Threshold laws for collisional reorientation of electronic angular momentum

Citation

Published Version
doi:doi.org/10.1103/PhysRevA.67.050704

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:30403732

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Threshold laws for collisional reorientation of electronic angular momentum

Roman V. Krems* and Alexander Dalgarno
Harvard-MIT Center for Ultracold Atoms and Institute for Theoretical Atomic and Molecular Physics, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138
(Received 27 October 2002; published 28 May 2003)

It is shown that the velocity dependence of cross sections for projection-changing transitions in collisions of paramagnetic atoms or molecules with structureless targets near threshold has the form $v^{2|\Delta m|}$ when Δm is even and $v^{2|\Delta m+1|}$ when Δm is odd, where Δm is the change in the projection quantum number and v is the relative velocity.

DOI: 10.1103/PhysRevA.67.050704

PACS number(s): 34.50.–s

Recent advances in experiments on ultracold atoms and the generation of ultracold molecules [1–7] have stimulated research on collisions near energy thresholds. A general technique for the production of ultracold atoms and molecules is the buffer gas loading method developed by Doyle and coworkers [6,7]. These experiments are based on collisional equilibration of the translational energy of atoms or molecules in elastic collisions with cold buffer gas atoms and the subsequent trapping of cooled molecules in a magnetic field. This technique can be applied to atoms and molecules with nonzero magnetic moments. The atoms or molecules are trapped in the state with a particular projection of total electronic angular momentum. The transitions for which there is a change of the projection remove the atoms or molecules from the trap. The behavior of the cross sections for the projection-changing transitions at very low energies is critical and we discuss it here. We derive threshold laws for the energy dependence of cross sections for projection flipping in paramagnetic atoms or molecules in collisions with structureless targets.

Wigner presented threshold laws for elastic and inelastic cross sections [8] and showed that the cross section for an exothermic inelastic process increases inversely as the velocity v as v tends to zero producing a finite rate coefficient at zero temperature. He did not consider explicitly scattering in zero temperature. He did not consider explicitly scattering in paramagnetic atoms or molecules in collisions with structureless targets.

The total angular momentum of an atom or a molecule j can be written as the vector sum of the spin angular momentum s and the angular momentum N describing the rotational motion of molecules or the orbital motion of electrons [9]: $j = s + \hat{N}$. In the quantum mechanical formalism of Arthurs and Dalgarno [10], the scattering T matrix is obtained for total angular momentum J and total energy from the solution of the following system of coupled differential equations:

$$\frac{d^2}{dR^2} + k_{j(NS)}^2 - \frac{l(l+1)}{R^2} F_j^l(R) = 2\mu \sum_{j' l'} (Jj(NS)|\hat{V}|j'(N's')l') F_{j'l'}^j(R), \quad (1)$$

where R is the center-of-mass separation between the colliding particles, $k_{j(NS)} = \mu v$, μ is the reduced mass of the collision complex, v is the relative collision velocity of the open-shell atom or molecule in the state with the angular momentum j, l is the orbital angular momentum for the collision, and $\langle Jj(NS)|\hat{V}|j'(N's')l'\rangle$ are the elements of the interaction potential coupling matrix. The Hamiltonian matrix is assumed to be diagonal in the $|Jj(NS)\rangle$ representation when $R = \infty$ [10]. If the interaction potential for the atom-molecule or atom-atom interaction is expanded in a Legendre series, the interaction potential matrix elements can be written as follows [11]:

$$\langle Jj(NS)|\hat{V}|j'(N's')l'\rangle = \sum_{\lambda} V_{\lambda} (-1)^{2j'+s+j+\lambda}[2l+1] \times \left(2l'+1\right) \left(2j+1\right) \left(2j'+1\right) \left(2N+1\right) \left(2N'+1\right) \frac{(2l+1)!}{\left(2l+1\right)!} \frac{(2j+1)!}{\left(2j+1\right)!} \frac{(2j'+1)!}{\left(2j'+1\right)!} \frac{(2N+1)!}{\left(2N+1\right)!} \frac{(2N'+1)!}{\left(2N'+1\right)!} \times \left[\begin{array}{ccc} N & j & s \\ j' & N' & \lambda \end{array} \right] \left[\begin{array}{ccc} l & l & j \\ l' & j' & \lambda \end{array} \right], \quad (2)$$

where V_{λ} are the terms of the Legendre expansion and the symbols in the curly brackets and parentheses are $6j$ and $3j$ symbols. The T-matrix elements or the probability amplitudes for transitions between the states with defined values of internal and orbital angular momenta can be computed from the solution of Eqs. (1) with the usual boundary conditions. The cross sections for the transitions changing the projection of \hat{J} with respect to an axis fixed in space are given by the following equation:
where \(m, m_1, \) and \(M \) denote the space-fixed projections of \(j, l, \) and \(J, \) respectively, and the symbols in the square brackets are the Clebsch-Gordan coefficients. To derive Eq. (3) we used the same approach as in Refs. [10,12] with the assumption that collisions occur with random initial direction relative to the quantization axis. Because the cross sections for the projection-flipping transitions (3) are expressed in terms of the \(T \)-matrix elements for the transitions between different orbital angular-momentum (\(l \)) states, we begin by considering the selection rules for \(l \) transitions.

One or another of the 3\(j \) symbols

\[
\begin{pmatrix} N & \lambda & N' \\ 0 & 0 & 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} l & \lambda & l' \\ 0 & 0 & 0 \end{pmatrix}
\]

vanishes for odd \(\lambda \) except when \(N \) and \(l \) both change by odd integers and for even \(\lambda \) except when \(N \) and \(l \) both change by even integers or zero. Thus there is no coupling between even and odd \(l \) for the same \(N \) and the \(T \)-matrix elements connecting even and odd \(l \) states in the same state \(N \) vanish. Cross section (3) for the \(j \)-projection change is determined by the sum over the \(T \)-matrix elements for the transitions that preserve the parity of the angular-momentum states \(l \).

Wigner [8] showed that in the limit of zero relative velocity the square of the \(T_{jl \rightarrow j'l'} \) matrix element varies as

\[
|T_{jl \rightarrow j'l'}|^2 \sim v^{2j+2l'+2}.
\]

When \(v \) is small the cross section for the projection-flipping transitions will be dominated by the \(T_{jl \rightarrow j'l'} \) matrix element for the lowest values of \(l \) and \(l' \) for which the transition is possible. The products

\[
\begin{pmatrix} j & l & J \\ m & m_1 & M \end{pmatrix} \begin{pmatrix} j' & l' & J \\ m' & m_{1'} & M \end{pmatrix}
\]

in Eq. (3) vanish if \(l=l'=0 \) and \(m \neq m' \). The threshold cross section for the \(|jm \rangle \rightarrow |jm \pm \Delta m \rangle \) transition is, therefore, determined by the scattering of higher partial waves. The re-coupling coefficients in Eq. (3) determine the threshold behavior of the projection-flipping cross section, which is dependent on the value \(\Delta m \) by which the projection of \(j \) is changed. The corresponding products of the Clebsch-Gordan coefficients

\[
\begin{pmatrix} j & l & J \\ m & m_1 & M \end{pmatrix} \begin{pmatrix} j & l' & J \\ m & m_{1'} & M \end{pmatrix}
\]

are nonvanishing only if the transitions changing the projection of \(j \) by \(\Delta m \) are accompanied by the same changes of the projection of \(l \) according to the relation \(m_{1'} - m_1 = \pm \Delta m \), which must hold for the transition from a state \(m \) to the state \(m \pm \Delta m \). The change of the orbital angular-momentum projection by \(\Delta m \) is allowed for the transitions between the states for which

\[
l + l' = \Delta m
\]

when \(\Delta m \) is even and for which

\[
l + l' = \Delta m + 1
\]

when \(\Delta m \) is odd. The contributions from transitions corresponding to larger values of \(l + l' \) fall off more rapidly with decreasing relative velocity \(v \). Combining the results of Eqs. (5), (6), and (4) and noting factor \(1/v^2 \) in the cross section (3), we obtain the following threshold law for the \(|jm \rangle \rightarrow |jm \pm \Delta m \rangle \) cross sections for even \(\Delta m \):

\[
\sigma_{jm \rightarrow jm \pm \Delta m} \sim v^{2\Delta m}, \tag{7}
\]

and for \(\Delta m \) odd,

\[
\sigma_{jm \rightarrow jm \pm \Delta m} \sim v^{2(\Delta m + 1)}. \tag{8}
\]

Expression (7) recovers the Wigner law for elastic scattering when \(\Delta m = 0 \).
We show that the projection-changing transitions cannot be induced by s-wave collisions if the orbital angular momentum for the collision remains unchanged. Thus the transitions $(l = 1) \rightarrow (l' = 1)$ and $(l = 0) \rightarrow (l' = 2)$ determine the limiting cross section for a collision in which m changes by 1 or 2. The numerical results show that the dominant contribution to the $\Delta m = 1$ transitions is from the $(l = 1) \rightarrow (l' = 1)$ cross section, while the $\Delta m = 2$ transitions are predominantly determined by the $(l = 0) \rightarrow (l' = 2)$ scattering.

Our derivations apply to scattering for which the Wigner law (4) is valid for $l \rightarrow l'$ transitions. If the colliding particles interact through a long-range potential $-C/R^s$, the asymptotic form of the scattering wave function is modified by the $1/R^s$ term and the cross section for a single-channel scattering in the state with angular momentum l follows the Wigner law only if $l < (s-3)/2$ [14]. When $l > (s-3)/2$, the square of the T-matrix element varies as $|T_{l-1}|^2 \sim v^{2s-4}$ independently of l. Whether or not long-range potentials modify the threshold behavior of off-diagonal T-matrix elements in a multichannel collision remains to be explored.

We thank Daniel Vrinceanu for interesting and useful discussions. This work was supported by the Smithsonian Astrophysical Observatory, the Harvard-MIT Center for Ultracold Atoms and a grant from the Chemical Sciences, Geosciences and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

[9] Although deviating from the conventional notation, the notation N is used for compactness of presentation for the electronic orbital angular momentum in ^1H molecules, the rotational angular momentum for ^2S molecules, and the electronic orbital angular momentum for ^3P atoms.