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Abstract Rhabdomyosarcoma (RMS) is a pediatric malignacy of muscle with myogenic regulatory

transcription factors MYOD and MYF5 being expressed in this disease. Consensus in the field has

been that expression of these factors likely reflects the target cell of transformation rather than

being required for continued tumor growth. Here, we used a transgenic zebrafish model to show

that Myf5 is sufficient to confer tumor-propagating potential to RMS cells and caused tumors to

initiate earlier and have higher penetrance. Analysis of human RMS revealed that MYF5 and MYOD

are mutually-exclusively expressed and each is required for sustained tumor growth. ChIP-seq and

mechanistic studies in human RMS uncovered that MYF5 and MYOD bind common DNA regulatory

elements to alter transcription of genes that regulate muscle development and cell cycle

progression. Our data support unappreciated and dominant oncogenic roles for MYF5 and MYOD

convergence on common transcriptional targets to regulate human RMS growth.

DOI: 10.7554/eLife.19214.001

Introduction
Continued tumor growth and relapse are driven by molecularly defined tumor propagating cells

(TPCs). These TPCs share molecular and functional properties with non-transformed stem cells. For

example, molecularly defined TPCs can divide to produce daughter cells with similar functional char-

acteristics as the parental TPC, akin to the process of self-renewal found in normal stem cells. TPCs

can also divide to produce mature, specialized cells that have specific functions within the develop-

ing cancer. Given that TPCs drive continued tumor growth, it is not surprising that these cells are

often retained following treatment and ultimately drive refractory, metastatic, and relapse disease

(Reya et al., 2001). TPCs have been identified in a wide range of cancers, including both zebrafish

and human rhabdomyosarcoma (RMS), a devastating pediatric cancer of muscle (Langenau et al.,

2007; Chen et al., 2014; Ignatius et al., 2012). Yet, to date, the molecular mechanisms driving TPC

frequency and sustained tumor growth in RMS have not been fully defined. Moreover, it is unknown

the extent to which normal muscle stem cell programs play a role in regulating RMS growth.

Tenente et al. eLife 2017;6:e19214. DOI: 10.7554/eLife.19214 1 of 24

RESEARCH ARTICLE

http://creativecommons.org/publicdoman/zero/1.0/
http://creativecommons.org/publicdoman/zero/1.0/
http://dx.doi.org/10.7554/eLife.19214.001
http://dx.doi.org/10.7554/eLife.19214
https://creativecommons.org/
https://creativecommons.org/
http://elife.elifesciences.org/
http://elife.elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


Rhabdomyosarcoma is a common sarcoma characterized by impaired muscle differentiation.

These tumors express myogenic regulatory transcription factors (MRFs) including Myogenic factor 5

(MYF5) and Myoblast determination protein D (MYOD) (Clark et al., 1991; Kumar et al., 2000; Par-

ham, 2001; Sebire and Malone, 2003) and are used in the clinical diagnosis of RMS. RMS is com-

prised of two molecular subtypes. Alveolar RMS (ARMS) harbor Pax7-FOXO and Pax3-FOXO

genomic fusions (Sorensen et al., 2002) and have few additional recurrent genomic changes

(Chen et al., 2013b; Shern et al., 2014). By contrast, 90% of human embryonal rhabdomyosarcoma

(ERMS) have RAS pathway activation and a higher mutation burden when compared with ARMS

(Chen et al., 2013b; Langenau et al., 2007; Shern et al., 2014). Common mutations found in ERMS

include inactivation of Tp53 and activating mutations of FGFR4, PDGFA, and NOTCH1 (Chen et al.,

2013b; Shern et al., 2014). Yet, roles for these pathways in regulating TPC number and proliferation

have not been reported. In fact, to date, only the Sonic-Hedgehog and canonical WNT/B-catenin

signaling pathways have been shown to regulate TPC function in a subset of human RMS

(Chen et al., 2014; Satheesha et al., 2016). Understanding additional underlying mechanisms of

TPC growth and function will be important for defining new therapies to treat pediatric RMS.

Despite the similarity of RMS cells with embryonic and regenerating muscle and well-known roles

for the myogenic regulatory transcription factors MYF5 and MYOD in regulating these processes,

their role in driving RMS growth has yet to be reported. Rather, it has been suggested that activa-

tion of the myogenic gene regulatory programs likely reflect the target cell of transformation and

may not be required for continued RMS growth (Keller and Guttridge, 2013; Kikuchi et al., 2011;

Macquarrie et al., 2013b; Rubin et al., 2011). Despite MYF5 and MYOD being highly expressed in

human and animal models of RMS (Langenau et al., 2007; Rubin et al., 2011), exerting important

roles in muscle development and stem cell self-renewal in regeneration (Buckingham and Rigby,

2014), and being able to reprogram fibroblasts into proliferating myoblasts (Braun et al., 1989;

Tapscott et al., 1988); a functional requirement for these transcription factors in regulating RMS

growth has gone unexplored since their discovery over two decades ago.

Transgenic zebrafish models have become a powerful tool to uncover new biological insights into

human cancer (Langenau et al., 2003, 2007; Le et al., 2007; Park et al., 2008; Patton et al., 2005;

Sabaawy et al., 2006; Yang et al., 2004; Zhuravleva et al., 2008). In the setting of ERMS, we have

developed a mosaic transgenic zebrafish that express human kRASG12D under control of the rag2

minimal promoter, which is expressed in lymphoid cells (Jessen et al., 2001; Langenau et al., 2003)

and muscle progenitor cells (Langenau et al., 2007). Thus, when kRASG12D was expressed under

control of this promoter, 20–40% mosaic injected fish developed ERMS (Langenau et al., 2007).

Because 10–20 transgene copies are commonly integrated into the genome (Langenau et al.,

2008), one can inject multiple transgenes into one-cell stage embryos with stable integration and

expression being observed in developing tumors. Using this mosaic transgenic approach, we can

deliver transgenic expression of kRASG12D, a fluorescent label to mark ERMS cells, and a modifying

gene to assess synergies in regulating tumor initiation (Langenau et al., 2008). Importantly, the

zebrafish model accurately mimics many of the molecular underpinnings of the human disease and

has been used to uncover important genes and pathways relevant to human cancer (Chen et al.,

2013a, 2014; Ignatius et al., 2012; Langenau et al., 2007; Le et al., 2013). The model has also

been used to identify functional heterogeneity in molecularly defined cell types, including isolation

of myf5:GFP+ TPCs (Ignatius et al., 2012). In total, the zebrafish kRASG12D ERMS model has

emerged as one of the most relevant for discovering pathways that drive cancer growth in human

RMS (Chen et al., 2013a, 2014; Ignatius et al., 2012; Kashi et al., 2015; Langenau et al., 2007,

2008; Le et al., 2013; Storer et al., 2013; Tang et al., 2016)

Here we show that Myf5 is not only a marker of TPCs in the zebrafish ERMS model

(Ignatius et al., 2012), but was sufficient to impart tumor propagating potential to differentiated

ERMS cells in vivo. Myf5 re-expression also lead to tumors that initiated earlier, had higher pene-

trance, and were larger than kRASG12D-alone expressing ERMS. Experiments in human RMS uncov-

ered significant inter-tumoral heterogeneity of MRF expression with high MYF5 or MYOD defining

largely mutually exclusive groups of tumors. Functional studies showed that both MYF5 and MYOD

are required for continued RMS proliferation, likely acting redundantly with one another to regulate

common molecular programs found in normal muscle development and regeneration. Consistent

with this interpretation, ChIP-seq analysis identified common binding sites of MYF5 and MYOD in

promoter and enhancer regions of genes that regulate cell cycle and muscle differentiation. A subset
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of these same genes were confirmed to be downregulated upon MYF5 or MYOD knockdown.

Finally, we show that MYF5 and MYOD are also required for efficient human RMS tumor growth in

vivo. Our data supports a previously unappreciated role for MYF5 and MYOD in regulating growth,

proliferation, and TPC activity in rhabdomyosarcoma.

Results

Re-expression of myf5 in zebrafish ERMS cells accelerated tumor onset
and increased penetrance
We have uncovered that myf5 is highly expressed in undifferentiated, molecularly defined TPCs in

zebrafish kRASG12D-induced ERMS (Langenau et al., 2007; Ignatius et al., 2012). Remarkably, this

TPC fraction shares molecular and functional properties with non-transformed muscle satellite stem

cells. For example, cell transplantation and direct live cell imaging has revealed that myf5:GFP+/

myosin-negative progenitor cells drive tumor growth and specifically label TPCs in this animal model

(Ignatius et al., 2012; Chen et al., 2014). To assess roles for myf5 in regulating ERMS growth, we

transgenically expressed myf5 under control of the differentiated myosin light chain muscle pro-

moter (mylpfa). This transgene faithfully drives expression in terminally-differentiated muscle cells in

both transient and stable transgenic fish (Xu et al., 1999; Langenau et al., 2007; Ignatius et al.,

2012; Storer et al., 2013; Chen et al., 2014) and has been used to identify zebrafish ERMS cell sub-

fractions that lack myf5, have low proliferative capacity, cannot self-renew, and do not sustain ERMS

growth in vivo (Ignatius et al., 2012). Here, rag:kRASG12D was co-injected with mylpfa:myf5 into

one-cell-stage zebrafish and analyzed for tumor onset.

Histological analysis was performed on ERMS tumors arising in rag2-kRASG12D;mylpfa-myf5 AB-

strain transgenic fish and compared with those that express only kRASG12D (Figure 1A–F, Figure 1—

figure supplement 1). Tumors were histologically staged based on differentiation (Storer et al.,

2013; Figure 1—figure supplement 2). As reported previously, primary kRASG12D-induced ERMS

were comprised of 50% undifferentiated stage 1 ERMS (N = 5 of 10, Figure 1B,C and Figure 1—fig-

ure supplement 2), which harbored mostly small round blue cells. By contrast, mylpfa:myf5 express-

ing primary ERMS contained only 7.7% stage 1 ERMS (N = 2 of 26, p=0.015, Chi-square test,

Figure 1E–F), with the remaining tumors being highly differentiated stage 2 and 3 ERMS (Figure 1F

and Figure 1—figure supplement 2). These tumors had large numbers of rhabdomyoblasts and

cells with fibrous and spindle cell morphology. Transcriptional profiling of bulk tumor cells by qRT-

PCR confirmed that mylpfa:myf5 expressing ERMS cells had high myf5 transgene expression, were

more differentiated, and yet also had elevated expression of TPC-associated markers including c-

met and cadherin 15 (Figure 1G, Langenau et al., 2007; Ignatius et al., 2012). These gene markers

are also commonly expressed in zebrafish muscle progenitor and satellite cells (Siegel et al., 2013;

Gurevich et al., 2016). Collectively, these data show that re-expression of myf5 in myosin-express-

ing ERMS cells leads to tumors with differentiated morphology and are consistent with the re-activa-

tion of muscle stem cell programs in differentiated cell types.

Tumors arising in double transgenic rag2:kRASG12D; mylpfa:myf5 expressing ERMS were also

larger by 30 days postfertilization than those that expressed only kRASG12D (Figure 1H, p=0.0108,

Student’s t-test). However, apoptosis was not altered following re-expression of myf5 (Figure 1—fig-

ure supplement 3). Proliferation was assessed by both phospho-histone H3 staining and EDU incor-

poration following intra-peritoneal injection and assessed at 6 hr. From this analysis, we uncovered

wide variation in proliferation between tumors, with a trend toward increased proliferation in mylpfa:

myf5 expressing ERMS when assessed by EDU incorporation (Figure 1—figure supplement 3D).

Together, our data support a model where mylpfa:myf5 expressing ERMS initiate earlier and with

higher penetrance than those that express only kRASG12D (Figure 1I, p<0.001, log-rank Mantel-Cox

test), likely reflecting a dominant role for transgenic myf5 in transforming a wider range of cell types

and to a lesser degree on elevating proliferation.

To confirm that differentiation changes were confined to fully transformed ERMS cells, we next

assessed the histology of ERMS following transplantation into immune-deficient rag2E450fsrecipient

fish (Figure 2A–F; Tang et al., 2014). kRASG12D-expressing ERMS were comprised exclusively of

undifferentiated stage one tumors (Figure 2B,C and Figure 2—figure supplement 1, n=10 trans-

planted fish arising from four independent tumors). By contrast, ERMS that re-expressed myf5 had
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Figure 1. Transgenic myf5 elevates tumor cell differentiation, increases tumor size, and accelerates time to primary tumor-onset when expressed in

myosin-expressing ERMS cells. (A–F) Primary ERMS developing in myf5:GFP/mylpfa:mCherry AB-strain zebrafish. Transgenic kRASG12D-expressing

ERMS (A–C) compared with those that express both kRASG12Dand mylpfa:myf5 (D–F). Animals imaged at 35 dpf (A,D). Hematoxylin and Eosin-stained

sections of representative tumors (B,E) and quantification of differentiation within individual tumors (C,F; 1-less differentiated and 3-most differentiated).

Figure 1 continued on next page
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differentiated histology and were comprised exclusively of stage 2 and 3 tumors (Figure 2E,F and

Figure 2—figure supplement 1, n=15 transplanted fish from four independent tumors, p<,0.001,

Chi-square test). Consistent with our histological evaluation, flow cytometric analysis revealed that

differentiated, mylpfa:mCherry-positive (R+) tumor cells were greatly expanded in ERMS that aber-

rantly express myf5 (Figure 2G–I, p=0.006, Student’s t-test). These same tumors had reduced num-

bers of myf5:GFP (G+) and double-positive (G+R+) cells. As was seen in primary ERMS, mylpfa:myf5

expressing ERMS also initiated earlier and with higher penetrance when engrafted into rag2e450fsre-

cipient animals (Figure 2J, 2.5 � 105 cells/animal, p=0.046, Mantel-Cox log-rank statistic). These

tumors also had a trend toward being larger when assessed at 30 days post-transplantation

(Figure 2K). Effects on ERMS differentiation were confirmed in transplanted CG1 strain syngeneic

animals, showing that mylpfa-myf5 expressing ERMS were more differentiated based on morphology

(Figure 3—figure supplement 1A–F, p<0.01, Chi-square test) and contained larger numbers of dif-

ferentiated, mylpfa-mCherry-positive (R+) ERMS cells (Figure 2L, p<0.001, Student’s t-test). These

transplanted tumors also had significant reductions in myf5-GFP (G+) and double-positive (G+R+)

ERMS cells. Together, these data confirm that mylpfa:myf5 expressing ERMS were fully transformed

and exhibited a more differentiated cellular phenotype when compared with kRASG12D alone

expressing ERMS (Figure 2E,F and Figure 2—figure supplement 1).

Myf5 reprograms differentiated ERMS cells into TPCs
Because endogenous myf5 expression labels molecularly defined TPCs in zebrafish kRASG12D-

induced ERMS (Ignatius et al., 2012; Chen et al., 2014), we next questioned if TPC frequency might

be altered in mylpfa:myf5 expressing ERMS. Specifically, rag2:kRASG12D was co-injected with or

without mylpfa:myf5 into one-cell stage, CG1 syngeneic myf5:GFP/mylpfa:mCherry transgenic ani-

mals (Mizgireuv and Revskoy, 2006; Ignatius et al., 2012). Following tumor growth in primary

transplant recipients (Figure 3A–C), cell subpopulations were isolated by FACS and transplanted

into secondary syngeneic recipient fish at limiting dilution (Figure 3D–I, Figure 3—figure supple-

ment 1G–P, 1x103�10 cells/animal, purity >85%, and >95% viability). As previously reported

(Ignatius et al., 2012), only the myf5:GFP+ (G+) single-positive ERMS cells from kRASG12D-alone

expressing ERMS could efficiently engraft tumors into CG1-strain syngeneic recipient animals

(Figure 3J and Table 1; N = 3 independent tumors). By contrast, both the myf5:GFP+ single-posi-

tive (G+) and differentiated myf5:GFP+; mylpfa:mCherry+ double positive (G+R+) ERMS cells could

engraft disease when isolated from mylpfa:myf5 expressing ERMS (N = 3 tumors analyzed, Table 1

and Figure 3L; p=0.0002, ELDA analysis). Importantly, engrafted tumors displayed similar differenti-

ated histology following engraftment with sorted cells when compared with primary tumors

(Figure 3B,E,H). Quantitative real-time PCR of sorted cell fractions also showed largely similar myo-

genic gene expression in ERMS cell subfractions isolated from either kRASG12D-expressing or

kRASG12D+ myf5 expressing ERMS, confirming that our cell lineage labeling approach identified

Figure 1 continued

Asterisk denotes p=0.015 by Chi-square test. (G) Quantitative real-time PCR gene expression performed on bulk ERMS cells, confirming high myf5

expression, increased differentiation, and high expression of TPC associated genes in ERMS that co-express kRASG12Dand mylpfa:myf5 (K+M, N = 5).

Endogenous myf5 was assessed using primers specific to the 3’UTR and total myf5 assessed by primers that amplify the coding sequence (cds).

cadherin 15 (cdh15) and myogenin (myog). kRASG12D alone expressing ERMS (K, N = 4). Average gene expression with 50% confidence intervals

denoted by box. Mean, maximum, and minimum also denoted. (H) Relative tumor size of primary ERMS at 30 days post fertilization (dpf). Box shows

50% confidence interval. Mean, maximum, and minimum denoted. Asterisk denotes p=0.0108, Student’s t-test. (I) Kaplan-Meijer analysis denoting time-

to-tumor onset (p<0.001, Log-rank Statistic, N = 494 fish analyzed for K and N = 470 for K+M). Scale bars equal 2 mm (A,D) and 50 mm (B,E). Asterisks

in panels G-H denote *p<0.05; **p<0.01; ***p<0.001 by Student’s t-test.

DOI: 10.7554/eLife.19214.002

The following figure supplements are available for figure 1:

Figure supplement 1. Fluorescence images of primary ERMS developing in stable transgenic myf5:GFP/mylpfa:mCherry zebrafish.

DOI: 10.7554/eLife.19214.003

Figure supplement 2. Histological classification of primary zebrafish ERMS based on differentiation score.

DOI: 10.7554/eLife.19214.004

Figure supplement 3. Analysis of proliferation and apoptosis in zebrafish primary ERMS.

DOI: 10.7554/eLife.19214.005
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Figure 2. Tumors that transgenically express myf5 are fully transformed and retain a differentiated phenotype following engraftment into recipient

animals. (A–F) Analysis of ERMS arising in transplanted fish. kRASG12D expressing ERMS arising in rag2E450fs transplant recipient fish (A–C) compared

with those that express both kRASG12D and mylpfa:myf5 (D–F). Tumors were created in stable transgenic myf5:GFP/mylpfa:mCherry transgenic, AB-

strain zebrafish and imaged following engraftment into recipient fish at 30 days post transplantation (dpt). Hematoxylin and eosin stained sections of

representative tumors (B,E) and quantification of differentiation within individual ERMS (C,F; 1-less differentiated and 3-most differentiated). Asterisks

denote p<0.001 by Chi-square test. (G,H) Representative flow cytometry analysis of fluorescently-labeled ERMS cells isolated from transplanted

rag2E450fs zebrafish. (I) Graphical summary of ERMS cell sub-fractions that grow following engraftment into immune-deficient rag2E450fs recipients.

Individual tumors are represented as separate bars with the proportion of G+ (green), G+R+ (yellow) and R+ (red) sub-populations denoted. **p=0.006.

Figure 2 continued on next page
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similar molecularly-defined subpopulations of ERMS cells in these tumors. One notable exception

was myf5, which was also highly expressed in the G+R+ population of mylpfa:myf5 transgenic tumor

as expected (Figure 3K,M). Taken together, these data show that re-expression of myf5 can lead to

acquisition of tumor propagating potential in differentiated mylpfa-expressing ERMS cells in the

zebrafish model.

MYF5 and MYOD are required for continued tumor growth in human
RMS
To explore the role of MRFs in human RMS, we next assessed MYF5 and MYOD transcript expres-

sion in human primary tumor samples. Analysis of microarray gene expression (N = 133 samples)

(Davicioni et al., 2009) and RNA-sequencing (RNA-seq) data sets (N = 98 samples) (Shern et al.,

2014) uncovered that MYOD and MYF5 were expressed along with specific muscle genes and

defined two distinct gene regulatory modules in human RMS. One gene module included the co-

expression of MYF5, MYF6 and PAX7 while the other expressed MYOD and higher levels of CDH15,

and MYOG (Figure 4A,B). This correlation in gene expression was seen in comparison of all human

RMS (Figure 4A,B) or within specific RMS subtypes (Figure 4—figure supplement 1), suggesting

that MYF5 and MYOD likely sit atop a transcriptional hierarchy to regulate muscle-specific gene pro-

grams in RMS. We next assessed a panel of human RMS cell lines for expression of MYF5 and

MYOD following Western blot analysis. Remarkably, we found that the expression of these proteins

was largely mutually exclusive in human RMS cell lines (N = 7, Figure 4C), suggesting that these pro-

teins may act redundantly to regulate human RMS growth. This analysis also uncovered that only the

Rh18 ERMS cells expressed MYF5 in our panel of human cell lines. MYF5 and MYOD expression

were also assessed at the single cell level through immunofluorescence and verified that MYF5 and

MYOD were mutually exclusively expressed in Rh18 and RD cells (Figure 4—figure supplement 2).

Collectively, our data show significant inter-tumoral heterogeneity in the expression of myogenic fac-

tors in human RMS and suggests convergence of these transcription factors on regulating a common

set of genes that are likely required for RMS growth.

Human Rh18 ERMS cells express high levels of MYF5 and were utilized in loss-of-function studies

to assess roles in regulating proliferation, growth, and apoptosis. MYF5 protein expression was

effectively reduced following si-MYF5 mediated knockdown (Figure 4D) and resulted in significant

impairment of cell proliferation as assessed by EdU-incorporation and flow cytometry (Figure 4E–F,

p<0.001, Student’s t-test). For example, si-MYF5 treated cells showed a remarkable 70% reduction

in S-phase cycling cells following 48 hr of treatment (p<0.001, Student’s t-test, Figure 4E–F). Apo-

ptosis was not increased in si-MYF5 treated cells at 72 hr but lead to increased numbers of apoptotic

cells by 96 hr (Figure 4—figure supplement 3B). These results were independently confirmed using

stable knockdown with three independent lentiviral shRNAs specific to MYF5 (Figure 4G–I, protein

knockdown ranged from 50–95%). All sh-MYF5 knockdown cells showed a remarkable cell cycle

arrest with a virtual abrogation of S-phase cycling cells (Figure 4H–I and Figure 4—figure supple-

ment 3A; p<0.001, Student’s t-test). This phenotype was not associated with an overall increase in

apoptosis (Figure 4—figure supplement 3C,D) and yet lead to a significant 60% decrease in cell

number as assessed by manual nuclei counts performed at 96 hr and compared with shRNA control

treated cells (Figure 4—figure supplement 3E). We conclude that MYF5 loss results in impaired cell

cycle and secondarily elevates apoptosis.

Figure 2 continued

(J) Kaplan-Meijer analysis showing time-to-tumor onset in transplanted ERMS arising in rag2E450fs zebrafish (p=0.046, Log-rank Statistic, 2 � 105 cells/

fish, N > 12 animals per arm, representing �3 independently-arising primary ERMS). (K) Relative tumor size at 30 days post engraftment (same animals

analyzed as in J). (L) ERMS cells were also more differentiated following engraftment of myf5:GFP/mylpfa:mCherry ERMS cells into syngeneic recipient

fish (p<0.001, Student’s T-test, N � 3 independently arising primary ERMS and assessed in n � 2 animals per transplanted tumor). Scale bars equal 2

mm (A,D) and 50 mm (B,E).

DOI: 10.7554/eLife.19214.006

The following figure supplement is available for figure 2:

Figure supplement 1. Histological classification of transplanted zebrafish ERMS based on differentiation score.

DOI: 10.7554/eLife.19214.007
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Figure 3. Limiting dilution cell transplantation shows that myf5 can confer tumor-propagating ability to differentiated myf5:GFP+/mylpfa:mCherry+

cells. Tumors were generated in myf5:GFP/mylpfa:mCherry CG1-strain syngeneic zebrafish. Representative tumors arising in primary transplanted fish

(1˚T, A–C) or secondary transplanted fish following engraftment with highly purified myf5:GFP+, mylpfa:mCherry-negative (2˚T G+, D–F) or myf5:GFP+,

mylpfa:mCherry+ ERMS cells (2˚T G+R+, G–I). Sort purity following FACS is noted in the lower left panels of D and G and was >92% for each

population. These cells were used for cell transplantations and data provided in D-I. Cell viability was >95%. (J,L) Graphical summary of tumor

engraftment following limiting dilution cell transplantation using highly purified sorted ERMS cells. Data is combined from all tumors shown in Table 1.

***p<0.0002 by ELDA analysis. (K,M) Relative gene expression analysis of sorted G+ or G+R+ ERMS cells from representative kRASG12D (K) or

Figure 3 continued on next page

Tenente et al. eLife 2017;6:e19214. DOI: 10.7554/eLife.19214 8 of 24

Research article Cancer Biology Developmental Biology and Stem Cells

http://dx.doi.org/10.7554/eLife.19214


To assess if MYOD can also drive continued tumor growth and proliferation in human RMS, we

next performed MYOD knockdown in human RD ERMS cells. siRNA knockdown resulted in reduced

proliferation and a striking reduction in S-phase cycling cells (Figure 4J–O; p<0.001, Student’s

t-test). In keeping with our model that apoptotic cell death was induced secondary to cell cycle

defects, we found that si-MYOD treatment had no effect on viability after 72 hr of knockdown, while

analysis at 96 hr post-treatment resulted in elevated cell death of RD knockdown cells (Figure 4—

figure supplement 3G). shRNA knockdown showed similar effects on suppressing cell cycle progres-

sion and growth (Figure 4M–O and Figure 4—figure supplement 3F,H). In fact, RD cell number

Figure 3 continued

kRASG12D; mylpfa:myf5 (M) expressing ERMS (Standard Deviation, n = 3 technical replicates per PCR condition). *p<0.05; **p<0.01 and ***p<0.001 by

Student’s t-test.

DOI: 10.7554/eLife.19214.008

The following figure supplement is available for figure 3:

Figure supplement 1. Analysis of transplanted ERMS arising in CG1-strain syngeneic recpients.

DOI: 10.7554/eLife.19214.009

Table 1. myf5 confers tumor-propagating ability to differentiated myf5-GFP+/mylpfa-mCherry+ ERMS cells. Engrafted animals per cell

dose are noted. Experiments for three independent tumors are shown. G+ (myf5-GFP+/mylpfa-mCherry-), G+R+ (myf5-GFP+/mylpfa-

mCherry+), R+ (myf5-GFP-/mylpfa-mCherry+), DN (myf5-GFP-/mylpfa-mCherry-). Not applicable (NA); tumor-propagating cell fre-

quency (TPC Freq.); 95% confidence interval (95% CI). Lower panel denotes cumulative TPC frequency for all three ERMS analyzed per

genotype. Asterisk denotes p=0.0002 by ELDA analysis.

kRASG12D Tumor #1 kRASG12D + mylpfa:myf5 Tumor #1

Cell # G+ G+R+ R+ DN Cell # G+ G+R+ R+ DN

1000 6 of 6 2 of 7 0 of 6 0 of 7 1000 2 of 3 4 of 5 0 of 6 0 of 6

100 5 of 9 0 of 9 0 of 8 0 of 10 100 6 of 10 2 of 10 0 of 8 0 of 7

10 0 of 8 0 of 8 0 of 9 0 of 7 10 3 of 10 1 of 10 0 of 10 0 of 8

TPC Freq. 1 in 140 1 in 3561 NA NA TPC Freq. 1 in 81 1 in 477 NA NA

95% CI 59–329 872–13740 NA NA 95% CI 40–165 201–1129 NA NA

kRASG12D Tumor #2 kRASG12D + mylpfa:myf5 Tumor #2

Cell # G+ G+R+ R+ DN Cell # G+ G+R+ R+ DN

1000 6 of 6 0 of 6 0 of 6 0 of 6 1000 2 of 3 1 of 2 0 of 7 0 of 7

100 4 of 7 2 of 10 0 of 10 0 of 10 100 1 of 6 3 of 6 0 of 7 0 of 10

10 1 of 8 0 of 9 0 of 10 0 of 8 10 0 of 8 0 of 9 0 of 10 0 of 8

TPC Freq. 1 in 109 1 in 3495 NA NA TPC Freq. 1 in 809 1 in 467 NA NA

95% CI 44–270 808–15120 NA NA 95% CI 244–2685 137–1589 NA NA

kRASG12D Tumor #3 kRASG12D + mylpfa:myf5 Tumor #3

Cell # G+ G+R+ R+ DN Cell # G+ G+R+ R+ DN

1000 2 of 3 0 of 2 0 of 3 0 of 4 1000 2 of 3 3 of 5 0 of 3 0 of 3

100 8 of 9 0 of 8 0 of 8 1 of 8 100 3 of 10 1 of 10 0 of 9 0 of 10

10 1 of 8 0 of 9 0 of 9 0 of 9 10 0 of 10 0 of 10 0 of 10 0 of 10

TPC Freq. 1 in 159 NA NA 1 in 4840 TPC Freq. 1 in 530 1 in 1080 NA NA

95% CI 63–401 NA NA 632–37094 95% CI 194–1445 395–2957 NA NA

Cumulative TPC frequency kRASG12D Cumulative TPC frequency kRASG12D + mylpfa:myf5

Cell # G+ G+R+ R+ DN Cell # G+ G+R+ R+ DN

TPC Freq. 1 in 146 1 in 4206 NA NA TPC Freq. 1 in 377 1 in 639* NA NA

95% CI 87–245 1550–11409 NA NA 95% CI 212–670 363–1125 NA NA

DOI: 10.7554/eLife.19214.010
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Figure 4. MYF5 and MYOD are required for human ERMS proliferation and growth. (A–B) Pearson correlation for gene expression of myogenic genes

in primary human RMS as assessed by microarray (A) or RNA-sequencing (B). Heatmap represents correlation coefficients. (C) Western blot analysis for

MYF5 and MYOD in human RMS cell lines. (D–I) Rh18 ERMS cells following MYF5 knockdown with siRNA (D–F) or shRNA (G–I). (J–O) RD ERMS cells

following MYOD knockdown with siRNA (J–L) or shRNA (M–O). Western blot analysis following knockdown at 48 hr (D,J) and 72 hr (G,M). EdU and

Propidium Iodide (PI) cell cycle analysis assessed by flow cytometry at 48 hr (E,F,K,L) and 72 hr (H,I,N,O). Standard Deviation denoted in FACS plots

and graphs. Analysis shown in D-O was completed as technical replicates and completed �3 independent times with similar results. ***p<0.001 by

Student’s t-test.

Figure 4 continued on next page
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was reduced >30% following stable sh-MYOD knockdown (Figure 4—figure supplement 3H). In

support of MYOD having important roles in regulating TPC number, sphere colony formation was

also greatly reduced in RD cells following shRNA knockdown (p<0.01, Figure 4—figure supplement

3I,J). Sphere colony formation is an in vitro surrogate for quantifying TPC number and correlates

well with in vivo limiting dilution cell transplantation experiments (Walter et al., 2011;

Satheesha et al., 2016). Finally, MYOD knockdown also impaired cell cycle and growth in additional

RMS cell lines including ERMS cell lines 381T and RMS559 and the ARMS cell line Rh3. These cells

lines all had significant reductions in S-phase cycling cells following siRNA treatment with variable

effects on apoptosis at the time points analyzed (Figure 4—figure supplement 4A–L). Importantly,

specificity of MYF5 and MYOD knockdown was confirmed in multiple cells lines, showing that siRNA

knockdown effects were specific to each MRF and that myogenic factors were not redundantly re-

expressed following knockdown (Figure 4—figure supplement 4M–T). In total, our data show that

MYF5 and MYOD are individually expressed in different RMS tumor cells and yet have similar roles

in regulating cell cycle progression and proliferation in RMS.

Myogenic transcription factors are required for continued xenograft
growth
Given the prominent role MYF5 had in regulating cell growth in human ERMS cells in vitro and

imparting tumor propagating potential to differentiated zebrafish ERMS cells, we next wanted to

assess if MYF5 was required for ERMS maintenance and growth in vivo. Rh18 cells were infected

with shRNAs and harvested at 72 hr post-infection. MYF5 knockdown was confirmed by Western

blot analysis (Figure 5A). Luciferase-mKate expressing Rh18 shRNA cells were transplanted into the

flanks of NOD/SCID/IL2rg null mice (1 � 106 viable cells in matrigel per site). Non-targeting control

shRNA cells were implanted subcutaneously into the left flank and MYF5 knockdown cells into the

right (N = 6 animals, two independent shRNAs). 5 hr after injection, mice were injected with luciferin

and bioluminescence was measured, confirming that the same amount of control and knockdown

cells had been injected into recipient mice (Figure 5B). Serial bioluminescence imaging showed that

tumor volume was reduced in MYF5 knockdown cells while control cells continued to grow (p<0.05,

Student’s t-test; Figure 5—figure supplement 1A). MYF5 knockdown cells were largely undetected

at late time points (p<0.05, Student’s t-Test; Figure 5B,C). Analysis of mice at necropsy revealed

that only 2 of 12 mice had tumors derived from MYF5-deficient Rh18 cells and that overall tumor

weight was greatly reduced when compared with control Rh18 knockdown cells (p<0.01; Student’s

t-test; Figure 5D–E). For these rare ERMS that developed from MYF5 knockdown Rh18 cells, they

retained ERMS histology (Figure 5—figure supplement 1D,E). Taken together, these data show

that MYF5 is required for efficient xenograft tumor cell growth in vivo.

Next, we assessed if MYOD was also important for continued xenograft growth of human ERMS

cells. Using the same approach outlined above, we found that shRNA knockdown of MYOD resulted

in efficient knockdown prior to tumor cell implantation (Figure 5F,K) and reduced xenograft growth

of both RD and RMS559 cells when assessed by total body luciferase imaging completed overtime

(p<0.01; Figure 5F–H,K–M and Figure 5—figure supplement 1B,C). MYOD knockdown tumors

were also smaller at the time of necropsy (Figure 5I,N) and weighed significantly less than control

shRNA expressing tumors (p<0.01, Student’s t-test; Figure 5J,O). Unlike our Rh18 experiments,

MYOD knockdown cells continued to grow in transplant recipient animals, albeit at greatly reduced

Figure 4 continued

DOI: 10.7554/eLife.19214.011

The following figure supplements are available for figure 4:

Figure supplement 1. Pearson correlation of gene expression from RNA-seq data of primary human RMS.

DOI: 10.7554/eLife.19214.012

Figure supplement 2. Immunofluorescence for MYF5 and MYOD in Rh18 and RD ERMS cell lines.

DOI: 10.7554/eLife.19214.013

Figure supplement 3. MYF5 and MYOD are required for human RMS proliferation and growth in vitro.

DOI: 10.7554/eLife.19214.014

Figure supplement 4. MYF5 and MYOD are each specifically required for human RMS proliferation and growth in vitro.

DOI: 10.7554/eLife.19214.015
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levels. These data suggest both important similarities for MRF factors in driving proliferation and

growth and yet, also suggest that additional molecular mechanisms likely contribute to continued

tumor growth in MYOD-expressing ERMS. As with the Rh18 experiments, tumors that formed fol-

lowing shMYOD knockdown retained similar RMS morphology when compared with control treated

cells (Figure 5—figure supplement 1F–I).

MYF5 and MYOD control common transcriptional targets to regulate
proliferation and myogenic state in human RMS
Our work uncovered that MYF5 and MYOD are largely mutually exclusively expressed in RMS and

that each is required for proliferation. MYF5 and MYOD also bind directly to enhancers of well-

known muscle regulated genes in development, including myogenin and CDH15 (m-cadherin)

(Conerly et al., 2016). These data suggest that these transcription factors likely regulate a common

set of transcriptional targets that lock RMS cells in a proliferative myogenic state. To further explore

this hypothesis, we next performed ChIP-seq for MYF5 in Rh18 cells and compared these results

Figure 5. MYF5 and MYOD are required for human ERMS xenograft growth. Xenograft growth in Rh18 (A–E), RD (F–J), and RMS559 (K–O) following

knockdown with scramble control shRNA (sh-SCR) or shRNAs specific to MYF5 or MYOD. (A,F,K) Western blot analysis of shRNA expressing cells

harvested for transplantation at 72 hr after lenti-viral shRNA knockdown. Percent knockdown compared to shRNA control is shown. (B,G,L) Luciferase

bioluminescent imaging of a representative animal at the time of implantation (left panel) or at later time points (right panel). Control shRNA cells were

implanted into left flank and knockdown cells into the right (N = 6 mice per shRNA). Intensity represents total luminescence units measured per region

of interest (L.U.) (C,H,M) Quantification tumor volume when assessed by luciferase imaging. Relative luminescence units (R.L.U). (D,I,N) Representative

images of mice at the time of necropsy, with excised tumors shown in lower panels. (E,J,O) Quantification of tumor weight at the time of necropsy.

Tumors that could not be identified at time of necropsy were assigned a value of zero for this analysis. Standard Error of the Mean are denoted in

graphs. **p<0.01; ***p<0.001 by Mann-Whitney non-parametric test. Scale bar equals 1 cm in D,I, and N.

DOI: 10.7554/eLife.19214.016

The following figure supplement is available for figure 5:

Figure supplement 1. MYF5 and MYOD are required for human ERMS growth and maintenance following xenograft transplantation into NOD/SCID/

IL2g null mice.

DOI: 10.7554/eLife.19214.017
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Figure 6. MYF5 and MYOD bind common promoter and enhancer regions and induce genes involved in muscle development and cell cycle. (A–B)

ChIP-seq analysis showing genomic regions bound by both MYOD in RD cells and MYF5 in RH18 cells. H3K27 acetylation (H3K27ac). (C) Gene ontology

enrichment of gene regions bound by both MYOD in RD cells and MYF5 in RH18 cells. GO Biological Processes, GO Cellular Component predictions,

and binomial p-values denoted. (D) Signal tracks for ChIP-seq and RNA-seq surrounding MYOG (top) and CCND2 (bottom). Numbers to the right

Figure 6 continued on next page
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with ChIP-seq data performed for MYOD in RD cells (MacQuarrie et al., 2013a) (Figure 6 and Fig-

ure 6—figure supplement 1). This analysis uncovered a common set of promoter and enhancer

regions bound by both MYOD and MYF5 (Figure 6A). 86% of commonly bound genomic DNA

regions were confined to enhancer regions as defined by H3K27-acetylation occupancy (Figure 6A,

B). Unbiased analysis of commonly bound target genes using GREAT (McLean et al., 2010),

Supplementary file 2) revealed an enrichment of genes that regulate cell cycle and myogenic cell

fate (Figure 6C). Enrichment of GO terms included ‘cyclin-dependent protein kinase holoenzyme

complex’ (Supplementary file 3), ‘skeletal muscle tissue development’ and ‘embryonic skeletal sys-

tem development’ (Supplementary file 4; binomial, p<1x10�9). Signal tracks of ChIP-seq and RNA-

seq independently confirmed common binding of MYF5 and MYOD to genes that regulate cell cycle

and myogenic cell fate (Figure 6D), including cyclin-dependent kinase cyclin D2 (CCND2), myogenin

(MYOG), and cadherin 15 (m-Cadherin, CDH15, Figure 6D and Figure 6—figure supplement 1B).

In order to show that MYF5 and MYOD are regulators of cell fate, we next performed qRT-PCR

gene expression analysis for muscle differentiation genes following si-MYF5 or si-MYOD knockdown

in Rh18 and RD cells, respectively (Figure 6E). As expected if myogenic transcription factors regu-

late muscle cell fate, both Myogenin and CDH15 were downregulated following MYF5 or MYOD

knockdown at either 48 or 72 hr (Figure 6E). Additionally, the cell cycle regulatory gene, CCND2

was also reduced following MYF5 or MYOD knockdown (Figure 6E). Moreover, the zebrafish ortho-

logue ccnd2a transcript showed a trend toward higher expression in mylpfa:myf5 expressing zebra-

fish ERMS (Figure 6—figure supplement 2), correlating well with elevated myf5 expression in these

tumors. CCND2 is a CDK4/6-associated cyclin that is amplified in a subset of human RMS and is

required for cell proliferation and viability in human RMS (Chen et al., 2013a). Importantly, CCND2

is a predicted direct target of MYF5 and MYOD binding (Conerly et al., 2016). Together, our data

show that MYF5 and MYOD regulate common gene programs that lock cells in an arrested myo-

genic fate and are required for sustained proliferation of RMS cells.

Discussion
Rhabdomyosarcomas express b-Helix-loop-Helix (bHLH) myogenic regulatory transcription factors

(MRFs), including MYF5 and MYOD (Clark et al., 1991; Kumar et al., 2000; Sebire and Malone,

2003) but fail to activate terminal muscle differentiation programs. Several mechanisms have been

shown to play a role in this differentiation arrest. These include disruption of the balance of MRF-

E12 heterodimers and inhibitor complexes (Macquarrie et al., 2013b; Yang et al., 2009), presence

of inhibitory miRNAs (Macquarrie et al., 2012), and deregulation of cell cycle (Fiddler et al., 1996).

These data have therefore led to the suggestion that MRFs do not have a role in RMS transformation

or in sustained tumor growth, but are merely retained from the target cell of transformation

(Keller and Guttridge, 2013). While MYOD overexpression fails to differentiate ERMS cells

(Yang et al., 2009), both MYF5 and MYOD potently reprogram fibroblasts into proliferating muscle

cells (Braun et al., 1989; Tapscott et al., 1988). Moreover, MYF5 and MYOD are commonly re-

expressed in experimental animal models of RMS irrespective of the cell of origin (Hettmer et al.,

2011, 2015; Ignatius et al., 2012; Langenau et al., 2007; Rubin et al., 2011; Storer et al., 2013)

suggesting roles for these transcription factors in driving tumor growth and TPC function. Our

experiments have shown that Myf5 can impart tumor-propagating potential to ERMS cells in the

zebrafish model, suggesting important roles for myogenic regulatory transcription factors in

Figure 6 continued

indicate reads per million mapped reads. (E) Quantitative real-time PCR gene expression analysis of RH18 (top) and RD cells (bottom). Cells were

assessed following siRNA-mediated knockdown at 2 days (2dpt, blue bars) or 3 days post-transfection (three dpt, red bars). Error bars denote standard

deviation. Student’s t-test; *p<0.05, **p<0.01, ***p<0.001.

DOI: 10.7554/eLife.19214.018

The following figure supplements are available for figure 6:

Figure supplement 1. MYF5 and MYOD bind common promoter and enhancer regions.

DOI: 10.7554/eLife.19214.019

Figure supplement 2. Ccnd2a expression in zebrafish ERMS.

DOI: 10.7554/eLife.19214.020

Tenente et al. eLife 2017;6:e19214. DOI: 10.7554/eLife.19214 14 of 24

Research article Cancer Biology Developmental Biology and Stem Cells

http://dx.doi.org/10.7554/eLife.19214.018
http://dx.doi.org/10.7554/eLife.19214.019
http://dx.doi.org/10.7554/eLife.19214.020
http://dx.doi.org/10.7554/eLife.19214


regulating growth. These data were confirmed by loss-of-function studies in human RMS where

MYF5 or MYOD knockdown suppressed RMS proliferation and reduced viability in vitro. Similar

effects were also observed in xenograft studies, where MYF5- and MYOD-knockdown ERMS cells

failed to grow efficiently in vivo. Remarkably, despite over 25 years of study into MYOD and MYF5,

loss-of-function studies in RMS have not been reported and thus roles for these factors in regulating

RMS growth have gone unappreciated.

It is becoming increasingly noted that developmental transcription factors and pathways are com-

monly co-opted by cancer to regulate growth and tumor-propagating activity. For example, the

TAL1/SCL bHLH transcription factor is required for hematopoietic stem cell specification and self-

renewal during development. TAL1/SCL is overexpressed in 60% of T-cell acute lymphoblastic leuke-

mia (T-ALL) (Ferrando et al., 2002) and can reprogram thymocytes into self-renewing, pre-leukemic

cells (Gerby et al., 2014). This same paradigm has also been seen in brain tumors. For example, the

bHLH transcription factor OLIG2 is required for self-renewal of normal neural progenitor cells

(Imayoshi and Kageyama, 2014) and is also a marker of glioblastoma TPCs (Beyeler et al., 2014;

Ligon et al., 2007; Suvà et al., 2014; Trépant et al., 2015). Our results in RMS parallel those out-

lined for T-ALL and glioblastoma, showing that MRFs are capable of reprogramming differentiated

RMS cells into TPCs and are required for sustained proliferation and viability of human RMS. Our

data also suggests, that like T-ALL and glioblastoma, the MYF5 and MYOD bHLH proteins regulate

common molecular pathways in self-renewal and growth of both normal and malignant muscle.

Importantly, transcription factors have recently been therapeutically targeted (Bhagwat and Vakoc,

2015; Roe et al., 2015), raising hope that developing drugs that inhibit MYF5 and MYOD cancer

cell dependencies could be efficacious in treating RMS patients in the future.

Our molecular analysis also uncovered that MYF5 and MYOD are mutually-exclusively expressed

in human RMS. Loss-of-function studies uncovered important roles for either MYF5 or MYOD in reg-

ulating RMS growth and muscle cell fate. This data contrasts starkly with co-expression of these fac-

tors and functionally overlapping roles in development. For example, MYF5 and MYOD are well-

known to act redundantly in muscle development to regulate muscle specification and differentiation

(Rudnicki et al., 1993). This same redundancy of Myf5 and MyoD in development and muscle injury

has now been reported in zebrafish (Hinits et al., 2009; Siegel et al., 2013), Drosophila

(Abmayr and Keller, 1998) and Xenopus (Chanoine and Hardy, 2003), showing a high conservation

of the MYOD/MYF5 transcriptional machinery in regulating muscle specification and development

throughout evolution. These same MRFs are also required for self-renewal of adult muscle satellite

cells (Cooper et al., 1999; Ustanina et al., 2007; Yablonka-Reuveni et al., 1999), yet roles for

these factors in individually regulating muscle fate and self-renewal are now just emerging in the lit-

erature. For example, a subset of muscle progenitors are specified by MYOD without the contribu-

tion of MYF5 (Haldar et al., 2008, 2014). Moreover, a subset of adult muscle progenitors express

MYF5 and then MYOD sequentially during their specification with both being required for muscle

regeneration following injury (Comai et al., 2014). Our data suggest that either MYOD or MYF5 are

uniquely expressed within human RMS and are each individually sufficient to drive tumor growth.

These data are consistent with similar roles for either Myf5 or MyoD to reprogram fibroblasts into

muscle cell fates (Braun et al., 1989; Tapscott et al., 1988) and a high degree of overlap in binding

of common enhancer and promoter targets with normal myoblasts (Conerly et al., 2016).

Finally, our work uncovered downstream pathways required for RMS growth that were regulated

by MYOD and MYF5, including muscle specification programs and cell cycle. For example, m-cad-

herin (CDH15) and myogenin (MYOG) were transcriptionally regulated by MYF5 and MYOD in

human RMS, consistent with regulation of these same factors by MYF5 and MYOD in myoblasts

(Conerly et al., 2016). Our work also uncovered roles for MRFs in regulating cyclin D2 (CCND2) in

human RMS. Importantly, the CDK4/6-associated cyclin D2 (CCND2) complex is required for both

myoblast proliferation and human RMS growth, is highly expressed in primary human RMS and is

amplified in a subset of human and zebrafish RMS (Chen et al., 2013a; Saab et al., 2006;

Webster and Fan, 2013). Collectively, our data suggest that MYOD and MYF5 likely exert import

roles in regulating muscle cell identity and cell cycle regulation, both of which are required for sus-

tained tumor growth and likely shared with normal muscle to regulate stem cell self-renewal.
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Materials and methods

Animals and protocol approvals
Studies were approved by the Massachusetts General Hospital Subcommittee on Research Animal

Care under the protocol #2011 N000127 (zebrafish) and #2013 N000038 (mouse). Biosafety lentiviral

work was approved by the Partners IBC under protocol #2013B000039. Zebrafish used in this work

include: CG1 strain (Mizgireuv and Revskoy, 2006), myf5-GFP (Chen et al., 2007) and mylpfa-

mCherry (previously mylz2-mCherry)(Xu et al., 1999) transgenic zebrafish lines and ragE450fs (ZFIN

IND rag2fb101) homozygous fish (Tang et al., 2014; Tenente et al., 2014). myf5-GFP/mylpfa-

mCherry double transgenic fish (AB strain) were outcrossed 10 times into CG1-strain zebrafish to

generate compound syngeneic transgenic zebrafish (Ignatius et al., 2012). 6-week-old NOD/SCID/

Il2rg null female mice were used in this work.

Micro-injection and ERMS generation in transgenic zebrafish
rag2-kRASG12D and mylpfa-mCherry constructs were described previously (Langenau et al., 2007;

Smith et al., 2010). The mylpfa-myf5 construct was obtained by gateway cloning using a zebrafish

myf5 ORF from 24hpf zebrafish embryo cDNA (http://tol2kit.genetics.utah.edu). rag2-kRASG12D and

mylpfa-myf5 constructs were linearized with XhoI, phenol:chloroform-extracted, ethanol-precipi-

tated, re-suspended in 0.5� Tris-EDTA + 0.1 M KCl, and injected into one-cell stage embryos of the

respective backgrounds, as previously described (Langenau et al., 2007; Tenente et al., 2014). We

and others have used the mylpfa promoter to drive transgene expression in differentiated muscle

cells both in the stable and mosaic transgenic setting (Ju et al., 2003; Ignatius et al., 2012;

Storer et al., 2013; Tang et al., 2016) confirming that mylpfa transgene expression is confined to

differentiated ERMS cells.

Quantification of zebrafish RMS size, tumor onset, and penetrance
Zebrafish were monitored every 3–4 days for time-to-tumor onset using an epi-fluorescent stereomi-

croscope. Animals were imaged at 10 days postfertilization until 55 days postfertilization. Primary

tumor size was quantified from 6.3x or 10x photomicrographs taken at 30 postfertilization and calcu-

lated by multiplying fluorescence intensity by 2D pixel area using the ImageJ software package as

previously described (Chen et al., 2014). Kaplan-Meier tumor onset and penetrance analysis was

performed using Graphpad Prism Software and statistically analyzed using the Log-rank statistic.

Zebrafish histology, immunohistochemistry and EdU incorporation
Paraffin embedding, sectioning and immunohistochemical analysis of zebrafish sections were per-

formed as described (Chen et al., 2013a, 2014; Ignatius et al., 2012). Antibodies used for immuno-

histochemistry included: phospho-H3 (1:6000, Santa Cruz Biotechnology, Dallas, Texas) and cleaved-

caspase3 (CC3, 1:250, Cell Signaling Technology, Danvers, MA). All histopathology procedures were

performed at the MGH and BWH DF/HCC Research Pathology Cores. Slides were imaged using a

transmitted light Olympus BX41 microscope. Pathology review and staging were completed by G.P.

N. Tumor histology classification was assigned as described in Figure 1—figure supplement 2 and

Figure 2—figure supplement 1 with stage one being the least differentiated with tumors being

comprised of only small round blue cells. Stage 2 and 3 ERMS were assigned based on the prepon-

derance of rhabdomyoblast cells, fibrous and spindle cell morphology, with a low proportion of

interspersed smaller round blue cells. EdU was injected intraperitoneally into live tumor-bearing

zebrafish and incubated for 6 hr prior to fixation as described previously (Ignatius et al., 2012). Ani-

mals were cryosectioned and stained using the Click-iT Alexa Fluor 647 imaging kit

(Invitrogen, Carlsbad, CA). Images were acquired using a Zeiss 710 Confocal microscope

(Zeiss, Oberkochen, Germany).

Zebrafish ERMS cell transplantation and FACS
FACS analysis and RMS cell transplantation by intra-peritoneal injection were completed essentially

as described (Chen et al., 2014; Ignatius et al., 2012; Langenau et al., 2007; Smith et al., 2010).

Freshly isolated RMS tumor cells were stained with DAPI to exclude dead cells and sorted twice

using a Laser BD FACSAria II Cell Sorter. Sort purity and viability were assessed after two rounds of
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sorting when possible, exceeding 85% and 95% respectively. Fish were monitored for tumor engraft-

ment from 10 to 120 days post transplantation. Tumor-propagating cell frequency was quantified

following transplantation into CG1 syngeneic recipient fish using the Extreme Limiting Dilution Anal-

ysis software (http://bioinf.wehi.edu.au/software/elda/). A subset of transplanted fish were fixed in

4% PFA in PBS, sectioned, stained with Hematoxylin and Eosin (H and E), and staged for differentia-

tion score.

Gene expression analysis
Total RNA was isolated from AB-strain embryos 6 and 24 hr postfertilization, FAC-sorted ERMS cell

subpopulations, bulk unsorted primary zebrafish ERMS or human RMS samples. Quantitative real-

time PCR utilized gene-specific PCR primers (Supplementary file 1), and expression was normalized

to 18S controls (zebrafish samples) or GAPDH (human samples) to obtain relative transcript levels

using the 2-ddCT method. Technical triplicates were completed for all qRT-PCR reactions and data

presented as average expression ±1 standard deviation. For zebrafish RMS sub-populations, relative

gene expression was normalized within individual samples, and cumulative transcript expression

across the two ERMS cell subpopulations was set to 50. Samples were assessed in relation to 24 hr

postfertilization embryos to ensure that results for 2-ddCT results for any given gene were not lower

than 10-fold expression found in normal development, as previously described (Ignatius et al.,

2012). For zebrafish bulk primary ERMS gene expression analysis, samples were also assessed in

relation to 24 hr postfertilization embryos. For human RMS gene expression analysis, knockdown

samples were assessed in relation to si-SCR controls.

Human RMS cell lines
The human RD cell line was obtained from ATCC’s cell biology collection (Manassas, Virginia). SMS-

CTR, 381T, Rh3, Rh5 and Rh30 cell lines were kindly provided by Dr. Corrine Linardic (Duke Univer-

sity, North Carolina), the Rh18 cell line (fusion-negative) by Dr. Peter Houghton (Ohio State Univer-

sity, now at UTHSCSA) and RMS559 by Dr. Jonathan Fletcher (Brigham and Women’s Hospital,

Massachusetts). All RMS cell lines were authenticated by STR profiling and were mycoplasma tested.

Cell lines used in this work are not commonly misidentified based on the International Cell Line

Authentication Committee. The human MB1208-1 human skeletal myoblast cell line was kindly pro-

vided by Dr. Louis Kunkel (Boston Children’s Hospital, Massachusetts). Characteristics of these

human RMS (Hinson et al., 2013; Sokolowski et al., 2014) and skeletal myoblast (Alexander et al.,

2011) cell lines have been reported previously.

Western blot analysis
Total cell lysates from human RMS cell lines were obtained following lysis in 2%SDS lysis buffer sup-

plemented with protease inhibitors (Santa Cruz Biotechnology, Dallas, Texas). Samples were boiled,

vortexed and homogenized through a 28G syringe. 20–40 mg of protein was loaded in 4–20% Mini-

Protean TGX gels (Biorad, Hercules, CA) and transferred onto PVDF membranes. Western blot analy-

sis used primary antibodies: rabbit a-MYF5 (1:5000, Abcam ab125078, Cambridge, MA), mouse

a-MYOD1 (1:1000, Abcam ab16148, Danvers, MA), rabbit a-MYOD1 (1:1000, Abcam ab133627),

rabbit a-GAPDH (1:2000, Cell Signaling 2118), mouse a-TUBULIN (1:2500, Abcam ab4074) and sec-

ondary antibodies: HRP anti-rabbit (1:2000, Cell Signaling 7074) or HRP anti-mouse (1:3000, GE

Healthcare NA93IV, Marlborough, MA). Blocking was completed using 5% skim milk/TBST. Mem-

branes were developed using an ECL reagent (Western Lightening Plus-ECL, Perkin

Elmer, Waltham, MA or sensitive SuperSignal West phemto Maximum Sensitivity Substrate, Thermo

Scientific, Waltham, MA).

MYF5 and MYOD siRNA knockdown and immunofluorescence
Gene-specific smart-pool or control siRNAs (Dharmacon, GE Life Sciences, Marlborough, MA) (0.01

mM) were reverse-transfected into cells using RNAiMax lipofectamine transfection reagent (Life

Technologies, Waltham, MA) in flat clear bottom 96 well plates. Cells were then fixed at 72 hr post

transfection in 4% PFA/PBS, washed in x1 PBS and permeabilized in 0.5% TritonX-100/PBS. Antibod-

ies used were rabbit a-Myf5 (1:400, Abcam ab125078) and mouse a-MyoD (1:200, Abcam ab16148)

in 2% goat serum/PBS, Alexa 488 goat anti-mouse (1:1000, Invitrogen A11029) and Alexa 594 goat
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anti-rabbit (1:1000 Invitrogen A11037). Cells were incubated with DAPI (1 mg/ml), and imaged at

200x using a LSM710 Zeiss Laser scanning confocal microscope. Images were processed in ImageJ

and Adobe Photoshop.

For EdU and AnnexinV assays, gene-specific smart-pool or control siRNAs (Dharmacon, GE Life

Sciences) (5 mM) were added to Rh18, RD, 381T, RMS559 and Rh3 cells in a 6-well plate and incu-

bated for 48–96 hr prior to analysis.

MYF5 and MYOD lentiviral shRNA knockdown
Non-targeting scrambled (SCR) control shRNA and MYF5 or MYOD specific shRNAs were delivered

on the pLKO.1-background vector (from MGH Molecular Profiling Laboratory) and packaged using

293T cells (Supplementary file 1). RMS cells were infected with viral particles for 24 hr at 37˚C with

8 mg/ml of polybrene (EMD Millipore, Billerica, MA).

Human RMS in vitro assays
Nuclei counts were performed following incubation with NucBlue Live ReadyProbes Reagent (Life

Technologies). Cells were imaged at 100X and 400X magnification using an inverted fluorescent

microscope. Manual cell counts were performed using the ImageJ software. Three fields were

counted per well and completed in triplicate. Cell cycle analysis was performed using the EdU Click-

iT plus EdU Flow Cytometry-AlexaFluor 647 picol azide assay (Life Technologies) following 2 hr (RD,

381T, Rh3, RMS559) or 6 hr incubation (Rh18) with 10 mM EdU. Apoptosis was assessed using the

AnnexinV-AlexaFluor 647/PI or 7AAD assays (Life Technologies and BD Biosciences, San Jose, CA).

Flow cytometric analysis was performed using the SORP4 Laser BD LSRII Flow Cytometer and proc-

essed with the FlowJo Software. All experiments were run as technical triplicates and repeated �3

independent times. Sphere formation assays using RD cells were completed essentially as previously

described (Walter et al., 2011).

Primary human RMS gene expression and correlation analysis
Previously published microarray gene expression data were processed and normalized using Robust

Multichip Average (RMA) normalization (Davicioni et al., 2006) (raw data was obtained from the

NCI Cancer Array Database). Previously published RNA-seq gene expression data from human RMS

were processed and normalized using a standard Tuxedo pipeline (Shern et al., 2014;

Trapnell et al., 2012). The resulting expression values from the microarray and RNA-seq datasets

were then log2 transformed. Pearson correlation was determined for the following genes: CDH15,

MYF5, MYF6, MYOD1, MYOG, PAX3, and PAX7. The correlation heatmap was plotted using the R

package ‘fheatmap’ (Fantastic Heatmap. R package version 1.0.1. http://CRAN.R-project.org/pack-

age=fheatmap) and processed using Adobe Photoshop.

ChIP-seq of human RMS cell lines
Chromatin immunoprecipitations were performed on Rh18 cells using the Chip-IT High sensitivity kit

(Active Motif, Carlsbad, CA) and anti-H3K27ac (Active Motif) or anti-MYF5 (C-20, Santa Cruz) anti-

bodies. Resultant purified immune-precipitated DNA was used for library preparation using the Tru-

Seq ChIP sample preparation kit (Illumina, San Diego ,CA) without modifications. 11–18 library preps

were mixed for multiplexed single read sequencing using the NextSeq500 (Illumina).Previously pub-

lished MYOD ChIP-seq data from RD was downloaded and processed in parallel with the newly gen-

erated sequencing data (GSE50415, GSE84630) (MacQuarrie et al., 2013a). Reads were aligned to

the hg19 reference using BWA. ChIP-seq peaks were identified using MACS 2.1 (Zhang et al.,

2008). Gene ontology was performed using GREAT (McLean et al., 2010). Differential peak calling

between RD and Rh18 was performed using bedtools v2.25.0 and visualized using NGS plot

(Shen et al., 2014). Genomic regions were visualized using IGV v2.3.40.

Mouse xenografts, luciferase imaging, necropsy and histological
analysis
Rh18, RD and RMS559 ERMS cells were co-infected with pLKO.1-shRNA lentivirus and pLKO.1-luc-

mKate (gift from Drs. Matthijssens and Van Vlierberghe, Ghent University, Belgium). At 3 days post-

infection, cells were collected and counted. An aliquot of cells was analyzed using the SORP4 Laser
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BD LSRII Flow Cytometer to determine viability following DAPI staining. Separate aliquots of cells

were harvested and used for Western blot analysis. Equal numbers of viable cells were then embed-

ded into Matrigel (Corning Life Sciences, Tewksburg ,MA) at a final concentration of 1 � 106 of via-

ble cells per 200 ml. Six-week-old NOD/SCID/IL2rg null female mice were anesthetized by

isofluorane and transplanted with scramble-shRNA/mKate-luc cells subcutaneously into the left flank

(N = 6 animals/shRNA construct) whereas sh-MYF5 or sh-MYOD/mKate-luc cells were injected on

the right (200 ml/flank injection). Tumor growth was monitored by bioluminescence imaging follow-

ing subcutaneous injection into the loose tissue over the neck of 75 mg/kg D-luciferin (Perkin

Elmer, Waltham, MA) in 100 ml of PBS. Imaging was completed and analyzed using the IVIS Lumina II

(Caliper Life Science, Hopkinton, MA). At time of necropsy, mouse brightfield images were acquired

using a regular camera and tumors were excised, weighed, processed and stained using Hematoxy-

lin and Eosin. Comparisons of tumor size and weight between groups used the Student’s t-test after

a normality test was performed, otherwise a Mann-Whitney analysis was performed, as indicated in

the figure legends.
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