;K ′ .t′•. From the premises of T-SQ-CONFIG, we have Γ δ̀SHm̂0 〈r,m,K〉•ok
and pc′, µ,Γ,K, U δ̀SHm̂0

ci : Γ′,K ′ for i = {1, 2}, pc ≤ pc′. Hence pc′, µ,Γ, U δ̀SHm̂0
〈ci, r,m,K〉 : Γ′,K ′ • ok.

Note that if e = isunset(cnd), then we have pc′, µ,Γ, U∪{cnd} δ̀SHm̂0
〈c1, r,m,K〉 : Γ′,K ′•ok and pc′, µ,Γ, U δ̀SHm̂0

〈c2, r,m,K〉 : Γ′,K ′ • ok.
Case SQ-WHILE: Given pc, µ,Γ, U δ̀SHm̂0 〈while e do c′, r,m,K〉 : Γ,K • ok. From the premises of the IMPE2 large-step,

we have µ ` 〈c′, r,m,K〉• ⇓2com r′;m′;K ′ . t′• and µ ` 〈while e do c′, r′,m′,K ′〉• ⇓2com r′′;m′′;K ′′ . t′′•
From the premises of T-SQ-CONFIG, we have Γ δ̀SHm̂0

〈r,m,K〉 • ok and pc′, µ,Γ,K, U δ̀SHm̂0
c′ : Γ,K for

pc ≤ pc′. We thus have K = K ′ = K ′′ and pc′, µ,Γ, U δ̀SHm̂0
〈c′, r,m,K〉 : Γ,K ′ • ok. Applying Lemma 5

to pc′, µ,Γ, U δ̀SHm̂0
〈c′, r,m,K〉 : Γ,K • ok, we have Γ δ̀SHm̂0

〈r′,m′,K〉 • ok. Hence pc′, µ,Γ, U δ̀SHm̂0

〈while e do c′, r′,m′,K〉 : Γ,K • ok.
Case SQ-CALL: Given pc, µ,Γ, U δ̀SHm̂0 〈call(e), r,m,K〉 : Γ′,K ′ • ok. From the premises of the IMPE2 large-step, we

have µ `δ 〈e, r,m,K〉 ⇓ λµ.c and µ ` 〈c, r,m,K〉• ⇓2com r′;m′;K ′ . t′• From the premises of T-SQ-CONFIG, we have
Γ δ̀SHm̂0 〈r,m,K〉 • ok and µ,Γ δ̀SHm̂0 e : (Γ–,K–, U

p,µ−→ Γ+,K+)q . So, K = K–,K ′ = K+ and Γ = Γ–,Γ′ = Γ+.
We also have p, µ,Γ–,K–, U δ̀SHm̂0

c : Γ+,K+ . Hence pc, µ,Γ, U δ̀SHm̂0
〈c, r,m,K〉 : Γ′,K ′ • ok.

Case SQ-SEQ: Given pc, µ,Γ0, U δ̀SHm̂0 〈c1; . . . ; cn, r0,m0,K0〉 : Γn,Kn • ok. From the premises of the IMPE2 large-
step, we have µ ` 〈ci, ri−1,mi−1,Ki−1〉• ⇓2com ri;mi;Ki . ti•. From the premises of T-SQ-CONFIG, we have
Γ δ̀SHm̂0

〈r0,m0,K0〉 • ok and pc, µ,Γi−1,Ki−1, U δ̀SHm̂0
ci : Γi,Ki for i = {1, . . . , n}.

We already have pc, U,Γ0, µ δ̀SHm̂0
〈c1, r0,m0,K0〉 : Γ1,K1•ok. Applying Lemma 5, we have Γ δ̀SHm̂0

〈r1,m1,K1〉•
ok. Hence pc, U,Γ1, µ δ̀SHm̂0

〈c2, r1,m1,K1〉 : Γ2,K2 • ok. Repeatedly applying the above argument for n times, we
thus have pc, U,Γn−1, µ δ̀SHm̂0 〈cn, rn−1,mn−1,Kn−1〉 : Γn,Kn • ok.

Hence proved.

Using Lemma 5 and Lemma 6, we prove the first part of Theorem 1.

Proof. Given L, µ,Γ,K, ∅ δ̀ c : Γ′,K ′. Let m1 be some initial memory for which N `δ 〈c, rinit ,m1,K〉 ⇓ r′1;m′1;K ′ . t ·
tobs · t′ where tobs = m′ · t′′ for some memory m′ and trace t′′, and if t′′ is not empty then the last element of t′′ is an output
event. Note that the attacker actually observes only low-events i.e. btobscL. We need to show that

k⇓L(c, tobs) ⊇M

where

M =

(⋂
m′∈btobscmem

ind`(m0, γ, {cnd | m′(cnd) = 0})

∩
⋂

(e′,m′)∈bt·tobscesc

Esc⇓kind (m0,m
′, e′)

)

Let S be the set of conditions that are set at the beginning of tobs, i.e., S = {cnd | m′(cnd) = 1}. IfQ represents the set of all
condition variables, then Q \ S is the set of conditions that are unset at some time during the observed trace. Also letH be the
set of all escape hatches that are declassified till the last event of tobs i.e.H = {e | (e,m) ∈ bt · tobscesc}.

Let m2 ∈ M . Also let N `δ 〈c, rinit ,m2,K〉 ⇓ r′2;m′2;K ′2 . t2. To ensure k⇓L(c, tobs) ⊇ M , we need to show that
m2 ∈ k⇓L(c, tobs)

Note that m1 and m2 differ only in locations with policies that are protected by set S. That is, for all locations l ∈ Loc,
if m1(l) 6= m2(l) then Γ(l) = σp =⇒ protected(p,S). Why? Suppose for some l, s.t Γ(l) = (σp, rt) let m1(l) 6= m2(l)
and ¬protected(p,S). So, p = L or L cnd↗`2 s.t. cnd 6∈ S . Then for some mj ∈ M , we have m1(l) = mj(l). Since M
is computed by the intersection of all such memories, every memory m′′ ∈ M should satisfy m′′(l) = m1(l). This implies
m2(l) = m1(l) which is a contradiction. Thus protected(p,S) must hold.

Also note that m1 and m2 satisfy

∀e ∈ H, µ `δ 〈e, rinit ,m1,K〉 ⇓ v ⇔ µ `δ 〈e, r,m2,K〉 ⇓ v

We will construct an IMPE2 execution that represents the IMPE executions starting from m0 and m2. Type-preservation of
IMPE2 (Lemma 5) will ensure that both executions produce the same observable trace, thus showing that m2 ∈ k⇓L(c, tobs).

Let IMPE2 memory m = merge(m1,m2). If µ ` 〈c, rinit ,m,K〉• ⇓2com r∗;m∗;K∗ . t∗•, by the adequacy of IMPE2

(Lemma 2), we have that the IMPE2 execution represents IMPE executions with m1 and m2 as initial memories.
Let t∗ = t∗pre · t∗obs · t∗post for some t∗obs such that bt∗obsc1 = tobs. Define observation overlapped by an IMPE2 trace t∗

′
as:

obsOverlap(t∗
′
, t∗pre, t

∗
obs, t

∗
post) =

ε if t∗

′ ≤lex t∗pre
t∗obs if t∗pre · t∗obs ≤lex t∗

′

t∗
′′

if t∗
′

= t∗pre · t∗
′′

and
t∗

′′ ≤lex t∗obs

Intuitively, obsOverlap(t∗
′
, t∗pre, t

∗
obs, t

∗
post) defines part of input trace t∗

′
that overlaps with an observed trace t∗obs.

Since L, µ,Γ,K, ∅ δ̀ c : Γ′,K ′, we have L, µ,Γ,K, ∅ δ̀SHm̂0
c : Γ′,K ′. Note that our initial configuration satisfies

L,N,Γ, ∅ δ̀SHm̂0 〈c, rinit ,m, ∅〉 : Γ′,K ′, •ok

Lemma 7 (Observational Equivalence is Preserved). Let S be the set of conditions that are set(non-zero) in some observed
trace tobs. If pc, µ,Γ, U δ̀SHm̂0 〈c, r,m,K〉 : Γ′,K ′ • ok and µ ` 〈c, r,m,K〉• ⇓2com r̂; m̂; K̂ . t̂•, then

bobsOverlap(t̂, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t̂, t∗pre, t

∗
obs, t

∗
post)c2

Proof. The proof follows by induction on the derivation of µ ` 〈c, r,m,K〉• ⇓2com r̂; m̂; K̂ . t̂•.

Case Sq-Skip: Emitted trace is empty.
Case Sq-Assign: Emitted trace is empty.
Case Sq-Declassify: Emitted trace does not include out event.
Case Sq-Update: Emitted trace is empty.
Case Sq-Kill: Emitted trace is empty.
Case Sq-SetCnd: Emitted trace does not include out event.
Case Sq-Output: Given pc, µ,Γ, U δ̀SHm̂0 〈c, r,m,K〉 : Γ′,K ′ • ok and µ ` 〈output e to `, r,m,K〉• ⇓2com
r;m;K.Mem(m) ·Out(`, v)•. Let t̂ = Mem(m) · Out(`, v). From the premise of T-SQ-CONFIG, we have pc, µ,Γ,K, U δ̀

output e to ` : Γ,K and so µ,Γ δ̀SHm̂0
e : σp and cur(p, U) t cur(pc, U) v `.

Case v = (v1 | v2): We have protected(p,S) and so ` 6= L.
Case v 6= (v1 | v2): In this case ` = {L,H}.

In the both the cases, we have

bobsOverlap(t̂, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t̂, t∗pre, t

∗
obs, t

∗
post)c2

Case Sq-If-Else: Given pc, µ,Γ, U δ̀SHm̂0 〈if e then c1 else c2, r,m,K〉 : Γ′,K ′•ok and µ ` 〈if e then c1 else c2, r,m,K〉•
⇓2com r′;m′;K ′ . t′•. Let t̂ = t′. Since µ `δ 〈e, r,m,K〉 ⇓ v such that v is not a pair, applying induction hypothesis to the
premises of SQ-IF-ELSE gives us

bobsOverlap(t̂, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t̂, t∗pre, t

∗
obs, t

∗
post)c2

Case Sq-While: Given pc, µ,Γ, U δ̀SHm̂0
〈while e do c, r,m,K〉 : Γ,K • ok and µ ` 〈while e do c, r,m,K〉•

⇓2com r′′;m′′;K ′′ . t′′•. From the premises of T-SQ-CONFIG, we have K = K ′ = K ′′. Since µ ` 〈e, r,m,K〉• ⇓2exp v
such that v is not a pair, applying induction hypothesis to the premise of SQ-WHILE gives us

bobsOverlap(t′, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t′, t∗pre, t

∗
obs, t

∗
post)c2

From Lemma 6, we have pc, µ,Γ, U δ̀SHm̂0
〈while e do c, r′,m′,K〉 : Γ,K • ok. Applying induction hypothesis to

µ ` 〈while e do c, r′,m′,K〉• ⇓2com r′′;m′′;K ′′ . t′′•, we have

bobsOverlap(t′′, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t′′, t∗pre, t

∗
obs, t

∗
post)c2

Hence
bobsOverlap(t′ · t′′, t∗pre, t∗obs, t∗post)c1 ≈L bobsOverlap(t′ · t′′, t∗pre, t∗obs, t∗post)c2

Case Sq-Call: Given pc, µ,Γ, U δ̀SHm̂0
〈call(e), r,m,K〉 : Γ′,K ′ • ok and µ ` 〈call(e), r,m,K〉• ⇓2com r′;m′;K ′ . t′•.

Since µ ` 〈e, r,m,K〉• ⇓2exp v such that v is not a pair, applying induction hypothesis to the premise of SQ-CALL gives
us

bobsOverlap(t′, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t′, t∗pre, t

∗
obs, t

∗
post)c2

Case Sq-If-Div: Given pc, µ,Γ, U δ̀SHm̂0 〈if e then c1 else c2, r,m,K〉 : Γ′,K ′•ok and µ ` 〈if e then c0 else c1, r,m,K〉•
⇓2com r̂; m̂; K̂ . t̂•. From the premises of T-SQ-CONFIG, we have pc, µ,Γ,K, U δ̀SHm̂0

if e then c1 else c2 : Γ′,K ′ Since
µ ` 〈e, r,m,K〉• ⇓2exp v such that v is a pair, we have protected(p,S). From the well-typedness, neither c1 nor c2 do
emit any out events to L channel. Hence

bobsOverlap(t̂, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t̂, t∗pre, t

∗
obs, t

∗
post)c2

Case Sq-While-Div: Given pc, µ,Γ, U δ̀SHm̂0
〈while e do c, r,m,K〉 : Γ,K • ok and µ ` 〈while e do c, r,m,K〉•

⇓2com r̂; m̂; K̂ . t̂•. From the premises of T-SQ-CONFIG, we have pc, µ,Γ,K, U δ̀SHm̂0
while e do c : Γ,K Since

µ ` 〈e, r,m,K〉• ⇓2exp v such that v is a pair, we have protected(p,S). From the well-typedness, command c does not
emit any out events to L channel. Hence

bobsOverlap(t̂, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t̂, t∗pre, t

∗
obs, t

∗
post)c2

Case Sq-Call-Div: Given pc, µ,Γ, U δ̀SHm̂0
〈call(e), r,m,K〉 : Γ′,K ′•ok and µ ` 〈call(e), r,m,K〉• ⇓2com r̂; m̂; K̂ . t̂•.

From the premises of T-SQ-CONFIG, we have pc, µ,Γ,K, U δ̀SHm̂0
call(e) : Γ′,K ′ Since µ ` 〈e, r,m,K〉• ⇓2exp v such

that v is a pair, we have protected(p,S). From the well-typedness, command c does not emit any out events to L channel.
Hence

bobsOverlap(t̂, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t̂, t∗pre, t

∗
obs, t

∗
post)c2

Case Sq-Seq: Given pc, µ,Γ0, U δ̀SHm̂0
〈c1; . . . ; cn, r0,m0,K0〉 : Γn,Kn • ok and µ `δ 〈c1; . . . ; cn, r0,m0,K0〉 ⇓

rn;mn;Kn . t1 · . . . · tn From the premises of T-SQ-CONFIG, we have pc, µ,Γ0,K0, U δ̀SHm̂0 c1; . . . ; cn : Γn,Kn

Applying induction hypothesis to the premise, µ ` 〈c1, r0,m0,K0〉• ⇓2com r1;m1;K1 . t1•, we have

bobsOverlap(t1, t
∗
pre, t

∗
obs, t

∗
post)c1 ≈L bobsOverlap(t1, t

∗
pre, t

∗
obs, t

∗
post)c2

From Lemma 6, we have pc, µ,Γ1, U δ̀SHm̂0
〈c2, r1,m1,K1〉 : Γ2,K2 • ok. Applying inductive hypothesis to the next

premise, µ ` 〈c2, r1,m1,K1〉• ⇓2com r2;m2;K2 . t2•, we have

bobsOverlap(t2, t
∗
pre, t

∗
obs, t

∗
post)c1 ≈L bobsOverlap(t2, t

∗
pre, t

∗
obs, t

∗
post)c2

Applying the inductive hypothesis continuously thus gives,

bobsOverlap(tn, t
∗
pre, t

∗
obs, t

∗
post)c1 ≈L bobsOverlap(tn, t

∗
pre, t

∗
obs, t

∗
post)c2

Case Sq-Enclave: Given pc, µ,Γ, U δ̀SHm̂0
〈enclave(i, c), r,m,K〉 : Γ′,K ′ • ok and N `δ 〈enclave(i, c), r,m,K〉 ⇓

r′;m′;K ′ . t′ . From the premises of T-SQ-CONFIG, we have pc, µ,Γ,K, U δ̀SHm̂0
enclave(i, c) : Γ′,K ′. From

Lemma 6, we have pc, Ei,Γ, ∅ δ̀SHm̂0
〈c, r,m,K〉 : Γ′,K ′ • ok. Applying induction hypothesis to the premise

Ei `δ 〈c, r,m,K〉 ⇓ r′;m′;K ′ . t′

bobsOverlap(t′, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t′, t∗pre, t

∗
obs, t

∗
post)c2

Since we have L,N,Γ, ∅ δ̀SHm̂0
〈c, rinit ,m, ∅〉 : Γ′,K ′, •ok, applying Lemma 7 on µ ` 〈c, rinit ,m,K〉• ⇓2com

r∗;m∗;K∗ . t∗•, we have

bobsOverlap(t∗, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t∗, t∗pre, t

∗
obs, t

∗
post)c2

Hence proved that m2 ∈ k⇓L(c, tobs).

We prove the second and third parts of Theorem 1 using similar approaches in Section E.1.3 and Section E.1.6.

E.1.3 Proofs for N -chaos Security
In this section we use a more permissive N -chaos type system and show that a IMPE program that is well-typed for the
type system in Section 4 is also well-typed for N -chaos type system. Figure 19 presents the N -chaos type system. It relaxes
the IMPE type system by unconstraining the commands running in normal mode. They can now read and write to memory
locations with no restrictions on security policies. The new typing system relies on the guarantees provided by the operational
semantics that a command running in normal mode does not access enclave memory. Typing rules for commands running in
enclave mode are unchanged and are same as those presented in Figure 8.

Lemma 8 (Permissive Type System). If L,N,Γ, ∅, ∅ δ̀ c : Γ′,K ′, then pc, µ,Γ,K, U δ̀Nch c : Γ′,K ′.

Proof Sketch. Proof is by straight forward induction on the derivation of the typing judgment µ,Γ δ̀ e : σp.

E.1.4 IMPE2N -chaos Adequacy
The language IMPE2N -chaos is adequate for reasoning about executions of two IMPE programs. We show that the execution
of IMPE2N -chaos program using semantics ⇓2N -chaos is sound (i.e., large-step taken by a IMPE2N -chaos program coresponds
to a large-step taken by either side of the execution) and complete (given two IMPE N -chaos executions, there exists an
IMPE2N -chaos execution).

Lemma 9 (IMPE2N -chaos is Sound). If µ ` 〈c, r,m,K〉• ⇓2N -chaos r
∗;m∗;K∗ .t∗•, then µ `δ 〈c, brci, bmci, bKci〉 ⇓N -chaos

br∗ci; bm∗ci; bK∗ci . bt∗ci for i ∈ {1, 2}.

Proof Sketch. Proof is by induction on the derivation of µ ` 〈c, r,m,K〉• ⇓2com r∗;m∗;K∗ . t∗•.

Lemma 10 (IMPE2N -chaos is Complete). Let µ `δ 〈c, brci, bmci, bKci〉 ⇓N -chaos r
∗
i ;m∗i ;K

∗
i . t

∗
i such that bt∗c1,cmd =

bt∗c2,cmd Then ∃〈r∗,m∗,K∗, t∗〉. such that µ ` 〈c, r,m,K〉• ⇓2N -chaos r∗;m∗;K∗ . t∗• and 〈br∗ci, bm∗ci, bK∗ci, bt∗ci〉
= 〈r∗i ,m∗i ,K∗i , t∗i 〉 for i ∈ {1, 2}.

Proof Sketch. Follows along the lines of proof of Lemma 2.

E.1.5 IMPE2N -chaos N -chaos Type System
Let S be the set of conditions set during some observed trace tobs,H be the set of escape hatches till the observed trace and m̂0

be the initial IMPE2N -chaos memory. The IMPE2N -chaos type system is parametrized by δ, S, H and m̂0. The typing judgment
for commands and expressions is shown below.

pc, µ,Γ,K, U δ̀SHm̂0Nch c : Γ′,K ′

µ,Γ δ̀SHm̂0Nch e : σp

The typing rules are similar to Figure 19 with 2 extra rules for typing configurations shown in Figure 20.

Lemma 11 (Value Type Preservation). If µ,Γ δ̀SHm̂0Nch e : σp and µ ` 〈e, r,m,K〉• ⇓2N -chaos v, then pc, µ,Γ,K, U δ̀SHm̂0Nch

c : Γ′,K ′.

CH-SKIP-N

pc,N,Γ,K, U δ̀Nch skip : Γ,K

CH-KILL
Ei 6∈ K

pc,N,Γ,K, U δ̀Nch kill(i) : Γ,K ∪ {Ei}

CH-ASSIGN-N
µ,Γ δ̀!Nch e : σp

pc,N,Γ,K, U δ̀Nch x := e : Γ[x 7→ σpctp],K

CH-DECLASSIFY-N
µ,Γ δ̀!Nch e : σp

pc,N,Γ,K, U δ̀Nch x := declassify(e) : Γ[x 7→ σL],K

CH-OUTPUT-N
µ,Γ δ̀!Nch e : σp

pc,N,Γ,K, U δ̀Nch output e to ` : Γ,K

CH-UPDATE-N
µ,Γ δ̀!Nch e1 : (σNp refrt)

q
µ,Γ δ̀!Nch e2 : σp′

pc,N,Γ,K, U δ̀Nch e1 ← e2 : Γ,K

CH-SEQ-N
∀i ∈ {1 . . . n}. pc,N,Γi−1,Ki−1, U δ̀Nch ci : Γi,Ki

pc,N,Γ0,K0, U δ̀Nch c1; . . . ; cn : Γn,Kn

CH-SETCND-N
δ(cnd) = N cnd ∈ Cond \ U
pc,N,Γ,K, U δ̀Nch set(cnd) : Γ,K

CH-IF-ISUNSET-N
µ,Γ δ̀!Nch isunset(cnd) : intL pc,N,Γ,K, U ∪ {cnd} δ̀Nch c1 : Γ′,K1

pc, µ,Γ,K, U δ̀Nch c2 : Γ′,K2 K ′ = K1 tK2

pc,N,Γ,K, U δ̀Nch if isunset(cnd) then c1 else c2 : Γ′,K ′

CH-IF-ELSE-N
pc′, N,Γ,K, U δ̀Nch c1 : Γ′,K1 µ,Γ δ̀!Nch e : intp pc′, N,Γ,K, U δ̀Nch c2 : Γ′,K2 K ′ = K1 tK2

pc,N,Γ,K, U δ̀Nch if e then c1 else c2 : Γ′,K ′

CH-WHILE-N
µ,Γ δ̀!Nch e : intp pc′, N,Γ,K, U δ̀Nch c : Γ,K

pc,N,Γ,K, U δ̀Nch while e do c : Γ,K

CH-CALL-N

µ,Γ δ̀!Nch e : (Γ–,K–, U
p,N−→ Γ+,K+)q

pc,N,Γ,K–, U δ̀Nch call(e) : Γout,K
+

Figure 19. N -chaos typing rules for IMPE

Proof Sketch. Proof is by straight forward induction on the derivation of the typing judgment µ,Γ δ̀SHm̂0Nch e : σp.

Lemma 12 (Protected Expression). Let µ,Γ `δSHm̂0Nch 〈r,m,K〉•ok. If µ,Γ δ̀SHm̂0Nch e : σp and µ ` 〈e, r,m,K〉• ⇓2N -chaos
v such that v = (v1 | v2) for some values v1 and v2, then protected(p,S) and µ 6= N .

Proof Sketch. Proof is by straight forward induction on the derivation of the typing judgment µ,Γ δ̀SHm̂0Nch e : σp.

Lemma 13 (IMPE2N -chaos N -chaos Final Configuration Preservation). Let Γ be an environment well-typed for δ,H be the set
of escape hatches and m̂0 be the initial IMPE2N -chaos memory such that l ∈ {locations(e) | e ∈ H}, m̂0(l) 6= (v1 | v2), i.e.,
not a pair value. If pc, µ,Γ, U `δSHm̂0Nch 〈c, r,m,K〉 : Γ′ • ok and µ ` 〈c, r,m,K〉• ⇓2N -chaos r′;m′;K ′ . t′•, then
µ,Γ′ `δSHm̂0Nch 〈r′,m′,K ′〉 • ok.

Proof. The proof is by induction on the derivation of the large step µ ` 〈c, r,m,K〉• ⇓2N -chaos r
′;m′;K ′ . t′•. For each case,

we prove that the final configuration preserves the well-typedness of IMPE2N -chaos value configuration.

Case NSQ-SKIP: Given pc, µ,Γ, U `δSHm̂0Nch 〈skip, r,m,K〉 : Γ′ • ok and µ ` 〈skip, r,m,K〉• ⇓2N -chaos r;m;K . ε•.
Configuration is not changed.

Case NSQ-ASSIGN: Given pc, µ,Γ, U `δSHm̂0Nch 〈x := e, r,m,K〉 : Γ′•ok and µ ` 〈x := e, r,m,K〉• ⇓2N -chaos r
′;m;K.

ε• such that µ ` 〈e, r,m,K〉• ⇓2N -chaos v and r′ = r[x 7→ v]. We have to prove that µ,Γ′ `δSHm̂0Nch 〈r′,m,K〉 • ok.
From the initial configuration, we have µ,Γ `δSHm̂0Nch 〈r,m,K〉 • ok. Register files r and r′ differ only in variable x. Let
v = (v1 | v2). From the well-typedness, we have µ,Γ δ̀SHm̂0Nch e : σp. Applying Lemma 12 we have protected(p,S)
and µ 6= N . Since Γ′ = Γ[x 7→ σpctp], we have protected(pc t q,S). Hence proved.

T-NSQ-CONFIG

∀cnd ∈ U,m(cnd) = 0 pc, µ,Γ,K, U δ̀SHm̂0Nch c : Γ′,K ′

∀x ∈ Vars, r(x) = (v1|v2) and Γ(x) = σp =⇒ protected(p,S) and µ 6= N
∀l ∈ Loc \ Cond,m(l) = (v1|v2) and Γ(l) = (σp, rt) =⇒ protected(p,S) and δ(l) 6= N

∀e ∈ H, µ ` 〈e, rinit , m̂0,K〉• ⇓2N -chaos v =⇒ µ ` 〈e, r,m,K〉• ⇓2N -chaos v
bKc1 = bKc2

pc, µ,Γ, U `δSHm̂0Nch 〈c, r,m,K〉 : Γ′ • ok

T-NSQ-VALUE

∀x ∈ Vars, r(x) = (v1|v2) and Γ(x) = σp =⇒ protected(p,S) and µ 6= N
∀l ∈ Loc \ Cond,m(l) = (v1|v2) and Γ(l) = (σp, rt) =⇒ protected(p,S) and δ(l) 6= N

∀e ∈ H, µ ` 〈e, rinit , m̂0,K〉• ⇓2N -chaos v =⇒ µ ` 〈e, r,m,K〉• ⇓2N -chaos v
bKc1 = bKc2

µ,Γ `δSHm̂0Nch 〈r,m,K〉 • ok

Figure 20. N -chaos Typing IMPE2N -chaos configurations

Case NSQ-DECLASSIFY: Given pc, µ,Γ, U `δSHm̂0Nch 〈declassify(x)e, r,m,K〉 : Γ′•ok and µ ` 〈declassify(x)e, r,m,K〉•
⇓2N -chaos r′;m;K . ε• such that µ ` 〈e, r,m,K〉• ⇓2N -chaos v and r′ = r[x 7→ v]. Also expression e has no variables
syntactically present (large-step has the premise hasNoVars(e)). We have to prove that µ,Γ′ `δSHm̂0Nch 〈r′,m,K〉 • ok.
From the initial configuration, we have µ,Γ `δSHm̂0Nch 〈r,m,K〉 • ok. Register files r and r′ differ only for variable x.
Let v = (v1 | v2) for some v1 and v2. We have Γ′ = Γ[x 7→ L]. From the well-typedness, we have allLocImmutable(e).
Thus e ∈ H and so v 6= (v1 | v2) (not a pair value).
Hence proved.

Case NSQ-UPDATE: Given pc, µ,Γ, U `δSHm̂0Nch 〈e1 ← e2, r,m,K〉 : Γ′ • ok and µ ` 〈e1 ← e2, r,m,K〉• ⇓2N -chaos
r;m′;K . ε• such that µ ` 〈e1, r,m,K〉• ⇓2N -chaos l, µ ` 〈e2, r,m,K〉• ⇓2N -chaos v and m′ = m[l 7→ v]. We have to
prove that µ,Γ `δSHm̂0Nch 〈r,m′,K〉 •ok. From the premise of T-NSQ-CONFIG, we have µ,Γ `δSHm̂0Nch 〈r,m,K〉 •ok,
µ,Γ δ̀SHm̂0Nch e1 : (σµ

′

p refrt)
q

and µ,Γ δ̀SHm̂0Nch e2 : σp′ such that p′ t q t pc ≤ p.
Case l = (l1 | l2), v = (v1 | v2): Applying Lemma 12, we have protected(p′,S) and µ 6= N . So protected(p,S). Since
µ,Γ δ̀SHm̂0Nch l : (σµ

′

p refrt)
L

, from the well-typedness of environment, we have δ(l) = µ′ 6= N . Hence
µ,Γ `δSHm̂0Nch 〈r,m′,K〉 • ok.

Case l 6= (l1 | l2), v = (v1 | v2): Same as above.
Case l = (l1 | l2), v 6= (v1 | v2): Applying Lemma 12, we have protected(q,S) and µ 6= N . So protected(p,S). Since
µ,Γ δ̀SHm̂0Nch l : (σµ

′

p refrt)
L

, from the well-typedness of environment, we have δ(l) = µ′ 6= N . Hence
µ,Γ `δSHm̂0Nch 〈r,m′,K〉 • ok.

Case l 6= (l1 | l2), v 6= (v1 | v2): Trivially µ,Γ `δSHm̂0Nch 〈r,m′,K〉 • ok.
Case NSQ-OUTPUT: Given pc, µ,Γ, U `δSHm̂0Nch 〈output e to `, r,m,K〉 : Γ′ • ok and µ ` 〈output e to `, r,m,K〉•
⇓2N -chaos r;m;K .Mem(m) · Out(`, v)• From the premise of T-NSQ-CONFIG, we have µ,Γ `δSHm̂0Nch 〈r,m,K〉 • ok.
Large-step does not modify register file, memory or killset.

Case NSQ-SETCND: Given pc, µ,Γ, U `δSHm̂0Nch 〈set(cnd), r,m,K〉 : Γ′ • ok and µ ` 〈set(cnd), r,m,K〉• ⇓2N -chaos
r;m′;K . Mem(m′)• such that m′ = m[cnd 7→ 1] We have to prove that µ,Γ `δSHm̂0Nch 〈r,m′,K〉 • ok. From the
premise of T-NSQ-CONFIG, we have µ,Γ `δSHm̂0Nch 〈r,m,K〉 • ok. Since m and m′ do not differ (set(cnd) always sets
cnd to a non-pair value), we have µ,Γ `δSHm̂0Nch 〈r,m′,K〉 • ok.

Case NSQ-KILL: Given pc, µ,Γ, U `δSHm̂0Nch 〈kill(i), r,m,K〉 : Γ′ • ok and N ` 〈kill(i), r,m,K〉• ⇓2N -chaos
r;m;K ∪ {Ei} . ε• We have to prove that µ,Γ `δSHm̂0Nch 〈r,m,K ∪ {Ei}〉 • ok. From the premise of T-NSQ-CONFIG,
we have µ,Γ `δSHm̂0Nch 〈r,m,K〉 • ok. Since bKc1 = bKc2, we therefore have bK ∪ {Ei}c1 = bK ∪ {Ei}c2. Hence
proved.

Case NSQ-SEQ: Given pc,N,Γ, U `δSHm̂0Nch 〈c1; . . . ; cn, r0,m0,K0〉 : Γ • ok and N ` 〈c1; . . . ; cn, r0,m0,K0〉•
⇓2N -chaos rn;mn;Kn.tn• We have to prove thatN,Γn `δSHm̂0Nch 〈rn,mn,Kn〉•ok. From the premise of T-NSQ-CONFIG,
we have µ,Γ0 `δSHm̂0Nch 〈r0,m0,K0〉 • ok and pc, µ,Γi−1,Ki−1, U δ̀SHm̂0Nch ci : Γi,Ki for i ∈ {1 . . . n}. Applying
induction hypothesis, we thus have µ,Γ1 `δSHm̂0Nch 〈r1,m1,K1〉•ok. Since the types of locations are fixed throughout the
program, we have that if Γ0 is well-typed for δ then Γ1 is also well-typed for δ. Applying induction hypothesis continuously,
we thus have N,Γn `δSHm̂0Nch 〈rn,mn,Kn〉 • ok.

Case NSQ-ENCLAVE: Given pc,N,Γ, U `δSHm̂0Nch 〈enclave(i, c), r,m,K〉 : Γ • ok and N ` 〈enclave(i, c), r,m,K〉•
⇓2N -chaos r′;m′;K ′ . t′• We have to prove that N,Γ′ `δSHm̂0Nch 〈r′,m′,K ′〉 • ok. From the premise of T-NSQ-CONFIG,
we have µ,Γ `δSHm̂0Nch 〈r,m,K〉 • ok and pc, Ei,Γ,K, ∅ δ̀SHm̂0Nch c : Γ′,K ′. So, pc, Ei,Γ, ∅ `δSHm̂0Nch

〈c, r,m,K〉 : Γ • ok. Also, Ei ` 〈c, r,m,K〉• ⇓2N -chaos r′;m′;K ′ . t′• . Applying induction hypothesis, we thus
have Ei,Γ′ `δSHm̂0Nch 〈r′,m′,K ′〉 • ok. Hence N,Γ′ `δSHm̂0Nch 〈r′,m′,K ′〉 • ok.

Case NSQ-IF-ELSE: Given pc, µ,Γ, U `δSHm̂0Nch 〈if e then c1 else c2, r,m,K〉 : Γ′ • ok and
µ ` 〈if e then c1 else c2, r,m,K〉• ⇓2N -chaos r′;m′;K ′ . t′• , We have to prove that µ,Γ′ `δSHm̂0Nch 〈r′,m′,K ′〉 • ok.
From the premise of T-NSQ-CONFIG, we have µ,Γ `δSHm̂0Nch 〈r,m,K〉 • ok and pc′, µ,Γ,K, U δ̀SHm̂0Nch ci : Γ′,K ′

for i = {1, 2} and pc ≤ pc′. So, pc, µ,Γ, U `δSHm̂0Nch 〈ci, r,m,K〉 : Γ′ • ok. Also, µ ` 〈ci, r,m,K〉•
⇓2N -chaos r′;m′;K ′ . t′• . Applying induction hypothesis to the premise µ ` 〈ci, r,m,K〉• ⇓2N -chaos r′;m′;K ′ . t′•, we
thus have µ,Γ′ `δSHm̂0Nch 〈r′,m′,K ′〉 • ok.

Case NSQ-WHILE: Given pc, µ,Γ, U `δSHm̂0Nch 〈while e do c, r,m,K〉 : Γ,K • ok and µ ` 〈while e do c, r,m,K〉•
⇓2N -chaos r

′′;m′′;K ′′.t′′• , We have to prove that µ,Γ `δSHm̂0Nch 〈r′′,m′′,K ′′〉•ok. From the premise of T-NSQ-CONFIG,
we have µ,Γ `δSHm̂0Nch 〈r,m,K〉•ok and pc′, µ,Γ,K, U δ̀SHm̂0Nch c : Γ,K for pc ≤ pc′. So, pc′, µ,Γ, U `δSHm̂0Nch

〈c, r,m,K〉 : Γ,K • ok. Also, µ ` 〈c, r,m,K〉• ⇓2N -chaos r′;m′;K ′ . t′• . From the well-typedness, we have
K = K ′ = K ′′.
Applying induction hypothesis to the premise µ ` 〈c, r,m,K〉• ⇓2N -chaos r′;m′;K ′ . t′•, we have µ,Γ `δSHm̂0Nch

〈r′,m′,K〉 • ok. So, pc′, µ,Γ, U `δSHm̂0Nch 〈while e do c, r′,m′,K ′〉 : Γ′ • ok. Also, µ ` 〈while e do c, r′,m′,K ′〉•
⇓2N -chaos r′′;m′′;K ′′ . t′′• Applying induction hypothesis to the premise µ ` 〈while e do c, r′,m′,K ′〉• ⇓2N -chaos
r′′;m′′;K ′′ . t′′•, we have µ,Γ `δSHm̂0Nch 〈r′′,m′′,K〉 • ok.

Case NSQ-CALL: Given pc, µ,Γ, U `δSHm̂0Nch 〈call(e), r,m,K〉 : Γ′ • ok and µ ` 〈call(e), r,m,K〉• ⇓2N -chaos
r′;m′;K ′ . t′• , We have to prove that µ,Γ′ `δSHm̂0Nch 〈r′,m′,K ′〉 • ok. Also from the premise of NSQ-CALL, we
have µ ` 〈e, r,m,K〉• ⇓2N -chaos λ

µ.c and µ ` 〈c, r,m,K〉• ⇓2N -chaos r
′;m′;K ′ . t′•

From the premise of T-NSQ-CONFIG, we have µ,Γ `δSHm̂0Nch 〈r,m,K〉 • ok and pc, µ,Γ–,K–, U δ̀SHm̂0Nch call(e) :
Γ+,K+ such that Γ ≤ Γ–,Γ+ ≤ Γ′ and K = K–,K ′ = K+. By subsumption, p, µ,Γ, U `δSHm̂0Nch 〈c, r,m,K〉 :
Γ′,K ′ • ok. Applying induction hypothesis to µ ` 〈c, r,m,K〉• ⇓2N -chaos r

′;m′;K ′ . t′•, we thus have µ,Γ′ `δSHm̂0Nch

〈r′,m′,K ′〉 • ok.
Case NSQ-IF-DIV: Given pc, µ,Γ, U `δSHm̂0Nch 〈if e then c0 else c1, r,m,K〉 : Γ′•ok and µ ` 〈if e then c0 else c1, r,m,K〉•
⇓2N -chaos r̂; m̂; K̂ . t̂•. We have to prove that µ,Γ′ `δSHm̂0Nch 〈r̂, m̂, K̂〉 • ok.
From the initial configuration, we have pc′, µ,Γ,K, U δ̀SHm̂0Nch c2 : Γ′,K ′ and µ,Γ δ̀ e : intp. From the premise of
NSQ-IF-DIV, we have µ ` 〈e, r,m,K〉• ⇓2N -chaos (v0 | v1). So µ 6= N , protected(p,S) and protected(pc′,S).
Let z be such that r(z) = (v1 | v2). If Γ′(z) = σq , then either Γ(z) = σq or there is an assignment to z in ci for some
i = {0, 1}. If the former holds, then we already have protected(q,S). If the latter holds, then we have protected(q,S)
(because an assignment is atleast as restrictive as pc′).
Let m(l) = (v1 | v2) and Γ′(l) = σq . Since the type of location is invariant throughout the program, from the initial
configuration we have protected(q,S).
A well-typed escape hatch has immutable locations and thus evaluates to the same initial value.
Since, both branches c0 and c1 have same killsets, we have K1 = K2. So bK̂c1 = bK̂c2. Hence µ,Γ′ `δSHm̂0Nch

〈r̂, m̂, K̂〉 • ok.
Case NSQ-WHILE-DIV: pc, µ,Γ, U `δSHm̂0Nch 〈while e do c, r,m,K〉 : Γ,K • ok and
µ ` 〈while e do c, r,m,K〉• ⇓2N -chaos r̂; m̂; K̂ . t̂•. We have to prove that µ,Γ `δSHm̂0Nch 〈r̂, m̂, K̂〉 • ok.
From the initial configuration, we have µ,Γ `δSHm̂0Nch 〈r,m,K〉 • ok, pc′, µ,Γ,K, U δ̀SHm̂0Nch c : Γ,K and
µ,Γ δ̀SHm̂0Nch e : intp for pc ≤ pc′. From the premise of NSQ-WHILE-DIV, we have µ ` 〈e, r,m,K〉• ⇓2N -chaos
(v0 | v1). So µ 6= N , protected(p,S) and protected(pc′,S). Let z be such that r̂(z) = (v1 | v2). If r(z) = (v1 | v2) and
Γ(z) = σq , then from the premise of T-NSQ-CONFIG, we already have protected(q,S). If r(z) 6= (v1 | v2) i.e., not a pair
value, and Γ(z) = σq , then from the well-typedness, pc′, µ,Γ,K, U δ̀SHm̂0Nch c : Γ,K, we have protected(pc′,S) and
so protected(q,S) (because an assignment is atleast as restrictive as pc′). Similarly, let m̂(l) = (v1 | v2) and Γ(l) = σq .
Since the type of location is invariant throughout the program, from the initial configuration we have protected(q,S). A
well-typed escape hatch has immutable locations and thus evaluates to the same initial value. Killsets are unmodified. So
bK̂c1 = bK̂c2. Hence µ,Γ′ `δSHm̂0Nch 〈r̂, m̂, K̂〉 • ok.

Case NSQ-CALL-DIV: Given pc, µ,Γ, U `δSHm̂0Nch 〈call(e), r,m,K〉 : Γ′,K ′ • ok and
µ ` 〈call(e), r,m,K〉• ⇓2N -chaos r̂; m̂; K̂ . t̂•. We have to prove that µ,Γ `δSHm̂0Nch 〈r̂, m̂, K̂〉 • ok.
From the initial configuration, we have µ,Γ `δSHm̂0Nch 〈r,m,K〉 • ok, µ,Γ δ̀SHm̂0Nch e : (Γ–,K–, U

p,µ−→ Γ+,K+)q
and so p, µ,Γ–,K–, U δ̀SHm̂0Nch c : Γ+,K+ such that K = K–,K ′ = K+ and Γ = Γ–,Γ′ = Γ+. From the premise

of NSQ-CALL-DIV, we have µ ` 〈e, r,m,K〉• ⇓2N -chaos (v0 | v1). So µ 6= N , protected(q,S) and since q ≤ p,
protected(p,S) follows.
Let z be such that r̂(z) = (v1 | v2). If r(z) = (v1 | v2) and Γ(z) = σy , then from the premise of T-NSQ-CONFIG, we
already have protected(y,S). If r(z) 6= (v1 | v2) i.e., not a pair value, and Γ(z) = σy , then from the well-typednes
p, µ,Γ–,K–, U δ̀SHm̂0Nch c : Γ+,K+ , we have protected(p,S) and so protected(y,S) (because an assignment is atleast
as restrictive as p). Similarly, let m̂(l) = (v1 | v2) and Γ(l) = σy . Since the type of location is invariant throughout
the program, from the initial configuration we have protected(y,S). A well-typed escape hatch has immutable locations
and thus evaluates to the same initial value. From the function type, post killsets are same. So bK̂c1 = bK̂c2. Hence
µ,Γ `δSHm̂0Nch 〈r̂, m̂, K̂〉 • ok.

Hence proved.

Lemma 14 (IMPE2N -chaos N -chaos Type Preservation). Let Γ be a well-formed typing context and pc, µ,Γ, U `δSHm̂0Nch

〈c, r,m,K〉 : Γ′ • ok. If µ ` 〈c′, r′,m′,K ′〉• ⇓2N -chaos r̂′; m̂′; K̂ ′ . t̂′• is an immediate (command) premise in the
evaluation of µ ` 〈c, r,m,K〉• ⇓2N -chaos r̂; m̂; K̂ . t̂•, then ∃p̂c, Γ̂, Γ̂′, Û , such that pc ≤ p̂c, either U ⊆ Û or Û = ∅
and p̂c, µ, Γ̂, Û `δSHm̂0Nch 〈c′, r′,m′,K ′〉 : Γ̂′ • ok

Proof. The proof is by induction on the derivation of the large step µ ` 〈c, r,m,K〉• ⇓2N -chaos r′;m′;K ′ . t′•. Since
rules NSQ-ASSIGN, NSQ-SKIP, NSQ-UPDATE, NSQ-KILL, NSQ-OUTPUT, NSQ-SETCND, NSQ-IF-DIV, NSQ-WHILE-DIV and
NSQ-CALL-DIV do not have IMPE2N -chaos command premises, the only relevant cases are NSQ-ENCLAVE,NSQ-IF-ELSE,NSQ-WHILE,
NSQ-SEQ, NSQ-CALL.

Case NSQ-ENCLAVE: Given pc, µ,Γ, U δ̀SHm̂0 〈enclave(i, c), r,m,K〉 : Γ′,K ′•ok. From the premises of T-SQ-CONFIG, we
have µ,Γ `δSHm̂0Nch 〈r,m,K〉 • ok and pc, Ei,Γ,K, ∅ δ̀SHm̂0Nch c : Γ′,K ′. From the premises of the IMPE2N -chaos

large-step, we have Ei ` 〈c, r,m,K〉• ⇓2N -chaos r
′;m′;K ′ . t′• . Hence pc, ∅,Γ, Ei δ̀SHm̂0

〈c, r,m,K〉 : Γ′,K ′, •ok.
Case NSQ-IF-ELSE: Given pc, µ,Γ, U `δSHm̂0Nch 〈if e then c1 else c2, r,m,K〉 : Γ′ • ok. From the premises of the

IMPE2N -chaos large-step, we have µ ` 〈ci, r,m,K〉• ⇓2N -chaos r′;m′;K ′ . t′•. From the premises of T-SQ-CONFIG,
we have µ,Γ `δSHm̂0Nch 〈r,m,K〉 • ok and pc′, µ,Γ,K, U δ̀SHm̂0Nch ci : Γ′,K ′ for i = {1, 2}, pc ≤ pc′. Hence
pc′, µ,Γ, U `δSHm̂0Nch 〈ci, r,m,K〉 : Γ′ • ok.
Note that if e = isunset(cnd), then we have pc′, µ,Γ, U∪{cnd} `δSHm̂0Nch 〈c1, r,m,K〉 : Γ′•ok and pc′, µ,Γ, U `δSHm̂0Nch

〈c2, r,m,K〉 : Γ′ • ok.
Case NSQ-WHILE: Given pc, µ,Γ, U `δSHm̂0Nch 〈while e do c′, r,m,K〉 : Γ,K •ok. From the premises of the IMPE2N -chaos

large-step, we have µ ` 〈c′, r,m,K〉• ⇓2N -chaos r′;m′;K ′ . t′• and µ ` 〈while e do c′, r′,m′,K ′〉• ⇓2N -chaos
r′′;m′′;K ′′.t′′• From the premises of T-SQ-CONFIG, we have µ,Γ `δSHm̂0Nch 〈r,m,K〉•ok and pc′, µ,Γ,K, U δ̀SHm̂0Nch

c′ : Γ,K for pc ≤ pc′. We thus have K = K ′ = K ′′ and pc′, µ,Γ, U `δSHm̂0Nch 〈c′, r,m,K〉 : Γ • ok. Applying
Lemma 13 to pc′, µ,Γ, U `δSHm̂0Nch 〈c′, r,m,K〉 : Γ,K • ok, we have µ,Γ `δSHm̂0Nch 〈r′,m′,K〉 • ok. Hence
pc′, µ,Γ, U `δSHm̂0Nch 〈while e do c′, r′,m′,K〉 : Γ,K • ok.

Case NSQ-CALL: Given pc, µ,Γ, U `δSHm̂0Nch 〈call(e), r,m,K〉 : Γ′,K ′ • ok. From the premises of the IMPE2N -chaos

large-step, we have µ ` 〈e, r,m,K〉• ⇓2N -chaos λµ.c and µ ` 〈c, r,m,K〉• ⇓2N -chaos r′;m′;K ′ . t′• From the
premises of T-SQ-CONFIG, we have µ,Γ `δSHm̂0Nch 〈r,m,K〉 • ok and µ,Γ δ̀SHm̂0Nch e : (Γ–,K–, U

p,µ−→ Γ+,K+)q .
So, K = K–,K ′ = K+ and Γ = Γ–,Γ′ = Γ+. We also have p, µ,Γ–,K–, U δ̀SHm̂0Nch c : Γ+,K+ . Hence
pc, µ,Γ, U `δSHm̂0Nch 〈c, r,m,K〉 : Γ′,K ′ • ok.

Case NSQ-SEQ: Given pc, µ,Γ0, U `δSHm̂0Nch 〈c1; . . . ; cn, r0,m0,K0〉 : Γn,Kn•ok. From the premises of the IMPE2N -chaos

large-step, we have µ ` 〈ci, ri−1,mi−1,Ki−1〉• ⇓2N -chaos ri;mi;Ki . ti•. From the premises of T-SQ-CONFIG, we have
µ,Γ `δSHm̂0Nch 〈r0,m0,K0〉 • ok and pc, µ,Γi−1,Ki−1, U δ̀SHm̂0Nch ci : Γi,Ki for i = {1, . . . , n}.
We already have pc, U,Γ0, µ `δSHm̂0Nch 〈c1, r0,m0,K0〉 : Γ1,K1 • ok. Applying Lemma 13, we have µ,Γ `δSHm̂0Nch

〈r1,m1,K1〉 • ok. Hence pc, U,Γ1, µ `δSHm̂0Nch 〈c2, r1,m1,K1〉 : Γ2,K2 • ok. Repeatedly applying the above argument
for n times, we thus have pc, U,Γn−1, µ `δSHm̂0Nch 〈cn, rn−1,mn−1,Kn−1〉 : Γn,Kn • ok.

Hence proved.

Using Lemma 13 and Lemma 14, we prove the second part of Theorem 1 for semantics ⇓N -chaos and security specification
γ.

Proof. Given L, µ,Γ,K, ∅ δ̀ c : Γ′,K ′. Let m1 be some initial memory for which N `δ 〈c, rinit ,m1,K〉 ⇓chaostypeN
r′1;m′1;K ′ . t · tobs · t′ where tobs = m′ · t′′ for some memory m′ and trace t′′, and if t′′ is not empty then the last element of
t′′ is an output event. Note that the attacker actually observes only low-events i.e. btobscL. We need to show that

k⇓N -chaos
L (c, tobs) ⊇M

where

M =

(⋂
m′∈btobscmem

ind`(m0, γ, {cnd | m′(cnd) = 0})

∩
⋂

(e′,m′)∈bt·tobscesc

Esc⇓kind (m0,m
′, e′)

)
Let S be the set of conditions that are set at the beginning of tobs, i.e., S = {cnd | m′(cnd) = 1}. If Cond represents the set
of all condition variables, then Cond \ S is the set of conditions that are unset at some time during the observed trace. Also let
H be the set of all escape hatches that are declassified till the last event of tobs i.e.H = {e | (e,m) ∈ bt · tobscesc}.

Let m2 ∈M . Also let N `δ 〈c, rinit ,m2,K〉 ⇓N -chaos r
′
2;m′2;K ′2 . t2 such that

bt2c1,cmd = bt2c2,cmd

To ensure k⇓N -chaos
L (c, tobs) ⊇M , we need to show that m2 ∈ k⇓N -chaos

L (c, tobs)
Note that m1 and m2 differ only in locations with policies that are protected by set S. That is, for all locations l ∈ Loc,

if m1(l) 6= m2(l) then Γ(l) = σp =⇒ protected(p,S). Why? Suppose for some l, s.t Γ(l) = (σp, rt) let m1(l) 6= m2(l)
and ¬protected(p,S). So, p = L or L cnd↗`2 s.t. cnd 6∈ S . Then for some mj ∈ M , we have m1(l) = mj(l). Since M
is computed by the intersection of all such memories, every memory m′′ ∈ M should satisfy m′′(l) = m1(l). This implies
m2(l) = m1(l) which is a contradiction. Thus protected(p,S) must hold.

Also note that m1 and m2 satisfy

∀e ∈ H, µ `δ 〈e, rinit ,m1,K〉 ⇓ v ⇔ µ `δ 〈e, r,m2,K〉 ⇓ v

We will construct an IMPE2N -chaos execution that represents the IMPE executions starting from m0 and m2. Type-preservation
of IMPE2N -chaos (Lemma 13) will ensure that both executions produce the same observable trace, thus showing that m2 ∈
k⇓N -chaos
L (c, tobs).

Let IMPE2N -chaos memory m = merge(m1,m2). If µ ` 〈c, rinit ,m,K〉• ⇓2N -chaos r
∗;m∗;K∗ . t∗• such that the attacker

modifies the program in the same way in both the executions. By the adequacy of IMPE2N -chaos (Lemma 10), we have that the
IMPE2N -chaos execution represents IMPE executions with m1 and m2 as initial memories.

Let t∗ = t∗pre · t∗obs · t∗post for some t∗obs such that bt∗obsc1 = tobs. Define observation overlapped (same as the function
defined in Section E.1.2 but repeated here for the ease of reference) by an IMPE2EI -chaos trace t∗

′
as:

obsOverlap(t∗
′
, t∗pre, t

∗
obs, t

∗
post) =

ε if t∗

′ ≤lex t∗pre
t∗obs if t∗pre · t∗obs ≤lex t∗

′

t∗
′′

if t∗
′

= t∗pre · t∗
′′

and
t∗

′′ ≤lex t∗obs

Intuitively, obsOverlap(t∗
′
, t∗pre, t

∗
obs, t

∗
post) defines part of input trace t∗

′
that overlaps with an observed trace t∗obs.

Since L, µ,Γ,K, ∅ δ̀ c : Γ′,K ′, from Lemma 8 we have L, µ,Γ,K, ∅ δ̀Nch c : Γ′,K ′ and so L, µ,Γ,K, ∅ δ̀SHm̂0Nch c :
Γ′,K ′. Note that our initial configuration satisfies

L,N,Γ, ∅ `δSHm̂0Nch 〈c, rinit ,m, ∅〉 : Γ′ • ok

Lemma 15 (Observational Equivalence is Preserved). Let S be the set of conditions that are set(non-zero) in some observed
trace tobs. If pc, µ,Γ, U `δSHm̂0Nch 〈c, r,m,K〉 : Γ′,K ′ • ok and µ ` 〈c, r,m,K〉• ⇓2N -chaos r̂; m̂; K̂ . t̂•, then

bobsOverlap(t̂, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t̂, t∗pre, t

∗
obs, t

∗
post)c2

Proof. The proof follows by induction on the derivation of µ ` 〈c, r,m,K〉• ⇓2N -chaos r̂; m̂; K̂ . t̂•.

Case NSq-Skip: Emitted trace is empty.
Case NSq-Assign: Emitted trace is empty.
Case NSq-Declassify: Emitted trace does not include out event.
Case NSq-Update: Emitted trace is empty.
Case NSq-Kill: Emitted trace is empty.
Case NSq-SetCnd: Emitted trace does not include out event.
Case NSq-Output: Given pc, µ,Γ, U `δSHm̂0Nch 〈c, r,m,K〉 : Γ′,K ′ • ok and µ ` 〈output e to `, r,m,K〉•
⇓2N -chaos r;m;K . Mem(m) · Out(`, v)•. Let t̂ = Mem(m) · Out(`, v). From the premise of T-NSQ-CONFIG, we have
pc, µ,Γ,K, U δ̀ output e to ` : Γ,K and so µ,Γ δ̀SHm̂0Nch e : σp and cur(p, U) t cur(pc, U) v `.
Case v = (v1 | v2): We have protected(p,S) and so ` 6= L.
Case v 6= (v1 | v2): In this case ` = {L,H}.
In the both the cases, we have

bobsOverlap(t̂, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t̂, t∗pre, t

∗
obs, t

∗
post)c2

Case NSq-If-Else: Given pc, µ,Γ, U `δSHm̂0Nch 〈if e then c1 else c2, r,m,K〉 : Γ′,K ′ • ok and
µ ` 〈if e then c1 else c2, r,m,K〉• ⇓2N -chaos r′;m′;K ′ . t′•. Let t̂ = t′. Since µ `δ 〈e, r,m,K〉 ⇓ v such that v is not a
pair, applying induction hypothesis to the premises of NSQ-IF-ELSE gives us

bobsOverlap(t̂, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t̂, t∗pre, t

∗
obs, t

∗
post)c2

Case NSq-While: Given pc, µ,Γ, U `δSHm̂0Nch 〈while e do c, r,m,K〉 : Γ,K • ok and µ ` 〈while e do c, r,m,K〉•
⇓2N -chaos r

′′;m′′;K ′′.t′′•. From the premises of T-NSQ-CONFIG, we haveK = K ′ = K ′′. Since µ ` 〈e, r,m,K〉• ⇓2N -chaos
v such that v is not a pair, applying induction hypothesis to the premise of NSQ-WHILE gives us

bobsOverlap(t′, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t′, t∗pre, t

∗
obs, t

∗
post)c2

From Lemma 14, we have pc, µ,Γ, U `δSHm̂0Nch 〈while e do c, r′,m′,K〉 : Γ,K • ok. Applying induction hypothesis to
µ ` 〈while e do c, r′,m′,K〉• ⇓2N -chaos r

′′;m′′;K ′′ . t′′•, we have

bobsOverlap(t′′, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t′′, t∗pre, t

∗
obs, t

∗
post)c2

Hence
bobsOverlap(t′ · t′′, t∗pre, t∗obs, t∗post)c1 ≈L bobsOverlap(t′ · t′′, t∗pre, t∗obs, t∗post)c2

Case NSq-Call: Given pc, µ,Γ, U `δSHm̂0Nch 〈call(e), r,m,K〉 : Γ′,K ′ • ok and µ ` 〈call(e), r,m,K〉• ⇓2N -chaos
r′;m′;K ′ . t′•. Since µ ` 〈e, r,m,K〉• ⇓2N -chaos v such that v is not a pair, applying induction hypothesis to the
premise of NSQ-CALL gives us

bobsOverlap(t′, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t′, t∗pre, t

∗
obs, t

∗
post)c2

Case NSq-If-Div: Given pc, µ,Γ, U `δSHm̂0Nch 〈if e then c1 else c2, r,m,K〉 : Γ′,K ′ • ok and
µ ` 〈if e then c0 else c1, r,m,K〉• ⇓2N -chaos r̂; m̂; K̂ . t̂•. From the premises of T-NSQ-CONFIG, we have
pc, µ,Γ,K, U δ̀SHm̂0Nch if e then c1 else c2 : Γ′,K ′ Since µ ` 〈e, r,m,K〉• ⇓2N -chaos v such that v is a pair,
we have protected(p,S). From the well-typedness, neither c1 nor c2 do emit any out events to L channel. Hence

bobsOverlap(t̂, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t̂, t∗pre, t

∗
obs, t

∗
post)c2

Case NSq-While-Div: Given pc, µ,Γ, U `δSHm̂0Nch 〈while e do c, r,m,K〉 : Γ,K • ok and
µ ` 〈while e do c, r,m,K〉• ⇓2N -chaos r̂; m̂; K̂ . t̂•. From the premises of T-NSQ-CONFIG, we have pc, µ,Γ,K, U δ̀SHm̂0Nch

while e do c : Γ,K Since µ ` 〈e, r,m,K〉• ⇓2N -chaos v such that v is a pair, we have protected(p,S). From the well-
typedness, command c does not emit any out events to L channel. Hence

bobsOverlap(t̂, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t̂, t∗pre, t

∗
obs, t

∗
post)c2

Case NSq-Call-Div: Given pc, µ,Γ, U `δSHm̂0Nch 〈call(e), r,m,K〉 : Γ′,K ′ • ok and
µ ` 〈call(e), r,m,K〉• ⇓2N -chaos r̂; m̂; K̂ . t̂•. From the premises of T-NSQ-CONFIG, we have pc, µ,Γ,K, U δ̀SHm̂0Nch

call(e) : Γ′,K ′ Since µ ` 〈e, r,m,K〉• ⇓2N -chaos v such that v is a pair, we have protected(p,S). From the well-
typedness, command c does not emit any out events to L channel. Hence

bobsOverlap(t̂, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t̂, t∗pre, t

∗
obs, t

∗
post)c2

Case NSq-Seq: Given pc, µ,Γ0, U `δSHm̂0Nch 〈c1; . . . ; cn, r0,m0,K0〉 : Γn,Kn • ok and µ ` 〈c1; . . . ; cn, r0,m0,K0〉•
⇓2N -chaos rn;mn;Kn . t1 · . . . · tn• From the premises of T-NSQ-CONFIG, we have pc, µ,Γ0,K0, U δ̀SHm̂0Nch c1; . . . ; cn :
Γn,Kn

Applying induction hypothesis to the premise, µ ` 〈c1, r0,m0,K0〉• ⇓2N -chaos r1;m1;K1 . t1•, we have

bobsOverlap(t1, t
∗
pre, t

∗
obs, t

∗
post)c1 ≈L bobsOverlap(t1, t

∗
pre, t

∗
obs, t

∗
post)c2

From Lemma 14, we have pc, µ,Γ1, U `δSHm̂0Nch 〈c2, r1,m1,K1〉 : Γ2,K2 • ok. Applying inductive hypothesis to the
next premise, µ ` 〈c2, r1,m1,K1〉• ⇓2N -chaos r2;m2;K2 . t2•, we have

bobsOverlap(t2, t
∗
pre, t

∗
obs, t

∗
post)c1 ≈L bobsOverlap(t2, t

∗
pre, t

∗
obs, t

∗
post)c2

Applying the inductive hypothesis continuously thus gives,

bobsOverlap(tn, t
∗
pre, t

∗
obs, t

∗
post)c1 ≈L bobsOverlap(tn, t

∗
pre, t

∗
obs, t

∗
post)c2

Case NSq-Enclave: Given pc, µ,Γ, U `δSHm̂0Nch 〈enclave(i, c), r,m,K〉 : Γ′,K ′ • ok and N ` 〈enclave(i, c), r,m,K〉•
⇓2N -chaos r′;m′;K ′ . t′• . From the premises of T-NSQ-CONFIG, we have pc, µ,Γ,K, U δ̀SHm̂0Nch enclave(i, c) : Γ′,K ′.
From Lemma 14, we have pc, Ei,Γ, ∅ `δSHm̂0Nch 〈c, r,m,K〉 : Γ′,K ′ •ok. Applying induction hypothesis to the premise
Ei ` 〈c, r,m,K〉• ⇓2N -chaos r

′;m′;K ′ . t′•

bobsOverlap(t′, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t′, t∗pre, t

∗
obs, t

∗
post)c2

Since we have L,N,Γ, ∅ `δSHm̂0Nch 〈c, rinit ,m, ∅〉 : Γ′ • ok, applying Lemma 15 on µ ` 〈c, rinit ,m,K〉•
⇓2N -chaos r

∗;m∗;K∗ . t∗•, we have

bobsOverlap(t∗, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t∗, t∗pre, t

∗
obs, t

∗
post)c2

Hence proved that m2 ∈ k⇓N -chaos
L (c, tobs).

E.1.6 Proofs for EI -chaos Security
In this section we use an even more permissive EI -chaos type system and show that a IMPE program that is well-typed for the
type system in Section 4 is also well-typed for EI -chaos type system. Figure 21 presents the EI -chaos type system. It further
relaxes the N -chaos type system from Section E.1.3 by unconstraining the commands running both in the normal mode and
killed enclave modes. They can now read and write to memory locations with no restrictions on security policies. The new
typing system relies on the guarantees provided by the operational semantics that a command running in normal mode does
not access enclave memory, and that a location from a killed enclave is inaccessible. Typing rules for commands running in
enclave mode are unchanged and are same as those presented in Figure 19.

Lemma 16 (Permissive Type System 2). Let I be the set of enclaves killed. IfL,N,Γ, ∅, ∅ δ̀ c : Γ′,K ′, then pc, µ,Γ,K, U δ̀Ech
I

c : Γ′,K ′.

Proof Sketch. Proof is by straight forward induction on the derivation of the typing judgment µ,Γ δ̀ e : σp.

E.1.7 IMPE2EI -chaos Adequacy
The language IMPE2EI -chaos is adequate for reasoning about executions of two IMPE programs. We show that the execution
of IMPE2EI -chaos program using semantics ⇓2EI -chaos is sound (i.e., large-step taken by a IMPE2EI -chaos program coresponds
to a large-step taken by either side of the execution) and complete (given two IMPE EI -chaos executions, there exists an
IMPE2EI -chaos execution).

Lemma 17 (IMPE2EI -chaos is Sound). If µ ` 〈c, r,m,K〉• ⇓2EI -chaos r
∗;m∗;K∗.t∗•, then µ `δ 〈c, brci, bmci, bKci〉 ⇓EI -chaos

br∗ci; bm∗ci; bK∗ci . bt∗ci for i ∈ {1, 2}.

Proof Sketch. Proof is by induction on the derivation of µ ` 〈c, r,m,K〉• ⇓2EI -chaos r
∗;m∗;K∗ . t∗•.

Lemma 18 (IMPE2EI -chaos is Complete). If µ `δ 〈c, brci, bmci, bKci〉 ⇓EI -chaos r∗i ;m∗i ;K
∗
i . t

∗
i such that bt∗c1,cmd =

bt∗c2,cmd Then ∃〈r∗,m∗,K∗, t∗〉. such that µ ` 〈c, r,m,K〉• ⇓2EI -chaos r∗;m∗;K∗ . t∗• and 〈br∗ci, bm∗ci, bK∗ci, bt∗ci〉
= 〈r∗i ,m∗i ,K∗i , t∗i 〉 for i ∈ {1, 2}.

Proof Sketch. Follows along the lines of proof of Lemma 2.

EI-SKIP-N

pc,N,Γ,K, U δ̀Ech
I

skip : Γ,K

EI-KILL
Ei 6∈ K

pc,N,Γ,K, U δ̀Ech
I

kill(i) : Γ,K ∪ {Ei}

EI-ASSIGN
µ,Γ δ̀Ech

I
e : σp µ 6∈ I

pc, µ,Γ,K, U δ̀Ech
I
x := e : Γ[x 7→ σpctp],K

EI-DECLASSIFY
µ,Γ δ̀Ech

I
e : σp µ 6∈ I

pc, µ,Γ,K, U δ̀Ech
I
x := declassify(e) : Γ[x 7→ σL],K

EI-OUTPUT
µ,Γ δ̀Ech

I
e : σp µ 6∈ I

pc, µ,Γ,K, U δ̀Ech
I

output e to ` : Γ,K

EI-UPDATE

µ,Γ δ̀Ech
I
e1 : (σµp refrt)

q
µ,Γ δ̀Ech

I
e2 : σp′ µ 6∈ I

pc, µ,Γ,K, U δ̀Ech
I
e1 ← e2 : Γ,K

EI-SEQ

∀i ∈ {1 . . . n}. pc, µ,Γi−1,Ki−1, U δ̀Ech
I
ci : Γi,Ki

pc, µ,Γ0,K0, U δ̀Ech
I
c1; . . . ; cn : Γn,Kn

EI-SETCND
δ(cnd) = N cnd ∈ Cond \ U µ 6∈ I

pc, µ,Γ,K, U δ̀Ech
I

set(cnd) : Γ,K

EI-IF-ISUNSET
µ,Γ δ̀Ech

I
isunset(cnd) : intL pc, µ,Γ,K, U ∪ {cnd} δ̀Ech

I
c1 : Γ′,K1

pc, µ,Γ,K, U δ̀Ech
I
c2 : Γ′,K2 K ′ = K1 tK2 µ 6∈ I

pc, µ,Γ,K, U δ̀Ech
I

if isunset(cnd) then c1 else c2 : Γ′,K ′

EI-IF-ELSE
pc′, N,Γ,K, U δ̀Ech

I
c1 : Γ′,K1

µ,Γ δ̀Ech
I
e : intp pc′, N,Γ,K, U δ̀Ech

I
c2 : Γ′,K2 K ′ = K1 tK2 µ 6∈ I

pc, µ,Γ,K, U δ̀Ech
I

if e then c1 else c2 : Γ′,K ′

EI-WHILE
µ,Γ δ̀Ech

I
e : intp pc′, µ,Γ,K, U δ̀Ech

I
c : Γ,K µ 6∈ I

pc, µ,Γ,K, U δ̀Ech
I

while e do c : Γ,K

EI-CALL

µ,Γ δ̀Ech
I
e : (Γ–,K–, U

p,µ−→ Γ+,K+)q µ 6∈ I
pc, µ,Γ,K–, U δ̀Ech

I
call(e) : Γout,K

+

Figure 21. EI -chaos typing rules for IMPE

E.1.8 IMPE2EI -chaos EI -chaos Type System
Let S be the set of conditions set during some observed trace tobs, H be the set of escape hatches till the observed trace and
m̂0 be the initial IMPE2EI -chaos memory. A policy is now protected if it is either > or ` cnd↗> s.t. mcnd = 1. We define
protectedI(p,S) as follows:

protectedI(p,S) =

true if p = >
true if p = ` cnd↗> and cnd ∈ S
false o.w

The definition differs from protected(p,S) defined earlier in that an erasure policy is protected if the confidentiality level is
raised to > only (after some condition cnd is set).

The IMPE2EI -chaos type system is parametrized by δ, S, H and m̂0. The typing judgment for commands and expressions is
shown below.

pc, µ,Γ,K, U δ̀SHm̂0Ech
I
c : Γ′,K ′

µ,Γ δ̀SHm̂0Ech
I
e : σp

The typing rules are shown in Figure 21 and ensure that commands running in enclaves that aren’t killed are well-typed
according to IMPE2 type system. Rules for typing configurations are shown in Figure 22 and are similar to T-NSQ-CONFIG and
T-NSQ-VALUE.

T-ESQ-CONFIG

∀cnd ∈ U,m(cnd) = 0 pc, µ,Γ,K, U δ̀SHm̂0Ech
I
c : Γ′,K ′

∀x ∈ Vars, r(x) = (v1|v2) and Γ(x) = σp =⇒ protectedI(p,S) and µ ∈ I
∀l ∈ Loc \ Cond,m(l) = (v1|v2) and Γ(l) = (σp, rt) =⇒ protectedI(p,S) and δ(l) ∈ I
∀e ∈ H, µ ` 〈e, rinit , m̂0,K〉• ⇓2EI -chaos v =⇒ µ ` 〈e, r,m,K〉• ⇓2EI -chaos v

bKc1 = bKc2
pc, µ,Γ, U `δSHm̂0Ech

I
〈c, r,m,K〉 : Γ′ • ok

T-ESQ-VALUE

∀x ∈ Vars, r(x) = (v1|v2) and Γ(x) = σp =⇒ protectedI(p,S)
∀l ∈ Loc \ Cond,m(l) = (v1|v2) and Γ(l) = (σp, rt) =⇒ protectedI(p,S) and µ ∈ I

∀e ∈ H, µ ` 〈e, rinit , m̂0,K〉• ⇓2EI -chaos v =⇒ µ ` 〈e, r,m,K〉• ⇓2EI -chaos v and δ(l) ∈ I
bKc1 = bKc2

Γ `δSHm̂0Ech
I
〈r,m,K〉 • ok

Figure 22. EI -chaos Typing IMPE2EI -chaos configurations

Lemma 19 (EI -chaos Value Type Preservation). If µ,Γ δ̀SHm̂0Ech
I

e : σp and µ ` 〈e, r,m,K〉• ⇓2EI -chaos v, then
µ,Γ δ̀SHm̂0Ech

I
v : σp.

Proof Sketch. Proof is by straight forward induction on the derivation of the typing judgment µ,Γ δ̀SHm̂0Ech
I
e : σp.

Lemma 20 (EI -chaos Protected Expression). Let Γ `δSHm̂0Ech
I
〈r,m,K〉 • ok. If µ,Γ δ̀SHm̂0Ech

I
e : σp and µ

` 〈e, r,m,K〉• ⇓2EI -chaos v such that v = (v1 | v2) for some values v1 and v2, then protectedI(p,S) and µ ∈ I .

Proof Sketch. Proof is by straight forward induction on the derivation of the typing judgment µ,Γ δ̀SHm̂0Ech
I
e : σp.

Lemma 21 (IMPE2EI -chaos EI -chaos Final Configuration Preservation). Let I be the set of enclaves killed, γ be the security
specification such that γ(l) = L ∀δ(l) = I and Γ be an environment that corresponds to γ and is well-typed for δ. Also letH be
the set of escape hatches and m̂0 be the initial IMPE2N -chaos memory such that l ∈ {locations(e) | e ∈ H}, m̂0(l) 6= (v1 | v2),
i.e., not a pair value. If pc, µ,Γ, U `δSHm̂0Ech

I
〈c, r,m,K〉 : Γ′ • ok and µ ` 〈c, r,m,K〉• ⇓2EI -chaos r′;m′;K ′ . t′•, then

µ,Γ′ `δSHm̂0Ech
I
〈r′,m′,K ′〉 • ok.

Proof. The proof is by induction on the derivation of the large step µ ` 〈c, r,m,K〉• ⇓2EI -chaos r
′;m′;K ′ . t′•.

Case ESQ-SKIP: Given pc, µ,Γ, U `δSHm̂0Nch 〈skip, r,m,K〉 : Γ′ • ok and µ ` 〈skip, r,m,K〉• ⇓2EI -chaos r;m;K . ε•.
Configuration is not changed.

Case ESQ-ASSIGN: Given pc, µ,Γ, U `δSHm̂0Nch 〈x := e, r,m,K〉 : Γ′ • ok and µ ` 〈x := e, r,m,K〉• ⇓2EI -chaos
r′;m;K . ε• such that µ ` 〈e, r,m,K〉• ⇓2EI -chaos v and r′ = r[x 7→ v]. We have to prove that µ,Γ′ `δSHm̂0Ech

I

〈r′,m,K〉 • ok.
From the initial configuration, we have µ,Γ `δSHm̂0Ech

I
〈r,m,K〉 • ok. Register files r and r′ differ only in variable x. Let

v = (v1 | v2). If µ,Γ δ̀SHm̂0Ech
I
e : σp, we have protectedI(p,S). Γ′ = Γ[x 7→ σpctp]. Applying Lemma 20, we have

protectedI(pc t q,S) and µ ∈ I . Hence proved.
Case ESQ-DECLASSIFY: Given pc, µ,Γ, U `δSHm̂0Nch 〈declassify(x)e, r,m,K〉 : Γ′ • ok and
µ ` 〈declassify(x)e, r,m,K〉• ⇓2EI -chaos r′;m;K . ε• such that µ ` 〈e, r,m,K〉• ⇓2EI -chaos v and r′ = r[x 7→ v].
Also expression e has no variables syntactically present (large-step has the premise hasNoVars(e)), We have to prove that
µ,Γ′ `δSHm̂0Ech

I
〈r′,m,K〉 • ok.

From the initial configuration, we have µ,Γ `δSHm̂0Ech
I
〈r,m,K〉 • ok. Register files r and r′ differ only for x. Let

v = (v1 | v2) for some v1 and v2. We have Γ′ = Γ[x 7→ L]. From the well-typedness, we have allLocImmutable(e). Thus
e ∈ H and so v 6= (v1 | v2) (not a pair value).
Hence proved.

Case ESQ-UPDATE: Given pc, µ,Γ, U `δSHm̂0Nch 〈e1 ← e2, r,m,K〉 : Γ′ • ok and µ ` 〈e1 ← e2, r,m,K〉•
⇓2EI -chaos r;m′;K . ε• such that µ ` 〈e1, r,m,K〉• ⇓2EI -chaos l, µ ` 〈e2, r,m,K〉• ⇓2EI -chaos v and m′ = m[l 7→ v].
We have to prove that µ,Γ `δSHm̂0Ech

I
〈r,m′,K〉 • ok.

From the premise of T-ESQ-CONFIG, we have µ,Γ `δSHm̂0Ech
I
〈r,m,K〉 • ok, µ,Γ δ̀SHm̂0Ech

I
e1 : (σµ

′

p refrt)
q

and
µ,Γ δ̀SHm̂0Ech

I
e2 : σp′ such that p′ t q t pc ≤ p.

Case l = (l1 | l2), v = (v1 | v2): Applying Lemma 20, we have protectedI(p
′,S) and µ ∈ I . So protectedI(p,S).

Since µ,Γ δ̀SHm̂0Ech
I

l : (σµ
′

p refrt)
L

, from the well-typedness of environment, we have δ(l) = µ′ ∈ I . Hence
µ,Γ `δSHm̂0Ech

I
〈r,m′,K〉 • ok.

Case l 6= (l1 | l2), v = (v1 | v2): Same as above.
Case l = (l1 | l2), v 6= (v1 | v2): Applying Lemma 20, we have protectedI(q,S) and µ ∈ I . So protectedI(p,S). Since
µ,Γ δ̀SHm̂0Ech

I
l : (σµ

′

p refrt)
L

, from the well-typedness of environment, we have δ(l) = µ′ ∈ I . Hence
µ,Γ `δSHm̂0Ech

I
〈r,m′,K〉 • ok.

Case l 6= (l1 | l2), v 6= (v1 | v2): Trivially µ,Γ `δSHm̂0Ech
I
〈r,m′,K〉 • ok.

Case ESQ-OUTPUT: Given pc, µ,Γ, U `δSHm̂0Nch 〈output e to `, r,m,K〉 : Γ′ • ok and µ ` 〈output e to `, r,m,K〉•
⇓2EI -chaos r;m;K .Mem(m) · Out(`, v)• From the premise of T-ESQ-CONFIG, we have µ,Γ `δSHm̂0Ech

I
〈r,m,K〉 • ok.

Large-step does not modify register file, memory or killset.
Case ESQ-SETCND: Given pc, µ,Γ, U `δSHm̂0Nch 〈set(cnd), r,m,K〉 : Γ′ • ok and µ ` 〈set(cnd), r,m,K〉• ⇓2EI -chaos
r;m′;K . Mem(m′)• such that m′ = m[cnd 7→ 1] We have to prove that µ,Γ `δSHm̂0Ech

I
〈r,m′,K〉 • ok. From the

premise of T-ESQ-CONFIG, we have µ,Γ `δSHm̂0Ech
I
〈r,m,K〉 • ok. Since m and m′ do not differ (set(cnd) always sets

cnd to a non-pair value), we have µ,Γ `δSHm̂0Ech
I
〈r,m′,K〉 • ok.

Case ESQ-KILL: Given pc, µ,Γ, U `δSHm̂0Nch 〈kill(i), r,m,K〉 : Γ′ • ok and N ` 〈kill(i), r,m,K〉• ⇓2EI -chaos
r;m;K ∪ {Ei} . ε• We have to prove that µ,Γ `δSHm̂0Ech

I
〈r,m,K ∪ {Ei}〉 • ok. From the premise of T-ESQ-CONFIG,

we have µ,Γ `δSHm̂0Ech
I
〈r,m,K〉 • ok. Since bKc1 = bKc2, we therefore have bK ∪ {Ei}c1 = bK ∪ {Ei}c2. Hence

µ,Γ `δSHm̂0Ech
I
〈r,m,K ∪ {Ei}〉 • ok.

Case ESQ-SEQ: Given pc,N,Γ, U `δSHm̂0Ech
I
〈c1; . . . ; cn, r0,m0,K0〉 : Γ • ok and N ` 〈c1; . . . ; cn, r0,m0,K0〉•

⇓2EI -chaos rn;mn;Kn . tn• We have to prove that N,Γn `δSHm̂0Ech
I
〈rn,mn,Kn〉 • ok. From the premise of

T-ESQ-CONFIG, we have µ,Γ0 `δSHm̂0Ech
I
〈r0,m0,K0〉 • ok and pc, µ,Γi−1,Ki−1, U δ̀SHm̂0Ech

I
ci : Γi,Ki for

i ∈ {1 . . . n}. Applying induction hypothesis, we thus have µ,Γ1 `δSHm̂0Ech
I
〈r1,m1,K1〉•ok. Since the types of locations

are fixed throughout the program, we have that if Γ0 corresponds to γ and is well-typed for δ then Γ1 also corresponds to γ
and is well-typed for δ. Applying induction hypothesis continuously, we thus have N,Γn `δSHm̂0Ech

I
〈rn,mn,Kn〉 • ok.

Case ESQ-ENCLAVE: Given pc, µ,Γ, U `δSHm̂0Nch 〈enclave(i, c), r,m,K〉 : Γ′ • ok and N ` 〈enclave(i, c), r,m,K〉•
⇓2EI -chaos r

′;m′;K ′.t′• We have to prove that µ,Γ′ `δSHm̂0Ech
I
〈r′,m′,K ′〉•ok. From the premise of T-ESQ-CONFIG, we

have µ,Γ `δSHm̂0Ech
I
〈r,m,K〉 • ok and pc, Ei,Γ,K, ∅ δ̀SHm̂0Ech

I
c : Γ′,K ′. So, pc, µ,Γ, ∅ `δSHm̂0Nch 〈c, r,m,K〉 :

Γ′•ok. Also,Ei ` 〈c, r,m,K〉• ⇓2EI -chaos r
′;m′;K ′.t′• . Applying induction hypothesis, we thus have µ,Γ′ `δSHm̂0Ech

I

〈r′,m′,K ′〉 • ok.
Case ESQ-IF-ELSE: Given pc, µ,Γ, U `δSHm̂0Ech

I
〈if e then c1 else c2, r,m,K〉 : Γ′ • ok and

µ ` 〈if e then c1 else c2, r,m,K〉• ⇓2EI -chaos r
′;m′;K ′ . t′• , We have to prove that µ,Γ′ `δSHm̂0Ech

I
〈r′,m′,K ′〉 • ok.

From the premise of T-NSQ-CONFIG, we have µ,Γ `δSHm̂0Ech
I
〈r,m,K〉 • ok and pc′, µ,Γ,K, U δ̀SHm̂0Ech

I
ci : Γ′,K ′

for i = {1, 2} and pc ≤ pc′. So, pc, µ,Γ, U `δSHm̂0Ech
I
〈ci, r,m,K〉 : Γ′ • ok. Also, µ ` 〈ci, r,m,K〉• ⇓2EI -chaos

r′;m′;K ′ . t′• . Applying induction hypothesis to each of the premises µ ` 〈ci, r,m,K〉• ⇓2EI -chaos r
′;m′;K ′ . t′•, we

thus have µ,Γ′ `δSHm̂0Ech
I
〈r′,m′,K ′〉 • ok.

Case ESQ-WHILE: pc, µ,Γ, U `δSHm̂0Nch 〈while e do c, r,m,K〉 : Γ,K • ok and
µ ` 〈while e do c, r,m,K〉• ⇓2EI -chaos r′′;m′′;K ′′ . t′′• , We have to prove that µ,Γ `δSHm̂0Ech

I
〈r′′,m′′,K ′′〉 • ok.

From the premise of T-ESQ-CONFIG, we have µ,Γ `δSHm̂0Ech
I
〈r,m,K〉 • ok and pc′, µ,Γ,K, U δ̀SHm̂0Ech

I
c : Γ,K for

pc ≤ pc′. So, pc′, µ,Γ, U `δSHm̂0Nch 〈c, r,m,K〉 : Γ,K • ok. Also, µ ` 〈c, r,m,K〉• ⇓2EI -chaos r′;m′;K ′ . t′• .
From the well-typedness, we have K = K ′. Applying induction hypothesis to the premise µ ` 〈c, r,m,K〉• ⇓2EI -chaos
r′;m′;K ′ . t′•, we have µ,Γ `δSHm̂0Ech

I
〈r′,m′,K〉 • ok. So, pc′, µ,Γ, U `δSHm̂0Nch 〈while e do c, r′,m′,K ′〉 : Γ′ • ok.

Also, µ ` 〈while e do c, r′,m′,K ′〉• ⇓2EI -chaos r′′;m′′;K ′′ . t′′• From the well-typedness, we have K = K ′′.
Applying induction hypothesis to the premise µ ` 〈while e do c, r′,m′,K ′〉• ⇓2EI -chaos r′′;m′′;K ′′ . t′′•, we have
µ,Γ `δSHm̂0Ech

I
〈r′′,m′′,K ′′〉•ok. From the well-typedness, we haveK = K ′′. Hence µ,Γ `δSHm̂0Ech

I
〈r′′,m′′,K〉•ok.

Case ESQ-CALL: Given pc, µ,Γ, U `δSHm̂0Nch 〈call(e), r,m,K〉 : Γ′ • ok and
µ ` 〈call(e), r,m,K〉• ⇓2EI -chaos r′;m′;K ′ . t′• , We have to prove that µ,Γ′ `δSHm̂0Ech

I
〈r′,m′,K ′〉 • ok. Also from

the premise of ESQ-CALL, we have µ ` 〈e, r,m,K〉• ⇓2EI -chaos λ
µ.c and µ ` 〈c, r,m,K〉• ⇓2EI -chaos r

′;m′;K ′ . t′•

From the premise of T-ESQ-CONFIG, we have µ,Γ `δSHm̂0Ech
I
〈r,m,K〉 • ok and pc, µ,Γ–,K–, U δ̀SHm̂0Ech

I
call(e) :

Γ+,K+ such that Γ ≤ Γ–,Γ+ ≤ Γ′ and K = K–,K ′ = K+. From subsumption, p, µ,Γ, U `δSHm̂0Nch 〈c, r,m,K〉 : Γ′ •
okΓΓ′K ′. Applying induction hypothesis to µ ` 〈c, r,m,K〉• ⇓2EI -chaos r′;m′;K ′ . t′•, we thus have µ,Γ′ `δSHm̂0Ech

I

〈r′,m′,K ′〉 • ok.
Case ESQ-IF-DIV: Given pc, µ,Γ, U `δSHm̂0Nch 〈if e then c0 else c1, r,m,K〉 : Γ′ • ok and
µ ` 〈if e then c0 else c1, r,m,K〉• ⇓2EI -chaos r̂; m̂; K̂ . t̂•. We have to prove that µ,Γ′ `δSHm̂0Ech

I
〈r̂, m̂, K̂〉 • ok.

From the initial configuration, we have pc′, µ,Γ,K, U δ̀SHm̂0Ech
I
c2 : Γ′,K ′ and µ,Γ δ̀ e : intp. From the premise of

ESQ-IF-DIV, we have µ ` 〈e, r,m,K〉• ⇓2EI -chaos (v0 | v1). So µ ∈ I , protectedI(p,S) and protectedI(pc′,S).
Let z be such that r(z) = (v1 | v2). If Γ′(z) = σq , then either Γ(z) = σq or there is an assignment to z in ci for some
i = {0, 1}. If the former holds, then we already have protectedI(q,S). If the latter holds, then we have protectedI(q,S)
(because an assignment is atleast as restrictive as pc′).
Let m(l) = (v1 | v2) and Γ′(l) = σq . Since the type of location is invariant throughout the program, from the initial
configuration we have protectedI(q,S).
A well-typed escape hatch has immutable locations and thus evaluates to the same initial value.
Since, both branches c0 and c1 have same killsets, we have K1 = K2. So bK̂c1 = bK̂c2. Hence µ,Γ′ `δSHm̂0Ech

I

〈r̂, m̂, K̂〉 • ok.
Case ESQ-WHILE-DIV: pc, µ,Γ, U `δSHm̂0Nch 〈while e do c, r,m,K〉 : Γ,K • ok and µ ` 〈while e do c, r,m,K〉•
⇓2EI -chaos r̂; m̂; K̂ . t̂•. We have to prove that µ,Γ `δSHm̂0Ech

I
〈r̂, m̂, K̂〉 • ok.

From the initial configuration, we have µ,Γ `δSHm̂0Ech
I
〈r,m,K〉 • ok, pc′, µ,Γ,K, U δ̀SHm̂0Ech

I
c : Γ,K and

µ,Γ δ̀SHm̂0Ech
I

e : intp for pc ≤ pc′. From the premise of ESQ-WHILE-DIV, we have µ ` 〈e, r,m,K〉• ⇓2EI -chaos
(v0 | v1). So µ ∈ I , protectedI(p,S) and protectedI(pc′,S).
Let z be such that r̂(z) = (v1 | v2). If r(z) = (v1 | v2) and Γ(z) = σq , then from the premise of T-ESQ-CONFIG, we
already have protectedI(q,S). If r(z) 6= (v1 | v2) i.e., not a pair value, and Γ(z) = σq , then from the well-typedness,
pc′, µ,Γ,K, U δ̀SHm̂0Ech

I
c : Γ,K, we have protectedI(pc′,S) and so protectedI(q,S) (because an assignment is atleast

as restrictive as pc′). Similarly, let m̂(l) = (v1 | v2) and Γ(l) = σq . Since the type of location is invariant throughout the
program, from the initial configuration we have protectedI(q,S). A well-typed escape hatch has immutable locations and
thus evaluates to the same initial value. Killsets are unmodified. So bK̂c1 = bK̂c2. Hence µ,Γ `δSHm̂0Ech

I
〈r̂, m̂, K̂〉 • ok.

Case ESQ-CALL-DIV: Given pc, µ,Γ, U `δSHm̂0Nch 〈call(e), r,m,K〉 : Γ′,K ′ • ok and
µ ` 〈call(e), r,m,K〉• ⇓2EI -chaos r̂; m̂; K̂ . t̂•. We have to prove that µ,Γ `δSHm̂0Ech

I
〈r̂, m̂, K̂〉 • ok.

From the initial configuration, we have µ,Γ `δSHm̂0Ech
I
〈r,m,K〉 • ok, µ,Γ δ̀SHm̂0Ech

I
e : (Γ–,K–, U

p,µ−→ Γ+,K+)q
and so p, µ,Γ–,K–, U δ̀SHm̂0Ech

I
c : Γ+,K+ such that K = K–,K ′ = K+ and Γ = Γ–,Γ′ = Γ+. From the premise

of ESQ-CALL-DIV, we have µ ` 〈e, r,m,K〉• ⇓2EI -chaos (v0 | v1). So µ ∈ I , protectedI(q,S) and since q ≤ p,
protectedI(p,S) follows.
Let z be such that r̂(z) = (v1 | v2). If r(z) = (v1 | v2) and Γ(z) = σy , then from the premise of T-ESQ-CONFIG, we
already have protectedI(y,S). If r(z) 6= (v1 | v2) i.e., not a pair value, and Γ(z) = σy , then from the well-typedness
of p, µ,Γ–,K–, U δ̀SHm̂0Ech

I
c : Γ+,K+ , we have protectedI(p,S) and so protectedI(y,S) (because an assignment is

atleast as restrictive as p). Similarly, let m̂(l) = (v1 | v2) and Γ(l) = σy . Since the type of location is invariant throughout
the program, from the initial configuration we have protectedI(y,S). A well-typed escape hatch has immutable locations
and thus evaluates to the same initial value. From the function type, post killsets are same. So bK̂c1 = bK̂c2. Hence
µ,Γ `δSHm̂0Ech

I
〈r̂, m̂, K̂〉 • ok.

Hence proved.

Lemma 22 (IMPE2EI -chaos EI -chaos Type Preservation). Let I be the set of enclaves killed, γ be the security specification
such that γ(l) = L ∀δ(l) = I and Γ be an environment that corresponds to γ and is well-typed for δ. Also let H be the set
of escape hatches and m̂0 be the initial IMPE2N -chaos memory such that l ∈ {locations(e) | e ∈ H}, m̂0(l) 6= (v1 | v2), i.e.,
not a pair value and pc, µ,Γ, U `δSHm̂0Ech

I
〈c, r,m,K〉 : Γ′ • ok. If µ ` 〈c′, r′,m′,K ′〉• ⇓2EI -chaos r̂′; m̂′; K̂ ′ . t̂′• is an

immediate (command) premise in the evaluation of µ ` 〈c, r,m,K〉• ⇓2EI -chaos r̂; m̂; K̂ . t̂•, then ∃p̂c, Γ̂, Γ̂′, Û , such that
pc ≤ p̂c, either U ⊆ Û or Û = ∅ and p̂c, µ, Γ̂, Û `δSHm̂0Ech

I
〈c′, r′,m′,K ′〉 : Γ̂′ • ok

Proof. The proof is by induction on the derivation of the large step µ ` 〈c, r,m,K〉• ⇓2EI -chaos r′;m′;K ′ . t′•.
Since rules ESQ-ASSIGN, ESQ-SKIP, ESQ-UPDATE, ESQ-KILL, ESQ-OUTPUT, ESQ-SETCND, ESQ-IF-DIV, ESQ-WHILE-DIV and

ESQ-CALL-DIV do not have IMPE2EI -chaos command premises, the only relevant cases are ESQ-ENCLAVE,ESQ-IF,ESQ-WHILE,
ESQ-SEQ, ESQ-CALL.

Case ESQ-ENCLAVE: Given pc, µ,Γ, U `δSHm̂0Ech
I
〈enclave(i, c), r,m,K〉 : Γ′ • ok. From the premises of T-SQ-CONFIG,

we have Γ `δSHm̂0Ech
I
〈r,m,K〉 • ok and pc, Ei,Γ,K, ∅ δ̀SHm̂0Ech

I
c : Γ′,K ′. From the premises of the IMPE2EI -chaos

large-step, we have Ei ` 〈c, r,m,K〉• ⇓2EI -chaos r
′;m′;K ′ . t′• . Hence pc, ∅,Γ, Ei `δSHm̂0Ech

I
〈c, r,m,K〉 : Γ′ • ok.

Case ESQ-IF-ELSE: Given pc, µ,Γ, U `δSHm̂0Ech
I
〈if e then c1 else c2, r,m,K〉 : Γ′ • ok. From the premises of the

IMPE2EI -chaos large-step, we have µ ` 〈ci, r,m,K〉• ⇓2EI -chaos r′;m′;K ′ . t′•. From the premises of T-SQ-CONFIG,
we have Γ `δSHm̂0Ech

I
〈r,m,K〉 • ok and pc′, µ,Γ,K, U δ̀SHm̂0Ech

I
ci : Γ′,K ′ for i = {1, 2} and pc ≤ pc′. Hence

pc′, µ,Γ, U `δSHm̂0Ech
I
〈ci, r,m,K〉 : Γ′ • ok.

Note that if e = isunset(cnd), then we have pc′, µ,Γ, U∪{cnd} `δSHm̂0Ech
I
〈c1, r,m,K〉 : Γ′•ok and pc′, µ,Γ, U `δSHm̂0Ech

I

〈c2, r,m,K〉 : Γ′ • ok.
Case ESQ-WHILE: Given pc, µ,Γ, U `δSHm̂0Ech

I
〈while e do c′, r,m,K〉 : Γ,K •ok. From the premises of the IMPE2EI -chaos

large-step, we have µ ` 〈c′, r,m,K〉• ⇓2EI -chaos r′;m′;K ′ . t′• and µ ` 〈while e do c′, r′,m′,K ′〉• ⇓2EI -chaos
r′′;m′′;K ′′.t′′• From the premises of T-SQ-CONFIG, we have Γ `δSHm̂0Ech

I
〈r,m,K〉•ok and pc′, µ,Γ,K, U δ̀SHm̂0Ech

I

c′ : Γ,K for pc ≤ pc′. We thus have K = K ′ = K ′′ and pc′, µ,Γ, U `δSHm̂0Ech
I
〈c′, r,m,K〉 : Γ • ok. Applying

Lemma 21 to pc′, µ,Γ, U `δSHm̂0Ech
I
〈c′, r,m,K〉 : Γ,K • ok, we have µ,Γ `δSHm̂0Ech

I
〈r′,m′,K〉 • ok. Hence

pc′, µ,Γ, U `δSHm̂0Ech
I
〈while e do c′, r′,m′,K〉 : Γ,K • ok.

Case ESQ-CALL: Given pc, µ,Γ, U `δSHm̂0Ech
I
〈call(e), r,m,K〉 : Γ′,K ′ • ok. From the premises of the IMPE2EI -chaos

large-step, we have µ ` 〈e, r,m,K〉• ⇓2EI -chaos λµ.c and µ ` 〈c, r,m,K〉• ⇓2EI -chaos r′;m′;K ′ . t′• From the
premises of T-SQ-CONFIG, we have Γ `δSHm̂0Ech

I
〈r,m,K〉 • ok and µ,Γ δ̀SHm̂0Ech

I
e : (Γ–,K–, U

p,µ−→ Γ+,K+)q .
So, K = K–,K ′ = K+ and Γ = Γ–,Γ′ = Γ+. We also have p, µ,Γ–,K–, U δ̀SHm̂0Ech

I
c : Γ+,K+ . Hence

pc, µ,Γ, U `δSHm̂0Ech
I
〈c, r,m,K〉 : Γ′,K ′ • ok.

Case ESQ-SEQ: Given pc, µ,Γ0, U `δSHm̂0Ech
I
〈c1; . . . ; cn, r0,m0,K0〉 : Γn,Kn•ok. From the premises of the IMPE2EI -chaos

large-step, we have µ ` 〈ci, ri−1,mi−1,Ki−1〉• ⇓2EI -chaos ri;mi;Ki . ti•. From the premises of T-SQ-CONFIG, we have
Γ `δSHm̂0Ech

I
〈r0,m0,K0〉 • ok and pc, µ,Γi−1,Ki−1, U δ̀SHm̂0Ech

I
ci : Γi,Ki for i = {1, . . . , n}.

We already have pc, U,Γ0, µ `δSHm̂0Ech
I
〈c1, r0,m0,K0〉 : Γ1,K1 • ok. Applying Lemma 21, we have µ,Γ `δSHm̂0Ech

I

〈r1,m1,K1〉 • ok. Hence pc, U,Γ1, µ `δSHm̂0Ech
I
〈c2, r1,m1,K1〉 : Γ2,K2 • ok. Repeatedly applying the above argument

for n times, we thus have pc, U,Γn−1, µ `δSHm̂0Ech
I
〈cn, rn−1,mn−1,Kn−1〉 : Γn,Kn • ok.

Hence proved.

Using Lemma 21 and Lemma 22, we prove the final part of Theorem 1 for semantics ⇓EI -chaos and specification γ′.

Proof. Given L, µ,Γ,K, ∅ δ̀ c : Γ′,K ′. Let m1 be some initial memory for which N `δ 〈c, rinit ,m1,K〉 ⇓EI -chaos

r′1;m′1;K ′ . t · tobs · t′. where tobs = m′ · t′′ for some memory m′ and trace t′′, and if t′′ is not empty then the last element of
t′′ is an output event. Note that the attacker actually observes only low-events i.e. btobscL. We need to show that

k
⇓EI -chaos

L (c, tobs) ⊇M

where

M =

(⋂
m′∈btobscmem

ind`(m0, γ
′, {cnd | m′(cnd) = 0})

∩
⋂

(e′,m′)∈bt·tobscesc

Esc⇓kind (m0,m
′, e′)

)

Let S be the set of conditions that are set at the beginning of tobs, i.e., S = {cnd | m′(cnd) = 1}. If Cond represents the set
of all condition variables, then Cond \ S is the set of conditions that are unset at some time during the observed trace. Also let
H be the set of all escape hatches that are declassified till the last event of tobs i.e.H = {e | (e,m) ∈ bt · tobscesc}.

Let m2 ∈M . Also let N `δ 〈c, rinit ,m2,K〉 ⇓EI -chaos r
′
2;m′2;K ′2 . t2 such that

bt2c1,cmd = bt2c2,cmd

To ensure k
⇓EI -chaos

L (c, tobs) ⊇M , we need to show that m2 ∈ k
⇓EI -chaos

L (c, tobs)
Note that m1 and m2 differ only in locations with policies that are protected by set S. That is, for all locations l ∈ Loc, if

m1(l) 6= m2(l) then Γ(l) = σp =⇒ protectedI(p,S). Why? Suppose for some l, s.t Γ(l) = (σp, rt) let m1(l) 6= m2(l)
and ¬protectedI(p,S). So, p = ` or `1

cnd↗`2 s.t. cnd 6∈ S. Then for some mj ∈ M , we have m1(l) = mj(l). Since M
is computed by the intersection of all such memories, every memory m′′ ∈ M should satisfy m′′(l) = m1(l). This implies
m2(l) = m1(l) which is a contradiction. Thus protectedI(p,S) must hold.

Also note that m1 and m2 satisfy

∀e ∈ H, µ `δ 〈e, rinit ,m1,K〉 ⇓ v ⇔ µ `δ 〈e, r,m2,K〉 ⇓ v

We will construct an IMPE2EI -chaos execution that represents the IMPE executions starting fromm0 andm2. Type-preservation
of IMPE2EI -chaos (Lemma 21) will ensure that both executions produce the same observable trace, thus showing that m2 ∈
k
⇓EI -chaos

L (c, tobs).
Let IMPE2EI -chaos memory m = merge(m1,m2) and µ ` 〈c, rinit ,m,K〉• ⇓2EI -chaos r∗;m∗;K∗ . t∗• such that the

attacker modifies the program in the same way in both the executions. By the adequacy of IMPE2EI -chaos (Lemma 18), we have
that the IMPE2EI -chaos execution represents IMPE executions with m1 and m2 as initial memories.

Let t∗ = t∗pre · t∗obs · t∗post for some t∗obs such that bt∗obsc1 = tobs. Define observation overlapped (same as the function
defined in Section E.1.3 but repeated here for the ease of reference) by an IMPE2EI -chaos trace t∗

′
as:

obsOverlap(t∗
′
, t∗pre, t

∗
obs, t

∗
post) =

ε if t∗

′ ≤lex t∗pre
t∗obs if t∗pre · t∗obs ≤lex t∗

′

t∗
′′

if t∗
′

= t∗pre · t∗
′′

and
t∗

′′ ≤lex t∗obs

Intuitively, obsOverlap(t∗
′
, t∗pre, t

∗
obs, t

∗
post) defines part of input trace t∗

′
that overlaps with an observed trace t∗obs.

Since L, µ,Γ,K, ∅ δ̀ c : Γ′,K ′, from Lemma 16 we have L, µ,Γ,K, ∅ δ̀Ech
I
c : Γ′,KK’ and so L, µ,Γ,K, ∅ δ̀SHm̂0Ech

I

c : Γ′,K ′. Note that our initial configuration satisfies

L,N,Γ, ∅ `δSHm̂0Nch 〈c, rinit ,m, ∅〉 : Γ′ • ok
Lemma 23 (Observational Equivalence is Preserved). Let S be the set of conditions that are set(non-zero) in some observed
trace tobs. If pc, µ,Γ, U `δSHm̂0Nch 〈c, r,m,K〉 : Γ′,K ′ • ok and µ ` 〈c, r,m,K〉• ⇓2EI -chaos r̂; m̂; K̂ . t̂•, then

bobsOverlap(t̂, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t̂, t∗pre, t

∗
obs, t

∗
post)c2

Proof. The proof follows by induction on the derivation of µ ` 〈c, r,m,K〉• ⇓2EI -chaos r̂; m̂; K̂ . t̂•.

Case ESq-Skip: Emitted trace is empty.
Case ESq-Assign: Emitted trace is empty.
Case ESq-Declassify: Emitted trace does not include out event.
Case ESq-Update: Emitted trace is empty.
Case ESq-Kill: Emitted trace is empty.
Case ESq-SetCnd: Emitted trace does not include out event.
Case ESq-Output: Given pc, µ,Γ, U `δSHm̂0Nch 〈c, r,m,K〉 : Γ′,K ′ • ok and µ ` 〈output e to `, r,m,K〉•
⇓2EI -chaos r;m;K . Mem(m) · Out(`, v)•. Let t̂ = Mem(m) · Out(`, v). From the premise of T-ESQ-CONFIG, we have
pc, µ,Γ,K, U δ̀ output e to ` : Γ,K and so µ,Γ δ̀SHm̂0Ech

I
e : σp and cur(p, U) t cur(pc, U) v `.

Case v = (v1 | v2): We have protectedI(p,S) and so ` 6= L.
Case v 6= (v1 | v2): In this case ` = {L,H}.
In the both the cases, we have

bobsOverlap(t̂, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t̂, t∗pre, t

∗
obs, t

∗
post)c2

Case ESq-If-Else: Given pc, µ,Γ, U `δSHm̂0Nch 〈if e then c1 else c2, r,m,K〉 : Γ′,K ′•ok and µ ` 〈if e then c1 else c2, r,m,K〉•
⇓2EI -chaos r

′;m′;K ′ . t′•. Let t̂ = t′. Since µ `δ 〈e, r,m,K〉 ⇓ v such that v is not a pair, applying induction hypothesis to
the premises of ESQ-IF-ELSE gives us

bobsOverlap(t̂, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t̂, t∗pre, t

∗
obs, t

∗
post)c2

Case ESq-While: Given pc, µ,Γ, U `δSHm̂0Nch 〈while e do c, r,m,K〉 : Γ,K • ok and µ ` 〈while e do c, r,m,K〉•
⇓2EI -chaos r

′′;m′′;K ′′.t′′•. From the premises of T-ESQ-CONFIG, we haveK = K ′ = K ′′. Since µ ` 〈e, r,m,K〉• ⇓2EI -chaos
v such that v is not a pair, applying induction hypothesis to the premise of ESQ-WHILE gives us

bobsOverlap(t′, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t′, t∗pre, t

∗
obs, t

∗
post)c2

From Lemma 22, we have pc, µ,Γ, U `δSHm̂0Nch 〈while e do c, r′,m′,K〉 : Γ,K • ok. Applying induction hypothesis to
µ ` 〈while e do c, r′,m′,K〉• ⇓2EI -chaos r

′′;m′′;K ′′ . t′′•, we have

bobsOverlap(t′′, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t′′, t∗pre, t

∗
obs, t

∗
post)c2

Hence
bobsOverlap(t′ · t′′, t∗pre, t∗obs, t∗post)c1 ≈L bobsOverlap(t′ · t′′, t∗pre, t∗obs, t∗post)c2

Case ESq-Call: Given pc, µ,Γ, U `δSHm̂0Nch 〈call(e), r,m,K〉 : Γ′,K ′ • ok and µ ` 〈call(e), r,m,K〉• ⇓2EI -chaos
r′;m′;K ′ . t′•. Since µ ` 〈e, r,m,K〉• ⇓2EI -chaos v such that v is not a pair, applying induction hypothesis to the
premise of ESQ-CALL gives us

bobsOverlap(t′, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t′, t∗pre, t

∗
obs, t

∗
post)c2

Case ESq-If-Div: Given pc, µ,Γ, U `δSHm̂0Nch 〈if e then c1 else c2, r,m,K〉 : Γ′,K ′ • ok and
µ ` 〈if e then c0 else c1, r,m,K〉• ⇓2EI -chaos r̂; m̂; K̂ . t̂•. From the premises of T-ESQ-CONFIG, we have pc, µ,Γ,K, U δ̀SHm̂0Ech

I

if e then c1 else c2 : Γ′,K ′ Since µ ` 〈e, r,m,K〉• ⇓2EI -chaos v such that v is a pair, we have protectedI(p,S). From
the well-typedness, neither c1 nor c2 do emit any out events to L channel. Hence

bobsOverlap(t̂, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t̂, t∗pre, t

∗
obs, t

∗
post)c2

Case ESq-While-Div: Given pc, µ,Γ, U `δSHm̂0Nch 〈while e do c, r,m,K〉 : Γ,K • ok and
µ ` 〈while e do c, r,m,K〉• ⇓2EI -chaos r̂; m̂; K̂ . t̂•. From the premises of T-ESQ-CONFIG, we have pc, µ,Γ,K, U δ̀SHm̂0Ech

I

while e do c : Γ,K Since µ ` 〈e, r,m,K〉• ⇓2EI -chaos v such that v is a pair, we have protectedI(p,S). From the well-
typedness, command c does not emit any out events to L channel. Hence

bobsOverlap(t̂, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t̂, t∗pre, t

∗
obs, t

∗
post)c2

Case ESq-Call-Div: Given pc, µ,Γ, U `δSHm̂0Nch 〈call(e), r,m,K〉 : Γ′,K ′ • ok and
µ ` 〈call(e), r,m,K〉• ⇓2EI -chaos r̂; m̂; K̂ . t̂•. From the premises of T-ESQ-CONFIG, we have pc, µ,Γ,K, U δ̀SHm̂0Ech

I

call(e) : Γ′,K ′ Since µ ` 〈e, r,m,K〉• ⇓2EI -chaos v such that v is a pair, we have protectedI(p,S). From the well-
typedness, command c does not emit any out events to L channel. Hence

bobsOverlap(t̂, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t̂, t∗pre, t

∗
obs, t

∗
post)c2

Case ESq-Seq: Given pc, µ,Γ0, U `δSHm̂0Nch 〈c1; . . . ; cn, r0,m0,K0〉 : Γn,Kn • ok and µ ` 〈c1; . . . ; cn, r0,m0,K0〉•
⇓2EI -chaos rn;mn;Kn .t1 · . . . · tn• From the premises of T-ESQ-CONFIG, we have pc, µ,Γ0,K0, U δ̀SHm̂0Ech

I
c1; . . . ; cn :

Γn,Kn

Applying induction hypothesis to the premise, µ ` 〈c1, r0,m0,K0〉• ⇓2EI -chaos r1;m1;K1 . t1•, we have

bobsOverlap(t1, t
∗
pre, t

∗
obs, t

∗
post)c1 ≈L bobsOverlap(t1, t

∗
pre, t

∗
obs, t

∗
post)c2

From Lemma 22, we have pc, µ,Γ1, U `δSHm̂0Nch 〈c2, r1,m1,K1〉 : Γ2,K2 • ok. Applying inductive hypothesis to the
next premise, µ ` 〈c2, r1,m1,K1〉• ⇓2EI -chaos r2;m2;K2 . t2•, we have

bobsOverlap(t2, t
∗
pre, t

∗
obs, t

∗
post)c1 ≈L bobsOverlap(t2, t

∗
pre, t

∗
obs, t

∗
post)c2

Applying the inductive hypothesis continuously thus gives,

bobsOverlap(tn, t
∗
pre, t

∗
obs, t

∗
post)c1 ≈L bobsOverlap(tn, t

∗
pre, t

∗
obs, t

∗
post)c2

Case ESq-Enclave: Given pc, µ,Γ, U `δSHm̂0Nch 〈enclave(i, c), r,m,K〉 : Γ′,K ′ • ok and N ` 〈enclave(i, c), r,m,K〉•
⇓2EI -chaos r′;m′;K ′ . t′• . From the premises of T-ESQ-CONFIG, we have pc, µ,Γ,K, U δ̀SHm̂0Ech

I
enclave(i, c) : Γ′,K ′.

From Lemma 22, we have pc, Ei,Γ, ∅ `δSHm̂0Nch 〈c, r,m,K〉 : Γ′,K ′ •ok. Applying induction hypothesis to the premise
Ei ` 〈c, r,m,K〉• ⇓2EI -chaos r

′;m′;K ′ . t′•

bobsOverlap(t′, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t′, t∗pre, t

∗
obs, t

∗
post)c2

Since we have L,N,Γ, ∅ `δSHm̂0Nch 〈c, rinit ,m, ∅〉 : Γ′ • ok, applying Lemma 23 on µ ` 〈c, rinit ,m,K〉•
⇓2EI -chaos r

∗;m∗;K∗ . t∗•, we have

bobsOverlap(t∗, t∗pre, t
∗
obs, t

∗
post)c1 ≈L bobsOverlap(t∗, t∗pre, t

∗
obs, t

∗
post)c2

Hence proved that m2 ∈ k
⇓EI -chaos

L (c, tobs).

E.2 Translation is Sound
Lemma 24. Let G be an IMPS type environment that corresponds to γ and is well-typed for δ. Also let pc,G, ∅ ` c : G′ and
csub is a sub-command of c. If pc′,G, U ` csub : G′ such that U 6= ∅ then ∃c′, c1, c2, cnd . such that

c′
def
=

if isunset(cnd) then c1 else c2

OR
λ.c1

is a sub-command of c and csub is a sub-command of c1.

Proof. Given pc,G, ∅ ` c : G′. It is easy to see that the only typing judgments that add to the set U for the sub-commands are
T-FUNCTION and T-IF-ISUNSET. The remaining judgments T-ASSIGN, T-UPDATE, SEQ, T-IF-ELSE T-WHILE, T-SETCND, T-CALL

and T-KILL do not change the set U for their sub-commands. Rule T-ENCLAVE nullifies the set U for its sub-commands.
Also given pc′,G, U ` csub : G′ such that U 6= ∅. This is possible only if csub is a sub-command for some { if isunset(cnd)

then c1 else c2, λ.c1}.
Hence proved.

We now present the proof for Theorem 2

Proof. The proof is by mutual induction on the translation derivation of expressions and commands.

1. For all expressions e ∈ IMPS, if G ` e : σp and G, e, σp µ,Γ, δ, e′, σp then µ,Γ δ̀ e
′ : σp

2. For all commands c ∈ IMPS, if pc,G, U ` c : G′ and pc,G,K, c,G′ µ,Γ, U, δ, c′,Γ′,K ′ then pc, µ,Γ,K, U δ̀ c
′ : Γ′,K ′

Case TR-INT: Given G, n, intp µ,Γ, δ, n, intp. From T-INT, we have µ,Γ δ̀ n : intL .
Case TR-VAR: Given G, x, σp µ,Γ, δ, x, σp. Hence Γ(x) = σp. From T-VAR, we thus have µ,Γ δ̀ x : σp .
Case TR-LOC: Given G, l, (σp ref

rt)q µ,Γ, δ, l, (σµ
′

p refrt)q . From the premises, Γ(l) = σp and δ(l) = µ′. From T-LOC,
we thus have µ,Γ δ̀ l : (σµ

′

p refrt)
L

.

Case TR-CND: Given G, cnd , condp µ,Γ, δ, cnd , condµ
′

p . From premise, δ(cnd) = µ′. Since cnd ∈ Cond, from T-CND,
we thus have µ,Γ δ̀ cnd : condµ

′

L .
Case TR-DEREF: Given G, ∗e, σptq µ,Γ, δ, ∗e′, σptq . Applying induction hypothesis to the premise, we have µ,Γ δ̀ e

′ :

(σµ
′

p refrt)
q
. Also, µ′ 6= N =⇒ µ = µ′. From T-DEREF, we thus have µ,Γ δ̀ ∗e : σptq .

Case TR-ISUNSET: Given G, isunset(cnd), intp µ,Γ, δ, isunset(cnd), intp. From the premises, δ(cnd) = µ′ and µ′ 6=
N =⇒ µ = µ′. From T-ISUNSET, we thus have µ,Γ δ̀ isunset(cnd) : intL .

Case TR-FUNCTION: Given G, λ.c, (G–, U
p→ G+)q µ,Γ, δ, λµ.c′, (Γ–,K–, U

p,µ−→ Γ+,K+)q Since G ` λ.c : G–, U
p→ G+

q ,
we have q = L. Applying induction hypothesis to the premise, we have p, µ,Γ–,K–, U δ̀ c : Γ+,K+. Since, We also
have q = L. From T-FUNCTION, we thus have µ,Γ δ̀ λ

µ.c : (Γ–,K–, U
p,µ−→ Γ+,K+)L.

Case TR-OP: Given G, e1 ⊕ e2, σptq µ,Γ, δ, e′1 ⊕ e′2, σptq . Applying induction hypothesis to the premises, we have
µ,Γ δ̀ e1 : intp and µ,Γ δ̀ e2 : intq . From T-OP, we thus have µ,Γ δ̀ e1 ⊕ e2 : intptq .

Case TR-SKIP: Given pc,G, U, skip,G µ,Γ,K, δ, skip,Γ,K. From T-SKIP, we thus have pc, µ,Γ,K, U δ̀ skip : Γ,K.

Case TR-ASSIGN: Given pc,G, U, x := e,G[x 7→ σpctq] µ,Γ,K, δ, x := e′,Γ[x 7→ σpctq],K. From the well-typedness
of IMPS expression e, i.e, G ` e : σq , we have q 6= >. Applying induction hypothesis to the premise we have
µ,Γ δ̀ e′ : σq . From the premises, (pc t q) 6≤ L =⇒ µ 6= N , µ /∈ K and T-ASSIGN, we thus have
pc, µ,Γ,K, U δ̀ x := e′ : Γ[x 7→ σpctq],K.

Case TR-DECLASSIFY: GivenL,G, U, x := declassify(e),G[x 7→ σL] µ,Γ,K, δ, x := declassify(e′),Γ[x 7→ σL],K. From
the well-typedness of IMPS expression e, i.e, G ` e : σq , we have q 6= >. Applying induction hypothesis to the premise
we have µ,Γ δ̀ e

′ : σq . From the premises, (pc t q) 6≤ L =⇒ µ 6= N , µ /∈ K and T-DECLASSIFY, we thus have
pc, µ,Γ,K, U δ̀ x := declassify(e′) : Γ[x 7→ σL],K.

Case TR-OUTPUT: Given pc,G, U, output e to `,G µ,Γ,K, δ, output e′ to `,Γ,K. From the well-typedness of IMPS ex-
pression e, i.e, G ` e : σp, we have p 6= >. Applying the induction hypothesis to the premise, we have µ,Γ δ̀ e

′ : σq .
From T-OUTPUT, we thus have pc, µ,Γ,K, U δ̀ output e

′ to ` : Γ,K.
Case TR-SETCND: Given pc,G, U, set(cnd),G µ,Γ,K, δ, set(cnd),Γ,K. From the well-typedness of IMPS command

set(condvar), i.e, pc,G, U ` set(cnd) : G, we have cnd ∈ Cond \ U . From the premises and T-SETCND, we thus have
pc, µ,Γ,K, U δ̀ set(cnd) : Γ,K.

Case TR-UPDATE: Given pc,G, U, e1 ← e2,G µ,Γ,K, δ, e′1 ← e′2,Γ,K. From the well-typedness of IMPS command
e1 ← e2, i.e, pc,G, U ` e1 ← e2 : G, we have p, p′, q 6= >. Applying induction hypothesis to the premises, we
have µ,Γ δ̀ e1 : (σµ

′

p refrt)
q

and µ,Γ δ̀ e2 : σp′ . From the remaining premises and T-UPDATE, we thus have
pc, µ,Γ,K, U δ̀ e1 ← e2 : Γ,K.

Case TR-SEQ: Given pc,G0, U, c1; . . . ; cn,Gn µ0,Γ0,K1, δ, c
′,Γn,Kn+1. Applying induction hypothesis to the premises,

we have ∀i ∈ {1 . . . n}. pc, µ,Γi−1,Ki−1, U δ̀ ci : Γi,Ki.
Consider the case when processSeqOutput(~c′1:n, µ0, ~µ1:n, ~K ′′1:n) when (µ0, ~µ1:z, ~K1:z) matches N, (Ej , . . . , Ej , N,

~µm+1:z), (∅, . . . ∅,Km−1, ~Km:z). To show that the output enclave(j, c′1; . . . ; c′m−1); processKill(Km−1) is well-typed,
we first show that pc, µ0,Γ0,K1, U δ̀ enclave(j, c′1; . . . ; c′m−1) : Γm−1,K

′
m−1. If U 6= ∅, from Lemma 24, we have

that c′1; . . . ; c′m−1 is a sub-command of some if isunset(cnd) then s1 else s2. However, rule TR-IF-ISUNSET ensures that
µ0 6= N which is a contradiction (since µ0 = N). Hence U = ∅. Premise µ0 6= N =⇒ (µ0 = µi ∧K ′′i = ∅) ensures
that K1 = K2 = · · · = Km−1 = K ′m−1. From T-ENCLAVE, we thus have pc, µ0,Γ0,K1, U δ̀ enclave(j, c′1; . . . ; c′m−1) :
Γm−1,K

′
m−1

Next we show that pc, µ0,Γi−1,K
′
m−1, U δ̀ kill(j) : Γi,K

′
m−1 ∪K ′′m−1. Consider the case when processKill(K) matches

k ∪K ′. From premise K ′′i ∩K ′i = ∅ we have k 6∈ K ′m−1. Also, premise µ0 6= N =⇒ (µ0 = µi ∧K ′′i = ∅) ensures that
µ0 = N . From T-KILL, we have pc, µ0,Γi−1,K

′
m−1, U δ̀ kill(j) : Γi,K

′
m−1 ∪K ′′m−1.

Thus the output enclave(j, c′1; . . . ; c′m−1); processKill(Km−1) is well-typed.
For the remaining cases, no enclave or kill statements are inserted. From T-SEQ, we thus have
pc, µ,Γ0,K0, U δ̀ c1; . . . ; cn : Γn,Kn.

Case TR-IF-ELSE: Given pc,G, U, if e then c1 else c2,G′ µ,Γ,K, δ, if e′ then c′1 else c
′
2,Γ
′,K ′. Applying induction hy-

pothesis to the premises, we have µ,Γ δ̀ e : intp and pc′, µ,Γ,K, U δ̀ ci : Γ′,K ′ for i = {1, 2}. From the remaining
premises and T-IF-ELSE, we thus have pc, µ,Γ,K, U δ̀ if e then c1 else c2 : Γ′,K ′.

Case TR-IF-ISUNSET: Given pc,G, U, if isunset(cnd) then c1 else c2,G′ µ,Γ,K, δ, if isunset(cnd) then c′1 else c
′
2,Γ
′,K ′.

Applying induction hypothesis to the premises, we have µ,Γ δ̀ isunset(cnd) : intL and pc, µ,Γ,K, U δ̀ ci : Γ′,K ′ for
i = {1, 2}. From T-IF-ISUNSET, we thus have pc, µ,Γ,K, U δ̀ if isunset(cnd) then c1 else c2 : Γ′,K ′.

Case TR-WHILE: Given pc,G, U,while e do c,G µ,Γ,K, δ,while e′ do c′,Γ,K. Applying induction hypothesis to the
premises, we have µ,Γ δ̀ e : intp and pc′, µ,Γ,K, U δ̀ c : Γ,K. From the remaining premises and T-WHILE, we
thus have pc, µ,Γ,K, U δ̀ while e do c : Γ,K.

Case TR-CALL: Given pc,G, U, call(e),Gout µ,Γ,K, δ, call(e′),Γout,Kout. Applying induction hypothesis to the premise,
we have µ,Γ δ̀ e : (Γ–,K–, U

p,µ−→ Γ+,K+)q . From the remaining premises and T-CALL, we thus have
pc, µ,Γ,K–, U δ̀ call(e) : Γout,K

+.
Case TR-SUB: Given pc2,G2, U, c,G′2 µ,Γ2,K, δ, c

′,Γ′2,K. Applying induction hypothesis to the premise, we have
pc1, µ,Γ1,K, U δ̀ c : Γ′1,K

′. Also from translation of typing environment in Figure 10, we have `δ Γ′i ok for i = {1, 2}.
From the remaining premises and T-SUB, we thus have pc2, µ,Γ2,K, U δ̀ c : Γ′2,K

′.

	techreport-nocopyright.pdf
	Introduction
	IMPe: A Calculus for Enclaves
	Security Levels and Policies
	Syntax
	Operational Semantics

	Attacker Model and Security
	Attacker Knowledge
	Security
	Attackers

	IMPe Type System
	IMPs: A Non-enclave Calculus
	Translation
	Constraint-Based Translation
	Constraint Solution and Optimization

	Comparison with SGX
	Evaluation
	Related Work
	Enclave Equivalence [1em]enc
	IMPe Type System
	IMPs Type System
	Pseudo Code
	Proofs
	Soundness of IMPe Type System
	Adequacy
	IMPe2 Type System
	Proofs for N-chaos Security
	IMPe2N-chaos Adequacy
	IMPe2N-chaos N-chaos Type System
	Proofs for EI-chaos Security
	IMPe2EI-chaos Adequacy
	IMPe2EI-chaos EI-chaos Type System

	Translation is Sound

