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Received 2013 September 12; accepted 2014 January 5; published 2014 February 21

ABSTRACT

We present a method to infer reddenings and distances to stars based only on their broad-band photometry, and show
how this method can be used to produce a three-dimensional (3D) dust map of the Galaxy. Our method samples
from the full probability density function of distance, reddening, and stellar type for individual stars, as well as
the full uncertainty in reddening as a function of distance in the 3D dust map. We incorporate prior knowledge of
the distribution of stars in the Galaxy and the detection limits of the survey. For stars in the Pan-STARRS 1 (PS1)
3π survey, we demonstrate that our reddening estimates are unbiased and accurate to ∼0.13 mag in E(B − V )
for the typical star. Based on comparisons with mock catalogs, we expect distances for main-sequence stars to be
constrained to within ∼20%–60%, although this range can vary, depending on the reddening of the star, the precise
stellar type, and its position on the sky. A later paper will present a 3D map of dust over the three quarters of the
sky surveyed by PS1. Both the individual stellar inferences and the 3D dust map will enable a wealth of Galactic
science in the plane. The method we present is not limited to the passbands of the PS1 survey but may be extended
to incorporate photometry from other surveys, such as the Two Micron All Sky Survey, the Sloan Digital Sky
Survey (where available), and in the future, LSST and Gaia.
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1. INTRODUCTION

A long-standing goal of astronomy has been to understand
the structure and formation of galaxies. Studies of external
galaxies have begun to paint a detailed, global picture of the
forces at work in shaping galaxies but lack the resolution
and sensitivity to probe individual stars. In the Milky Way,
meanwhile, measurements of the positions and types of millions
of stars have been assembled, though these stars probe only a
fraction of our Galaxy’s volume. Moreover, the positions of
these stars are especially uncertain in the Galactic disk, where
the bulk of the stars reside, owing to the presence of dust, which
obscures and reddens the light from these stars.

Accordingly, wide-field surveys like the Sloan Digital Sky
Survey (SDSS; York et al. 2000), which observed millions of
stars, have focused on the structure of the stars at high Galactic
latitudes, mostly outside the Galactic disk (e.g., Jurić et al. 2008;
Ivezić et al. 2008a). These studies have revealed an abundance
of substructure in the Galactic halo (Belokurov et al. 2006) and
have led to new constraints on the structure of the Galaxy’s
halo (e.g., Law & Majewski 2010) and the identification of
challenges to the standard picture of Galaxy formation (e.g.,
the Missing Satellites Problem; Simon & Geha 2007). Still, the
bulk of the Galaxy’s stars reside and formed in the disk, and it is
unclear how much the Galaxy’s halo can inform the processes
at work there. Bovy et al. (2012a, 2012b, 2012c) derive smooth
models for the Galactic disk, using subpopulations observed in
the Sloan Extension for Galactic Understanding and Exploration
(SEGUE; Yanny et al. 2009). Better photometric distance

estimates for large, magnitude-limited samples of heavily dust-
obscured stars will aid investigation into the smooth structure
of the disk, as well as possible disk substructure.

This paper presents a technique to simultaneously infer the
distances and reddenings to stars embedded in dust, to enable
study of the properties and structure of our Galaxy’s disk from
optical surveys of resolved stars. We exploit prior knowledge of
the types and distribution of stars in the Galaxy in a Bayesian
framework to deliver the full probability density function of
distance and reddening and stellar type for each star. We derive
a principled Bayesian technique to infer reddening as a function
of distance, using stars as tracers of the dust column.

We are not the first in this area. Marshall et al. (2006) pro-
duced a three-dimensional (3D) extinction map of the Galactic
plane by comparing the Two Micron All Sky Survey (2MASS)
J − Ks stellar colors to those of simulated catalogs based on
the Besançon model of the Galaxy (Robin et al. 2003). Our
work is most similar to that of Sale (2012), who presents related
techniques and applies them to simulated IPHAS data (Drew
et al. 2005). The method presented here for obtaining stellar
reddenings and distances is also related to that of Berry et al.
(2011), who highlight the large amount of 3D structure in the
Galaxy’s dust using data from SDSS. The work of Bailer-Jones
(2011), likewise, presents a similar technique using broad-band
photometry and Hipparcos parallaxes (Perryman et al. 1997).
Vergely et al. (2001) and Lallement et al. (2003) map out the
3D distribution of clouds in the Local Bubble by measuring ab-
sorption lines imprinted by the interstellar medium on the spec-
tra of stars with Hipparcos parallaxes. Lallement et al. (2013)
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uses ∼23,000 stellar parallaxes and reddening estimates from a
number of sources to infer the 3D distribution of dust opacity
out to 800–1000 pc in the plane of the Galaxy, and ∼300 pc out
of the plane. Our work differentiates itself from these primarily
in that it is adapted to studying the approximately one billion
stars with high-quality Pan-STARRS 1 (PS1) photometry, which
cover three quarters of the sky and two thirds of the Galactic
plane, representing an unprecedented resource for studies of the
Galaxy’s disk.

The paper is organized as follows. Section 2 describes the PS1
survey. Section 3 develops the Bayesian formalism required to
produce a 3D reddening map. Sections 4.1 and 4.2 describe the
stellar and Galactic models we employ. Section 5 describes the
practical implementation of our model to produce a 3D map.
Then, in Section 6, we conduct tests of our method with mock
photometry, and in Section 7, we validate our model with real
photometry.

2. Pan-STARRS 1 SURVEY

In this work, we derive the distances and reddenings to stars
observed by PS1. PS1 is a 1.8 m optical and near-infrared
telescope located on Mount Haleakala, Hawaii (Kaiser et al.
2010; Hodapp et al. 2004). The telescope is equipped with the
GigaPixel Camera 1, consisting of an array of 60 CCD detectors,
each 4800 pixels on a side (Tonry & Onaka 2009; Onaka et al.
2008). The majority of the observing time is dedicated to a
multi-epoch 3π steradian survey of the sky north of δ = −30◦
(K. C. Chambers et al., in preparation). The 3π survey observes
in five passbands, gP1, rP1, iP1, zP1, and yP1, which together span
400–1000 nm (Stubbs et al. 2010). The images are processed
by the PS1 Image Processing Pipeline (IPP; Magnier 2006),
which performs automatic astrometry (Magnier et al. 2008)
and photometry (Magnier 2007). The data is photometrically
calibrated to better than 1% accuracy (Schlafly et al. 2012;
Tonry et al. 2012). The resulting homogeneous optical and near-
infrared coverage of three quarters of the sky makes the PS1 data
ideal for studies of the distribution of the Galaxy’s dust.

3. LINE-OF-SIGHT REDDENING PROFILE

Here, we describe the basic assumptions that we make in
order to produce a 3D dust map. We show that the problem can
be decomposed into two steps. In the first step, we determine
the probability density function of distance and reddening for
each star (see Section 4). In the second step, we use information
from stars on the same small patch of sky to infer reddening as
a function of distance in the given direction.

We make the assumption that stars which are close to one
another in 3D space are behind the same column of dust. By
grouping together stars which are close-by on the sky, we are
able to use the stars as tracers of the total dust column at different
distances in a particular direction on the sky. So long as the dust
column does not vary significantly over small angular scales,
then this is a valid assumption.

Let us denote the reddening profile along a particular line of
sight by

E(μ ; α), (1)

where E, the color excess in some pair of passbands (e.g.,
E(B − V )), is a function of distance modulus μ, and α
denotes any fitting parameters defining the reddening profile.
These parameters could be, for example, the dust density in

each distance bin, and could in principle include the value of
RV , which parameterizes the wavelength dependence of the
extinction law (Cardelli et al. 1989; Fitzpatrick 1999). The
extinction A in any set of passbands is then assumed to be a
function of the reddening E:

A = A(E,RV ). (2)

Along one line of sight, denote the photometry of star i by mi

and the set of all observed stellar magnitudes as {m}. We wish
to determine how the model parameters α for the line-of-sight
reddening profile depend on the stellar photometry {m}. That is,
we wish to determine

p(α |{m}). (3)

Using Bayes’ rule,

p(α |{m}) = p({m}| α)p(α)

p({m}) . (4)

The likelihood p({m}| α) is the probability density of obtaining
the set of observed magnitudes {m}, given the reddening
profile defined by α. The likelihood of the entire set of stellar
observations is just the product of the individual likelihoods, i.e.,

p({m}| α) =
∏

i

p(mi | α). (5)

This is just a statement that the photometry of one star does not
influence the photometry of any other star. Plugging this into
Equation (4), and dropping the normalizing factor p({m}),

p(α |{m}) ∝ p(α)
∏

i

p(mi | α). (6)

We now introduce nuisance parameters describing the dis-
tance to and intrinsic type of each star, and then marginalize
over these parameters to obtain the likelihood. We denote the
distance modulus to star i by μi , and the parameters describing
the stellar type by �i . For an individual star,

p(m| α) =
∫

dμ d� p(m, μ,� | α) (7)

=
∫

dμ d� p(m| μ,�,α)p(μ,�| α) (8)

=
∫

dμ d� p(m| μ,�, E(μ;α))p(μ,�). (9)

In the last step, we have assumed that the joint prior on
the distance and intrinsic stellar type are independent of the
reddening profile. Up to a normalizing constant, the above
integrand is equivalent to the posterior density

p(μ,E,� | m) (10)

for an individual star, where the prior on E is flat. Intuitively,
this is because the prior on reddening is on the fitting param-
eters α, rather than the reddening of an individual star. After
marginalizing over the stellar type Θ,

p(m| α) ∝
∫

dμ p(μ,E(μi;α)| m). (11)
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Plugging the above into Equation (6), we find that the full
posterior density for α is given by

p(α |{m}) ∝ p(α)
∏

i

∫
dμi p(μi,E(μi;α)| mi), (12)

where we have defined the function

p(μi,Ei |mi) ≡ 1

Zi

∫
d�i p(mi |μi,�i , Ei)p(μi,�i), (13)

which is equivalent to the posterior probability density of finding
a single star at distance μi and reddening Ei, where the prior on
reddening is flat. Here, Zi is a normalizing constant. Effectively,
it is the Bayesian evidence for star i, a measure of how likely the
star is to be drawn from the model. A higher evidence indicates
that the data is more consistent with the model, while a low
value for Zi indicates that the model does not well describe
the object i. Our strategy for sampling from a posterior of the
form given by Equation (12) is to pre-compute Equation (13)
for each star by Markov chain Monte Carlo (MCMC) sampling
and then to sample from p(α |{m}). This approach has two
advantages. First, it factorizes the full problem into a series
of smaller problems of lower dimension, potentially speeding
up the computation. The second advantage of this two-step
approach is that it allows outlier rejection on the basis of the
Bayesian evidence for each star before proceeding to the second
step. Point sources which do not fit the chosen stellar model
(e.g., blue stragglers, white dwarfs, and galaxies mistakenly
classified as stars) can be filtered out by imposing a cut on the
evidence Zi (see Section 5.2). More principled approaches to
reducing the influence of outliers exist (e.g., Hogg et al. 2010),
though in the context of our problem, they are significantly more
computationally expensive to implement.

A more general limitation to the approach taken here is that it
does not allow the simultaneous fitting of parameters describing
the stars and the spatial variation in dust properties. One could
imagine simultaneously constraining stellar types and distances,
as well as the dust density and RV parameter throughout space.
By fitting the dust properties in many voxels simultaneously,
one would be able to place priors on the density power spec-
trum of the dust and to infer RV as a function of position in
the Galaxy. By fitting dust properties throughout the entire vol-
ume of the Galaxy simultaneously, one could even attempt to
constrain global parameters, such as the dust scale height and
scale length. This would represent a hierarchical approach to the
problem of creating a 3D dust map (see, for example, Kruschke
2011 for a discussion of hierarchical Bayesian models). At
the highest level in the hierarchy, one has global parame-
ters, which describe the overall dust distribution and density
power spectrum. One level below in the hierarchy, one would
have parameters describing the dust properties in each voxel in
the Galaxy. At the lowest level, one could have the type and
distance for each star. Such a hierarchical approach is appeal-
ing because it takes into account spatial correlations in dust
properties and because it directly fits the global structure of the
Galaxy’s dust component. However, this hierarchical approach
potentially requires much greater computational power than the
approach we take in this paper, as it does not allow one to pro-
cess each star individually and treat each line of sight separately,
greatly increasing the dimensionality of parameter space. This
paper therefore confines itself to fitting each star independently
and then combining the information from each star along any
given line of sight to determine the reddening profile as a func-
tion of distance.

4. INDIVIDUAL STARS

Now that we have factorized the problem of determining
the line-of-sight reddening profile into one of determining
p(μi,Ei,�i | mi) for each star, we need to determine the
individual stellar likelihoods and priors. In the following, we
will drop the subscript i, as it is assumed that we are dealing
with one star.

Using Bayes’ Rule,

p(μ,E,� | m) ∝ p(m | μ,E,�)p(μ,E,�). (14)

The likelihood, p(m | μ,E,�), is the probability density of a
star having apparent magnitudes m, given a distance, reddening,
and stellar type. The likelihood is thus dependent on our
model of intrinsic stellar colors, which we discuss below (in
Section 4.1). The priors, p(μ,E,�), are dependent on our
model of the distribution of stars of different types throughout
the Galaxy. We discuss our Galactic model in Section 4.2.

4.1. Stellar Model

In our model, each star is described by two intrinsic pa-
rameters, its absolute magnitude Mr in the PS1 r band and its
metallicity [Fe/H]. In terms of our previous notation, � =
(Mr, [Fe/H]). Given a set of stellar templates, M(M, [Fe/H]),
which map intrinsic stellar type to a set of absolute magnitudes,
one obtains theoretical apparent magnitudes

mmod = M(Mr, [Fe/H]) + A(E,RV ) + μ. (15)

The extinction vector A(E,RV ) used in this work follows a
Fitzpatrick (1999) reddening law with RV = 3.1, adapted to
the PS1 grizyP1 filter set by Schlafly & Finkbeiner (2011). The
likelihood of observing apparent magnitudes m with Gaussian
uncertainties σ is then given by

p(m | μ,Mr, [Fe/H], E) = N (m | mmod , σ ). (16)

In this paper, we use the notation N (x | μ, σ ) to denote the
probability density of a multivariate normal with mean μ and
standard deviations σ , evaluated at x.

We adopt a set of empirical stellar templates based on
stellar observations in PS1, with photometric parallaxes and
metallicities derived from the work of Ivezić et al. (2008a). That
work determines the absolute magnitude of a star as a function of
its intrinsic color and metallicity using observations of globular
clusters in SDSS. These globular clusters are uniformly old,
and as a result, our stellar templates are appropriate only
for old populations and do not include age as a parameter.
This means that young blue stars are not included and that
the morphology of the subgiant and giant branches is only
approximate. Accordingly, our giant branch distances are less
reliable than our main sequence distances. Nevertheless, we
include the giant branches in our models because any given star
may indeed be a distant giant rather than a nearby dwarf.

In detail, we fit a spline to the colors of stars (in four-
color space) near the North Galactic Pole to derive the shape
of the stellar locus. All main-sequence stars are required to
have intrinsic colors lying along this one-dimensional curve. We
then associate each position along the main sequence with an
absolute magnitude and a metallicity using the relations of Ivezić
et al. (2008a), which give absolute magnitude as a function of
color and metallicity. Models for the giants are obtained from
linear fits of absolute magnitude to color and metallicity by
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Figure 1. Model stellar colors as a function of absolute r magnitude and
metallicity in Pan-STARRS 1 passbands. The stellar templates are based on PS1
color–color relations, and color is related to absolute magnitude and metallicity
by SDSS observations of globular clusters (Ivezić et al. 2008a). Our empirical
templates therefore assume an old stellar population. While the main sequence
below the turnoff is nearly invariant with age, the giant branch and the location
of the turnoff do, in reality, vary considerably with age. For this reason, we
expect our inferences for main-sequence stars to be more accurate than those
for giants. The narrowness of the kink at Mr � 2.4 is an artifact of our models
(see Section 4.1).

(A color version of this figure is available in the online journal.)

Ž. Ivezić (2011, private communication), based on observations
of globular clusters. These giant branch fits are joined to
the main sequence via a cubic interpolating polynomial for
4 > Mr > 2.35. We are able to use relations derived from
SDSS because of the close similarity between the PS1 and SDSS
filter sets; we transform from the PS1 to SDSS colors using the
color transformations of D. P. Finkbeiner et al. (in preparation),
which have residuals of less than about 1% across the full range
of stellar types considered in this work.

The resulting stellar templates are shown in Figure 1, which
gives the templates’ colors as a function of their absolute
magnitude and metallicity. Our empirical approach produces a
close match to the observed colors of stars, and comparison with
globular and open clusters indicates that the absolute magnitudes
are accurate along the main sequence (see Section 7.2). An
alternative approach would have been to adopt template colors
from a library of synthetic spectra, such as the Padova & Trieste
Stellar Evolution Code (PARSEC; Bressan et al. 2012), giving
us access to age as an additional stellar parameter. However,
the synthetic libraries have difficulty reproducing the colors of
M dwarfs in detail. We choose therefore to adopt a set of
empirical models that match the colors of most stars well,
though in future work a hybrid approach may be best suited
to the problem.

4.2. Galactic Model

We now present the priors that we place on the intrinsic and
extrinsic parameters describing each star. We factorize the priors

as follows:

p(μ,Mr, [Fe/H]) = p(μ)p([Fe/H]| μ)p(Mr ). (17)

We describe the distance prior in Section 4.2.1, the metallicity
prior in Section 4.2.2, and the prior on absolute magnitude in
Section 4.2.3.

4.2.1. Distance

For a given line of sight, the prior probability of finding a star
in a small range, dμ, in distance modulus is proportional to the
number of stars per unit distance modulus per unit solid angle
in the direction of the pixel:

p(μ) ∝ dN

dμdΩ
= dN

drdΩ
dr

dμ
= n(μ)r2 dr

dμ

∝ 103μ/5 n(μ). (18)

Here, r denotes physical distance from the Sun, and n(μ) is the
stellar number density at distance modulus μ along the chosen
line of sight. The distance prior is thus controlled by the line-of-
sight number density of stars, as well as a volume factor, 103μ/5,
which grows with distance. This latter term takes into account
that the volume represented by a beam of constant, small width
in distance modulus grows with distance. For a typical line of
sight, the prior is driven upward by the volume factor at small
distances, while farther out, it is suppressed by the decline in
density in the outer reaches of the Galaxy. For constant density,
n(μ), Equation (18) simply reduces to the Euclidean counts
equation.

The distance prior thus requires us to calculate the stellar
number density at arbitrary locations in the Galaxy. We employ
the three-component Galactic model developed in Jurić et al.
(2008), which comprises a thin disk, a thick disk, and an oblate
halo. In cylindrical coordinates centered on the Galactic Center,
and with the Galactic plane defining Z = 0, each disk component
has number density of the form

ni(R,Z) = n0,i e−(R/R0,i+|Z|/Z0,i ), (19)

where R0, i and Z0, i are the scale radius and height, respec-
tively, of each disk component, and n0,i is the stellar number
density of each component at the Galactic Center. In the solar
neighborhood,

ni(R�, Z�) = n0,i e−(R�/R0,i+|Z�|/Z0,i ). (20)

We can thus write the number density of each disk component
in terms of locally defined quantities, which are more readily
measurable than quantities defined at the Galactic Center:

ni(R,Z) = ni(R�, Z�) e−[(R−R�)/R0,i+(|Z|−|Z�|)/Z0,i ], (21)

where R� and Z� are the Galactocentric solar radius and height
in cylindrical coordinates, respectively. From this point onward,
we will denote nthin(R�, Z�) as n�, and write

nthick(R�, Z�) ≡ fthick n�. (22)

The halo is assumed to have stellar number density

nhalo(R,Z) = n� fh

(
Reff

R�

)−η

, (23)
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Figure 2. Distance prior for (�, b) = (90◦, 10◦). The contributions of the disk
and halo are shown individually in green and purple, respectively, while the
total prior is given by the gray contour. The break in the contribution from the
halo is due to the use of a broken power law for the number density of stars in
this component.

(A color version of this figure is available in the online journal.)

Table 1
Stellar Number Density Parameters

Thin Disk Thick Disk Halo

Rthin 2150 pc Rthick 3261 pc Rbr
a 27.8 kpc

Zthin 245 pc Zthick 743 pc qh
a 0.70

fthick 0.13 fh 0.003
ηinner

a 2.62
ηouter

a 3.80

Note. a Values from Sesar et al. (2011). All other adopted values are from Jurić
et al. (2008).

with

Reff ≡
√

R2 + (Z/qh)2 + R2
ε . (24)

Here, qh controls the oblateness of the halo, and η controls
the steepness of the power law. Following Sesar et al. (2011), the
power law breaks at Reff = Rbr, becoming steeper. We therefore
define ηinner and ηouter, corresponding to the halo steepness inside
and outside of the break. We introduce the distance scale Rε

over which the inner region of the halo is smoothed, in order
to remove the singularity at the Galactic Center. We choose
Rε to be 500 pc; at this scale, it has a negligible effect on the
halo density in the regions that Jurić et al. (2008) studied but it
prevents the halo from dominating over the disk at the Galactic
Center and is the same scale adopted by Robin et al. (2003).

We employ the parameters given in Table 10 of Jurić et al.
(2008) and Sesar et al. (2011). These are listed in Table 1. The
adopted value of fh, on the low end of the possible range inferred
in Jurić et al. (2008), is chosen to better match observed PS1
color–magnitude diagrams at high Galactic latitudes. Through-
out, we use R� = 8 kpc and Z� = 25 pc. The shape of the dis-
tance prior for a line of sight centered on � = 90◦ and b = 10◦
is shown in Figure 2.

4.2.2. Metallicity

We adopt the model of Galactic metallicity developed in
Ivezić et al. (2008a) and Bond et al. (2010), assigning separate
metallicity distributions to the disk and halo. The metallicity
distribution of the disk varies with height above the Galactic
plane and is thus dependent on line-of-sight distance. The

Table 2
Metallicity Parameters

Disk Halo

aD −0.89 aH −1.46
σD 0.20 σH 0.30
c 0.63
Δa 0.14
Δμ 0.55
Hμ 0.5 kpc

metallicity prior takes the form

p([Fe/H]| μ) = p([Fe/H]| μ, disk)p(disk | μ)

+ p([Fe/H]| halo)p(halo | μ). (25)

The membership probabilities are simply

p(disk | μ) = nthin(μ) + nthick(μ)

nthin(μ) + nthick(μ) + nhalo(μ)
, (26)

p(halo | μ) = 1 − p(disk | μ), (27)

which can be calculated on the basis of the preceding discussion
(Section 4.2.1).

For the disk, stellar metallicity is distributed as a sum of
Gaussians. The mean of each Gaussian varies with height above
the Galactic plane, so that the prior is best written in terms of
cylindrical coordinates:

p([Fe/H]| Z, disk) = c N ([Fe/H]| a(Z), σD)

+ (1 − c) N ([Fe/H]| a(Z) + Δa, σD), (28)

where

a(Z) = aD + Δμe−|Z|/Hμ . (29)

The parameters aD, controlling the central disk metallicity, and
Δμ and Hμ, describing the vertical metallicity gradient in the
disk, are defined in Table 2. We assume the halo metallicity to
be spatially invariant, and distributed as

p([Fe/H]| halo) = N ([Fe/H]| aH , σH ). (30)

The parameters, aH and σH , describing the halo metallicity,
are given in Table 2. The metallicity is plotted in Figure 3 as
a function of height above the Galactic midplane in the solar
neighborhood.

4.2.3. Absolute Magnitude

We use the r-band absolute magnitude to parameterize the
luminosity of each star. The joint prior on luminosity and
distance is

p(μ, Mr ) ∝ dN(μ, Mr )

dμ dMr

. (31)

The luminosity function is assumed to be same in the halo and
both disk components, and furthermore independent of position.
The priors on distance and luminosity are then separable, so that

p(μ, Mr ) = p(μ)p(Mr ), (32)

with p(Mr ) = LF(Mr ) ∝ dN/dMr .
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Figure 3. Metallicity prior, p([Fe/H]| Z), in the solar neighborhood (R =
8 kpc). High above the plane of the Galaxy, where the halo dominates, the
metallicity distribution has a constant mean and variance. In the plane, where
the disk dominates, the mean decreases with scale height. Adapted from Figure 9
of Ivezić et al. (2008a).

(A color version of this figure is available in the online journal.)

We adapt the PS1 luminosity functions provided by the
PARSEC (Bressan et al. 2012), assuming a Chabrier (2001)
log-normal initial mass function. We average over luminosity
functions for populations with ages of τ = 7 ± 2 Gyr and
metallicities of [Fe/H] = −0.5 ± 0.5 dex. We denote the
luminosity function for a population of age τ and metallicity
[Fe/H] as LF(Mr | τ, [Fe/H]). The luminosity function we
adopt is then

LF (Mr ) ∝
∫

dτ

∫
d[Fe/H] LF(Mr | τ, [Fe/H])

× exp

[
− (τ − τ0)2

2σ 2
τ

− ([Fe/H] − [Fe/H]0)2

2σ 2
[Fe/H]

]
, (33)

with τ0 = 7 Gyr, στ = 2 Gyr, [Fe/H]0 = −0.5 dex, and
σ[Fe/H] = 0.5 dex. In principle, it is possible to make the
luminosity function depend on metallicity, by not averaging
over [Fe/H] in Equation (33). For simplicity, we assume here
that the luminosity function is universal.

4.2.4. Reddening

As indicated in Section 3, the manner in which we have
factorized the line-of-sight reddening problem requires us to
place a flat prior on the color excess, E, for each star. The priors
on the reddening profile are imposed on the parameters which
control the line-of-sight reddening, rather than on individual
stellar reddenings. For example, if one divides each line of
sight into N distance bins and assigns a different dust density
ρi to each bin, then the reddening prior would take the form
p(ρ1, ρ2, . . . , ρN ).

4.2.5. Survey Selection Function

The distance prior developed above only asks how many stars
are in a thin shell at each distance. However, for a magnitude-
limited survey, we would like instead to know the number of
observable stars at a given distance. We should assign zero prior
probability to the possibility of a star being observed which our
instrument cannot detect. The fact that a star has been observed

by a given instrument therefore tells us something about its
stellar type, distance, and extinction. Using the notation from
Sale (2012), we define the vector S for each star, where Si is
true if a star has been observed in passband i, and false if the
star is not detected in that passband. The PS1 data set used
in this paper is not based on forced photometry, so there is a
separate probability of a source being detected in each passband.
If forced photometry were conducted, there would be one single
probability p(S), equal to the probability of detecting the source
in at least one of the passbands. Including this information in
the single-star posterior, Equation (13), we get

p(μ,E,� | mobs, S) ∝ p(mobs| μ,E,�, S)

× p(μ,E,� | S). (34)

But the prior is now just

p(μ,E,� | S) ∝ p(S | μ,E,�)p(μ,E,�), (35)

so in full,

p(μ,E,� | mobs, S) ∝ p(mobs| μ,E,�, S)p(μ,E,�)

× p(S | μ,E,�). (36)

The first term is simply the likelihood we found earlier, since the
knowledge that the star has been detected has no effect on the
apparent magnitudes the model predicts, assuming the stellar
type, distance, and reddening are known. That is to say,

mmod = Mmod(�) + A(E) + μ, (37)

and

p(mobs| μ,E,�, S) = N (mobs| mmod, σ ). (38)

The only element of the calculation which changes when we
take into account Malmquist bias is therefore the prior, which
picks up an extra factor of

p(S | μ,E,�) = p(S | mmod)

=
∏

i

p (Si | mmod, i). (39)

This is the survey selection function.
If forced photometry were used instead, then we would have

a single detection parameter S, denoting that the source was
detected in at least one passband, and the survey selection
function would be

p(S = true | μ,E,�) = p(S | mmod)

= 1 −
∏

i

p (Si = false | mmod, i) (40)

in place of the expression in Equation (39).
We therefore require an estimate of the completeness of

the survey in each band, as a function of apparent magnitude.
We determine completeness by comparison with point-source
detections in the 275 deg2 SDSS Stripe 82 survey (York et al.
2000; Annis et al. 2011). The co-added Stripe 82 images go more
than a magnitude deeper than the individual PS1 3π images,
allowing us to use Stripe 82 detections as a complete catalog
of point sources past the detection limits of the PS1 3π survey.
For each Stripe 82 source, we determine whether there is a PS1
detection within 1′′. The completeness fraction of the PS1 3π
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Figure 4. Completeness of the PS1 3π survey, as a function of magnitudes past a locally estimated 5σ magnitude limit. The completeness is estimated by comparison
with SDSS Stripe 82 (York et al. 2000; Annis et al. 2011). The shaded curve shows the median completeness, with 1σ range of completeness in each bin, based on
estimates in 27′ pixels. The solid black line shows our fit to the completeness curve. The dashed black line shows the effect of adding a small floor to our fit, which
takes into account an assumed small rate of false coincidences between PS1 and Stripe 82 detections.

(A color version of this figure is available in the online journal.)

survey is the percentage of Stripe 82 detections with a PS1
match.

We determine the completeness fraction of the PS1 3π survey
as a function of

Δm ≡ m − mlim, (41)

where m is the PS1 magnitude, and mlim is an estimate of
the local PS1 5σ magnitude limit, based on the point spread
function of nearby PS1 detections and local sky and read
noise. We divide the SDSS Stripe 82 footprint into HEALPix
nside = 128 pixels (with ∼27′ scale). In each pixel, we select
all Stripe 82 detections classified as stars and transform their
ugriz magnitudes to grizyP1, using color transformations derived
by D. P. Finkbeiner (in preparation), based on standard-star
catalogs. In each pixel, we determine the PS1 limiting grizyP1
magnitudes from the median limiting magnitudes estimated for
individual PS1 detections. For each Stripe 82 detection in the
pixel, we obtain Δm in each band by subtracting the local
limiting magnitude from the transformed detection magnitude.
In each passband, we bin Stripe 82 detections by Δm, obtaining
an empirical estimate of the completeness in each bin from the
number of PS1 matches.

We find that the completeness fraction is reasonably well fit
by

p(Si = true | mmod, i)

=
[

1 + exp

(
mmod, i − mlim, i − Δm1

Δm2

)]−1

, (42)

where mlim, i is a limiting magnitude calculated for each point-
source detection in the PS1 3π survey, equal to the magnitude
of a source that would be detected at 5σ in one exposure, given
the sky and read noise. Δm1 = 0.16 mag and Δm2 = 0.2 mag
are fitting parameters. The positive value of Δm1 indicates

that the PS1 pipeline goes somewhat deeper than our naive
estimate mlim. The same fitting parameter values reproduce the
completeness curve in all five PS1 passbands reasonably well,
reflecting the consistency of the PS1 optics and pipeline across
the entire filter set. The empirically measured completeness
fraction and our fit are plotted for each passband in Figure 4.

5. SAMPLING METHOD

5.1. Individual Stars

We use MCMC sampling to explore the parameter space for
individual stars. The sampling must be performed with great
care, owing to two features of the distributions p(μ,E). First,
the distributions are invariably highly elongated, and second,
they are often multimodal. The elongation stems from the close
alignment between the reddening vector and the stellar locus
in the PS1 bands, as shown in Figure 5. The multimodality has
two causes. First, the reddening vector in general intersects the
gri stellar locus in two locations, creating a degeneracy between
blue and red main-sequence stars. Second, the PS1 bands do not
distinguish dwarfs from giants, leading to the possibility that a
star can be either a faraway red giant or a nearby red dwarf.

These degeneracies are easier to visualize if we consider only
three passbands, as shown in Figure 5. In this reduced space,
stellar photometry is fully described by a single overall observed
magnitude and two colors. If we observe a star at a given location
in color–color space, we can then move backward along the
reddening vector until we intersect the stellar locus. One can
then compare the observed apparent magnitude with the absolute
magnitude of the stellar locus at the point of intersection. One
thus obtains both a reddening and distance for the star. If there
are multiple intersections, then the observed star could be of
different intrinsic types and thus have different reddening and
distance combinations. The relative probability of each mode is,
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Figure 5. Sketch of how photometric parallax works, for illustrative purposes,
adapted from Berry et al. (2011). A star is observed at location 1 in color–color
space. Its dereddened colors may lie along any point on the gray line, parallel
to the reddening vector. The intersections of this line with the model stellar
locus, labeled 2 and 3, represent the most likely intrinsic stellar types. The
posterior density for the star will thus have two modes—one at larger distance
and lesser reddening (2) and one at smaller distance and greater reddening (3).
For simplicity, we assume Solar metallicity in this example. This is how one
would make a distance and reddening determination by eye. Our more rigorous
Bayesian method takes into account photometric uncertainties, as well as priors
on stellar type and Galactic structure.

(A color version of this figure is available in the online journal.)

in practice, given by the space of stellar types lying close to the
gray line, as well as the priors applied to the problem.

We perform an MCMC sampling of these surfaces using a
custom C++ implementation of the affine-invariant sampler in-
troduced in Goodman & Weare (2009) and recently given in
a python implementation by Foreman-Mackey et al. (2012).
We employ both short-range “stretch” and long-range “replace-
ment” moves (Goodman & Weare 2009). The long-range moves
allow mixing between widely separated modes in parameter
space but are more computationally expensive than the short-
range “stretch” steps. The replacement moves are closely related
to the Normal Kernel Coupler of Warnes (2001). We have found
that, with the addition of long-range “replacement” steps, the
affine-invariant sampler is capable of handling the multimodal-
ity of the problem and that it is well suited to the strong degen-
eracies in parameter space. For each star, we sample from each
stellar posterior density in four independent runs and check con-
vergence with the Gelman–Rubin diagnostic (Gelman & Rubin
1992). The Gelman–Rubin diagnostic essentially verifies that
the variance between the means of separate chains is small
compared with the variance within the chains. If independent
MCMC runs produce significantly different estimates of the pa-
rameter means, one or more of the runs must not have converged.
Each run employs 20 samplers, with a mix of 80% stretch steps
and 20% replacement steps, and 2000 steps per sampler. The
first 1000 steps from each sampler are discarded as burn-in.
Thus, excluding the burn-in phase, a total of 80,000 samples are
drawn for each star across the four chains, with the number of
independent samples being lower. On four cores of a 2.67 GHz
Intel Xeon X5650 with 12 MB of L3 cache, our run time per
star is typically 0.15 s per run per core, or 0.8 CPU seconds for
four independent runs.

5.2. Bayesian Evidence and Outlier Rejection

When an observed object does not match our stellar model,
the inferences we draw on its distance, reddening, and stellar
type are unreliable. One means of quantifying the reliability of
our inferences for an individual star is to compute the evidence

Z ≡
∫

dμ dE d� p(m, S | μ,E,�) p(μ,E,�), (43)

which is the probability density of drawing the observed
magnitudes m from the stellar model and observing the star
in the PS1 survey. A low evidence indicates that the observed
point source is a member of a stellar population not included
in our model (e.g., a young blue giant or an unresolved binary
system with colors that do not match any stellar template), is
not a star (e.g., a white dwarf or galaxy), that the errors in the
photometry have been underestimated, or that the reddening
vector is inaccurate. Here, our approach is similar to Berry et al.
(2011), which identifies objects which do not fit the stellar model
by a threshold χ2 statistic. There is no direct analogue for the
χ2 statistic in a Bayesian framework but evidence may serve a
similar purpose in model comparison.

Note that, as we do not include priors on the extinction to
individual stars but rather on the line-of-sight reddening profile,
we do not strictly calculate the evidence. Instead, we calculate
the evidence of a model with a prior on E with wide support (i.e.,
a prior which allows E to take on a wide range of values), such
that the prior is nearly constant across all relevant reddennings:

p(E) ≈
{

a 0 � E � E0

af (E) E � E0
, (44)

where f (E) is some integrable function whose precise behavior
is unimportant, a is a normalizing constant, and E0 is some
large extinction. We thus effectively calculate the evidence Z
for a model of this form, up to a constant factor a, which is the
same for every star. This allows for outlier rejection, based on
comparisons between the evidence for different stars.

We employ a modified harmonic mean estimate, which is ob-
tained directly from the Markov chain produced in sampling the
posterior density and thus requires little additional computation
(Gelfand & Dey 1994; Robert & Wraith 2009). This method is
presented in more detail in Appendix A.

5.3. Line-of-Sight Fitting

We choose the HEALPix pixelization scheme (Gorski et al.
2005) as our method of dividing the sky into individual lines
of sight. Once we have determined p(μ, E | m) for each star in
a given HEALPix pixel and rejected stars which fall below
the evidence cut, we can apply Equation (12) to determine
the posterior probability of the parameters α describing the
reddening profile. We parameterize the reddening profile as a
piecewise-linear function in distance modulus, with αi = ΔE(i)

describing the rise in r-band reddening in distance segment i.
We split up each line of sight into 30 distance segments of
equal width in μ, with the closest distance being at μ = 4,
corresponding to 63 pc, and the furthest distance being at
μ = 19, corresponding to 63 kpc. It must be cautioned that, in
general, our method does not tightly constrain reddening at this
latter distance, where PS1 observes very few stars. In addition to
requiring that reddening increase monotonically with distance,
we apply a wide log-normal prior on the differential reddening
in each distance bin, {ΔE(i)}.
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We use the affine-invariant sampler to draw a representative
sample of possible reddening profiles. We sample from the
posterior density given by Equation (6). We can thus produce a
3D reddening map which includes the uncertainty in reddening
as a function of distance.

6. TESTS WITH MOCK PHOTOMETRY

The first and most straightforward test of our method is to
generate mock photometry for stars of varying stellar type,
distance, and extinction, and to see how well we can recover
those parameters. This is less of a test of the particular stellar
model used than a demonstration that photometry alone is
capable of sufficiently constraining stellar parameters. We find
that our method is capable of accurately recovering both single-
star parameters and the line-of-sight reddening profile.

6.1. Generating Mock Catalogs

In order to generate a mock photometric catalog for a
particular region on the sky, we begin by drawing intrinsic
stellar types (metallicities and absolute rP1 magnitudes) and
distances from our priors. We assign a reddening to each star,
either according to an assumed distance–reddening relationship,
or from a reddening distribution we define, depending on the
purpose of the mock catalog. For each star in the catalog, we
generate model magnitudes, as described in Section 4.1.

We determine which passbands each star is detected
in, according to our probabilistic PS1 completeness model,
Equation (42). In the remainder of the paper, we reject sim-
ulated stars which do not have five-band detections.

We then apply magnitude-dependent Gaussian photometric
errors to each simulated star to obtain observed magnitudes.
The error we apply to each star in each passband is a function
of the model apparent magnitude:

σ 2(m) = σ 2
floor + σ 2

0 exp

[
2(m − mlim)

Δm3

]
. (45)

As before, mlim is the 5σ limiting magnitude in the given
passband. We set the error floor to σfloor = 0.02. For PS1
passbands, we find that σ0 = 0.16 and Δm3 = 0.8 give a
reasonable fit to the photometric uncertainties.

Our final catalog thus contains noisy observed magnitudes
of each star, along with the photometric uncertainty in each
passband. As a final step, we plug the observed magnitudes back
into Equation (45) to obtain a new estimate of the photometric
uncertainties for each star. The final catalog that we pass to our
pipeline thus reports inexact photometric uncertainties, much as
a realistic catalog would. The usefulness of these mock catalogs
is that they allow us to generate a large amount of photometry
for stars whose “true” distances and reddenings are known.

6.2. Single-star Tests

We illustrate the typical appearance of single-star posterior
distributions in distance and reddening in Figure 6. For each
of the four simulated stars in Figure 6, the “true” distance and
reddening are indicated by a dot, while the background heat
map shows the probability density inferred by our pipeline.

In order to determine how far off our estimates are on average,
we define the centered probability density

p̃(Δμ, ΔE) ≡ 1

N

N∑
i=1

p(μ∗
i + Δμ, E∗

i + ΔE), (46)

Figure 6. Distance and reddening estimates for four simulated stars. The joint
posterior in distance and reddening is shown as a heat map. As this is mock
photometry, we know the “true” distances and reddenings for the stars, which
are shown as green dots. The true stellar parameters lie in regions of inferred
high probability, as expected. The shape of the probability density functions
traces that of the stellar locus. The probability density at closer distances
corresponds to the main sequence, with increasing reddening compensating
for the bluer intrinsic colors as one travels up the stellar locus. The peak in
reddening corresponds to the main-sequence turnoff. Distances beyond the
turnoff correspond to the giant branch.

(A color version of this figure is available in the online journal.)

where μ∗
i and E∗

i are the true distance modulus and reddening,
respectively, for star i. For a simulated line-of-sight, this function
gives the average probability density of our inference being
offset from the true stellar parameters by (Δμ, ΔE). We plot
p̃ for a typical line of sight in Figure 7. The typical spread
of Δμ and ΔE varies across different lines of sight, but the
centered probability density generally peaks at the origin, as
should be expected. In the bottom two panels of Figure 7, we
show the effect of applying flat priors to the stellar parameters,
in place of the priors developed in Section 4. The effect is to
widen and bias the inferred probability density functions. Due to
the near-alignment of the reddening vector with the PS1 stellar
locus for much of the main sequence, this bias remains even
for stars with low observational uncertainties. The stellar priors
are thus important in correctly inferring stellar parameters from
PS1 photometry. In the right two panels of Figure 7, we only
use inferences for stars with low signal-to-noise detections. The
low signal-to-noise population is generated using an inflated
error model that applies three times the normal observational
uncertainty to the mock photometry. As expected, the inferred
parameters for such stars are less constrained but they are
nonetheless unbiased.

In Table 3, we present typical uncertainties in the inferred
distance and reddening of individual stars. To do this, we
generate mock catalogs along two different lines of sight.
For our high-Galactic-latitude target, we choose the North
Galactic Pole, where the stellar population is dominated by
the halo. Here, we apply reddenings of E(B − V ) � 0.1 to the
simulated stars. For the low-Galactic-latitude target, we choose
� = 45◦, b = 0◦, and draw reddening uniformly from the range
0 � E(B − V ) � 2. We run the two mock catalogs through
our pipeline and compare the inferred distances and reddenings,
drawn from the posterior probability density p(μ, A), to the
true values. For this test, we allow our inferred reddenings to
go slightly negative (E(B − V ) > −0.25) to avoid introducing
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Figure 7. Centered and stacked probability densities on a linear scale for 5000 stars along a simulated line of sight pointed at � = 90◦, b = 20◦. In the bottom panels,
we fit the stars using flat priors, so that only the likelihood function comes into play. In the right panels, we show inferences for low signal-to-noise detections, generated
using three times the normal observational uncertainties. Removing the priors biases the inferred distances and, to a lesser extent, reddenings. Inferred distances and
reddenings for stars with high signal-to-noise detections have smaller uncertainties. In each panel, each stellar probability density function has first been centered on
the true distance and reddening, before the probability densities for the stars have been summed, as described in the text. The “X” shape of the stacked probability
densities in the top-left panel reflects the existence of separate giant and dwarf modes. The feature stretching from the bottom left to the top right corresponds to the
main sequence, while the perpendicular feature corresponds to the giant mode. The histograms bordering each panel show the distribution of Δμ and ΔE(B − V ),
with the 15.87% to 84.13% region shaded.

(A color version of this figure is available in the online journal.)

Table 3
Uncertainty in Inferred Distances and Reddenings

Low Latitude High Latitude

Δd
d

a ΔE(B − V ) Δd
d

ΔE(B − V )

−1 < Mr � 4 −20+41%
−30% −0.03+0.07

−0.12 −37+48%
−32% −0.03+0.09

−0.11

4 < Mr � 6 6+55%
−33% 0+0.12

−0.20 12+79%
−37% 0+0.10

−0.12

6 < Mr � 8 23+97%
−34% 0.17+0.28

−0.36 8+92%
−21% 0.04+0.22

−0.20

8 < Mr � 10 33+261%
−39% 0.29+0.62

−0.42 4+31%
−14% 0.02+0.33

−0.09

10 < Mr � 12 5+14%
−15% 0.02+0.13

−0.13 1+15%
−12% 0+0.10

−0.09

Dwarfsb 9+63%
−33% 0.01+0.16

−0.20 4+50%
−18% 0.01+0.17

−0.12

All Stars −3+55%
−35% −0.01+0.12

−0.16 2+45%
−23% 0.01+0.16

−0.12

Notes.
a (Δd/d) is given in percent. See Equation (48).
b Dwarfs are defined here as all stars in the range 4 < Mr � 12.

a bias into the inferred values. We give the median, and 15.87th
and 84.13th percentiles of Δd/d and ΔE(B − V ), equivalent to
the one-standard-deviation range for a Gaussian distribution.

Uncertainties in distance modulus can be transformed to
uncertainties in distance by making use of the relation

d = (10 pc)10μ/5. (47)

Let μinferred = μtrue + Δμ. Then,

Δd

d
≡ dinferred − dtrue

dinferred
= 10Δμ/5 − 1. (48)

Similarly, we define ΔE(B − V ) as E(B − V )inferred − E
(B − V )true.

Our distance and reddening estimates are unbiased. However,
if one selects a subsample of stars of a certain known type, a
bias in distance is introduced. Thus, distance estimates for mock
dwarf stars are biased low, as the model assigns some probability
to the possibility of them being giants. Inversely, distances to
giants are biased high. A star drawn at random, however, has an
unbiased distance estimate. Distance and reddening constraints
depend upon the quality of the photometry and direction on the
sky, and therefore vary significantly on a star-per-star basis. It is,
in general, more informative to look at the detailed shape of the
posterior distribution for a given star in distance and reddening
space (see Figure 6).

Next, we test that the true stellar parameters are drawn
from the probability density functions we calculate. For each
simulated star, we derive the posterior density, p(μ, E), based
on the simulated photometry. Since we know the true distance
modulus μ∗ and reddening A∗ of the star, a natural question is
whether μ∗ and E∗ are drawn from p(μ, E). This cannot be
answered for a single star but we can test this hypothesis for a
large number of stars. We assign a percentile to a given star as
follows:

P (p < p∗) ≡
∫

p (μ, E)<p∗
dμ dE p(μ, E), (49)

where p∗ ≡ p(μ∗, E∗). This represents the probability that
the true stellar parameters would be found at a point in (μ,
E)-space of lower posterior density. If (μ∗, E∗) lies at the
point of maximum posterior density, then P (p < p∗) = 1.
Conversely, if (μ∗, E∗) lies in a region of vanishing probability
density, then P (p < p∗) ≈ 0. This percentile is therefore
similar to a cumulative distribution function and is uniformly
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Figure 8. Distribution of percentiles for simulated photometry of 1000 stars,
as defined in Equation (49). The percentiles are expected to be drawn from
the standard uniform distribution, resulting in each bin being of equal height.
In 50% of trials, we would expect all the bins to fall within the dark green
band, and in 95% of trials, all the bins should lie within the light green band.
The percentiles are consistent with being drawn from a uniform distribution,
indicating that we are sampling from the model correctly.

(A color version of this figure is available in the online journal.)

distributed between 0 and 1. A straightforward test of whether
P (p < p∗) ∼ U (0, 1) is to generate mock photometry for
a large number of stars, to calculate the percentile for each
simulated star, and to then bin the results. Each bin is expected

to contain the same number of stars, with the precise number
of stars in the bins determined by a multinomial distribution.
We can therefore derive approximate confidence intervals for
the number of stars that should fall into any given bin. Figure 8
shows this test for a set of 1000 simulated stars along a line
of sight with Galactic coordinates � = 90◦, b = 10◦. The
results are consistent with our expectations, indicating that our
method recovers correct posterior densities for the simulated
photometry.

6.3. Mock Line of Sight

Finally, we demonstrate that we are able to recover line-
of-sight reddening profiles for simulated photometry. We
first invent an arbitrary relationship, E(B − V )(μ), between
distance and reddening. We add in low-level scatter to the
distance–reddening relationship, as the reddening relation
across one HEALPix pixel may vary. We then generate mock
photometry for 150 stars along the line of sight. Following the
procedure outlined in Section 3, we use the simulated photom-
etry to determine a posterior density in distance and reddening
space for each star, and then combine the information from all
of the stars to find the range of allowable reddening profiles.
Our final product is thus a set of reddening profiles, drawn from
the probability density over reddening profiles (Equation (12)).
We parameterize the reddening as a piecewise-linear function
in distance and apply a weak log-normal prior to the differential
reddening in each distance segment, as described in Section 5.3.
The results for one simulated line of sight, shown in Figure 9,
demonstrate that we are able to correctly infer the reddening

Figure 9. Recovery of the line-of-sight reddening profile from simulated photometry for 150 stars. The large panel shows the inferred posterior densities of the stars,
stacked on top of one another. The contrast is stretched at each distance for purposes of visualization. This gives a picture of the information which is fed into the second
stage of our analysis, in which we recover the reddening as a function of distance from the individual stellar probability densities (see Equation (12)). The stacked
image, however, plays no direct role in this inference. The curves show possible reddening profiles, conditioned on the mock photometry. The green curve traces the
most probable reddening profile. The remaining curves are colored according to the logarithm of their probability density, with blue denoting high probability and red
denoting low probability. We recover a reddening profile similar to the original, which had a single cloud of depth E(B − V ) = 0.5 at distance modulus μ = 8.5
(shown as a dashed black line on the plot). The slight, gradual increase in inferred reddening beyond the cloud is due to the constraint that differential reddening in
each bin be non-negative and to the log-normal prior on differential reddening. A priori, having no reddening away from the cloud is unlikely, and this is reflected in
our inference. The upper four panels show individual stellar posterior density functions over the same domain, with the same reddening profiles overplotted. Each star
is consistent with the range of possible reddening profiles.

(A color version of this figure is available in the online journal.)
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Figure 10. Comparison of PS1 stellar colors in the vicinity of the North Galactic
Pole with our model colors. Each object is colored according to the evidence Z
we compute. Objects represented by red dots have a low probability of being
drawn from our stellar model and are rejected for the line-of-sight reddening
determination. The solid black line traces our model stellar colors. Our main-
sequence model colors do not depend on metallicity, while the model colors for
the giant branch have a slight metallicity dependence.

(A color version of this figure is available in the online journal.)

profile for mock data. The method produces the best results at
distances where there are many stars. Nearby and at large dis-
tances, where there are comparatively few stars to constrain the
reddening profile, the uncertainties in reddening can become
very large. However, at intermediate distances (μ ∼ 10 to ∼15
for typical lines of sight, corresponding to 1–10 kpc), the fit
produces uncertainties on the order of ΔE(B − V ) ∼ 0.05 mag,
consistent with the intrinsic scatter in reddening which we in-
troduce into the simulated photometry.

7. COMPARISON WITH DATA

7.1. Colors

We compare our model colors to PS1 stellar photometry from
low-extinction regions at high Galactic latitudes. It is important

to choose low-extinction regions, so that assumptions about the
reddening law and what percentage of the total dust column is
in front of each star play only a minor role. This allows us to
obtain a comparison between the intrinsic colors in our model
and of real stars. We de-redden the stellar colors assuming that
they are behind the full dust column predicted by Schlegel et al.
(1998, SFD).

The results for the North Galactic Pole are shown in
Figure 10. We compute an evidence for each star, as described in
Section 5.2. As expected, objects which lie far from the stellar
locus in color–color space tend to have lower evidence. This
helps us to reject objects that are either not stars, are not in-
cluded in our stellar model (e.g., young and blue horizontal
branch (BHB) stars), or that have particularly bad photometry.
In the window shown here, 15% of the detected objects would
fail an evidence cut of ln Z > ln Zmax−20. These objects tend to
have problematic photometry for which the PS1 pipeline may
have produced inaccurate results, though some are variables,
quasars, and unrecognized galaxies, which our technique is not
designed to handle. Our line-of-sight reddening inferences are
not strongly dependent on the choice of the evidence threshold.

7.2. Distances

Correct distance determination requires not only correct
model colors, but correct absolute magnitudes. We therefore
compare our stellar models to globular and open clusters. In
Figure 11, we compare our model magnitudes to photometry
from four globular and open clusters.

We find that the model absolute magnitudes match the
main sequence. The model magnitudes are unreliable past the
main sequence turnoff, particularly for younger clusters. Our
model magnitudes trace the giant branch of intermediate-age
clusters—typical of the age of most stars in the Galaxy—some-
what better. Nevertheless, we expect that most of the information
in our dust maps will come from the main sequence, where dis-
tance and reddening estimates are better constrained. Massive
young blue stars and blue horizontal branch stars, which are not
included in the stellar templates, are found to have low evidence,
allowing them to be identified and excluded from the line-of-
sight dust inference. Inclusion of age-dependent stellar models,
and therefore more reliable distance and reddening determina-
tions for the most massive stars, could potentially increase the
distance to which our dust maps are reliable and is an important
direction for future work.

Figure 11. PS1 color–magnitude diagrams of three globular and one open cluster. For each cluster, the model isochrone with the catalog metallicity of the cluster is
overplotted. The stellar photometry has been de-reddened and shifted by the catalog distance modulus to produce absolute magnitudes. The reddening vector is plotted
in the top left corner of each panel in red for reference. Each star is colored by its evidence, with red stars unlikely to be drawn from our stellar model. In particular,
stars which are blueward of the main-sequence turnoff, which are bluer than any star in our template library, have low evidence.

(A color version of this figure is available in the online journal.)
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Figure 12. Histogram of the difference between the mode of the Bayesian reddening inference and the SEGUE-derived reddening, as a function of SFD reddening (see
Section 7.3). The blue envelopes mark the 15.87 and 84.13 percentiles of the residuals, equivalent to one standard deviation for a normal distribution, while the central
blue curve marks the median of the residuals. The left panel compares the mode of the Bayesian posterior density functions with the mean of the SEGUE-derived
reddenings. The right panel compares random samples drawn from the Bayesian posteriors with random samples drawn from the SEGUE-derived posteriors, which
are Gaussian.

(A color version of this figure is available in the online journal.)

7.3. Reddenings

In order to test the accuracy of our reddening inferences
for individual stars, we compare our photometric reddenings
to independently measured reddenings for a sample of stars.
The SEGUE survey (Yanny et al. 2009), part of SDSS-II, pro-
vides a convenient set of stars for which one can independently
determine reddening. The SEGUE survey obtained moderate-
resolution spectroscopy for 240,000 stars with SDSS photom-
etry. Whereas most of the SDSS footprint is at low reddening,
some of the SEGUE targets are at moderate reddening, up to
∼1 mag in E(B − V ). The SEGUE Stellar Parameter Pipeline
(SSPP) fits an atmospheric model to each star to derive the tem-
perature, metallicity, and gravity of the star, as well as other pa-
rameters (Lee et al. 2008a, 2008b; Allende Prieto et al. 2008).
These stellar parameters were used by Schlafly & Finkbeiner
(2011) to predict the intrinsic colors of stars and to study the
effect of reddening by attributing the differences between the
observed and intrinsic colors to dust. We use the reddening esti-
mates of Schlafly & Finkbeiner (2011) in the four independent
SDSS colors, in concert with their recommended RV = 3.1 red-
dening vector (Fitzpatrick 1999), to estimate E(B − V ) to each
star. The details of deriving the reddening based on SEGUE-
determined intrinsic colors and SDSS photometric colors are
described in Appendix B.

We use the same sample of SEGUE targets as Schlafly &
Finkbeiner (2011). This sample excludes objects targeted as
white dwarfs and also removes M dwarfs, for which the stellar
parameters are less reliable. We also require that each SEGUE
target have a PS1 counterpart. Distances and reddenings to each
star are then inferred as described in Section 4.1, and compared
to the SEGUE-determined reddenings. For this comparison,
we allow our photometric reddening estimates to be negative,
for consistency with the SEGUE-derived reddenings. We save
100 reddening samples from the Markov chain for each star,
as well as the maximum-posterior density reddening. In the
left panel of Figure 12, we compare the maximum-posterior
density Bayesian reddening estimate with the SEGUE-derived
reddening for 200,000 stars. We bin the stars by the reddening
expected from the dust maps of Schlegel et al. (1998, SFD)
and plot a histogram of the difference in the two reddening
measures in each bin. We place the SFD reddening on the x-axis
because it is a good proxy for reddening and is independent of

both of the two reddening estimates we wish to compare, while
placing either the SEGUE-derived reddening or the Bayesian
reddening along the x axis can introduce spurious trends in the
resulting comparison. We find that the mode of our reddening
estimates is unbiased over a range of E(B −V ) = 0 to 1, above
which there are too few stars in the SEGUE sample to extend
the comparison. The scatter in the difference between the two
reddening estimates is approximately 0.12 mag in E(B − V ),
with the overall estimate being unbiased to within 0.03 mag.

Our Bayesian reddening and distance estimates assume that
stars are drawn at random from the observable stars on each
line of sight. The SEGUE survey, however, does not target
stars at random but instead targets only subsets of stars of
particular interest. Moreover, the subset of SEGUE-observed
stars for which we have reliable reddening estimates does not
extend to the M dwarfs, meaning that our sample of SEGUE-
derived reddening estimates use only intrinsically blue stars. We
consider intrinsically redder stars—and therefore less reddened
stars—in our analysis than are actually present in our sample
of SEGUE-observed stars. In order to simulate the effect of
excluding M dwarfs, we modify the luminosity function prior
to assign zero probability for Mr > 6. When we account
for this effect, the distribution of the difference between our
and the SEGUE reddening estimates is unbiased. To illustrate
this, instead of presenting single reddening difference for each
star, we show 100 samples of the distribution of reddening
differences between our Bayesian reddening estimate and the
SEGUE-derived reddening estimate. The resulting residuals are
shown as a function of SFD reddening in the right panel of
Figure 12. The residuals are unbiased at the 0.01 mag level,
with a scatter of E(B −V ) = 0.13 mag. This result is indicative
of the accuracy we achieve for high-signal-to-noise detections,
as most SEGUE targets are well above the detection limit
in PS1.

8. CONCLUSION

We have presented a general method for deriving a 3D map
of Galactic reddening from stellar photometry. Our technique
is based on grouping stars into pixels, determining the joint
posterior of distance and reddening for each star, and then
determining the most probable reddening–distance relation
in each pixel. We have shown that this method correctly
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recovers the distance–reddening relationship for simulated lines
of sight. We have additionally shown by comparison with
SEGUE-derived reddenings, that for high-SNR detections, our
Bayesian reddening estimates are unbiased at the 0.01 mag
level, with a scatter of ∼0.13 mag in E(B − V ). Based on
comparisons with mock catalogs, in highly reddened regions of
the Galaxy, our distance inferences have typical uncertainties
of +47% on the high end, and −21% on the low end. In high-
Galactic latitude regions with low reddening, our distances have
typical uncertainties of +52% on the high end, and −38% on the
low end. These uncertainties may be reduced by feeding back
information on reddening as a function of distance, derived
from all the stars along the line of sight. A subsequent paper
will present the results of applying the techniques developed
here to construct a 3D reddening map covering the δ > −30◦
sky.

In addition to determining the dust density in the nearby
Galaxy, our method can be used to determine the distribution
of stars in the Galactic plane. Earlier optical studies of the
distribution of stars in the Galaxy traditionally consider only
high-latitude stars, where the correction for dust extinction
is straightforward (e.g., Jurić et al. 2008). Infrared surveys
of the plane are less sensitive to dust extinction but their
wavelength coverage also makes them less sensitive to intrinsic
stellar type, rendering photometric distances uncertain. Our
technique provides distances to stars throughout the Galactic
plane, enabling future studies of the distribution of stars in the
disk.

The technique described in this paper is not limited to
PS1 photometry. Inclusion of information from the 2MASS
J, H, and Ks bands, WISE bands, as well as SDSS u-band
photometry will improve our distance and reddening estimates.
In addition, kinematic information, such as proper motion, may
be incorporated into our framework in order to allow a more
precise determination of stellar distances.

Upcoming surveys will also dramatically enhance our ability
to measure the distances and reddenings to stars in the Galaxy.
The LSST (Ivezic et al. 2008) will provide deeper photome-
try spanning a similar set of filters as those used in SDSS and
PS1, providing photometry for the sky south of δ < +34.◦5.
In the nearer future, the Dark Energy Survey will survey a
complementary 5000 deg2 of sky to PS1, in a similar filter set
(The Dark Energy Survey Collaboration 2005). The Gaia mis-
sion (Lindegren et al. 1994), meanwhile, will provide multiband
photometry and low-resolution spectroscopy alongside parallax
distance measurements and proper motions for one billion stars.
Gaia’s parallax distances, in particular, will break many of the
degeneracies in our model for rP1 � 20 stars, while its proper
motions will aid in inferring the population each star belongs
to. These new data sets will increase the power of our method
to determine Galactic reddening and structure.

The Pan-STARRS1 (PS1) surveys have been made possi-
ble through contributions of the Institute for Astronomy, the
University of Hawaii, the PS1 Project Office, the Max-Planck
Society and its participating institutes, the Max Planck Institute
for Astronomy, Heidelberg and the Max Planck Institute for
Extraterrestrial Physics, Garching, The Johns Hopkins Univer-
sity, Durham University, the University of Edinburgh, Queens
University Belfast, the Harvard-Smithsonian Center for Astro-
physics, the Las Cumbres Observatory Global Telescope Net-
work Incorporated, the National Central University of Taiwan,
the Space Telescope Science Institute, the National Aeronau-

tics and Space Administration under grant No. NNX08AR22G
issued through the Planetary Science Division of the NASA
Science Mission Directorate, the National Science Foundation
under grant No. AST-1238877, the University of Maryland,
and Eotvos Lorand University (ELTE). Gregory M. Green and
Douglas P. Finkbeiner are partially supported by NSF grant
AST-1312891. The computations in this paper were run on the
Odyssey cluster supported by the FAS Science Division Re-
search Computing Group at Harvard University.

APPENDIX A

HARMONIC MEAN ESTIMATE OF
THE BAYESIAN EVIDENCE

The harmonic mean approximation, developed in Gelfand &
Dey (1994), allows one to compute the Bayesian evidence using
samples returned from a Markov chain Monte Carlo (MCMC)
simulation. For a model with parameters θ and data D, Bayes’
rule tells us that

p(θ |D) = p(D|θ )p(θ )

p(D)
. (A1)

We wish to compute the evidence p(D), often denoted by Z.
Multiplying each side of the above by an arbitrary function
φ(θ ), rearranging terms and taking the integral over all θ ,

1

p(D)

∫
dθ φ(θ ) =

∫
dθ p(θ |D)

φ(θ )

p(D|θ )p(θ )
. (A2)

The right-hand side is simply the expectation value of

φ(θ )

p(D|θ )p(θ )
(A3)

for samples drawn from the posterior density p(θ |D). This is
convenient, since MCMC methods draw a set of samples from
the distribution p(θ |D). If the integral of φ(θ ) is normalized to
unity, then

1

p(D)
≡ 1

Z
≈

〈
φ(θ )

p(D|θ )p(θ )

〉
chain

. (A4)

This estimate has finite variance as long as φ has steeper wings
than p(θ |D) (Robert & Wraith 2009). We choose φ to be
constant within an ellipse centered on a point of high density
within the chain, and zero outside (Robert & Wraith 2009).
The ellipse is aligned with the principle axes of the covariance
matrix, in order to ensure that it contains only well-sampled
regions of parameter space.

We find a point of high density by first centering an ellipse
on a random point in the chain. Because the points in the chain
are sampled proportionately to the posterior probability density,
this point is already likely to lie in a well-sampled region of
parameter space. We then find the mean of the points in the
chain falling in the ellipse, and move the center of the ellipse to
that position in parameter space. One can iterate this procedure
several times to settle into a densely sampled region of parameter
space. The size of the ellipse we use to define φ(θ ) is chosen
such that a preset fraction of samples in the chain are enclosed.
For our calculations, we iterate five times to find a dense region
of parameter space and scale the ellipse such that it contains 5%
of samples.
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APPENDIX B

SEGUE-DERIVED REDDENINGS

Here, we review a method for calculating stellar reddenings
on the basis of SDSS photometry and SEGUE predicted intrinsic
stellar colors. As explained in Schlafly & Finkbeiner (2011),
since the extinction in an individual band X is given by

AX = RXE(B − V ), (B1)

colors transform as

E(X − Y ) = AY − AX = (RY − RX)E(B − V ). (B2)

If we have only one color, X − Y , we can therefore estimate
reddening as

E(B − V ) = E(X − Y )

RY − RX

. (B3)

Our goal is to extend this formula to allow the use of
multiple colors, possibly with strong covariance. Since Schlafly
& Finkbeiner (2011) only predict the colors of stars, and not
their overall magnitudes, we work in color space. We denote the
intrinsic stellar colors as ci , and the reddened colors as cr .

In a multidimensional color space, Equation (B2) becomes

cr − ci = R E(B − V ), (B4)

where R has one component per color X − Y , given by RXY ≡
RY −RX. The estimated intrinsic colors and observed reddened
colors are Gaussian random variables, with covariances Σi and
Σr , respectively. We denote the estimated intrinsic colors as c ′

i ,
and the observed reddened colors as c ′

r . The likelihood of these
two quantities taking on a particular set of values is given by

p(c ′
i , c ′

r | E(B − V ), cr ) = N (c ′
r | cr , Σr )N (c ′

i | ci , Σi) (B5)

= N (c ′
r | cr , Σr )N (c ′

i | cr − R E(B − V ), Σi). (B6)

In the second step, we have replaced ci using Equation (B4).
Using the symmetry of the Gaussian distribution,

p(c ′
i , c ′

r | E(B − V ), cr )

= N (cr | c ′
r , Σr )N (cr − R E(B − V ) | c ′

i , Σi) (B7)

= N (cr | c ′
r , Σr )N (R E(B − V ) − cr | − c ′

i , Σi). (B8)

If we assume a flat prior on E(B − V ) and cr , then the above is
proportional to the posterior probability density p(E(B − V ),
cr | c ′

i , c ′
r ). We could, in practice, frame the question in terms

of the intrinsic colors ci , and put priors on them based on
our Galactic and stellar model, but we wish to avoid tying
our SEGUE-derived reddenings in any way to our Bayesian
photometric reddening estimates. Now, integrating over cr , we
obtain a convolution of two Gaussians, which is itself a Gaussian
distribution:

p(E(B − V ) | c ′
i , c ′

r ) ∝
∫

dcrN (cr | c ′
r , Σr )

× N (R E(B − V ) − cr | − c ′
i , Σi) (B9)

= N (R E(B − V ) | c ′
r − c ′

i , Σr + Σi). (B10)

The probability density function of E(B −V ) is thus a ray taken
through a multivariate Gaussian. It can be shown that the above
is also Gaussian, with mean and standard deviation given by

〈E(B − V )〉 = (c ′
r − c ′

i )
T (Σr + Σi)−1 R

RT (Σr + Σi)−1 R
, (B11)

σ 2
E(B−V ) = [R T (Σr + Σi)

−1 R ]−1. (B12)

We plug intrinsic stellar colors appropriate for the SSPP stellar
parameters into c ′

r and use the observed SDSS colors for c′
i .

One final note is that Schlafly & Finkbeiner (2011) used
the SSPP stellar types to derive estimates of the mean and
covariance of the magnitudes, rather than the colors. We will
now show how to obtain the covariance of the colors from the
covariance matrix of the magnitudes. We denote the covariance
matrix of the magnitudes as Σij , where i and j label passbands.
We label the color mi − mj as cij. We then call the covariance
matrix of the colors cij and ck� Σ ′

ij,k�. By expanding out

Σ ′
ij,k� = 〈cij ck�〉 − 〈cij 〉〈ck�〉 (B13)

in terms of magnitudes, one obtains

Σ ′
ij,k� = Σik − Σi� − Σjk + Σj�. (B14)

The common choice of colors is to set the ith color to mi −mi+1.
Plugging j = i + 1 and � = k + 1 into the above, we find that
the covariance of the ith color with the kth color is given by

Σ ′
i,k = Σi,k − Σi,k+1 − Σi+1,k + Σi+1,k+1. (B15)
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