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Evolutionary dynamics with fluctuating population sizes and strong mutualism
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Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed
environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing
natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts
for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show
that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall
population size fluctuations. However, there are also regimes where a varying population size can strongly
influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard
evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine
fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account
the population size degree of freedom. These results elucidate the interplay between population dynamics and
evolutionary dynamics in well-mixed systems.
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I. INTRODUCTION

Recent advances in experimental evolution open new
directions for quantitative studies of evolutionary dynamics
[1,2]. In a well-mixed environment such as a chemostat or a
shaken test tube, the relative frequency of interacting microbes
can be measured over time. Although microbial experiments
demonstrate an intricate feedback between evolutionary and
population dynamics [3–5], theoretical understanding is often
limited to evolutionary dynamics in a fixed population size,
mostly within the framework of evolutionary game theory and
population genetics [6–12].

In a well-mixed system with infinitely large populations,
evolutionary game theory prescribes deterministic time evolu-
tion of the relative frequency fi(t) of species i by the replicator
dynamics:

dfi

dt
= [wi( f ) − w̄( f )]fi, (1)

where wi( f ) is the frequency-dependent fitness of species
i, and w̄( f ) = ∑

j fjwj ( f ) is the mean fitness of all in-
teracting species [6,7,13]. The replicator dynamics encapsu-
late frequency-dependent natural selection: a fitter species
flourishes and a weaker species succumbs to evolutionary
forces. The fitness of species i is often defined as a constant
background plus the total payoff from interactions, assumed
to be linear in the {fi(t)}, wi( f ) = 1 + ∑

j aij fj , where aij is
a phenomenological payoff matrix characterizing interactions
with species j. For two interacting species, which is typical in
a competition experiment [1,2] and is the focus of this paper,
the frequency f (t) of species 1 fully specifies the state of
evolutionary dynamics, since the frequency of species 2 is just
1 − f (t). In this case, the replicator dynamics determines the
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time evolution of f (t) from Eq. (1) as

df

dt
= [α1 − (α1 + α2)f ](1 − f )f,

≡ vE(f ), (2)

where α1 = a12 − a22 and α2 = a21 − a11.
A rich variety of competition scenarios emerge from this

simple description of evolutionary games. Depending on the
payoff differences α1 and α2, Eq. (2) exhibits 5 qualitatively
different competition scenarios, schematically sketched in
Fig. 1 [6,7]. For positive α’s (first quadrant of Fig. 1), a stable
fixed point corresponding to a species coexistence appears at
f ∗ = α1/(α1 + α2), lying between the unstable fixed points
f = 0 and f = 1. This scenario is commonly referred to as
the “snowdrift game” in game theory or mutualism in the
context of evolution [7,14,15]. For negative α’s (third quadrant
of Fig. 1), the fixed point f ∗ becomes unstable while the
fixed points with f equals 0 and 1 are stable. This bistability
situation is known by “coordination game” in game theory
or antagonism in our context. When α’s have opposite signs
(second quadrant and fourth quadrant of Fig. 1), the scenarios
in game theory are either called “harmony” or “prisoner’s
dilemma.” In this case, either f ∗ or 1 − f ∗ exceed unity, and
the fixed point f ∗ becomes inaccessible. The only relevant
fixed points are f = 0 and f = 1 and only one of them is
stable: For α1 > 0 and α2 < 0, the fixed point f = 1 is stable
and species 1 dominates, i.e., fixes at 100% of the population
at long times. For α2 > 0 and α1 < 0, the fixed point f = 0 is
stable and species 2 dominates. Lastly, at the origin of Fig. 1,
when α1 = α2 = 0, every point is a fixed point. We shall refer
to this fixed line scenario as neutral evolution, representing
situations when the two interacting species are neutral variants
of each other.

In finite populations, however, evolutionary dynamics are
not only influenced by deterministic frequency-dependent
selection term vE(f ), but also by randomness due to discrete
microscopic birth and death events, commonly referred to as
number fluctuations or genetic drift in population genetics
[9–11,16]. Evolutionary game theory in a strictly fixed
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FIG. 1. (Color online) Four competition scenarios in the replica-
tor dynamics represented by the four quadrants. The fifth scenario,
neutral evolution (α1 = α2 = 0), in which every point f ∈ [0,1] is a
fixed point, arises at the origin.

population size can be reformulated to account for genetic
drift, with equations that reduce to the deterministic replicator
dynamics in the limit of infinitely large population size [6,7].
For a fixed population size N � 1 and weak payoffs |aij | � 1,
the continuum approximation of replicator dynamics with
genetic drift reads

df

dt
= vE(f ) +

√
2Dg(f )

N
�(t), (3)

where �(t) is a zero-mean Gaussian white noise with a
unit variance, and Dg(f )/N = f (1 − f )/N is the frequency-
dependent noise amplitude describing the discrete birth and
death processes [14]. In population genetics, the stochastic
differential equation (3) must be interpreted according to
Ito’s prescription [14,17], which we shall assume also for all
noise terms appearing in this paper. For neutral evolution,
vE(f ) = 0 and the dynamics is equivalent to the continuum
limit of the Wright-Fisher sampling or the Moran process in
population genetics, up to a nonuniversal constant in the noise
amplitude depending on the definition of population size and
generation time [9,10,17–19] that can be absorbed into N.

For α1 = −α2 �= 0, Eq. (3) resembles the generalized Moran
process with weak selection [17]. In various contexts, Eq. (3)
and its generalizations have received increasing attention as a
simplified model for studying the interplay between selection
and genetic drift, e.g., the dilemma of cooperation [20],
rare fluctuations in mutualism [21,22], the crossover from
the mean-field behavior to fluctuations-dominated behavior
in quantum game theory [23], as well as competition and
cooperation in spatial range expansions [14,17,24,25].

Although replicator dynamics with genetic drift is a useful
approach, the fixed population size condition has several
drawbacks. First, it imposes an artificial growth constraint:
the birth of one species necessitates the death of the other
even when the two species are neutral variants. Further-
more, population size fluctuations away from a preferred

carrying capacity often arise in laboratory experiments, as
well as in natural environments. For example, understanding
how effectively compressible oceanic flows affect population
genetics of marine organisms such as phytoplankton and
cyanobacteria [26–29] requires a time-dependent description
of local population size, determined by a fluid flow structure.
Incorporating spatially dependent population sizes into the
evolutionary dynamics of Eq. (3) raises important technical
and conceptual challenges [30,31].

In this paper, with the goal of examining the interplay
between number fluctuations and evolutionary and population
dynamics in mind, we study a two-species competitive Lotka-
Volterra model, one that couples the replicator dynamics to the
dynamics of population size. Five deterministic competition
and cooperation scenarios similar to replicator dynamics
emerge naturally from microscopic birth and competitive
death events. Dynamics in finite populations exhibit selection,
genetic drift, and growth of population size, as well as
population size fluctuations.

We first discuss the limit when long-time dynamics is gov-
erned by weak population size fluctuations around a fixed sta-
ble equilibrium population size. If the two competing species
reproduce in the dilute limit at an equal rate, evolutionary and
population dynamics approximately decouple near the equi-
librium population size. In this case, the effective evolutionary
dynamics near the equilibrium population size is described by
replicator dynamics with genetic drift. Despite population size
fluctuations, Moran model results with and without selection
are recovered. Pigolotti et al. utilized this limit to extend Eq. (3)
to study population genetics in aquatic environments, where
population size also varies in both time and space [30].

We then study the limit when evolutionary and population
dynamics are coupled and competitions take place with sys-
tematically varying population sizes as opposed to fluctuations
around a fixed equilibrium population size. We focus on
the strong mutualism scenario, where conventional replicator
dynamics with genetic drift fails to predict the fixation
probability, due to a strong coupling between evolutionary
and population dynamics. The problem can be restated as a
far from equilibrium escape problem to absorbing boundaries
from an attractive fixed point in a two dimensional phase space.
The method of matched asymptotic expansions produces both
the fixation probability and the mean fixation time taking into
account the coupled evolutionary and population dynamics.

The paper is organized as follow: Sec. II presents the
mean-field and stochastic description of the competitive Lotka-
Volterra model. The phase portraits of the model and of
the replicator dynamics are compared and contrasted. The
emphasis is on parameter values such that an attractive line of
approximately fixed population size dominates the long-time
dynamics. This limit enables us to identify the mapping be-
tween the model and the replicator dynamics. In Sec. III we dis-
cuss the limit when the replicator dynamics with genetic drift
allows independent population size fluctuations, and show that
standard population genetics results for the fixation probability
and the mean fixation time in different selection scenarios are
recovered. In Sec. IV, we demonstrate the failure of replicator
dynamics with genetic drift to describe simulations of strong
mutualism with a varying population size. We then construct
the fixation probability and the mean fixation time allowing an
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arbitrary initial population size and an initial frequency from
the method of matched asymptotic expansions. We conclude
with a summary and discussions in Sec. V. Details of analytical
calculations are presented in the Appendices: Appendix A
contains derivations of the coupled stochastic dynamics
between the frequency and the population size. Appendix B
and Appendix C explain the application of matched asymptotic
expansions to achieve the results of Sec. IV.

II. COMPETITIVE LOTKA-VOLTERRA MODEL

The competitive Lotka-Volterra model accounts for natural
population growth with limited resources; each individual of
the same species Si undergoes a logistic birth and competitive
death process:

Si

μi−→ Si + Si, (4)

Si + Si

λii−→ Si, (5)

where μi is the reproduction rate of species i, and λii is
the rate of intraspecies competition. The combination of
(4), which describes an exponential growth of population
in abundant resources, and (5), which dominates when the
population size is large, leads to saturation of population
size at the carrying capacity N∗

i = μi/λii . Experiments show
that a logistic growth model accurately captures the growth
dynamics of a single yeast strain in a well-mixed culture [32].

Interspecies interactions are modeled by additional compe-
tition

Si + Sj

λij−→ Sj , (6)

where λij is the rate at which species j wins in the competition
for limited resources with species i. In general, λij �= λji

for i �= j although λij and λji must both be nonnegative
in this model. The interaction (6) encapsulates situations
when one species suffers from the presence of the others,
for example, by secretions of toxins or competition for the
same resources. As we will now show, there are 5 generic
competition scenarios analogous to replicator dynamics. The
population size, however, is not strictly fixed in this more
general model, since the reactions (4)–(6) do not conserve the
overall population size.

A. Mean-field description

In a well-mixed environment with an infinitely large
population size, Eqs. (4)–(6) can be regarded as chemical
reactions and determine the mean-field dynamics of the
number of species i, Ni, as

dN1

dt
= (μ1 − λ11N1 − λ12N2)N1, (7)

dN2

dt
= (μ2 − λ22N2 − λ21N1)N2, (8)

where we set the reaction volume to 1. Without interspecies
competition, each species i independently grows up and
saturates at the carrying capacity N∗

i = μi/λii . Although the
carrying capacity of the two species can be different in general,
we focus on the case when N∗

1 = N∗
2 = N for simplicity.

By introducing ci = Ni/N , which represents the number of
species i relative to its carrying capacity, Eqs. (7) and (8) can
be nondimensionalized to read

1

(1 + so)

dc1

dt̃
= c1(1 − c1 − c2) + β1c1c2, (9)

dc2

dt̃
= c2(1 − c1 − c2) + β2c1c2, (10)

where t̃ is the dimensionless time μ2t,so is the reproductive
advantage of species 1 near the origin defined by 1 + so ≡
μ1/μ2, and the interspecies competitions are absorbed into
β1 ≡ 1 − ( λ12

λ22
)(μ2

μ1
) and β2 ≡ 1 − ( λ21

λ11
)(μ1

μ2
). Note that the {βi}

cannot exceed unity if {μi} and {λij } are positive. Three
dimensionless parameters so,β1,β2 control the phase portraits
in the c1 − c2 plane, which always contain at least 3 physically
relevant fixed points at (0,0),(1,0), and (0,1), corresponding
to the total extinction, the saturation of species 1, and the
saturation of species 2, respectively. The fixed point (0,0)
is always unstable with the straight heteroclinic trajectories
connecting (0,0) to (1,0) and (0,0) to (0,1) describing the
logistic growth of a single species in the absence of the other.

Two dimensionless parameters β1 and β2 dictate compe-
tition scenarios similar to those described by α1 and α2 in
the replicator dynamics, provided an initial condition contains
nonzero population of both species. However, the overall
population size is now allowed to change. These mean-field
competition scenarios are illustrated in Figs. 2–4. If the product
β1β2 < 0, the species i with positive βi dominates. The fixed
point corresponding to the saturation of the dominating species
is stable and the fixed point corresponding to the saturation of
the extinct species is a saddle point.

When β1β2 > 0, a fourth dynamically relevant fixed point
appears at c∗ = 1

β1+β2−β1β2
(β1,β2). If both β1 and β2 are nega-

tive, we have a bistable situation similar to antagonism. Initial
conditions that lie on the basin of attraction of the fixed point
(1,0) and (0,1) result in the total domination (i.e., fixation) of
species 1 and species 2, respectively. The coexistence fixed
point c∗ is a saddle point whose stable 1-d manifold consists
of the separatrices such as the trajectory connecting (0,0) to
c∗. Here, coexistence is fragile and only possible for initial
conditions lying exactly on these separatrices.

When both β1 and β2 are positive, stable coexistence
emerges at the stable fixed point c∗ similar to mutualism.
Although we shall refer to this scenario as mutualism to
conform to Refs. [14] and [30], we emphasize that inter-
species interactions actually arise from underlying competitive
interactions. In our case, interspecies interactions reduce the
growth rate per capita of both species and restrict λij > 0
or equivalently βi < 1. Stable coexistence can persist despite
the competition. The population size at c∗, however, reduces
to β1+β2

β1+β2−β1β2
N relative to the upper bound 2N attained in

the absence of interspecies competition (λ12 = λ21 = 0, or
equivalently β1 = β2 = 1).

Lastly, the exceptional case β1 = β2 = 0 resembles neutral
evolution such that every point on a one dimensional line
c1 + c2 = 1 is a fixed point. We shall call this fixed line
scenario quasineutral evolution as the two species will not
be neutral variants in the dilute limit if so �= 0: A reproductive
advantage near the origin does not destroy the coexistence line
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FIG. 2. (Color online) The phase portraits of competitive Lotka-
Volterra dynamics with so = 1, |β2| = 0.028, and |β1| = 0.014 in
the (c1,c2) plane. The competition scenario depends on the sign of
β1 and β2, similar to α1 and α2 in Fig. 1. Cases (a), (b), (c), and
(d) correspond to species 2 domination, mutualism, antagonism, and
species 1 domination, respectively. Red circles represent fixed points
and blue lines correspond to mean-field trajectories of Eqs. (9) and
(10) solved numerically. For so = 1, population size relaxes toward
the replicator condition (cT ≈ 1) along a curved trajectory of constant
ρ, which forms an upper branch of the parabola c1 = ρ2c2

2. Deviation
from a trajectory of fixed ρ only becomes apparent close to the line
cT = 1. Once the replicator line c1 + c2 ≈ 1 is reached, the replicator
dynamics at a fixed population size takes over.

c1 + c2 = 1, but instead modifies the relative abundance of the
two species as population size grows and saturates somewhere
on the fixed line c1 + c2 = 1. The next subsection discusses
the approach toward population size saturation.

B. Growth of population size and mapping to deterministic
replicator dynamics when |βi | � 1

Despite the rough similarity of the scenarios above to
those of replicator dynamics, the competitive Lotka-Volterra
model contains the overall population size as a dynamical
variable. In general, growth and competition together do not
conserve the population size, as illustrated in Fig. 4. In the
limit |β1| � 1 and |β2| � 1, however, there is an attractive 1-d
manifold of approximately fixed population size c1 + c2 ≈ 1
on which conventional replicator dynamics determines the
ultimate outcome. We shall refer to the competition near
the line c1 + c2 = 1 in this limit as the competition under
the replicator condition. Under the replicator condition, the
balance between growth and competitive death results in an
effective replicator dynamics with an approximately fixed
population size, which we discuss below. Figures 2 and 3
illustrate competitions in this limit.

We now discuss the growth of population size toward
the replicator condition and the eventual mapping onto the
replicator dynamics. Upon using cT ≡ c1 + c2 to measure
the overall population size and defining f ≡ c1/cT as the

FIG. 3. (Color online) Replicator dynamics with genetic drift and
population size fluctuations when cT ≈ 1. Cases (a), (b), (c), and (d)
again correspond to species 2 domination, mutualism, antagonism,
and species 1 domination, respectively, with so = 0, and |β1| =
|β2| = 0.03. In this case, the mean-field trajectories approach the
replicator condition (c1 + c2 = cT ≈ 1) as straight lines that preserve
the initial species frequency f . Each orange stochastic trajectory,
simulated from the Gillespie algorithm with the initial condition
(f,cT ) = (0.5,0.5) (i.e., c1 = c2 = 0.25) and N = 100 individuals,
demonstrates a typical fixation event. Stochastic trajectories show
rapid growth of population size toward the replicator condition where
selection, genetic drift, and population size fluctuations ultimately
determine the competition outcome.

frequency of species 1, we obtain the following coupled
dynamics of cT and f from Eq. (7) and Eq. (8),

dcT

dt̃
= (1 + sof )vG(cT ) + (α1 + α2)f (1 − f )c2

T , (11)

df

dt̃
= vE(f ) + sof (1 − f )(1 − cT ), (12)

where the function vG(cT ) ≡ cT (1 − cT ) in Eq. (11) describes
the logistic growth of population size, and the evolutionary
dynamics term in Eq. (12) vE(f ) ≡ [α1 + (α1 + α2)f ]f (1 −
f ) resembles the frequency-dependent selection in Eq. (2) with
the identification

α1 = (1 + so)β1, α2 = β2. (13)

We first analyze the quasineutral evolution scenario when
β1 = β2 = 0, and then treat the case 0 < |βi | � 1 as a weak
perturbation. In the quasineutral scenario, α1 + α2 = 0 and
cT obeys dcT

dt̃
= (1 + sof )vG(cT ). For any nonzero initial

population size, cT eventually saturates at cT = 1, which is an
attractive 1-d manifold of fixed points in the original (c1,c2)
phase space. As the population size grows from cT (0) < 1 or
declines from cT (0) > 1 to saturate at cT = 1, c1(t) and c2(t)
change to conserve the variable ρ defined by

ρ ≡ c2(t)/c1(t)1/(1+so)

= c2(0)/c1(0)1/(1+so), (14)
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FIG. 4. (Color online) The phase portraits for so = 0 and |β1| =
|β2| = 0.5, which includes the case of strong mutualism of Sec. IV.
Competition at long times no longer takes place close to the line
c1 + c2 = cT = 1, depicted as the red dashed line in (b) and (c),
but with a varying overall population size. Cases (a), (b), (c), and
(d) correspond to species 2 domination, mutualism, antagonism,
and species 1 domination, respectively. The initial condition for the
stochastic simulation is (f,cT ) = (0.5,0.5) (i.e., c1 = c2 = 0.25) with
N = 50 individuals. In contrast to mutualism under the replicator
condition [e.g., Fig. 3(b) with |β1|,|β2| � 1], the coexistence fixed
point in strong mutualism shown in (b) is highly stable and fixation
becomes a rare event even when N is as small as 50.

because Eq. (9) and Eq. (10) with β1 = β2 = 0 implies
dρ/dt̃ = 0. To see how the frequency of each species changes
as the population size approaches cT = 1, it is helpful to
rewrite ρ in terms of f and cT as

ρ = cT (t)so/(1+so)[1 − f (t)]/f (t)1/(1+so). (15)

Since ρ is a conserved variable, Eq. (15) implies that the
frequency of a reproductively advantageous species increases
as cT (t) grows toward cT = 1 when cT (0) � 1. On the other
hand, the frequency of a reproductively advantageous species
decreases as cT (t) declines toward cT = 1 when cT (0) � 1. If
both species grow up at an equal rate (so = 0), the frequency
of each is independently conserved, regardless of cT (t).

For 0 < |β1| � 1 and 0 < |β2| � 1, the dynamics of
population size away from cT = 1 still obeys dcT

dt̃
≈ (1 +

sof )vG(cT ) since (1 + sof )vG(cT ) � [α1 + α2]f (1 − f )c2
T

in Eq. (11). Moreover, the approach toward cT = 1 again
follows a trajectory of approximately constant ρ since, away
from cT = 1,∣∣∣∣ d

dt̃
ln ρ

∣∣∣∣ = |cT [(β2 − β1) + (β2 + β1)f ]|

� |(1 + sof )(1 − cT )

+ [(1 + so)β1 + β2]f (1 − f )cT |

=
∣∣∣∣ d

dt̃
ln cT

∣∣∣∣.

Once cT is in close proximity to 1,ρ is no longer approximately
conserved. The thin neighborhood of cT = 1 in which con-
servation is strongly violated, however, becomes vanishingly
small in the limit |βi | � 1. Accordingly, we can set cT = 1 in
Eq. (11) and Eq. (12) to find in this neighborhood

dcT

dt̃
≈ 0,

df

dt̃
= vE(f ), (16)

which reproduces deterministic replicator dynamics of a fixed
population size N . The mean-field trajectories in Figs. 2
and 3 depict the approach toward the replicator condition
in which the replicator dynamics at cT = 1 determines how
the frequency of each species changes. Figure 2 illustrates
growth along the bent trajectories c1(t) = ρ2c2(t)2 that arises
when species 1 has a reproductive advantage near the origin
(so = 1), while Fig. 3 depicts growth along a set of straight
lines of fixed species’ frequency when so = 0.

C. Stochastic dynamics

In finite populations, the ultimate fate of the coupled system
depends not only on the 3 dimensionless parameters so,β1,β2

and the initial condition, but also on fluctuation corrections
to the mean-field dynamics due to microscopic stochasticity.
We can quantify the stochastic dynamics by regarding the
microscopic rates in Eqs. (4)–(6) as Markov processes. The
joint probability distribution of finding Ni individuals of
species i at time t , P (N1,N2,t), then obeys the master equation

∂tP (N1,N2,t) = μ1(N1 − 1)P (N1 − 1,N2,t)

+μ2(N2 − 1)P (N1,N2 − 1,t)

+ λ11N1(N1 + 1)P (N1 + 1,N2,t)

+ λ22N2(N2 + 1)P (N1,N2 + 1,t)

+ λ12N2(N1 + 1)P (N1 + 1,N2,t)

+ λ21N1(N2 + 1)P (N1,N2 + 1,t)

− [μ1N1 + μ2N2

+ λ11N1(N1 − 1) + λ22N2(N2 − 1)

+ λ12N1N2 + λ21N1N2]P (N1,N2,t).

In the limit 1/N � 1 (recall that N = μ1/λ11 = μ2/λ22), this
discrete master equation can be approximated by the Fokker-
Planck equation for the continuous probability distribution
P (c1,c2,t) via the Kramers-Moyal expansions or the van
Kampen 1/N expansions [33,34]. The corresponding Fokker-
Planck equation for the probability P (c,t) of a particular
species configuration c reads

∂tP (c,t) =
2∑

i=1

(
−∂ci

[vi(c)P (c,t)] + 1

2N
∂2
ci

[Di(c)P (c,t)]
)

,

(17)

where the deterministic drift and N -independent diffusion
coefficients are

v1(c) = μ1c1(1 − c1 − c2) + μ1β1c1c2, (18)

v2(c) = μ2c2(1 − c1 − c2) + μ2β2c1c2, (19)
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D1(c) = μ1c1(1 + c1 + c2) − μ1β1c1c2, (20)

D2(c) = μ2c2(1 + c1 + c2) − μ2β2c1c2. (21)

An equivalent representation in terms of the Ito calculus [34]
prescribes stochastic dynamics of the ci(t) that resembles a set
of coupled Langevin equations:

dci

dt
= vi(c) +

√
Di(c)

N
�i(t), (22)

where �i(t) is a Gaussian white noise with 〈�i(t)�j (t ′)〉 =
δi,j δ(t − t ′) and 〈�i(t)〉 = 0. In the limit of infinitely large
population size N , the noise term of order

√
1/N in Eq. (22)

vanishes and we recover the mean-field description of Eq. (9)
and Eq. (10). Note that the deterministic drift cannot be
written as a gradient of a potential function since |∇ × �v(c)| ≡
|∂1v2(c) − ∂2v1(c)| = |μ1(1 − β1)c1 − μ2(1 − β2)c2| �= 0. In
contrast to diffusion in a potential field, the nonpotential
drift is typical for stochastic nonlinear dynamics in a higher
dimensional phase space [34,35]. Hence, standard tools for
analyzing the statistics of fluctuations such as eigenfunction
expansions of the Fokker-Planck equation [36] or saddle-point
approximations of the most probable escape path [33,37] are
not directly applicable.

For finite N , number fluctuations alter the mean-field
description and can lead to outcomes different from the deter-
ministic predictions. For instance, fluctuations will eventually
drive one of the two species to fixation and destroy stable
coexistence for mutualism. Regardless of the deterministic
phase portraits, the eventual fate of the system at long times is
fixation of a single species. Once one species becomes fixed,
the dynamics of the fixed species follow stochastic logistic
growth while the other species remains forever extinct, as is
easily checked from Eqs. (18)–(22). The c1 and c2 axes are thus
absorbing boundaries leading to the fixation of species 1 and
of species 2, respectively. The only absorbing state in the phase
space is total extinction (0,0), which is inaccessible since we
do not allow for the death process Si → φ in our simulations.
Had we included the death process, the total extinction would
nevertheless be extremely unlikely because the mean time to
extinction for logistic growth grows exponentially with N [38].

If time is nondimensionalized to t̃ = μ2t in Eqs. (18)–(22),
the stochastic dynamics then depends on only 4 dimensionless
parameters: so,β1,β2, and 1/N . The parameters so,β1,β2

control both the mean-field phase portrait and the diffusion
coefficients, while the parameter 1/N sets the strength of
fluctuations relative to deterministic drift.

In the following sections, we investigate the dynamics
in different ranges of so,β1,β2 assuming small fluctuations,
1/N � 1. In Sec. III, we study the limit when |βi | � 1 with
typical stochastic trajectories shown in Fig. 3 for so = 0. In
Sec. IV, we highlight the limitations of fixed population size
replicator dynamics by studying a strong mutualism scenario
where β1 and β2 are O(1) and we set so = 0 for simplicity.
Figure 4 illustrates the stochastic dynamics in this case, where
the time dependence of the overall population size plays a
crucial role. In this situation, replicator dynamics is never an
appropriate description.

III. REPLICATOR DYNAMICS WITH GENETIC DRIFT
AND POPULATION SIZE FLUCTUATIONS

We now follow Pigolotti et al. [30] and discuss competitive
Lotka-Volterra dynamics under the replicator condition (cT ≈
1 and |βi | � 1) and 1/N � 1, thus extending Eq. (3) to
include fluctuations in the overall population size. We recast
earlier results of Ref. [30] in the language of conventional
replicator dynamics with genetic drift, to better illustrate the
breakdown of this approach for the case of strong mutualism
discussed in Sec. IV. Our focus is on the dynamics of f (t),
the frequency of species 1, and the total population size cT (t).
When so = 0 and |βi | � 1 (Appendix A also treats s0 �= 0 a
case not considered in Ref. [30]), Appendix A shows that the
coupled stochastic dynamics of f and cT for cT ≈ 1 read [30]

df

dt
= μvE(f )cT +

√
μDg(f )

N

(
1 + cT

cT

)
�f (t), (23)

dcT

dt
= μvG(cT ) +

√
μcT (1 + cT )

N
�cT

(t), (24)

where �i(t) is an uncorrelated Gaussian white noise with
zero mean and unit variance, Dg(f ) = f (1 − f ) is the
frequency-dependent genetic drift coefficient [10,11], and
vE(f ) and vG(cT ) are the selection function and the logistic
growth function that appear in Eqs. (11) and (12). These
stochastic differential equations, which arise from a more
general dynamics with so �= 0 discussed in Appendix A, must
be interpreted in terms of Ito calculus [33,34] in order to
correctly reproduce the Fokker-Planck equation (17). We have
retained the original unit of time to make the reproduction time
scale explicit and denoted μ = μ2 for brevity.

In Eq. (24), the dynamics of population size is f -
independent and exhibits a combination of fast approximately
deterministic relaxation toward the equilibrium line cT = 1
and slow fluctuations with variance 1/N around this equi-
librium. On the other hand, the dynamics of f depends
on cT . Nevertheless, it is mostly influenced by the mean
population size 〈cT 〉 = 1 since the variance of cT about cT = 1
is 1/N � 1. Thus, the effective dynamics of f, accurate to
first order in 1/N, can be approximated by simply replacing
cT = 1, which leads to

df

dt
= μvE(f ) +

√
2μ

N
Dg(f )�f (t). (25)

Equations (24) and (25) together describe the dynamics near
the replicator condition when 1/N � 1, which is precisely
Eq. (3), with the addition of an independently fluctuating
population size around the fixed mean cT = 1.

Note that the variance per generation time of Eq. (25) given
by f (1 − f )/N is independent of both the population size
fluctuations away from cT = 1 and the selection mechanism
in the vicinity of this line. In fact, the variance resembles that
of the Wright-Fisher or Moran model [10]. Thus, the effective
population size deduced from the variance of the genetic drift
is equivalent to the mean population size N despite fluctuations
in the overall population size.

From the closed form Eq. (25) for f (t), we can recover
known results for the fixation probability u(f ) and the mean
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fixation time τ (f ) which are, respectively, the probability
that species 1 becomes fixed (instead of species 2) and the
average time to lose heterozygosity provided species 1 initially
has a frequency f at cT = 1. These quantities obey ordinary
differential equations,

vE(f )
d

df
u(f ) + Dg(f )

N

d2

df 2
u(f ) = 0, (26)

vE(f )
d

df
τ (f ) + Dg(f )

N

d2

df 2
τ (f ) = − 1

μ
, (27)

subject to the boundary conditions u(0) = 0,u(1) = 1, and
τ (0) = τ (1) = 0 [33,34]. The differential equations can be
integrated directly leading to closed-form solutions which read

u(f ) =
∫ f

0 e−N�(x) dx∫ 1
0 e−N�(x) dx

, (28)

where �(x) ≡ ∫ x

0 vE(y)/Dg(y) dy, and

τ (f ) = I (1)u(f ) − I (f ), (29)

where I (f ) ≡ [
∫ f

0 dx e−N�(x)
∫ x

1 dy eN�(y)/Dg(y)](N/μ).
We now review the implications of Eq. (25) for different se-

lection scenarios. In neutral evolution (β1 = β2 = 0), Eq. (25)
becomes [with Dg(f ) = f (1 − f )]

df

dt
=

√
2μ

N
Dg(f )�f (t), (30)

which is a continuous approximation of the Moran model
or the Wright-Fisher sampling in population genetics
[9–11,39,40]. Only genetic drift participates in the dynamics
and fixation events are results of an unbiased random walk
with cT ≈ 1 toward f = 0 or f = 1, absorbing boundaries,
and independent fluctuations of population size about the mean
N . In this case, direct evaluation of Eqs. (28) and (29) gives
[39]

uneutral(f ) = f, (31)

τneutral(f ) = −
(

N

μ

)
[f ln f + (1 − f ) ln(1 − f )], (32)

where f is the initial frequency of species 1.
For selection that favors domination of one species, the

special case s̃ ≡ β1 = −β2 reproduces the Moran process with
an effective selective advantage s̃ (provided cT ≈ 1), described
by

df

dt
= μs̃f (1 − f ) +

√
2μ

N
Dg(f )�f (t). (33)

We emphasize that the growth rates of the two species when
cT � 1 in this particular competitive Lotka-Volterra dynamics
are strictly identical (so = 0), but the species with positive
βi nevertheless behaves near cT = 1 as if it has a selective
advantage s̃. Upon evaluating Eq. (28), we arrive at the
celebrated Kimura result for the fixation probability [18]

u(f ) = 1 − e−s̃Nf

1 − e−s̃N
. (34)

A lengthy closed-form formula for the mean fixation time can
also be obtained; see for example Ref. [20].

For antagonistic or mutualistic interactions, the effective
dynamics of f reads

df

dt
= μβ̃f (1 − f )(f ∗ − f ) +

√
2μ

N
Dg(f )�f (t), (35)

where f ∗ = β1/(β1 + β2) is the coexistence fixed point with
cT ≈ 1 and β̃ ≡ (β1 + β2) controls the stability of f ∗. The
parameter β̃ is positive and negative for mutualism and an-
tagonism, respectively. In either case, the fixation probability
directly follows from Eq. (28), and is given by

u(f ) =
∫ f

0 e
Nβ̃

2 (f ∗−f )2
df∫ 1

0 e
Nβ̃

2 (f ∗−f )2
df

, (36)

in agreement with Ref. [14]. It appears that the mean fixation
time from Eq. (29) cannot be simplified further, and must be
evaluated numerically.

Pigolotti et al. simulated the fixation probability for
different competition scenarios under the replicator condition
with so = 0 and found good agreement with these predictions
of the fixation probabilities even for fairly small population
sizes of O(N ) ∼ 100 individuals [30]. Constable et al. also
studied this limit using a different mathematical technique
and found good agreement between theories and simulations
of both the fixation probability and the mean fixation time
[41]. These results confirm that the competitive Lotka-Volterra
model reduces to replicator dynamics with genetic drift and
an independently fluctuating overall population size, provided
so = 0, |βi | � 1, and cT ≈ 1.

We mention briefly that when s0 �= 0, the long-time
dynamics still fluctuates around the equilibrium line cT =
1 provided |βi | � 1; however, evolutionary dynamics now
couples to population dynamics, see Appendix A. An inter-
esting phenomenon of fluctuation-induced selection arises as
a result of this coupling near the equilibrium line. In the
scenario of quasineutral evolution (β1 = β2 = 0), species with
a reproductive disadvantage in the dilute limit acquires a
selective advantage for competitions near the equilibrium line
[42–45]. The resulting effective evolutionary dynamics near
the equilibrium line contains not only a fluctuation-induced
selective advantage, but also an unusual genetic drift of a
non-Wright-Fisher (and non-Moran) type [42–45].

IV. STRONG MUTUALISM WITH A VARYING
POPULATION SIZE

In this section, we study a strong mutualism scenario [βi ∼
O(1) in Fig. 4(b)], where the replicator condition is no longer
satisfied. In this limit, the coexistence fixed point shifts far
away from the line cT = 1 and becomes strongly attractive in
all eigendirections. The faint orange grid in Fig. 4(b) illustrates
a typical fixation trajectory exhibiting a decline of overall
population size as weak fluctuations about the strongly stable
fixed point eventually drive one of the two species (in this case,
species 1) to fixation.
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A. Failure of the fixed population size model
near boundary layers

Suppose we accept Eq. (3) as a phenomenological model
for mutualism and fit the resulting fixation probability in
Eq. (36) to simulation data; how well would this model
with a strictly fixed population size do? To motivate the
choice of fitting parameters, we first discuss the behavior
of the fixation probability u(f ) predicted by Eq. (36). For
β̃N � 1 [recall that β̃ ≡ β1 + β2 in Eq. (36)], genetic drift
dominates mutualistic selection and the fixation probability
approaches the result of an unbiased random walk of neutral
evolution, Eq. (31). For β̃N � 1, the coexistence fixed point is
metastable and fixation driven by weak genetic drift becomes
a rare event. Initial conditions in close proximity to f ∗ almost
surely visit f ∗ before fixation occurs, giving rise to a plateau
of equal fixation probability u(f ∗) in the neighborhood of f ∗.
Furthermore, the fixation probability u(f ) only varies rapidly
within the boundary layers of width ∼1/N adjacent to each of
the absorbing states f = 0 and f = 1, away from which u(f )
exhibits crossovers to a plateau value u(f ∗). The boundary
layers near the absorbing states contain initial conditions
that can be driven by genetic drift to fixation before being
attracted toward f ∗. For symmetric mutualism (f ∗ = 1/2),
the plateau height u(f ∗) is 1/2 by symmetry from Eq. (36)
and is independent of N . For asymmetric mutualism, the
N -dependent behavior of u(f ∗) can be understood by studying
rare event escape from a metastable state. For an evolutionary
game with a stable coexistence fixed point, it can be shown
that u(f ∗) is given by the ratio of the flux into the absorbing
state f = 1 to the total flux into the absorbing states f = 0
and f = 1 whose N -dependent behavior in the limit N � 1
is given by [21,22]

u(f ∗) ≈ 1

1 + e−N�S0+�S1
, (37)

where, from the perspective of a Feynman path integral for-
mulation of stochastic dynamics [46,47], �S0 ≡ S0[γf ∗→1] −
S0[γf ∗→0] is the difference between the “action” S0[γf ∗→x]
associated with the most probable escape path γf ∗→x be-
ginning at f ∗ and ending at an absorbing state x, and
�S1 ≡ ln w[γf ∗→1] − ln w[γf ∗→0] is the difference between
fluctuations corrections to the action of the most probable
escape path. The N -independent functions �S0 and �S1 are
known analytically [21,22] but are unnecessary for illustrating
the failure of the fixed population size model. Note that Eq. (37)
resembles the Boltzmann weight in equilibrium statistical
mechanics if N is interpreted as inverse temperature while
S0[γf ∗→x] and ln w[γf ∗→0] play the role of energy and entropy,
respectively, as in the classical Kramers escape-over-a-barrier
problem due to thermal fluctuations [36]. For f ∗ > 1/2, it is
more likely for species 1 to be fixed and we can infer from
Eq. (37) that �S0 > 0, resulting in u(f ∗) → 1 as N → ∞.

Similar arguments give �S0 < 0 if f ∗ < 1/2, implying that
u(f ∗) → 0 as N → ∞.

We now denote the two free parameters of Eq. (36) by
β̃Neff and f ∗

eff , and fit u(f ) to our numerically simulated
fixation probability for strong asymmetric mutualism with
so = 0, β1 = 0.75, and β2 = 0.70 whose actual coexis-
tence fixed point is (f ∗,c∗

T ) ≈ (0.517,1.568). Our stochastic
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FIG. 5. (Color online) Comparison between fixed population
size predictions given by Eq. (36) (dashed lines) and the simulated
fixation probabilities from the Gillespie algorithm (symbols) for an
asymmetric strong mutualism with a varying population size with
so = 0, β1 = 0.75, and β2 = 0.70. The plateau-fitting procedure
yields the fitting parameters f ∗

eff = f ∗ = β1/(β1 + β2) ≈ 0.517 and
β̃Neff = 58.0, 74.4,91.0 for the simulated N = 12, 16, 20, respec-
tively. This procedure always fits the plateau, but fails to capture the
boundary layer behavior.

simulations employ the Gillespie algorithm to efficiently
simulate the discrete master equation of Sec. II C [48,49].
The simulated fixation probabilities for each initial condition
are constructed from 104 realizations of fixation events. The
initial overall population size in our simulations is taken to
be cT = 1 < c∗

T ; i.e., the initial overall population size is less
than the fixed point value. The simulated results shown in
Fig. 5 reveal a plateau of equal fixation probability even for
relatively small N � 12. To match the center of the plateau, we
choose f ∗

eff = f ∗. The other free parameter β̃Neff controls both
the plateau height and width. Because the plateau structure
occupies most regions, it is reasonable to adjust β̃Neff so that
u(f ∗) matches the height of the simulated plateau. With this
fitting procedure, the plateau in the fixed population size model
is guaranteed to agree with the simulated plateau.

Although the fixed population size model can be adjusted
to fit the elongated plateau in agreement with simulations, it
fails to capture the behavior near the absorbing boundaries as
revealed by Fig. 5, where the simulated points systematically
fall away from the predicted dashed lines. In fact, it is
precisely this boundary behavior that distinguishes the fixation
probability of mutualism with a fixed population size from
mutualism with a varying population size. As we now show,
the elongated plateaus also exist for strong mutualism with
a varying population size, but the behavior near absorbing
boundaries depends on the delicate interplay between the
relative frequency and the overall population size.

B. The fixation probability and the mean fixation
time from matched asymptotic expansions

We now study the fixation probability and the mean
fixation time, taking into account both the frequency and the
population size degrees of freedom. Our results for the fixation
probability are summarized in Fig. 6. A fixation event with
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FIG. 6. (Color online) The fixation probability for strong sym-
metric mutualism with vanishing reproductive advantage near the
origin (so = 0), β1 = β2 = 0.75, and N = 20 from the matched
asymptotic expansions. In the boundary layers adjacent to the
absorbing boundaries, the fixation probability shows crossovers with
the characteristic width 1/N from the boundary condition values to
the plateau value P = 1/2. Within the boundary layers, fixation at
early times before approaching the vicinity of the coexistence fixed
point is likely. In contrast, initial conditions in the plateau almost
surely arrive at the coexistence fixed point before rare fluctuations
eventually lead to fixation. The heat map provides an alternative
representation of u(c).

initial frequency f and initial population size cT requires
a two-dimensional escape to an absorbing boundary from
the initial condition which we specify as (f cT ,(1 − f )cT )
in the (c1,c2) coordinates. In contrast to mutualism under
the replicator condition (0 < βi � 1 and cT ≈ 1), there is
no dimensional reduction to an effectively one-dimensional
dynamics with approximately fixed cT ≈ 1 here. In fact, the
fixation probability u(c) obeys a two-dimensional backward
Kolmogorov equation, namely

0 =
2∑

i=1

[
vi(c)∂ci

u(c) + 1

2N
Di(c)∂2

ci
u(c)

]
, (38)

with the deterministic drifts vi(c) and diffusion coefficients
Di(c) given by Eqs. (18)–(21). The absorbing boundaries cor-
responding to the fixation of species 1 and of species 2 impose
the boundary conditions u(c1,0) = 1 and u(0,c2) = 0, respec-
tively. Equation (38) does not admit an exact solution, and
(as mentioned above) the standard technique of escape from a
potential well cannot be applied since vi(c) is not a gradient of a
potential function, i.e., | �∇ × �v(c)| = |μ1(1 − β1)c1 − μ2(1 −
β2)c2| �= 0. Despite these complications, given an empirical
data set with a plateau structure of fixation probability a
priori, we can solve for u(c) accurate to first order in 1/N

by the method of matched asymptotic expansions [50–53].
The strategy is to separately find asymptotic solutions of u(c)
in the plateau region and in the boundary layers adjacent to the
absorbing boundaries, and then perform asymptotic matching
of the local solutions. Note that our analysis follows from the
Fokker-Planck approximation to the master equation. It has
been shown for initial conditions starting from a metastable

state, for example in Refs. [38,54,55], that the quasistationary
distribution (QSD) and the mean fixation time when fixations
occur via rare fluctuations are accurately predicted by the
WKB approximation of the master equation, rather than by
the WKB approximation of the Fokker-Planck approximation.
However, the functional forms of the QSD and of the mean
fixation time from the two methods coincide, and are given by
Eq. (C2) and Eq. (48), respectively. We show here that treating
the N-independent parameters in the functional form as fitting
parameters yields excellent fits to the plateau fixation probabil-
ity and the plateau mean fixation time caused by escape from
a QSD. The utility of the Fokker-Planck approximation here
is its ability to predict crossover behaviors from the boundary
values to the plateau values of the fixation probability and
the mean fixation time from asymptotic expansions in 1/N.

As discussed in Sec. IV A, these crossovers are the essential
feature of strong mutualism with varying population sizes
and, to the best of our knowledge, have not been calculated
previously by any technique. With the crossover behaviors in
mind, we proceed with the usual Fokker-Planck approximation
of the master equation.

In the plateau region, the fixation probability u(c) near
the coexistence fixed point c∗ = (c∗

1,c
∗
2) is approximately

equal to P ≡ u(c∗). Similar to strong mutualism with a fixed
population size, the dynamics in the plateau region can be
characterized by a rapid approach to the coexistence fixed
point c∗ before weak fluctuations eventually drive the system
toward fixation by a large deviation. Equation (38) guarantees
the existence of the plateau structure if number fluctuations are
sufficiently weak. Indeed, in the limit 1/N → 0, Eq. (38) re-
duces to the simple advection equation 0 = ∑2

i=1 vi(c)∂ci
u(c).

The associated characteristics c(t) obey the mean-field dynam-
ics dci(t)/dt = vi(c) on which du[c(t)]/dt = 0, meaning that
the fixation probability along each characteristic is constant.
Because all the characteristics meet at the stable fixed point c∗,
we conclude u(c) = P ≡ u(c∗). This plateau value, however,
cannot extend over the entire domain without violating the
boundary conditions; hence, boundary layers adjacent to the
absorbing boundaries are an essential part of the physics.

Analogous to u(f ∗) in the previous subsection, the plateau
fixation probability P ≡ u(c∗) is the ratio of the flux into
the absorbing boundary f = 1 to the total flux into both of
the absorbing boundaries f = 0 and f = 1; see Appendix C.
The probability flux peaks at the saddle fixed point of each
absorbing boundary, which suggests that these saddle fixed
points dominate the most probable escape routes for each
absorbing boundary. Appendix C discusses the derivation of
the N dependence of P which takes the asymptotic form
similar to Eq. (37):

P ≈ 1

1 + e−N�S0+�S1
, (39)

where �S0 and �S1 are treated here as fitting parameters.
For strong symmetric mutualism with so = 0 and β1 = β2,

the dynamics has a reflection symmetry with respect to the
line f = 1/2 in the c1-c2 plane; hence, fixation of either
species is equally likely and P = 1/2 independent of N . In the
symmetric case, we can thus infer �S0 = �S1 = 0. For strong
asymmetric mutualism, we expect that, in the limit N � 1,

species 1 is more likely to be fixed if f ∗ > 1/2, and hence
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FIG. 7. (Color online) Extrapolations of the plateau fixation
probability P (top) based on Eq. (39), and a semilog plot of the
plateau mean fixation time Tp (bottom) based on Eq. (48), by best
fits to simulations with N = 12,14,16,18,20 in different cases of
slightly asymmetric strong mutualism. Symbols are simulation results
and solid lines are best fitted curves based on Eqs. (39) and (48). The
coexistence fixed point lies closer to the fixation of species 1, yielding
�S0 > 0. The plateau fixation probability P increases at increasing
N and saturates at 1 as N → ∞. Note that the plateau mean fixation
time Tp grows exponentially with N .

�S0 > 0. This assertion is confirmed by simulations in Fig. 7
where we find �S0 > 0 for f ∗ > 1/2 from fitting to Eq. (39).
Extrapolations of fits to Eq. (39) imply that if f ∗ > 1/2, then
species 1 will be fixed with probability 1 in the limit N → ∞.

In the boundary layers (see Fig. 6), u(c) crosses over
from the boundary condition values to the plateau value. This
crossover embodies two different types of dynamics: fixation
at early times without falling into the basin of attraction of c∗
and fixation by a large deviation after captured by c∗. Fixation
at early times is possible if the initial condition lies within
the boundary layers, whose characteristic width is 1/N � 1.

The characteristic widths and the behavior of crossovers can
be extracted by the method of matched asymptotic expansions
[50–53]. The details of matched asymptotic expansions are
given by Appendix B.

In the boundary layer adjacent to the absorbing boundary
c2 = 0 and away the absorbing boundary c1 = 0, the asymp-
totic large N form of the fixation probability reads

u(c) = P + (1 − P )e−Nc2/�1(c1), (40)

where the function �1(x) satisfies

0 = −x(1 − x)�′
1(x) + (1 + so)−1[1 − (1 − β2)x]�1(x)

− 1
2 (1 + so)−1[1 + (1 − β2)x], (41)

with the matching condition limx→1 �1(x) = 2−β2

2β2
. For a fixed

c1, Eq. (40) implies that the fixation probability exhibits a
crossover from 1 to P as c2 increases from c2 = 0 to c2 �
1/N. The details of the crossover depend on 1/�1(x), which
is a monotonically decreasing function of x for β1 < 1 and
β2 < 1, with 1/�1(0) = 2.

In the complementary boundary layer adjacent to the
absorbing boundary c1 = 0 and away from the absorbing
boundary c2 = 0, the asymptotic form of the fixation prob-
ability reads

u(c) = P − Pe−Nc1/�2(c2), (42)

where the function �2(x) satisfies

0 = −x(1 − x)�′
2(x) + (1 + so)[1 − (1 − β1)x]�2(x)

− 1
2 (1 + so)[1 + (1 − β1)x], (43)

with the matching condition limx→1 �2(x) = 2−β1

2β1
. For a fixed

c2, Eq. (42) implies that the fixation probability exhibits
a crossover from 0 to P as c1 increases from c1 = 0 to
c1 � 1/N. Similar to 1/�1(x), 1/�2(x) is a monotonically
decreasing function of x in the parameter range of interest with
1/�2(0) = 2.

The above local behaviors of fixation probability can be
combined into the global asymptotic solution

u(c) = P + (1 − P )e−Nc2/�1(c1) − Pe−Nc1/�2(c2), (44)

where the functions �1(c1) and �2(c2) obey Eq. (41) and
Eq. (43) with the associated matching conditions. This global
asymptotic solution is valid everywhere on the domain except
in the small box near the origin [0,1/N ] × [0,1/N ] where the
two boundary layers overlap. Upon changing the coordinate
to (f,cT ) to emphasize the important population size degree
of freedom, we obtain, finally,

u(f,cT ) = P + (1 − P )e−N(1−f )cT /�1(f cT )

−Pe−Nf cT /�2((1−f )cT ). (45)

Figure 6 summarizes the fixation probability as a function of
(c1,c2) predicted by Eq. (44) for a strong symmetric mutualism.
Figure 8 shows excellent agreement between the prediction of
Eq. (44) and the simulation results for a strong asymmetric
mutualism. As expected, the improvements relative to Fig. 5
occur for f near 0 and 1: the boundary behavior missed by the
fixed population size model are now well captured even for N

as small as 12.
The mean fixation time, τ (c), can also be constructed by

the method of matched asymptotic expansions. In this case,
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FIG. 8. (Color online) Comparisons between the predicted fixa-
tion probability (solid lines) and simulation results (symbols). The
plateau fixation probabilities P are determined by fitting Eq. (39) to
simulations with N = 12,14,16,18,20 with other parameters fixed.
Top: The fixation probability for so = 0,β1 = 0.75,β2 = 0.70 at
increasing N , indicated by the arrow. The matched asymptotics yield
excellent estimates for the crossovers from the boundary values to the
plateau value P (N ) even for N as small as 12. As N increases, the
plateau region becomes more elongated (i.e., the boundary layers have
characteristic width 1/N ) while the plateau value P (N ) increases
and eventually saturates at 1 as N → ∞, similar to Fig. 7 (top).
Bottom: The fixation probability at N = 20 for different cases of
strong mutualism. Note the improved agreement between simulation
and theory compared to Fig. 5.

we need to solve [33,34]

−1 =
2∑

i=1

[
vi(c)∂ci

τ (c) + 1

2N
Di(c)∂2

ci
τ (c)

]
, (46)

subject to the boundary conditions τ (c1,0) = 0 and τ (0,c2) =
0. Asymptotic matching arguments similar to Appendix B
can be applied to Eq. (46), resulting in the global asymptotic
solution for the mean fixation time, namely

τ (c) = Tp

(
1 − e−Nc2/�1(c1) − e−Nc1/�2(c2)

)
, (47)

where the functions �1(c1) and �2(c2) still obey Eq. (41) and
Eq. (43), and Tp is the plateau mean fixation time for the
initial condition at the coexistence fixed point. The function
τ (c) possesses a plateau structure in which τ (c) ≈ τ (c∗) = Tp,

similar to the profile of u(c). Furthermore, crossovers from
the boundary conditions to Tp are characterized by the same
exponentials e−Nc2/�1(c1) and e−Nc1/�2(c2) as in Eq. (44). In the
limit N � 1, the behavior of Tp is exponential in N ,

Tp ≈ σ0e
Nσ1 , (48)
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FIG. 9. (Color online) Comparisons between the predicted mean
fixation time (solid lines) and simulation results (symbols). Pa-
rameters are the same as in Fig. 8. The plateau mean fixation
times are determined by fitting, Eq. (48), to simulations with N =
12,14,16,18,20 with other parameters fixed. Top: The mean fixation
time for so = 0,β1 = 0.75,β2 = 0.70 at increasing N. The matched
asymptotic expansions yield excellent estimates for the crossovers
from the boundary values to the plateau value Tp(N ) even for N

as small as 12. As N increases, the plateau region becomes more
elongated (i.e., the boundary layers have characteristic width 1/N )
while the plateau value Tp(N ) grows exponentially, similar to Fig. 7
(bottom). Bottom: The mean fixation time at N = 20 for different
cases of strong mutualism.
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where we treat σ0 and σ1 as fitting parameters [50,56,57].
Figure 7 (bottom) confirms the exponential scaling of Eq. (48),
while Fig. 9 reveals excellent agreement between Eq. (47) and
the simulation results. To again emphasize the importance of
the population size degree of freedom, we rewrite Eq. (47) in
the coordinates (f,cT ) as

τ (f,cT ) = Tp(1 − e−N(1−f )cT /�1(f cT ) − e−Nf cT /�2((1−f )cT )).

(49)

V. CONCLUSIONS

We have explored the interplay between evolutionary dy-
namics and population dynamics in a well-mixed competitive
Lotka-Volterra model in various limits. The model gives rise
to 5 different scenarios, similar to evolutionary game theory,
without however fixing the overall population size, thereby
demonstrating an explicit microscopic system exhibiting the
feedback between evolutionary dynamics and population
dynamics phenomenologically studied in Refs. [58,59].

In the limit |β1| � 1, |β2| � 1, and 1/N � 1, with an
arbitrary reproductive advantage near the origin so, the model
describes rapid relaxational dynamics of population size to-
ward a fixed equilibrium size along a quasideterministic growth
trajectory on which ρ ≡ (1 − f )f −1/(1+so)c

so/(1+so)
T is constant.

The variable ρ relates the population frequency f to the total
population size cT as cT approaches the quasiequilibrium
at cT ≈ 1: The frequency of a reproductively advantageous
species, on average, increases as dilute populations (cT < 1)
grow, and decreases as overcrowded populations (cT > 1)
decline. For so = 0, replicator dynamics with genetic drift is
recovered when cT ≈ 1, despite population size fluctuations
away from cT = 1. Only in this limit is the dynamics near
the equilibrium population size a simple generalization of
conventional population genetics without mutation with an
independently fluctuating population size. From the perspec-
tive of equilibrium statistical mechanics, this simple limit is
analogous to the generalization from a canonical ensemble
to a grand canonical ensemble in the thermodynamic limit
[30]. However, for so �= 0, population size fluctuations couple
to evolutionary dynamics in a nontrivial fashion and replicator
dynamics with genetic drift is no longer an appropriate descrip-
tion. Our results demonstrate explicitly a circumstance such
that the fixed effective population size model in population
genetics is incomplete.

It would be interesting to study how population size fluc-
tuations affect evolutionary dynamics near a fixed equilibrium
population size when so �= 0 in selection scenarios other than
quasineutral evolution studied in Refs. [42–45]. Particularly
interesting is the prisoner’s dilemma briefly discussed at the
end of Appendix A. In this case, fluctuation-induced selection
can actually oppose the usual selection bias in the prisoner’s
dilemma, illustrating a fluctuation-driven mechanism other
than genetic drift (or spatial segregation [60]) that can alleviate
the dilemma of cooperation [20].

We also studied competitions that take place with a strongly
varying population size (as opposed to competition with a
nearly fixed population size), as in the strong mutualism limit.
Fixation events can now arise via two distinct mechanisms:
fixation at long times by rare escape from the strongly attractive

coexistence fixed point, and fixation at early times before
reaching the neighborhood of the coexistence fixed point.
The former situation is typical for initial conditions well
away from the absorbing boundaries (c1,0) and (0,c2), where
the system initially falls toward the coexistence fixed point,
resulting in a plateau of constant fixation probability and a
plateau in the mean fixation time. The latter situation arises
for initial conditions lying close to the absorbing boundaries
where fluctuations can fix one species before falling into the
coexistence fixed point. The crossovers from the absorbing
boundaries to the plateau in the fixation probability and the
mean fixation time can be studied by matched asymptotic
expansions, accounting for number fluctuations, evolutionary
dynamics, and population dynamics. As shown in Fig. 5, the
fixed population size model underestimates the number of
fixation events that can occur near the absorbing boundaries,
thereby overestimating the probability and duration of species
coexistence. This dynamics can be important in the context of
range expansions of mutualists [15,24] where populations at
the expanding frontier are continuously subject to interaction
in a growing population size, which may alter parameter values
separating an active (mutualistic) phase from inactive (single
species domination) phase.

Although our analytical predictions from the Fokker-Planck
approximation show excellent agreement with numerical
simulations of the master equation, it would be interesting
to study strong mutualism from other approaches such as the
WKB approximation of the master equation [38,54,55]. These
approaches can accurately predict the quasistationary distribu-
tion and the plateau mean fixation time when fixations occur by
large deviations from a metastable state without resorting to fit-
ting parameters of the plateau values. Lastly, the fate of compe-
titions as a function of both population size and the frequency
in other competition scenarios with a varying population size
under strong selection would also be worth investigating.
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APPENDIX A: COUPLED DYNAMICS OF f AND cT

Upon applying Ito’s change of variable to Eq. (22) and
denoting μ = μ2 and (1 + so)μ = μ1 [33,34], the coupled
stochastic dynamics of f and cT are described by

df

dt
= μvR(f,cT ) + μ

(
cT + 1

N

)
vE(f )

+
√

μD
(f )
R (f,cT ) + μD

(f )
E (f )

N
�f (t), (A1)
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dcT

dt
= μ(1 + sof )vG(cT ) + μ(α1 + α2)c2

T f (1 − f )

+
√

μD
(cT )
R (f,cT ) + μD

(cT )
E (f,cT )

N
�cT

(t), (A2)

where the N -independent functions in the deterministic drifts
and in the strength of an uncorrelated Gaussian white noise
with 〈�a(t)�b(t ′)〉 = δabδ(t − t ′) and 〈�a(t)〉 = 0 are given by

vR(f,cT ) =
[

(1 − cT ) − 1

N

(
1 + cT

cT

)]
sof (1 − f ), (A3)

vE(f ) = f (1 − f )[α1 + (α1 + α2)f ], (A4)

vG(cT ) = cT (1 − cT ), (A5)

D
(f )
R (f,cT ) = f (1 − f )[1 + so(1 − f )]

(
1 + cT

cT

)
, (A6)

D
(f )
E (f ) = −f (1 − f )[α1(1 − f )2 + α2f

2], (A7)

D
(cT )
R (f,cT ) = cT (1 + cT )(1 + sof ), (A8)

D
(cT )
E (f,cT ) = −(α1 + α2)c2

T f (1 − f ). (A9)

Here, the subscript R denotes a contribution involving the
reproductive advantage near the origin so, whereas the sub-
script E denotes the contribution from evolutionary parameters
defined in Eq. (13) α1 = (1 + so)β1 and α2 = β2, and vE(f )
and vG(cT ) describe the deterministic replicator dynamics
and the logistic growth dynamics, respectively. The O(1/N )
contributions to the deterministic drift induced by number
fluctuations of c1 and c2 only appear in df/dt and originate
from Ito’s change of variable formula [33,34].

Under the replicator condition (|α1| � 1, |α2| � 1, and
cT ≈ 1), we have |D(f )

E /D
(f )
R | � 1 and |D(cT )

E /D
(cT )
R | � 1 so

we can neglect the contributions from evolutionary parameters
in the noise. Therefore, at so = 0 the equations simplify,

df

dt
= μvE(f )

(
cT + 1

N

)

+
√

μ

N
f (1 − f )

(
1 + cT

cT

)
�f (t), (A10)

dcT

dt
= μvG(cT ) + μ (β1 + β2)c2

T f (1 − f )

+
√

μ

N
cT (1 + cT )�cT

(t). (A11)

When cT ≈ 1, (A10) reduces to Eq. (23) and (A11) reduces to
Eq. (24) in the limit |β1 + β2| � 1/N � 1.

For so �= 0 and 1/N � 1, the coupled stochastic dynamics
when cT ≈ 1 acquires contributions from the reproductive
advantage near the origin so. The dynamics is now described by

df

dt
= μvR(f,cT ) + μcT vE(f )

+
√

μ

N
f (1 − f )[1 + so(1 − f )]

(
1 + cT

cT

)
�f (t),

(A12)

dcT

dt
= μ(1 + sof )vG(cT ) + μ(α1 + α2)c2

T f (1 − f )

+
√

μ

N
cT (1 + cT )(1 + sof )�cT

(t). (A13)

In quasineutral evolution (α1 = α2 = 0), the dynamics of
f on the equilibrium line cT = 1 acquires the fluctuation-
induced selection term vR(f,cT = 1) = −2sof (1 − f )/N,

which actually favors the fixation of the species with a repro-
ductive disadvantage near the origin (s0 < 0). The presence
of nonvanishing deterministic drift is in stark contrast to the
unbiased random walk behavior of neutral evolution along the
equilibrium line displayed in Eq. (30).

Another interesting limit also arises when α1 = −α2 ∼
O(so/N ), where the fluctuation-induced selection term
μvR(f,cT = 1) = −(2μso/N )f (1 − f ) can compete with the
usual fixed population size selection strength μvE(f ) =
μα1f (1 − f ) and the genetic drift D

(f )
R (f,cT = 1) =

(2μ/N )f (1 − f )[1 + so(1 − f )]. In this case, fluctuation-
induced selection can oppose the standard selection in pop-
ulation genetics, or equivalently in the prisoner’s dilemma of
evolutionary game theory, and thus influence the dilemma of
cooperation.

APPENDIX B: MATCHED ASYMPTOTICS FOR STRONG
MUTUALISM WITH A VARYING POPULATION SIZE

In this Appendix, we construct the fixation probability
for strong mutualism from the method of matched asymp-
totic expansions, or equivalently the boundary layer method,
discussed in [50–53]. First, consider the asymptotic large N

solution u(c1,c2) of the backward Kolmogorov equation (38)
near the saddle fixed points. In the neighborhood of the fixed
point (0,1), we introduce the stretched coordinates η1 = c1N

and η2 = (c2 − 1)
√

N , and rewrite the fixation probability
in the new coordinates as U (η1,η2) = u(η1/N,1 + η2/

√
N ).

Upon neglecting the terms of O(1/
√

N ), Eq. (38) in the new
coordinates reads

0 = μ1β1η1∂η1U +
(

μ1 + μ2

2
− μ1β1

2

)
η1∂

2
η1

U

−μ2η2∂η2U + μ2∂
2
η2

U. (B1)

Separation of variables U (η1,η2) = X1(η1)X2(η2) reduces
Eq. (B1) to an eigenvalue problem

λX1 =
(

μ1 + μ2

2
− μ1β1

2

)
η1X

′′
1 + μ1β1η1X

′
1, (B2)

− λX2 = μ2X
′′
2 − μ2η2X

′
2, (B3)

where λ is an eigenvalue. The general solution to (B3) is

X2(η2) = C1H λ
μ2

(
η2√

2

)
+ C21F1

(
− λ

2μ2
;

1

2
;
η2

2

2

)
, (B4)

where C1 and C2 are constants, Hn(z) is the Hermite
polynomial, and 1F1(a; b; z) is the confluent hypergeometric
function of the first kind. The matching condition to the plateau
fixation probability U (η1 → ∞,η2) = P enforces X2(η2) to
be a constant. This is possible only when C2 = 0 and λ = 0 so
X2(η2) = C1. Because zero is the only eigenvalue consistent
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with the matching condition, (B2) reduces to

0 =
(

μ1 + μ2

2
− μ1β1

2

)
η1X

′′
1 + μ1β1η1X

′
1, (B5)

whose general solution is

X1(η1) = B1 − B2

(
μ1 + μ2

2μ1β1
− 1

2

)
e−η1μ1β1/(μ1+μ2−μ1β1),

(B6)
where B1 and B2 are constants. By imposing the boundary
condition U (0,η2) = 0 and the matching condition U (η1 →
∞,η2) = P, it follows that the fixation probability in the
original coordinates valid in the vicinity of the fixed point
(0,1) is

u(c) = P + Pe−Nc1[2β1/(2−β1)]. (B7)

A similar argument can be applied to the asymptotic solution
near the fixed point (1,0). In this case, the stretched coordi-
nates are η1 = (c1 − 1)

√
N and η2 = c2N, with the fixation

probability in the new coordinates given by U (η1,η2) =
u(1 + η1/

√
N,η2/N). Equation (38) in the new coordinates,

with terms of O(1/
√

N ) neglected, reads

0 = −μ1η1∂η1U + μ1∂
2
η1

U + μ2β2η2∂η2U

+
(

μ1 + μ2

2
− μ2β2

2

)
η2∂

2
η2

U, (B8)

which is equivalent to (B1) with indices 1 and 2 interchanged.
Following the method of separation of variables as above
and imposing the boundary condition U (η1,0) = 1 as well
as the matching condition U (η1,η2 → ∞) = P, we arrive at
the fixation probability valid in the vicinity of the fixed point
(1,0)

u(c) = P + (1 − P )e−Nc2[2β2/(2−β2)]. (B9)

Now consider the asymptotic solutions away from the
saddle fixed points but still in the boundary layers. In the
boundary layer adjacent to the absorbing boundary c1 = 0
but away from the saddle fixed point (0,1), we introduce the
stretched coordinate η1 = c1N and η2 = c2. Upon neglect-
ing the contributions of O(1/N ) and rewriting the fixation
probability in the new coordinate as U (η1,η2) = u(η1/N,η2),
Eq. (38) becomes

0 = 2μ2η2(1 − η2)∂η2U + 2[μ1 − (μ1 − μ1β1)η2]η1∂η1U

+ [μ1 − (μ1 + μ1β1)η2]η1∂
2
η1

U. (B10)

We can turn (B10) into a separable PDE and solve the
associated eigenvalue problem by transforming to the new
coordinates x1 = η1/�2(η2) and x2 = η2. Substituting the
coordinate transformation V (x1,x2) = U (x1�2(x2),x2) into
(B10), we find that V (x1,x2) satisfies a separable PDE:

0 = x1∂
2
x1

V + x1∂x1V

+ 2
μ2

μ1

[
x2(1 − x2)

1 − (1 + β1)x2
�2(x2)

]
∂x2V, (B11)

with �2(x) obeying the first order differential equation given
in Eq (43). Separation of variables V (x1,x2) = V1(x1)V2(x2)

turns (B11) into an eigenvalue problem:

λV1 = x1V
′′

1 + x1V
′

1, (B12)

− λV2 = 2
μ2

μ1

[
x2(1 − x2)

1 − (1 + β1)x2
�2(x2)

]
V ′

2, (B13)

with λ the eigenvalue. Again, matching to the fixation
probability at the plateau U (η1 → ∞,η2) = P enforces V2(x2)
to be constant which is possible only if λ = 0. The general
solution to (B12) with λ = 0 is

V1(x1) = D1 − D2e
−x1 . (B14)

Upon imposing the boundary condition U (0,η2) = 0 as well
as the matching condition U (η1 → ∞,η2) = P, we obtain the
fixation probability in the original coordinate valid within the
boundary layer adjacent to the absorbing boundary c1 = 0,

namely

u(c) = P − Pe−Nc1/�2(c2). (B15)

Upon matching (B15) to the asymptotic solution in the vicinity
of the saddle fixed point (1,0), (B9), we find a first order
differential equation governing �2, given by Eq. (43), with
the matching condition limx→1 �2(x) = 2−β1

2β1
.

A similar argument with index 1 and 2 interchanged
determines the asymptotic solution within the boundary layer
adjacent to the absorbing boundary c2 = 0. We find that the
fixation probability in this region is given by

u(c) = P + (1 − P )e−Nc2/�1(c1), (B16)

where �1(x) obeys Eq. (41) subject to the matching condition
limx→1 �1(x) = 2−β2

2β2
. Therefore, the global solution with

smooth crossovers from the plateau P to the the boundary
layer behavior of (B15) and (B16) is given by Eq. (44).

APPENDIX C: FIXATION FROM A
QUASISTATIONARY DISTRIBUTION

The analysis in this section follows the general discussion
on the high dimensional exit problem by Grasman and
Herwaarden [50]. We first argue that, near the absorbing
boundaries, the quasistationary distribution (QSD) pst (c) is
peaked at the saddle fixed point (0,1) and (1,0). To see this,
consider the (stationary) Fokker-Planck equation

0 =
2∑

i=1

(
−∂ci

vipst + 1

2N
∂2
ci
Dipst

)
, (C1)

where vi and Di are given by Eqs. (18)–(21). When the
problem can be regarded as a rare event escape from a
metastable state, the asymptotic solution to (C1) is solved
by the WKB ansatz [35,50,54,61]

pst (c) = w(c)e−N�(c). (C2)

Substituting (C2) into (C1) and collecting the leading order
terms in N leads to an eikonal equation,

0 =
2∑

i=1

[
vi(∂ci

�) + 1

2
Di(∂ci

�)2

]
. (C3)
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Collecting terms of O(1) results in

0 =
2∑

i=1

[
Di

(
∂ci

�
) + vi

]
∂ci

w

+
2∑

i=1

[
1

2
Di∂

2
ci
� + (∂ci

Di)(∂ci
�)

]
w. (C4)

In the neighborhood of the absorbing boundary c1 = 0, we
expand � around c1 = 0 as

�(c) = �
(0)
2 (c2) + �

(1)
2 (c2)c1 + 1

2�
(2)
2 (c2)c2

1 + · · · , (C5)

where the subscript 2 of � denotes the expansion around the
fixation of species 2 and the superscript labels the order of
expansion. Upon substituting the expansion (C5) into (C3) and
collecting terms of O(c0

1), we find �
′(0)
2 (c2) = 2(c2 − 1)/(c2 +

1). Therefore, in the limit c1 → 0, �(c) is minimal at c2 = 1,

implying that pst is peaked in the neighborhood of the fixed
point (0,1) provided N � 1.

For the behavior of w(c) near (0,1), it turns out the singular
behavior of w when c1 → 0 scales as w ∼ 1/c1. We refer to
the discussion in Ref. [50] for the related problem of extinction
probability in the predator-prey model. The singular behavior
suggests the QSD is concentrated in the neighborhood of the
saddle fixed point.

To extract the quantitative behavior of pst near the saddle
fixed point (0,1), we Taylor expand � around (0,1);

�(c) = �̄
(0)
2 + �̄

(1)
2 c1 + �̄

(2)
2 (c2 − 1)

+ 1
2 �̄

(3)
2 (c2 − 1)2 + · · · , (C6)

where we denote the ith expansion coefficient around the
saddle fixed point of species 2 by �̄

(i)
2 . Upon substituting the

expansion (C6) into (C3) and (C4) we get �̄
(1)
2 = −2β1/(2 −

β1), �̄
(2)
2 = 0, and �̄

(3)
2 = 1. Therefore, in the neighborhood

of the fixed point (0,1), the QSD takes the form

pst (c) ≈ w̄
(0)
2 exp

(−N�̄
(0)
2

)
c1

× exp

[
N

(
2β1

2 − β1
c1 − (c2 − 1)2

2

)]
. (C7)

Similar arguments lead to the behavior of the QSD in the
neighborhood of the fixed point (1,0), which reads

pst (c) ≈ w̄
(0)
1 exp

(−N�̄
(0)
1

)
c2

× exp

[
N

(
2β2

2 − β2
c2 − (c1 − 1)2

2

)]
. (C8)

We now relate the behavior of the QSD near the absorbing
boundaries to the plateau fixation probability P in the bulk
region by employing the identity resulting from the divergence

theorem:∫
�

(pL̂u − uM̂p)dc1dc2

=
∫

∂�

(
2∑

i=1

1

2N
[niDi(p∂ci

u − u∂ci
p) − ni(∂ci

Di)pu]

+
2∑

i=1

nivipu

)
dS, (C9)

where L̂ is the backward-Kolmogorov operator, u is the
solution to the backward-Kolmogorov equation, M̂ is the
forward-Kolmogorov (Fokker-Planck) operator, p is the so-
lution to the forward-Kolmogorov equation, � is the domain
of interest, and ni is the ith components of the normal vector
at the boundary ∂�. In the long-time limit when the QSD
has already developed, the volume integral (left-hand side)
of (C9) vanishes since L̂u = 0 and M̂pst = 0. To evaluate
the surface integral in (C9) and avoid the singularity of
pst on each absorbing boundary, we consider the domain
� = {c | c1 > ε,c2 > ε} and evaluate (C9) in the limit ε → 0.
In this domain, (C9) becomes

0 =
∫ ∞

ε

dc2

(
1

2N
[D1(pst∂c1u − u∂c1pst ) − (∂c1D1)pstu]

+ v1pstu

)
c1=ε

+
∫ ∞

ε

dc1

(
1

2N

[
D2(pst∂c2u − u∂c2pst ) − (∂c2D2)pstu

]

+ v2pstu

)
c2=ε

. (C10)

Equation (C10) relates the plateau fixation probability P

contained in u by (B7) and (B9) to the boundary behavior
of pst . Substituting the asymptotic solutions of the QSD given
by (C7) and (C8), the asymptotic solutions of u given by
(B7) and (B9), and the deterministic drifts as well as diffusion
coefficients given by Eqs. (18)–(21) into (C10), we obtain after
taking the limits ε → 0 and N � 1

0 = 2β1

2 − β1
w̄

(0)
2 exp

(−N�̄
(0)
2

)

×
∫ ∞

0
dc2

{[
−μ1P

2
− μ1(1 − β1)P

2
c2

]

× exp

[
−N (c2 − 1)2

2

]}

+ 2β2

2 − β2
w̄

(0)
1 exp

(−N�̄
(0)
1

)

×
∫ ∞

0
dc1

{[
μ2

(
1 − 2 − β2

2β2
− P

2

)

+μ2(1 − β2)

(
1 + 2 − β2

2β2
− P

2

)
c1

]

× exp

[
−N (c1 − 1)2

2

]}
. (C11)
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The integrals can be evaluated by the standard method of
Laplace integration when N � 1. The result reads

0 = 2β1

2 − β1
w̄

(0)
2 exp

(−N�̄
(0)
2

)√ π

N

×
[
−μ1P

2
− μ1(1 − β1)P

2

]

+ 2β2

2 − β2
w̄

(0)
1 exp

(−N�̄
(0)
1

)√ π

N

×
[
μ2

(
1 − 2 − β2

2β2
− P

2

)

+μ2(1 − β2)

(
1 + 2 − β2

2β2
− P

2

)]
. (C12)

Upon rewriting β1 = μ1 − λ12N and β2 = μ2 − λ21N and
keeping only the leading order term in 1/N , we obtain the
plateau fixation probability

P ≈ λ21w̄
(0)
1 e−N�̄

(0)
1

λ21w̄
(0)
1 e−N�̄

(0)
1 + λ12w̄

(0)
2 e−N�̄

(0)
2

. (C13)

Recall that w̄
(0)
1 e−N�̄

(0)
1 and w̄

(0)
2 e−N�̄

(0)
2 are pst (c) evaluated

at (1,0+) and (0+,1). Consequently, (C13) is the ratio of the

flux into (1,0) to the total flux into (1,0) and (0,1). In the limit
N � 1, (C7) and (C8) imply that, on each absorbing boundary,
the QSD peaks up at the saddle fixed point while the width
around the peak becomes vanishingly narrow; accordingly,
the flux into the saddle fixed point well approximates the
flux into the corresponding absorbing boundary. Hence, (C13)
describes the ratio of flux into the absorbing boundary at f = 1
to the total flux into both the absorbing boundaries at f = 0
and f = 1.

Note that (C13) can be rewritten in the form similar to
Eq. (37) as

P ≈ 1

1 + e−N�S0+�S1
, (C14)

where �S0 ≡ �̄
(0)
2 − �̄

(0)
1 and �S1 ≡ ln(λ12w̄

(0)
2 ) −

ln(λ21w̄
(0)
1 ). Since w̄

(0)
i and �̄

(0)
i are independent of N,

we can vary N while fixing so, β1, and β2 to infer �S0

and �S1 by fitting the plateau fixation probability P to
simulations. In principle, the exact values of �S0 and �S1

may be obtained numerically by simultaneously solving w̄
(0)
i

and �̄
(0)
i from (C3) and (C4) [22,35,56,57], but these are

beyond the scope of this work.
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