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Abstract

We explore naturalness constraints on the masses of the heavy Higgs bosons H0, H±, and
A0 in supersymmetric theories. We show that, in any extension of MSSM which accom-
modates the 125 GeV Higgs at the tree level, one can derive an upper bound on the SUSY
Higgs masses from naturalness considerations. As is well-known for the MSSM, these
bounds become weak at large tanβ . However, we show that measurements of b → sγ
together with naturalness arguments lead to an upper bound on tanβ , strengthening the
naturalness case for heavy Higgs states near the TeV scale. The precise bound depends
somewhat on the SUSY mediation scale: allowing a factor of 10 tuning in the stop sec-
tor, the measured rate of b → sγ implies tanβ ∼< 30 for running down from 10 TeV but
tanβ ∼< 4 for mediation at or above 100 TeV, placing mA near the TeV scale for natural
EWSB. Because the signatures of heavy Higgs bosons at colliders are less susceptible to be-
ing “hidden” than standard superpartner signatures, there is a strong motivation to make
heavy Higgs searches a key part of the LHC’s search for naturalness. In an appendix we
comment on how the Goldstone boson equivalence theorem links the rates for H → hh
and H → Z Z signatures.

1 Introduction

The most compelling argument for the possibility of supersymmetry near the weak scale is that
it allows for the possibility of natural electroweak symmetry breaking. This possibility, how-
ever, hinges on a number of conditions [1–4]. The tree-level electroweak symmetry breaking
conditions show that the Higgs VEV should not be much larger than the higgsino mass param-
eter µ, so naturalness requires light higgsinos [1, 5–9]. At one loop, the top quark correction
to the up-type Higgs mass parameter m2

Hu
must be approximately canceled, requiring light

stop squarks [5–8,10–14]. Finally, the stops themselves suffer from large corrections due to a
gluino loop, requiring that the gluinos must also not be too heavy [7, 8]. Although higgsinos
are difficult to constrain experimentally, the search for natural SUSY has driven an extensive
effort to discover stops or gluinos at the LHC. This effort has succeeded in placing stringent
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bounds on their possible masses and decay modes. For an up-to-date review of the implica-
tions of LHC data for SUSY, see Ref. [15]. (Also see refs. [16] and [17] for recent overviews
of the status of SUSY naturalness.)

When we discuss natural SUSY, we will always have in mind a scenario with relatively
light stops. Loop corrections from the stops in natural scenarios are not sufficient to lift the
SM-like Higgs mass to 125 GeV. As a result, we will assume that new physics beyond the MSSM
provides a new contribution to the Higgs quartic coupling and raises the Higgs mass at the tree
level. Many options are available for this, including new F or D-term quartics [18–20].

In this paper we explore to what extent the heavy Higgs bosons of the MSSM and its ex-
tensions, H0, H±, and A0, could also constitute probes of naturalness. As with the higgsino
mass parameter µ, their mass terms appear in the tree-level conditions for EWSB, so natural-
ness will not be consistent with arbitrary values of these parameters. The reason that heavy
Higgses have not joined the usual pantheon of naturalness signatures is that, in the MSSM, it
is only the ratio mA/ tanβ of their mass scale to tanβ that is constrained, so at large tanβ they
can be out of reach of colliders without requiring any fine-tuning [6]. On the other hand, in
scenarios like λSUSY where tanβ is order-one [19], it is known that naturalness requires the
other Higgs bosons to be light [21]. The tuning cost of raising the heavy Higgs masses when
tanβ is not large was recently emphasized in Ref. [22].

Our goal in this paper is to construct an argument that, in any given extension of the
MSSM, even at large tanβ , there is an upper bound on the heavy Higgs masses arising from
naturalness. We derive simple expressions for the fine-tuning when different possible quartic
couplings are added to raise the Higgs mass to 125 GeV. The only case in which there is not
an immediate bound is the MSSM-like case of an

��Hu

��4 quartic, for which the heavy Higgses
can be made heavy while simultaneously going to large tanβ . However, we will argue that
measurement of b→ sγ, together with a combination of naturalness and direct constraints on
other superpartner masses, allows us to cut off the large-tanβ tail of the natural parameter
space. The fact that b→ sγ is difficult to suppress in natural SUSY due to a contribution from
a loop of stops and higgsinos was emphasized in ref. [23]. Our discussion will be somewhat
more general because we assume that the Higgs mass is lifted by quartic couplings beyond
the MSSM, relaxing constraints on At assumed in that reference. Nonetheless, we will find a
constraint.

Thus, there is a bound from a combination of tree-level naturalness and b→ sγ measure-
ments on the mass scale of heavy Higgs bosons in a natural supersymmetric theory. Unlike
the tree-level constraint on higgsinos, which is difficult to exploit because they can be essen-
tially invisible at colliders, the parameter space for natural heavy Higgses can be significantly
constrained by data. Both direct searches and O (v2/m2

H) corrections to the light Higgs boson
decay widths play a part in this. We close our paper with a brief look at the prospects for
experimental tests of natural SUSY in these heavy Higgs search channels.
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2 Tree-level fine-tuning

The most general renormalizable potential for the two Higgs doublets Hu and Hd is [24–26]:

V (Hu, Hd) = M2
u

��Hu

��2+M2
d

��Hd

��2+ �bHu ·Hd + h.c.
�
+

1

4
λ1

��Hu

��4+λ2H†
uHu

�
Hu ·Hd + h.c.

�

+λ3

��Hu

��2 ��Hd

��2+ 1

2
λ4

�
Hu ·Hd + h.c.

�2+λ5

��Hu ·Hd

��2

+λ6H†
d Hd

�
Hu ·Hd + h.c.

�
+

1

4
λ7

��Hd

��4 . (1)

Here Hu · Hd denotes the SU(2)-invariant contraction with an antisymmetric ε symbol. One
may be tempted to write another term (H†

d Hu)(H†
uHd), but this is just the linear combination��Hu

��2 ��Hd

��2−
��Hu ·Hd

��2 and can be absorbed into λ3 and λ5. For simplicity we use the notation

M2
u ≡

��µ
��2+m2

Hu
and M2

d ≡
��µ
��2+m2

Hd
. In the MSSM, the nonzero tree-level quartic couplings

are:

λ1 = λ7 =
g2+ g ′2

2
; λ3 =

g2− g ′2

4
; λ5 =−

g2

2
. (2)

However, in the MSSM at tree level the Higgs mass is always smaller than the measured value,
so we must raise it. For the most part, in this paper, we will simply assume that the Higgs
mass is lifted by a new, hard SUSY-breaking contribution to one of the quartic couplings λi,
and that beyond-MSSM physics otherwise does not affect the Higgs potential. The new term
could arise from new F -terms in higher-dimension operators [20, 27] or from nondecoupling
D-terms from new gauge groups [18,28,29].

In some cases, the detailed physics lifting the Higgs mass will also affect Higgs properties
in more significant ways, e.g. when mixing with a singlet [21, 30–32] or triplet [20, 33] is
important. We will not consider these models in detail, but we expect that although they may
provide further experimental search channels they will not alter the basic conclusion about
whether decoupling the heavy Higgs bosons is natural.

In this section we will focus on the quartic couplings λ1

��Hu

��4 and λ5

��Hu ·Hd

��2, which we
view as well-motivated possibilities. We will not discuss the other cases, but a similar exercise
can be carried out for all of them. The quartics λ6 and λ7 have effects only at small tanβ ,
which is disfavored because it requires a very large top Yukawa coupling. The couplings λ3

and λ4 have a similar effect to λ5, since they involve two up-type Higgs bosons and two down-
type Higgs bosons. The coupling λ2 is an interesting intermediate case, favoring moderate
tanβ , but we don’t know of a model in which in dominates.

2.1 Reminder: EWSB and tuning in the tree-level MSSM

Given the potential in eq. (1), we can vary with respect to the VEVs of H0
u and H0

d to obtain
the conditions for an electroweak symmetry breaking vacuum of VEV v. These equations, for
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the case of the MSSM, are:

M2
U = b cotβ +

1

2
m2

Z cos(2β) (3)

M2
D = b tanβ − 1

2
m2

Z cos(2β). (4)

The appearance of m2
Z here comes from assuming that only the tree-level D-term quartic cou-

plings are present. Of course, this assumption is not consistent with the observed Higgs mass
in our universe, since m2

h < m2
Z in the tree-level MSSM. Nonetheless, it is useful to take a

quick look at tuning in this case because it is familiar and it offers a useful starting point be-
fore proceeding to theories with more general quartic terms. Adding the two EWSB equations
gives

M2
U +M2

D =
2b

sin(2β)
= m2

A, (5)

using the result one obtains by diagonalizing the pseudoscalar mass matrix. On the other
hand, multiplying Eq. (3) by tan2β and subtracting from Eq. (4), we obtain:

1

2
m2

Z =
M2

D −M2
U tan2β

tan2β − 1
. (6)

In order to have a theory that is not fine-tuned, we would like the individual terms on the
right-hand side to be not much larger than the terms on the left-hand side. Recalling that
M2

U = m2
Hu
+
��µ
��2, we can extract three conditions:

��µ
��2 ∼< m2

Z���m2
Hu

��� ∼< m2
Z

m2
Hd ∼< m2

Z tan2β . (7)

The first of these equations is the very familiar condition that higgsinos should not be much
heavier than the Z boson to prevent tree-level tuning [1,6–9,34]. The second is unsurprising,
since tanβ > 1 so that the Higgs that gets a VEV has a significant component in H0

u . In
order to obtain a VEV at the weak scale, this Higgs should have a mass near the weak scale.
The final condition receives the least attention, although it has been discussed at times in
the literature (e.g. [6, 22]). It tells us that the down-type Higgs soft mass—which, at large
tanβ , is approximately a measure for the mass of the states A0, H0, and H±—cannot be much
larger than mZ tanβ . The reason this bound typically receives less attention is that it is usually
assumed that tanβ can naturally be very large, allowing the heavy Higgs bosons to be very
heavy without a large amount of fine-tuning. We think that it is timely to revisit this tree-level
naturalness constraint for two reasons. First, many of the models that are frequently studied
as ways of lifting the Higgs mass to 125 GeV operate best at small-to-moderate tanβ . Second,
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we will argue that the measurement of b → sγ prevents theories with very large values of
tanβ from being natural. Given such an upper bound on tanβ , a fine-tuning argument can
then impose an upper bound on mA as well. One of the main goals of this paper is to quantify
this upper bound: given what we now know about b → sγ, how heavy can the other Higgs
bosons be without fine-tuning?

The fine-tuning of EWSB is typically measured in terms of the variation of either the Higgs
VEV [1,6] or the soft mass m2

Hu
[5,7] with respect to the input parameters. We will mostly fol-

low the first, Barbieri-Giudice, definition to quantify the tuning of the Higgs VEV with respect
to a parameter x:

∆x ≡
����
∂ log v2

∂ log x

���� . (8)

If ∆x � 1 for some parameter x , we will say that the theory is fine-tuned. This actually mea-
sures the sensitivity of the Higgs VEV (or, equivalently, the Z mass) to an underlying parameter.
We generally think of tuning as occurring when there must be a cancelation between different
contributions, requiring a delicate adjustment of different input parameters with respect to
one another to achieve a result near the experimentally observed value. For recent discussions
of definitions of tuning and how this computation may not always reflect what we think of
as fine-tuning, see refs. [9,35,36]. We expect that the Barbieri-Giudice measure is typically a
fairly good, albeit imperfect, proxy for our intuitive notions of tuning.

We will now explore the tuning measure in various extensions of the MSSM. In each case,
we will assume that a particular new hard-SUSY-breaking quartic coupling has been added.
We will not worry much about the details of the UV completion, which we expect to have only
a mild effect on the fine-tuning bounds that we infer.1

2.2 The λ1

�
H†

uHu

�2
extension

First we will assume that the new quartic coupling that has been added is dominantly up-type.
The usual loop corrections in the MSSM obtained by integrating out stops [37–40] are of this
form. It could also arise from new D-terms in conjunction with other quartics [18,28,29,41–
43]; its effects would dominate over those of the other quartics at large tanβ . Finally, we
could consider a new source of tree-level F -terms by adding a new triplet T with appropriate
hypercharge to allow an Hu · T Hu Yukawa coupling, and pairing T with a vectorlike partner
T with a supersymmetric mass term [20, 33]. For now we will remain agnostic about the UV
completion, simply assuming that such a quartic is present in the potential.

Given a new contribution δλ1 to the up-type Higgs quartic (beyond the D-term contribu-

1In some examples, e.g. quartic which is generated from non-decoupling D-terms, one would often need an
additional fine tuning beyond the MSSM to produce the desired quartic. In the D-term scenario this is related to
the fact that that the non-decoupling D-term is proportional to the soft masses of heavy W ′/Z ′-inos. Of course
we do not take this potentially model-dependent tuning into account in our analysis. However one should bear
in mind that the fine tuning that we estimate is the lowest possible bound within the low energy effective theory.
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tion in eq. (2)), the two EWSB equations become

M2
U = b cotβ +

1

2
m2

Z cos(2β)− δλ1

2
v2 sin2β ,

M2
D = b tanβ − 1

2
m2

Z cos(2β). (9)

The new quartic term shifts the mass of the light scalar Higgs eigenstate. The full analytic
formula is not very enlightening, but in the λ� 1, mA� mZ limit we can expand it as:

δm2
h =




δλ1v2

�
1− 2

tan2 β

�
1+ 2

m2
Z

m2
A

�
+ · · ·

�
, if tanβ � 1.

1
4
δλ1v2

�
1+
�
tanβ − 1

��
2− 2

m2
Z

m2
A

�
+ · · ·

�
, if tanβ ≈ 1.

(10)

Alternatively, for any tanβ we can expand the mass formula for m2
A� m2

Z as

m2
h ≈ m2

Z cos2(2β) +δλ1v2 sin4β −
�

2m2
Z cos 2β −δλ1v2 sin2β

�2
sin2(2β)

4m2
A

+O (m6
Z/m

4
A).(11)

We show the contours of the lifted Higgs mass as a function of δλ1 and tanβ in Fig 1.
As we expect for a term involving only the up-type Higgs, the new quartic is more efficient

at raising the light Higgs boson mass to 125 GeV in the limit of large tanβ . Furthermore,
because the MSSM tree-level contribution is suppressed at small tanβ , it becomes even more
difficult to obtain δλ1 large enough in that case. This is illustrated by the contours of constant
Higgs mass in the

�
tanβ ,δλ1

�
plane in Figure 1.

To evaluate the tuning, we first take a derivative with respect to M2
d . We use the fact that

b = m2
A sinβ cosβ (a result that is unchanged from the MSSM case) and thus that M2

d can be
written in terms of the physical parameters m2

Z , m2
A, and tanβ as M2

d = m2
A sin2β− 1

2
m2

Z cos(2β).
The resulting expression is:

�����
∂ log v2

∂ log M2
d

�����=
cos2β

�
2m2

A+m2
Z

�
1− cot2β

���
m2

A csc2β + 2m2
Z +δλ1v2

�

m2
A

�
m2

Z +δλ1v2
�
+m2

Z cot2β
�

m2
A

�
cot2β − 2

�
+δλ1v2

� . (12)

This expression is not very enlightening on its own, but the main question we are interested
in is: if we allow at most a given amount of fine-tuning, can we infer a bound on the physical
masses of heavy particles? For this question, it is reasonable to expand the tuning measure at
large m2

A. We will also assume that the value of δλ1 is chosen to fix the Higgs mass m2
h as in

eq. (11). The result is:
�����
∂ log v2

∂ log M2
d

����� ≈ 1

2
sin2 2β

m2
A+m2

h

m2
h

+
1

2
cos2β

�
1− 4 cos2β + cos 4β

� m2
Z

m2
h

+O (m2
h/m

2
A)

−→tanβ→∞
2m2

A+ 2m2
h+ 3m2

Z

m2
h tan2β

. (13)
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Figure 1: Contours of lifted Higgs mass when adding a new
��Hu

��4 quartic coupling δλ1, for two
different choices of mA. As expected from eq. (10), the dependence on mA is small. For large tanβ we
need δλ1 ≈ 0.24 to lift the Higgs mass.

From this we can see that if m2
A � m2

h, the theory becomes very fine-tuned unless sin(2β) is
small, which happens in the tanβ � 1 limit. We explicitly illustrate this point in Fig. 2 where
we plot the contours of fine tuning as a function of mA and tanβ . The precise value of δλ1 on
this plot is set by demanding mh = 125 GeV.

As expected, one gets very low fine tuning for very large values of tanβ . Even now the
large tanβ region can be partially explored by the LHC, due to a robust H0, A0→ τ+τ− decay
mode which can be directly probed. In Fig. 2 we show a green region, which has been directly
excluded by the CMS search [44] for H0 → τ+τ−. We anticipate that much more significant
gains will be made by LHC14.

However, another important constraint on the large tanβ region comes from the measure-
ment of the flavor-violating decay b→ sγ, which we will explore in detail in Section 3. There
we will find that, for very low-scale SUSY breaking (mediated at Λ = 10 TeV), one can accom-
modate tanβ ≈ 30 if one allows a factor of 10 tuning in the stop sector. (Indirect constraints
from Higgs decays already force us to accept a minimum factor of about 5 tuning in the stop
sector [36].) Using the formula above, we find that if we allow at most an additional factor
of 10 tuning in EWSB, for a combined 1% tuning, we have mA ∼< 8.4 TeV. Probing such large
values of mA will require future hadron colliders, more powerful than the LHC. On the other
hand, we will find in Section 3.3 that with even a slightly higher mediation scale Λ = 30 TeV
the bound from b → sγ becomes notably stronger: tanβ ∼< 10. In this case, allowing for at
most an additional factor of 10 tuning in EWSB implies mA ∼< 2.8 TeV. If we view the factor
of 10 tuning in the stop sector as already deviating from naturalness, and want to ask for no
additional tuning in EWSB, we have the stronger condition mA ∼< 0.9 TeV. Furthermore, higher
mediation scales only strengthen the tanβ upper bound from b→ sγ, so although parts of the
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Contours of fine tuning

Figure 2: Contours of fine tuning of EWSB with an extra quartic |Hu|4. The exact value of λ1 is
determined by demanding mh = 125 GeV. The shaded green region is directly excluded by the CMS
search for H → τ+τ− decay (see text for explanation).

natural parameter space may require future colliders to probe, in much of the parameter space
the heavy Higgs bosons should be accessible at the LHC. Measurements of the light Higgs bo-
son decay modes at the 14 TeV LHC with 300 fb−1 of data will probe the range of mA up to
about 450 GeV [45]. Heavier masses can be probed only by direct searches or higher precision
measurements at the high luminosity LHC or especially future e+e− colliders.

2.3 The λ5

��Hu ·Hd

��2 extension

This is the quartic extension that arises in the NMSSM or λSUSY. It does not change the
pseudoscalar mass relation m2

A = 2b/ sin(2β). In this case, we find that the light Higgs mass
is corrected as:

m2
h = m2

Z cos2(2β) +δλ5v2 sin2(2β)−
�

m2
Z −δλ5v2

�2
sin2(4β)

4m2
A

+O (m6
Z/m

4
A). (14)

In this case moderate values of tanβ are most effective for raising the Higgs mass, because the
correction term involves vd and is suppressed in the large tanβ limit. In fact, it is impossible
to get mh = 125 GeV with large tanβ . On top of that, we often need large, almost non-
perturbative values of δλ5 in order to get the correct value of the SM-like Higgs mass.
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Figure 3: Contours of lifted Higgs mass when adding a new
��Hu ·Hd

��2 quartic coupling δλ5, for two
different choices of mA. Only moderate tanβ values are allowed by 125 GeV Higgs.

The tuning measure in this case is:
�����
∂ log v2

∂ log M2
d

�����=
M2

d sin2(2β)
�

m2
A csc2β + 2m2

Z − 2δλ5v2
�

m2
Am2

Z +
�

m2
A−δλ5v2

��
m2

Z −δλ5v2
�

cos(4β) +δλ5

�
m2

A+m2
Z

�
v2−δλ2

5v4
.(15)

Again, this expression simplifies in the limit m2
A� m2

h, m2
Z , choosing δλ5 to fix the Higgs mass

m2
h as in eq. (14):

�����
∂ log v2

∂ log M2
d

����� ≈
1

2
sin2 2β

m2
A

m2
h

− 3− 2 cos(2β) + cos(4β)
4

+

m2
Z

�
1− 4 cos(2β) + cos(4β)

�

4m2
h

+O (m2
Z ,h/m

2
A). (16)

This suggests that λ5 extension is typically fine tuned, since it is not easy to find a per-
turbative δλ5 for a light pseudo-scalar A. We show this point explicitly in Fig 4. Most of the
solutions for δλ5 are already fine tuned, and those which are technically not fine tuned require
very large values of δλ5. The region with order-one values of δλ5 and low fine-tuning has
mA ∼< 1 TeV, so the heavy Higgs bosons may be accessible at the LHC.

3 How large can tanβ be in natural SUSY?

The role of b→ sγ in natural SUSY was recently emphasized in Ref. [23,46,47]. The process
receives multiple contributions in supersymmetric theories that involve an insertion of the VEV
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Figure 4: Contours of fine tuning of EWSB when adding a new
��Hu ·Hd

��2 coupling δλ5. Most of the
parameter space is already fine tuned. The purple contours denote the δλ5 value needed to get a
125 GeV SM-like Higgs mass. In the black region it is difficult to rely on the perturbative calculation,
since it demands δλ5 > 2.

of Hu and thus are enhanced by a factor of tanβ relative to the Standard Model amplitude [48–
54]. Two of these diagrams, one with stops and higgsinos running in the loop and one with
gluinos and sbottoms, are shown in Fig. 5. (Other diagrams involve a wino or bino running in
the loop; we will ignore these terms, which are small corrections in natural parts of parameter
space.)2 From the loop diagram containing stops and higgsinos, we have a correction to the
matrix element scaling like:

M t̃;h̃(b→ sγ)∼ m2
t

Atµ

m4
t̃

tanβ . (17)

The measurement of the rate for b → sγ puts an upper bound on this correction, which we
would like to interpret as an upper bound on tanβ . Such a bound would be very weak if the
coefficient of tanβ could be very small. Thus, we would like to have a lower bound on the
factor Atµ

m4
t̃

in front of tanβ . Fortuitously, there is an argument for each parameter that goes in

the correct direction:
2The contributions of the charged Higgs loop is also small in most parts of the natural parameter space of mA,

if the charged Higgs is nearly degenerate with the neutral heavy Higgses. We are trying to argue that mA cannot
naturally be too large, so while the charged Higgs contribution can matter at small mA, it is not very relevant for
our argument. Therefore we will also neglect it here.
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running in the loop and one with gluinos and sbottoms, are shown in Fig. [?]. From the loop diagram containing
stops and higgsinos, we have a correction to the matrix element scaling like:

M t̃;h̃(b! s�)⇠ Atµ

m2
t̃

tan� . (4)

The measurement of the rate for b! s� puts an upper bound on this correction, which we would like to interpret
as an upper bound on tan� . Such a bound would be very weak if the coefficient of tan� could be very small.
Thus, we would like to have a lower bound on the factor Atµ

m2
t̃

in front of tan� . Fortuitously, there is an argument

for each parameter that goes in the correct direction:

• mt̃ cannot be too large because stops are needed for one-loop naturalness (canceling the top loop diver-
gence in m2

Hu
).

• µ cannot be too small because we have a direct constraint from LEP on the possibility of light charged
particles; hence µ ⇠> 100 GeV [21–24]. The LHC will potentially strengthen this constraint, although even
raising the bound to 150 or 200 GeV will require a large luminosity at 14 TeV [25–28].

• Finally, At cannot be too small because it receives loop corrections proportional to the gluino mass M3. If
it takes a value much smaller than these loop corrections, this would be a new source of fine-tuning.

This tells us that naturalness, used in conjunction with the measurement of b! s� and experimental bounds on
the gluino mass, implies an upper bound on tan� . We should now evaluate what this bound is, numerically.

Bounds on the gluino mass are strong even in scenarios with nonstandard decays [29]

⇥
µ

⇥At

Hu

bL sR

�

t̃R t̃ L

H̃�u H̃�d
⇥M3

⇥
ybµ

Hu

bL sR

�
b̃L b̃R

g̃ g̃

(5)

3.1 Natural choices for At

Th‘e simplest estimate for the smallest natural choice of At , assuming running from a relatively low scale ⇤, is

At ⇡ �
2

3⇡2 g2
3 M3 log

⇤
M3
⇡ �190 GeV

✓
M3

1 TeV

◆
log10

⇤
M3

. (6)

If we run from a higher scale, we can do a somewhat more careful estimate by resumming large logarithms.
What we have called At is really at/yt , where at is the coefficient of the three-scalar operator in the La-

grangian. Keeping only the one-loop terms involving g3 or yt , the RG evolution of at is related to that of the
gluino mass by the equation (e.g. [30])

d

d logµ
at =

1

16⇡2

✓✓
18y2

t �
16

3
g2

3

◆
at +

32

3
yt g2

3 M3

◆
. (7)

3

Figure 5: Diagrams contributing to the b → sγ process in natural SUSY theories. The higgsino has
flavor violating couplings through the CKM matrix just as the W boson does, so the stop–higgsino loop
at left has the same flavor factors as the SM amplitude.

• m t̃ cannot be too large because stops are needed for one-loop naturalness (canceling the
top loop divergence in m2

Hu
).

• µ cannot be too small because we have a direct constraint from LEP on the possibility of
light charged particles; hence µ ∼> 100 GeV [55–58]. The LHC will potentially strengthen
this constraint, although even raising the bound to 150 or 200 GeV will require a large
luminosity at 14 TeV [59–62].

• Finally, At cannot be too small because it receives loop corrections proportional to the
gluino mass M3. If it takes a value much smaller than these loop corrections, this would
be a new source of fine-tuning. Bounds on the gluino mass are in the vicinity of 1 TeV
for a variety of scenarios, both with traditional missing momentum signatures and in
cases where the gluino decays to multiple jets [63–67], so it is reasonable to think that
At should not be smaller than the radiative contribution from a 1 TeV gluino.

This tells us that naturalness, used in conjunction with the measurement of b→ sγ and experi-
mental bounds on the gluino mass, implies an upper bound on tanβ . We should now evaluate
what this bound is, numerically. The full formula is given in a convenient form in ref. [68]
(using the results of ref. [69]) and we will use it in the numerics, but first to get some intu-
ition we will give some approximations that indicate how the correction depends on the soft

parameters. We work in the limit µ2� m2
Q3

, m2
uc

3
, introducing the notation m t̃ ≡

�
mQ3

muc
3

�1/2

for the geometric mean of the two stop soft masses and r = mQ3
/muc

3
for their ratio. Then if we

assume that only the stop-higgsino loop gives a significant contribution, the general formula
approximately reduces to:

Br(B→ X sγ)
Br(B→ X sγ)SM

− 1 ≈ 2.55 tanβ
Atµm2

t

m t̃
4

�
log

m t̃

µ

�
1+ 2.1

r2+ 1

r

µ2

m t̃
2

�
− 0.52+

1+ r2

2− 2r2 log r

− µ
2

m t̃
2

�
0.76

3(r2+ 1)
4r

+ 2.1
r4+ 1

2r(r2− 1)
ln(r)

�
. . .

�
, (18)
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where omitted terms are subleading in tanβ or in µ2/m t̃
2.

There are other loop corrections to b → sγ, but they depend on masses that can natu-
rally be heavy. The gluino loop shown at right in Fig. 5 can feel flavor violation through the
squark soft mass matrices; even in an MFV scenario, these need not be universal, because—
for example—m2

Q can contain a piece proportional to V † y2
u V where y2

u is a diagonal matrix of
up-type Yukawas [68]. However, the gluino loop involves the right-handed sbottom, which
need not be light for naturalness. In fact, in some natural SUSY scenarios it must be heavy
to avoid FCNCs [8, 70]. Even if we assume that the right-handed sbottom mass is near the
left-handed sbottom and stop masses, we find that the gluino loop is usually subdominant to
the stop–chargino loop for natural parameter values. The wino loop is suppressed by a smaller
coupling as well as potentially the heaviness of the wino mass. Thus, it is reasonable for us to
focus on the stop–chargino loop. In principle, other loop corrections could cancel it, but this is
in itself a tuning.

3.1 Natural choices for At

The simplest estimate for the smallest natural choice of At , assuming running from a relatively
low scale Λ, is

Aloop
t ≈− 2

3π2 g2
3 M3 log

Λ
M3
≈−230 GeV

�
M3

1 TeV

�
log10

Λ
M3

. (19)

If we run from a higher scale, we can do a somewhat more careful estimate by resumming
large logarithms.

What we have called At is really at/yt , where at is the coefficient of the three-scalar oper-
ator in the Lagrangian. Keeping only the one-loop terms involving g3 or yt , the RG evolution
of at is related to that of the gluino mass by the equation (e.g. [71])

d

d logµ
at =

1

16π2

��
18y2

t −
16

3
g2

3

�
at +

32

3
yt g

2
3 M3

�
. (20)

If we assume that at ≈ 0 at some mediation scale Mmed (as is true in a number of models,
including gauge mediation), we can use this equation together with the RGEs for g3, yt , and
M3 to plot the low-scale value of At as a function of the low-scale gluino mass parameter M3

and the mediation scale. We show this in Fig. 6.
What we learn from this is that typically, the RG contribution to At ranges from −200 GeV

to −750 GeV over a wide range of mediation scales and for gluinos near 1 TeV. Thus, a smaller
trilinear coupling At will generally imply some tuning of a positive tree-level value at the
mediation scale against a negative loop correction from gluinos. (Here we use “tree-level”
loosely for the value of At at the mediation scale; in a given model, it may arise from loops,
but we distinguish it from the contribution generated in the RGE.) We will quantify this tuning
in an intuitive way. Given that At is a sum At = Atree

t + Aloop
t , we can measure a tuning by the
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Figure 6: The low-scale value of At generated from solving the RGE with At = 0 at a scale Mmed and a
low-scale gluino mass M3.

amount of cancelation:

∆At
≡
��Atree

t

��+
���Aloop

t

���
���Atree

t + Aloop
t

���
. (21)

In the regime where the two terms nearly cancel, this behaves similarly to other tuning mea-
sures like that of Barbieri and Giudice [1]. If there is no significant cancelation (e.g. if At at
the mediation scale is much larger than the gluino-generated term), it asymptotes to 1. This
is a desirable property for a tuning measure to have, because we would like to be able to
compute a combined tuning in multiple variables as a product of independent tunings in each
variable.

3.2 The uplifted Higgs region

As tanβ increases, the Yukawa couplings needed to generate the b and τmasses from the VEV
of Hd become large. However, a new source of masses arises from loop effects that generate
the “wrong-Higgs” Yukawa couplings H†

uQd c and H†
u Lec. For sufficiently large tanβ we can

think of the b and τ masses as arising entirely for these effects, in what has been called the
uplifted supersymmetric Higgs region of parameter space [72, 73]. In this part of parameter
space, we must exercise some caution in our argument about the size of the b→ sγ amplitude.
The same loop diagram that generates the wrong-Higgs bottom quark Yukawa coupling also
generates b → sγ, when one external b quark is replaced by a strange quark and a photon
is attached to an internal line. (Compare the loops generating Yukawas in Fig. 7 to those for
b→ sγ in Fig. 5.) As a result, b→ sγ is no longer enhanced by a factor of tanβ relative to the
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Figure 2: The low-scale value of At generated from solving the RGE with At = 0 at a scale Mmed and a low-scale
gluino mass M3.

3.2 The uplifted Higgs region

⇥
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bL bR
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H̃�u H̃�d
⇥M3
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ybµ

Hu

bL bR

b̃L b̃R

g̃ g̃

(7)

As tan� increases, the Yukawa couplings needed to generate the b and ⌧ masses from the VEV of Hd become
large. However, a new source of masses arises from loop effects that generate the “wrong-Higgs” Yukawa cou-
plings H†

uQdc and H†
u Lec . For sufficiently large tan� we can think of the b and ⌧ masses as arising entirely for

these effects, in what has been called the uplifted supersymmetric Higgs region of parameter space [39]. In this
part of parameter space, we must exercise some caution in our argument about the size of the b! s� amplitude.
The same loop diagram that generates the wrong-Higgs bottom quark Yukawa coupling also generates b ! s�,
when one external b quark is replaced by a strange quark and a photon is attached to an internal line. As a result,
b! s� is no longer enhanced by a factor of tan� relative to the b-quark mass, and we should be concerned that
data on b! s� can’t actually rule out very large values of tan� .

This concern is conceptually correct but proves to be numerically unfounded. The uplifted region of parameter
space lies at very large values of tan� and also requires large values of µ. fill in

3.3 Interpreting the experimental results on b! s�

For the experimental bound on b! s�, we will follow Ref. [40] in taking the SM prediction to be [41] Br(B !
Xs�)SM = (3.15± 0.23)⇥10�4 and the experimental value to be [42,43] Br(B! Xs�)exp = (3.43± 0.22)⇥10�4.

4

Figure 7: Diagrams contributing to the “wrong-Higgs” Yukawa coupling H†
uQd c , which can be a domi-

nant contribution to the b-quark mass for very large tanβ .

b-quark mass, and we should be concerned that data on b → sγ can’t actually rule out very
large values of tanβ .

This concern is conceptually reasonable but proves to be numerically unfounded. The
uplifted region of parameter space lies at very large values of tanβ and also requires large
values of µ, putting it outside of what we consider to be natural SUSY parameter space. In
all of our computations, we will use the formulas of Ref. [68], in which the corrections to the
b → sγ amplitude are proportional to tanβ/(1+ εb tanβ), where εb in the denominator is a
loop factor correcting for the wrong-Higgs contribution to the b-quark mass. The statement
that the uplifted regime does not change our conclusion is that εb tanβ is at most O (1) for
reasonable input parameters, whereas removing the bound at large tanβ would require that
it be� 1.

It is easy to see that naturalness is in tension with the uplifted regime by inspection of the
loop corrections. The approximate result for εb in the limit m2

Q3
= m2

uc
3
= m2

d c
3
≡ m2

q̃ assuming

M2
3 � m2

q̃ � µ2 is

εb ≈
1

16π2

(
8g2

s

3

µ

M3


log

M2
3

m2
q̃

 
1+ 2

m2
q̃

M2
3

!
− 1


+

y2
t s2
βAtµ

m2
q̃

 
1− µ

2

m2
q̃

log
m2

q̃

µ2

!
+ . . .

)
. (22)

Numerically, we expect the gluino loop contribution to εb, which is ∼ µ/M3, to dominate in
most of the natural SUSY parameter space. Note that for naturalness, we prefer µ as small as
possible (close to 100 GeV), whereas experimentally we know that M3 ∼> 1 TeV. Furthermore,
the gluino loop drags the stop and sbottom soft masses up, so the log is rarely large. Estimating
µ/M3 ∼< 0.2 and log(M2

3/m
2
q̃) ∼< 3, we see that εb ∼< 10−2, so that εb tanβ becomes an order-

one number only at tanβ ∼ 100. One could try to get around this conclusion by choosing
very large values of At to enhance the second term, but this is not very well-motivated and
potentially runs into problems with vacuum stability [74]. Increasing the first term requires
going to large µ and thus indicates significant tree-level tuning for electroweak symmetry
breaking. In short, the uplifted regime is of little relevance for a study of natural SUSY, and
will not interfere with our inference of a bound on tanβ from b→ sγ and naturalness.
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3.3 Interpreting the experimental results on b→ sγ

For the experimental bound on b → sγ, we will follow Ref. [68] in taking the SM prediction
to be [75] Br(B → X sγ)SM = (3.15± 0.23)× 10−4 and the experimental value to be [76, 77]
Br(B→ X sγ)exp = (3.43± 0.22)×10−4. Given these values, we estimate that at 95% confidence
level the ratio Rbsγ of the true value of the branching ratio to its Standard Model value lies in
the range

0.90≤ Rbsγ ≤ 1.32. (23)

Because the data prefer a slightly high value relative to the Standard Model, constraints are
weaker on the scenario where new physics constructively interferes with the SM amplitude.
This happens when µAt > 0. Because small At is easiest to achieve if the RG contribution from
the gluino dominates, this corresponds to a negative sign for µM3. The case µAt < 0, arising
if µ and the gluino mass term have the same sign, is more strongly constrained.

We have plotted the largest allowed value of tanβ , with various naturalness constraints
superimposed, in Fig. 8. In this figure µ is fixed to 100 GeV. We have also fixed

��M3

��= 1.3 TeV,
md3
= 2 TeV, M2 = 0.5 TeV, and ζ (a parameter defined in ref. [68] related to the relative size

of various MFV terms in the soft mass matrices) equal to 0.5. We assume that running begins
at Λ = 10 TeV, a fairly extreme limit of low-scale SUSY breaking, in order to be conservative
about tuning measures. Bounds on tanβ become stronger if µ increases. The plot is relatively
insensitive to the other parameters, but we have included them for concreteness. We have
checked that including the stop–chargino loop alone, with all other superpartners decoupled,
makes very little difference in the result. We plot two cases with two different signs of M3

(relative to µ). The sign of M3 determines the sign of Aloop
t which enters in the tuning measure

Eq. (21).
The naturalness constraints are defined in terms of two tunings. First, large stop soft

masses correspond to a tuning of the up-type Higgs soft mass parameter, which is quantified
by [5,6]

∆ t̃ =

�����
3y2

t

4π2

m2
Q3
+m2

u3
+ A2

t

m2
h

log
Λ
m t̃

����� . (24)

The second tuning arises for small values of At , as quantified in the expression∆At
of Eq. (21).

In Fig. 8, regions of large ∆ t̃ are shaded red and regions of large ∆At
are shaded purple. One

can see that large values of tanβ are allowed only if At is small or the stop masses are large,
indicating that at least one of these tuning measures is becoming large. For instance, there are
two corners of parameter space where ∆At

=∆ t̃ = 5, one at negative At and one at positive At

(where the sign is understood relative to that of µ). In the case M3 < 0, at the former point,
the largest 95% CL allowed value of tanβ is less than 10; at the latter, it is about 25. Thus, as
noted above, the case of positive At is less strongly constrained.

We have no particular reason to think that cancellations in m2
Hu

and in At will happen at
the same point in parameter space, although perhaps one could imagine a model in which
this is true. If the tunings are independent, we can think of an overall tuning ∆ = ∆ t̃∆At
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Figure 8: Constraints arising from b→ sγ. Here we have fixed µ= 100 GeV (and |M3|= 1.3 TeV) and
plot blue solid lines for contours of the largest allowed tanβ as a function of the stop mixing parameter
At and the stop soft mass parameter. The shaded regions are disfavored by naturalness: the purple
regions at small At involve tuning ∆At

= 5 (lighter region) and 10 (darker region). The red shaded
regions correspond to ∆ t̃ = 5 (lighter) and 10 (darker) tuning in m2

Hu
from the stop loop contribution.

The region above the black dashed lines has combined tuning ∆> 10. The plots with different signs of
M3 have different tuning measures because the loop-generated At always has the opposite sign to M3.

which is simply the product of the two individual tunings. In other words, if we have to adjust
two unrelated parameters to the 10% level, this may reasonably be thought of as a 1% tuning
in parameter space. With such independent tunings in mind, we have plotted dashed black
contours in Fig. 8 that show where ∆ = 10. We see that the combined tuning is mildest
whenever M3At < 0, which is driven by the fact that ∆At

prefers At to be either near its
loop-generated value or much bigger.

The most optimistic region of parameter space has µAt > 0 (so that the new physics contri-
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Figure 9: Constraints arising from b→ sγ. The upper plot is just like the lower panel of Fig. 8, except
that we set the supersymmetry mediation scale Λ to 30 TeV instead of 10 TeV. The extra running means
that increased tuning is required: both ∆At

and ∆ t̃ are larger. As a result, requiring ∆ < 10 now
imposes a stronger constraint, tanβ < 9.5. In the lower plot we show how this constraint evolves with
the mediation scale, allowing for stop-sector tuning by a factor of either 10 (solid orange line) or 30
(dashed orange line). Already for a 100 TeV mediation scale the constraint is tanβ < 3.4 if we require
∆< 10.

bution constructively interferes with the SM and improves agreement with data) and At M3 < 0
(so that the trilinear can be mostly generated from the RG). From the figure, we can see that
this marginally allows tanβ ≈ 28 with a combined tuning∆≈ 10 coming almost entirely from
the stop mass m t̃ ≈ 600 GeV. The plots make it clear that allowing tanβ > 30 will require
either quite heavy stops—out of the range that can be considered truly natural—or a cancela-
tion in At , or both. We think that it is very conservative to conclude that generic natural SUSY
requires tanβ < 30.
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In fact, we are usually understating the required cancelation in At , because most reasonable
models will run from a higher UV scale and generate values of At a factor of 2 or more larger
than we have considered. Even a slightly larger amount of running produces a significantly
stronger conclusion, as we illustrate in Fig. 9. Beginning the RGE at 30 TeV instead of 10 TeV
produces a larger value of Aloop

t and also increases the stop-generated contribution to m2
Hu

. In
this case, the conclusion is already that tanβ < 10. We show how the bound on tanβ changes
with the mediation scale in the lower panel of Fig. 9. Running from 100 TeV already requires
tanβ < 3.4 for consistency with an overall tuning ∆ < 10. (In fact, the bound already hits
tanβ = 1 when the mediation scale Λ ≈ 350 TeV, indicating that models of high-scale SUSY
breaking will require significant fine-tuning for compatibility with the b→ sγ measurement.)
Although the choice of a tuning measure is to some extent a matter of taste, it is clear that
accommodating tanβ ∼> 10 requires both very low-scale mediation and a mild tuning. We also
show, with the dashed orange line in the lower panel of Fig. 9, that allowing for more tuning
significantly increases the range of allowed tanβ . If we allow ∆ = 30 rather than 10, we can
accommodate tanβ = 30 even with running from 100 TeV, and tanβ = 10 even with running
from 1000 TeV. Still, high-scale SUSY breaking is highly constrained even allowing for this
larger amount of tuning.

As a simpler estimate, we can use the one loop RG approximation eq. (19) for Aloop
t , write

the average stop mass in terms of the tuning ∆ t̃ from eq. (24), and use the leading term in
equation (18) to estimate that

2.55 tanβ
Atµm2

t

m t̃
4 log

m t̃

µ ∼< 0.32, (25)

implying

tanβ ∼< 28
�
∆ t̃

10

�2�100 GeV

µ

� 
1.3 TeV��M3

��

!
2

log m t̃

µ

2

log Λ
|M3|


 2

log Λ
m t̃




2

. (26)

This is a useful check that the more detailed numerical results are reasonable. The
�
logΛ

�−3

behavior explains the rapid improvement of the bound as we increase Λ above 10 TeV that we
saw in Fig. 9.

3.4 Comment on Bs→ µ+µ−.

This very rare process is often quoted as the best possible constraint on SUSY with large tanβ .
Indeed the most important SUSY contribution to Bs→ µ+µ− is proportional to tan3β [78,79],
and therefore is naively expected to be very sensitive to natural SUSY. However we find that
all the constraints that we get from this process are subdominant to b→ sγ constraints. There
is a simple explanation for why this happens. Although the matrix element is enhanced by
tan3β , it is also suppressed by m2

A. As we have learned in Sec. 2, in the large tanβ limit
the fine tuning of EWSB stays approximately constant along the contours of mA tanβ = const.
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Therefore, effectively the matrix element is enhanced only by a single power of tanβ , precisely
as is b→ sγ.

On the other hand, the rate of Bs → µ+µ− is measured to much worse precision than
b→ sγ. While the process b→ sγ is measured to the precision of better than 10%, Ref. [80]
gives the following 95% CL bound on Bs→ µ+µ−:

1.1× 10−9 < BR(Bs→ µ+µ−)ex p < 6.4× 10−9 (27)

Based on the SM prediction [81]

BR(Bs→ µ+µ−)SM = (3.32± 0.17)× 10−9, (28)

from these equations we estimate that at 95% confidence level

0.31< RBs→µ+µ− < 1.95. (29)

The lower bound is meaningless in large tanβ regime: in SUSY one cannot get RBs→µ+µ−
smaller than 0.5, unless the SUSY contribution is dominated by the Z-penguin.3 On the other
hand the upper bound is weak, allowing O (1) deviations from the SM-predicted values. There-
fore the bounds on tanβ one gets from this process are much weaker than those one gets from
b → sγ. To illustrate these points we show these bounds, considering (as in the b → sγ ex-
ample) only the higgsino loop contribution, in Fig. 10, showing the maximal allowed values
of tanβ for mA = 400 GeV. We see that these constraints are very clearly subdominant to the
b→ sγ constraints in Fig. 8. At higher mA these constraints quickly decouple.

3.5 The Dirac loophole

If the gluino has a Dirac mass rather than the standard Majorana mass, our argument breaks
down because At can naturally be smaller, protected by R-symmetry. Supersymmetry with
Dirac gauginos has received a great deal of recent attention: see (for example) refs. [8,83–94].
An R-symmetry forbids a µ-term as the higgsino mass, so these models typically involve new
doublets that pair with the usual Higgs doublets to form massive higgsinos. The A-term is also
forbidden. Depending on how and to what extent the R-symmetry is broken, a remnant of
our argument may survive in these models. For the most part, however, we expect that these
models evade our argument and that a detailed look at the EWSB conditions and naturalness
in these theories will require a completely different perspective. Some aspects of naturalness in
such theories have been addressed in refs. [91,92,94]. Although this loophole exists, models
with Dirac gauginos are necessarily more baroque than traditional SUSY models, and we do
not feel that they undermine the motivation for viewing heavy Higgs bosons as key channels
in which to search for naturalness.

3The reason for this is that there is a contribution with H0 exchange that interferes destructively with the
Standard Model, and a contribution with A0 exchange that does not interfere and is equal to the H0 amplitude
to the extent that mA ≈ mH0 . Thus the squared matrix element goes as

��ASM − ANP

��2 +
��ANP

��2 ≥ 1
2

��ASM

��2. If the
Z penguin contribution matters, this argument is no longer strictly true. But the Z penguin goes only as tan2 β
and is suppressed by the mass insertion δLR in the up sector (see [82] for relevant expressions), so is generally
expected to be less important.
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Figure 10: Constraints arising from Bs→ µ+µ− for mA = 400 GeV.

4 Outlook

The traditional harbingers of SUSY naturalness are higgsinos at tree level, stops at one loop,
and gluinos at two loops. Higgsinos, being produced only through the electroweak interac-
tions, are difficult to constrain at hadron colliders. Stops and, especially, gluinos are easier
to search for directly due to their large QCD cross sections. But if R-parity is violated, the
spectrum is compressed, or decays go through a hidden sector, traditional missing momentum
searches for stops and gluinos can be dramatically weakened. Optimized searches for these
“hidden SUSY” cases are receiving increased attention. One of our goals in this paper is to
argue that searches for heavy Higgs bosons provide another way to address such scenarios.

Heavy Higgs bosons, unlike superpartners, have predictable decays to pairs of Standard
Model particles. The neutral boson H0 will decay to τ’s and b’s at large tanβ , and to tops,
light Higgs bosons, Z bosons and W bosons at smaller tanβ . The Z Z “golden channel” is one
interesting search mode, and its rate is linked to the hh channel by the Goldstone equivalence
theorem, as explained in Appendix A. Although extensions of the MSSM might open new
decay modes of the heavy Higgses, it seems unlikely that these decays dominate, especially
given the SM-like nature of the light Higgs as measured so far. Thus, heavy Higgs searches
offer a window on naturalness that is less easily dodged by clever model-building than other
SUSY searches.

One recent survey of the reach of LHC Run II for heavy Higgs bosons is Ref. [95], which
shows that the H → τ+τ− channel can reach above 1 TeV for large tanβ while H → t t̄ can
reach above 1 TeV at small tanβ . The intermediate tanβ regime is more difficult to probe and
could deserve increased effort, given the added motivation that arises when viewing these
searches as an additional probe of naturalness. Other recent theoretical work on signals of
heavy Higgs bosons includes refs. [96–101].
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It is interesting to ask to what extent our naturalness bounds on heavy Higgs masses can
be improved in the future. We do not expect significant theoretical improvements in the
Standard Model prediction of b→ sγ in the future, due to irreducible uncertainties [102,103].
The currently less constraining measurement of Bs → µ+µ− might play a more interesting
role in the future. The LHCb result [80] is dominated by statistical uncertainties. Future
data is expected to improve the error bar to 10% precision [104]. With such an improved
measurement, the constraints from Bs → µ+µ− would become an important supplement to
the b→ sγ bound in naturalness arguments regarding the large tanβ region.

Another way that our arguments could become somewhat stronger in the future is through
an improved lower bound on the higgsino mass parameter µ, which will in turn require smaller
values of tanβ to accommodate the same constraint on b → sγ. However, higgsino searches
are difficult. A more promising route to a stronger bound is through improved bounds on
gluino masses, since these feed into At at loop level. Although gluino signals are susceptible
to being “hidden” in various ways, they are less so than stops, and in fact bounds on gluinos
exist even with complicated decay chains lacking missing energy [67]. These bounds should
improve early in Run 2 of the LHC, which will allow a stronger statement to be made about
the heavy Higgs masses expected from naturalness arguments.

We emphasize that heavy Higgs boson searches provide a robust way to constrain natu-
ral models of supersymmetry. Although they are already a part of the LHC’s suite of new
physics searches, we believe that they should be viewed as part of the naturalness program
and accorded a correspondingly intense focus.
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A H → hh, H → Z Z , and Goldstone equivalence: a comment
on branching ratios

One interesting search channel for a heavy Higgs is H → hh, which is particularly appealing
since the Standard Model rate for events with two Higgs bosons is very small [98, 105–112].
On the other hand, the dominant Higgs decay is to bb̄, a challenging signal to pull out of back-
ground. Given that the very clean h→ Z Z∗→ 4` channel played a key role in the discovery of
the 125 GeV Higgs boson, it is interesting to ask when, and to what extent, the H → hh decay
mode dominates over H → Z Z . Answers to this question may be extracted from the literature,
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but are often expressed in rather technical forms. For example, in ref. [98], we learn that the
coupling gHhh is proportional to

�
3m2

A− 2m2
h−m2

H

��
cos(2β − 2α)− cot(2β) sin(2β − 2α)

�−
m2

A. Even an MSSM aficionado might have to resort to numerical estimates to have much in-
tuition for what such an expression means. On the other hand, numerically, one can see from
plots (e.g. in refs. [95] or [98]) that Γ(H → hh) is typically about an order of magnitude
larger than Γ(H → Z Z).

In fact, in most models it will be true that Γ(H → hh) ≈ 9 Γ(H → Z Z), which follows
straightforwardly from the Goldstone boson equivalence theorem. Corrections are expected
to be of order m2

h/m
2
H . This result is likely known to experts but we have not seen it in the

literature, so we will explain it here. It offers a useful rule-of-thumb for experimentalists
considering whether to undertake a search for Higgs pair production. Assuming this factor of
9 between the heavy Higgs branching ratios, one can ask whether a planned search for Higgs
pair production can beat the cleaner, but rarer, Z Z → 4` signal.

The factor of 9 in the rate comes from a combinatoric factor of 3 in the amplitude that we
can explain using a strategy that has appeared in ref. [45], namely working in the basis of
VEV eigenstates. We will denote by h the linear combination of fields that has a VEV, and H
the orthogonal combination:

h= sinβ Hu+ cosβ H†
d =

�
iG+

(v+ h0+ iG0)/
p

2

�
, (30)

H =− cosβ Hu+ sinβ H†
d =

�
iH+

(H0+ iA0)/
p

2

�
. (31)

Notice that we are working not just with the real components of the Higgs fields but with entire
SU(2)L doublets. Furthermore, the real scalar Higgs modes h0 and H0 contained in h and H
will not be mass eigenstates, in general. On the other hand, the three Goldstone degrees of
freedom G0, G± for electroweak symmetry breaking are entirely contained in h, and only the
real scalar mode h0 in h has couplings to W± and Z bosons of the form h0VµV µ. Given LHC
data, we know that the VEV eigenstates are approximately the same as the mass eigenstates;
in other words, we are in the “alignment limit” cos(β − α) � 1, because the light Higgs is
observed to couple to particles proportional to their masses as in the SM [98]. As a result
we can think of the heavy Higgs boson as living mostly in H. The decays H0 → h0h0 and
H0 → ZL ZL, where we use the Goldstone equivalence theorem to relate the decay rate to
longitudinal Z bosons to decays to the Goldstone mode G0 inside h, both arise from a quartic
term in the potential containing one copy of H and three of h:

V ⊃ λ̃1

�
H†h+ h†H

�
h†h⊃ λ̃1

�
vH0G+G−+

v

2
H0G0G0+

3v

2
H0h0h0+H0h0G+G−+ . . .

�
.(32)

Thus, there is a relative factor of 3 in the Feynman rule for H0 to two Higgs bosons relative to
H0 to two Goldstones. In the first case we have three h factors in the potential, one of which
must be replaced by a VEV and two with a physical Higgs boson. The combinatoric factor of 3
comes from the fact that we can replace any of the three h’s with a VEV. In the second case we
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again replace one with a VEV, but the other two with Goldstones. The difference is that H0 lives
in the real part of H and so must be paired with either an h or a v in the hermitian H†h+ h†H
factor; the two Goldstones must go in the h†h factor, and so we have no combinatoric freedom
in this case. (Let us also mention in passing that eq. (32) leads to several three-body decays of
the heavy Higgs, suppressed by phase space but not by couplings; the phenomenology of such
decays could be interesting, and is as far as we know unexplored.)

The subscript on the � terms counts the number of H fields appearing. By definition of H its VEV is zero, implying

@ V

@ H†

����
H=0

= m2
hHh+�1h |h|2 = 0, (13)

i.e. that the mass mixing is related to the quartic coupling �1:

m2
hH = ��1v2. (14)

Here, as usual, the VEV is determined by the quadratic and quartic terms for h, i.e. v2 = �m2
h/�0.

Let us first compute the decay rate of H ! Z Z in unitary gauge. There are two diagrams, as shown in the
left panel of Fig 2. The first involves the quartic coupling �1, and carries a combinatoric factor of 3 in selecting
which of the h lines radiating from the coupling are replaced by VEVs. The second diagram involves the mass
mixing m2

hH . Thus, the whole result is proportional to:

Ä
3�1v2 �m2

hH

ä 1

m2
H �m2

h

m2
Z

v
✏(pZ;1) · ✏(pZ;2). (15)

When m2
H � m2

Z , the answer is dominated by the longitudinal polarization of the external gauge bosons:

H h

⇥ v

⇥ v

Z

Z

�1 +
H
⇥

h

Z

Z

m2
hH

H

v⇥

h (G0)

h (G0)

�1

Figure 2: Left: the decay H ! Z Z in unitary gauge. Right: the decay H ! hh and the related decay to two
Goldstone modes. A relative factor of 3 arises from the combinatoric choice of which h leg to replace by a vev in
H ! hh.

4 Electroweakino transitions

The higgsino mass term is a Dirac mass µ
Ä

H̃uH̃d + h.c.
ä
= µ

Ä
H̃+u H̃�d � H̃0

u H̃0
d + h.c.

ä
. Focusing on the neutral

higgsinos, we can write the Dirac mass a sum of two Majorana mass terms:

�µH̃0
u H̃0

d + h.c.= �µ
Ä

H̃0
+H̃0

+ � H̃0
�H̃0
�
ä

, (16)

where

H̃0
± =

1p
2

Ä
H̃0

u ± H̃0
d

ä
. (17)

Because the Majorana mass eigenstates involve equal admixtures of H̃u and H̃d , the limit tan� ! 1, in which
the Goldstones also live equally in the up-type and down-type Higgs fields, will play a special role in determining
branching ratios involving higgsino states.

4

Figure 11: Left: the decay H → Z Z in unitary gauge, for which the VEVless eigenstate H first mixes
into the eigenstate h and then couples through its VEV to ZµZµ. Right: the decay H → hh and the
related decay to two Goldstone modes. A relative factor of 3 arises from the combinatoric choice of
which h leg to replace by a vev in H → hh.

The relative decay rate is also easy to understand in unitary gauge, as shown in Fig. 11.
In this case another contribution arises from the mass mixing of H and h, but this is related
to the coupling λ̃1 by a tadpole cancelation condition. In other words, our choice of H as
the eigenstate with zero VEV relates the terms m2

Hh(H
†h+ h†H) and λ̃1(H†h+ h†H)(h†h) in

the potential. In particular, the coupling for H → hh vanishes in the limit m2
Hh → 0, which is

the exact alignment limit where VEV eigenstates are mass eigenstates; this is reflected in the
factors of cos(β − α) in the gHhh coupling in e.g. ref. [98]. A little algebra shows that the
unitary gauge calculation matches the Goldstone equivalence estimate up to terms of order
m2

Z ,h/m
2
H , as expected on general grounds.

The case of a singlet scalar decaying to hh and Z Z is similar, but the combinatoric factor of
3 no longer exists, so we expect the branching ratios to be approximately equal.
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