The Afterglow and Environment of the Short Grb 111117a

The Harvard community has made this article openly available. **Please share** how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1088/0004-637x/756/1/63</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:30410847</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP</td>
</tr>
</tbody>
</table>

THE AFTERGLOW AND ENVIRONMENT OF THE SHORT GRB 111117A

R. Margutti1, E. Berger1, W. Fong1, B. A. Zauderer1, S. B. Cenko2, J. Greiner3, A. M. Soderberg1, A. Cucchiara4, A. Rossi2, S. Klose3, S. Schmidl3, D. Milisavljevic1, & N. Sanders1

Draft version July 18, 2012

Abstract

We present multi-wavelength observations of the afterglow of the short GRB 111117A, and follow-up observations of its host galaxy. From rapid optical and radio observations we place limits of \(r \gtrsim 25.5 \) mag at \(\Delta t \approx 0.55 \) d and \(E_\nu (5.8 \text{GHz}) \lesssim 18 \mu\text{Jy} \) at \(\Delta t \approx 0.50 \) d, respectively. However, using a Chandra observation at \(\Delta t \approx 3.0 \) d we locate the absolute position of the X-ray afterglow to an accuracy of \(0.22'' \) (1\sigma), a factor of about 6 times better than the Swift/XRT position. This allows us to robustly identify the host galaxy and to locate the burst at a projected offset of \(1.25 \pm 0.20'' \) from the host centroid. Using optical and near-IR observations of the host galaxy we determine a photometric redshift of \(z = 1.3^{+0.3}_{-0.2} \), one of the highest for any short GRB, and leading to a projected physical offset for the burst of \(10.5 \pm 1.7 \) kpc, typical of previous short GRBs. At this redshift, the isotropic \(\gamma \)-ray energy is \(E_{\gamma, \text{iso}} \approx 3.0 \times 10^{51} \) erg (rest-frame \(23 - 2300 \) keV) with a peak energy of \(E_{\nu, \text{pk}} \approx 850 - 2300 \) keV (rest-frame). In conjunction with the isotropic X-ray energy, GRB 111117A appears to follow our recently-reported \(E_{\gamma, \text{iso}} - E_{\gamma, \text{iso}} - E_{\nu, \text{pk}} \) universal scaling. Using the X-ray data along with the optical and radio non-detections we find that for a blastwave kinetic energy of \(E_{K, \text{iso}} \approx E_{\gamma, \text{iso}} \) erg, the circumburst density is \(n_0 \approx 3 \times 10^{-4} - 1 \) cm\(^{-3} \) (for a range of \(\epsilon_B = 0.001 - 0.1 \)). Similarly, from the non-detection of a break in the X-ray light curve at \(\Delta t \lesssim 3 \) d, we infer a minimum opening angle for the outflow of \(\theta_j \gtrsim 3 \times 10^{-9} \) (depending on the circumburst density). We conclude that Chandra observations of short GRBs are effective at determining precise positions and robust host galaxy associations in the absence of optical and radio detections.

Subject headings: gamma rays: bursts,

1. INTRODUCTION

Precise localizations of short-duration gamma-ray bursts (GRBs) are critical for studies of their explosion properties, environments, and progenitors. In particular, such localizations can provide secure associations with host galaxies, and hence redshift and offset measurements (e.g., Berger et al. 2007; Fong et al. 2010; Berger 2011). To date, most sub-arcsecond positions for short GRBs have relied on the detection of optical afterglows (e.g., Berger et al. 2005; Hjorth et al. 2005; Soderberg et al. 2006). However, X-ray emission is detected from a larger fraction of short bursts, and therefore observations with the Chandra X-ray Observatory can equally provide precise positions even in the absence of optical detections. Indeed, Chandra detections have been previously made for short GRBs 050709, 050724, 051221A, 080503, and 111020A (Fox et al. 2009; Berger et al. 2005; Burrows et al. 2006; Grupe et al. 2006; Soderberg et al. 2006; Perley et al. 2009; Fong et al. 2012), but only in the latter case Chandra provided the sole route to a precise position (Fong et al. 2012).

In the other 4 cases, the afterglow was also detected in the optical, as well as in the radio for GRBs 050724 and 051221A (Berger et al. 2005; Soderberg et al. 2006).

The advantage of precise X-ray positions is that the X-ray flux is potentially independent of the circumburst density if the synchrotron cooling frequency is located redward of the X-ray band. Thus, X-ray detections can in principle reduce any bias for small offsets that may arise from optical detections, which do depend on the density (although, see Berger 2010 for short GRBs with optical afterglows and evidence for large offsets of \(\sim 50 - 100 \) kpc).

Here, we present a Chandra detection of the X-ray afterglow of short GRB 111117A at \(\Delta t \approx 3 \) d, which leads to a robust association with a galaxy at a photometric redshift of \(z \approx 1.3 \) and to a precise offset measurement. Among short GRBs, only GRBs 050724 and 051221A were detected at later times in X-rays. Using the Chandra and Swift/XRT data we study the properties of the X-ray afterglow in the context of the short GRB sample, and in conjunction with deep optical and radio upper limits we place constraints on the circumburst density. Similarly, optical/near-IR observations of the host allow us to determine its physical properties (star formation rate, stellar mass, stellar population age).

Throughout the paper we use the convention \(F_\nu (\nu, t) \propto \nu^{\beta} t^{\alpha} \), where the spectral energy index is related to the spectral photon index by \(\Gamma = 1 - \beta \). All uncertainties are quoted at 68% confidence level, unless otherwise noted. Magnitudes are reported in the AB system and have been corrected for Galactic extinction (Schlafly & Finkbeiner 2011). Finally, we use the standard cosmological parameters: \(H_0 = 71 \) km s\(^{-1}\) Mpc\(^{-1}\), \(\Omega_M = 0.73 \), and \(\Omega_{\Lambda} = 0.27 \).

2. OBSERVATIONS AND ANALYSIS

GRB 111117A was detected on 2011 November 17, 510 UT (Mangano et al. 2011) by the Burst Alert Telescope (BAT; Barthelmy et al. 2005) on-board the Swift satellite (Gehrels et al. 2004), with a ground-calculated positional accuracy of 1.7'' radius (90% containment; Sakamoto et al. 2011a). The burst was also detected by the Fermi Gamma-
Ray Burst Monitor (GBM) in the energy range 10-1000 keV (Foley & Jenke 2011).

Follow-up observations with the X-ray Telescope (XRT; Burrows et al. 2005) commenced at $\delta t \approx 80$ s and resulted in the detection of a fading X-ray source located at RA=$00^h50^m46.2^s$ and Dec=$+23^\circ00'39.2''$ (J2000), with an uncertainty of 2.1'' radius (90% containment; Melandri et al. 2011a). GRB111117A is therefore part of the handful of short GRBs promptly re-pointed by Swift/XRT and with broad band spectral coverage during the prompt emission. The UV-Optical Telescope (UVOT; Roming et al. 2005) began observations of the field at $\delta t \approx 137$ s but no corresponding source was found within the XRT position to limits of $\gtrsim 19.5-21.5$ mag in the first 1300 s (Oates & Mangano 2011).

Ground-based optical observations commenced at $\delta t \approx 2$ hr with a non-detection at $R \approx 22.2$ mag (Zhao et al. 2011), and eventually led to the detection of an extended source with $r \approx 24$ mag, identified as the potential host galaxy of GRB111117A (Andersen et al. 2011; Fong et al. 2011b; Cenko & Cucchiara 2011; Schmidl et al. 2011; Melandri et al. 2011a).

Finally, a Chandra observation at $\delta t \approx 3.0$ d led to the detection of the X-ray afterglow (Sakamoto et al. 2011b), and a refined analysis relative to our optical images from the Magellan 6.5-m telescope provided a correction to the native Chandra astrometry and an initial offset from the host galaxy of about 1'' (Berger et al. 2011). The analysis presented here superseded the Chandra position quoted in the GCN circulars (Berger et al. 2011).

2.1. γ-ray Observations

We processed the Swift/BAT data with the latest version of the HEASOFT package (v6.11), using the batgrbproduct script to generate event lists and quality maps for the 64 ms mask-weighted and background-subtracted light curves (Figure 1). The ground-refined coordinates provided by Sakamoto et al. (2011a) were adopted, and standard filtering and screening criteria were applied. We also used the mask-weighting procedure to produce weighted, background-subtracted spectra.

We find that the γ-ray emission consists of two pulses with a total duration of $T_{90} = 0.47 \pm 0.05$ s (15 – 350 keV; Figure 1), classifying GRB 111117A as a short burst. The spectral time-lag between the 100 – 350 and 25 – 50 keV bands is (0.6 ± 2.4) ms, typical of short GRBs (Sakamoto et al. 2011a). The time-averaged spectrum in the 15 – 150 keV range is best fit by a single power-law model with a hard power-law index, $\Gamma = 0.59 \pm 0.14$. The γ-flux derived from this spectrum is $F_{\gamma} = (1.3 \pm 0.2) \times 10^{-7}$ erg cm$^{-2}$ in the 15 – 150 keV band, in agreement with the values reported by Sakamoto et al. (2011a) and Mangano et al. (2011b).

The Fermi/GBM spectrum in the energy range 10 – 1000 keV is best fit by a power-law with an exponential cut-off, with $\Gamma = 0.69 \pm 0.16$ (Foley & Jenke 2011); this is consistent with the BAT spectrum. The peak energy is $E_{pk} \gtrsim 370$ keV, while the observed exponential cut-off indicates that $E_{pk} \lesssim 1$ MeV. The 10 – 1000 keV band fluence derived from this spectrum is $F_{\gamma} = (6.7 \pm 0.2) \times 10^{-7}$ erg cm$^{-2}$. We refer to Sakamoto et al. (2012) for a detailed analysis of the Fermi/GBM data.

2.2. X-ray Observations

We analyzed the data using HEASOFT (v6.11) with standard filtering and screening criteria, and generated the 0.3 – 10 keV count-rate light curve following the procedures in Margutti et al. (2012). Our re-binning scheme ensures a minimum signal-to-noise ratio $S/N = 3$ for each temporal bin. The low count statistics of the Windowed Timing (WT) observations do not allow us to constrain the spectral parameters during the interval $\delta t \approx 80 – 87$ s. We model the time-averaged spectrum in the interval 87 s to 40 ks (total exposure of about 9 ks in the Photon Counting mode) with an absorbed power-law model ($\nu F_{\nu} \propto \nu^{\Gamma}$ with $\Gamma = 1.0 \pm 0.1$ and an intrinsic neutral hydrogen column density of $N_{H,\text{int}} = (6.7 \pm 3.0) \times 10^{21}$ cm$^{-2}$ ($C - \text{stat} = 98$ for 152 d.o.f.) in excess to the Galactic column density, $N_{H,Gal} = 3.7 \times 10^{20}$ cm$^{-2}$ (Kalberla et al. 2005); we adopt the best-fit photometric redshift of $z = 1.3$ derived in §3.1). From the best-fit spectrum we derive an unabsoed count-to-flux conversion factor of 6.5×10^{-11} erg cm$^{-2}$ counts$^{-1}$ (0.3-10 keV). Uncertainties arising from the flux calibration procedure have been propagated into the individual error-bars.

We analyzed the public Chandra data (PI: Sakamoto) with the CIAO software package (v4.3), using the calibration database CALDB v4.4.2, and applying standard ACIS data filtering. Using wavdetect we detect a source at 3.4σ significance at a position consistent with the XRT afterglow, with a net count-rate of $(3.3 \pm 1.3) \times 10^{-4}$ counts s$^{-1}$ (0.5–8 keV; total exposure time of 19.8 ks). Assuming the spectral parameters from the XRT analysis, this translates to an unabsorbed flux of $(3.5 \pm 1.4) \times 10^{-15}$ erg s$^{-1}$ cm$^{-2}$ (0.3–10 keV).

The X-ray light curve (Figure 6) exhibits an overall single power-law decay, with an apparent flare at $\delta t \approx 150$ s ($\approx 3\sigma$ confidence level). The best-fit power-law index at $\delta t \gtrsim 300$ s is $\alpha = -1.21 \pm 0.05$ ($\chi^2 = 7.6$ for 11 d.o.f.).

2.3. Optical Afterglow Limits

We obtained deep r-band observations with the Gemini Multi-Object Spectrograph (GMOS; Hook et al. 2004) mounted on the Gemini-South 8-m telescope on 2011 November 18.06 and 20.05 UT, with total exposure times of 1800 s and 2880 s, respectively. We processed the data using the gemini package in IRAF, and calibrated the photometry with several nearby point sources from the Sloan Digital Sky Survey (SDSS; Abazajian et al. 2009). We further performed digital image subtraction of the two epochs using the High Order Transformation and Point Spread Function and Template Subtraction (HOTPANTS), but no fading source is detected within the XRT error circle, or in coincidence with the putative host galaxy to $r \geq 25.5$ mag (3σ) at $\delta t \approx 0.55$ d (Figure 2). We note that this is the deepest limit to date on the early optical emission from a short GRB (Berger 2010; Fong et al. 2011a), with the exception of GRB 080503 which was eventually detected at $\delta t \gtrsim 1$ d (Perley et al. 2009). Indeed, the median optical afterglow brightness for detected short GRBs on a similar timescale is $r \approx 23.5$ mag, a factor of at least 6 times brighter (Berger 2010; Fong et al. 2011a).

2.4. X-ray/Optical Differential Astrometry

In the absence of an optical afterglow we use the Chandra observation to refine the Swift/XRT position to sub-arcsecond accuracy. We perform differential astrometry between the Chandra data and a Gemini-North i-band observation (2.5) to determine the relative positions of the afterglow and host galaxy, as well as to refine the native Chandra astrometry. We use SExtractor to determine the positions and centroid uncertainties of sources in the GMOS image. Performing an absolute astrometric tie to the Sloan Digital Sky Survey (SDSS) catalog using 71 common point sources, we find a resulting rms value of $\sigma_{\text{GMOS--SDSS}} = 0.13''$ (0.09'' in each coordinate).

To refine the native Chandra astrometry and to determine the location of the X-ray afterglow relative to the GMOS image, we perform differential astrometry. We use the CIAO routine wavdetect to obtain positions and 1σ centroid uncertainties of X-ray sources in the field, including the afterglow of GRB 111117A, with a resulting $\sigma_{\text{X-ray}} = 0.13''$. We calculate an astrometric tie based on two X-ray and optically bright common sources and find weighted mean offsets of $\delta RA = -0.18 \pm 0.03''$ and $\delta Dec = -0.02 \pm 0.11''$ giving a tie uncertainty of $\sigma_{\text{CXO-GMOS}} = 0.12''$. Applying the astrometric solution we obtain a Chandra afterglow position of

8 The power-law index is obtained by minimizing the integral of the model over the effective duration of each temporal bin of the light-curve. This procedure is of primary importance in the case of bins with long duration and produces more accurate results than the standard χ^2 procedure, which compares the model and the data at the nominal bin time, but does not consider the finite bin duration and the evolution of the model during the time interval.

9 IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

10 http://sextractor.sourceforge.net/

12 There are two additional fainter common sources, which lead to increased scatter in the astrometric tie without changing the absolute value, and we therefore use only the two bright sources.
RA=00°50′46.283″ and Dec=+23°00′39.6′′; see Figure 5. The total 1σ uncertainty in the absolute position is 0.22″, accounting for the SDSS-GMOS astrometric tie, GMOS-Chandra tie, and the X-ray afterglow positional uncertainty. The Chandra position is consistent with the XRT position, but refines its uncertainty by about a factor of 6. We note that the relative position of the X-ray afterglow in the GMOS astrometric frame is 0.18″ (GMOS-Chandra tie and afterglow positional uncertainty only).

2.5. Host Galaxy Optical/Near-IR Observations

We obtained optical observations in the griz bands, and near-IR observations in JK_s bands to determine the properties of the host galaxy. The details of the observations are summarized in Table 1. The g-band observation was performed with GROND (Greiner et al. 2008) mounted at the 2.2 m MPG/ESO telescope at La Silla Observatory (Chile). The r-band observation was obtained with the Inamori-Magellan Areal Camera and Spectrograph (IMACS) on the Magellan/Baade 6.5-m telescope, while the iz band observations were performed with GMOS mounted on the Gemini-North 8-m telescope. Finally, the JK_s-band observations were obtained with the FourStar wide-field near-IR camera on the Magellan/Baade telescope. The GMOS data were reduced using the gemini package in IRAF, the IMACS and GROND data were reduced using standard packages in IRAF, and the FourStar data were reduced using a custom pipeline in python.

We identify a galaxy near the Chandra position, at RA=00°50′46.267″ and Dec=+23°00′40.87″ (astrometry relative to SDSS: 2.4′′, with a centroid uncertainty of 0.08″. The offset between the galaxy centroid and the Chandra afterglow position is 1.25″ ± 0.20″. Photometry of the galaxy is performed in a 2″ radius aperture, with the zero-point determined by common sources with SDSS (griz) and 2MASS (JK_s). The resulting magnitudes are listed in Table 1.

To determine the probability of chance coincidence for this galaxy relative to the afterglow position we adopt the methodology of Bloom et al. (2002) and Berger (2010). The expected number density of galaxies brighter than the apparent magnitude of the galaxy, m_r = 23.6 mag, is (Hogg et al. 1997; Beckwith et al. 2006):

$$\sigma(\leq m_r) = \frac{1}{0.33 \times \ln(10)} \times 10^{0.33(m_r-24)-2.44} \approx 0.004 \text{ arcsec}^{-2},$$

and the probability of chance coincidence is therefore:

$$P(< \delta R) = 1 - e^{-\pi(\delta R)^2\sigma(\leq m_r)} \approx 0.02.$$ (2)

Given the low value of P(< δR) and the absence of other candidate hosts in the vicinity of the afterglow position, we consider this galaxy to be the host of GRB 111117A. We note that with the XRT position alone, the probability of chance coincidence for this galaxy is much larger, P(< δR) ≈ 0.17 (using δR ≈ 3σ_XRT; see Bloom et al. 2002).

2.6. Radio Observations

We observed the location of GRB 111117A with the Karl G. Jansky Very Large Array (Perley et al. 2011) on 2011 November 18.00 UT (Δt ≈ 0.5 d) at a mean frequency of 5.8 GHz with a total on-source integration time of 75 min. We used 3C48 and J0042+2320 for bandpass/flux and gain calibration, respectively, and followed standard procedures in the Astronomical Image Processing System (AIPS, Greisen 2003) for data calibration and analysis. The effective bandwidth is about 1.5 GHz after excising edge channels and data affected by radio frequency interference. We re-flagged and calibrated our data after the initial quick reduction (Fong et al. 2011b) and do not detect any significant emission in coincidence with the Chandra position to a 3σ limit of 18 μJy.

3. RESULTS AND DISCUSSION

3.1. Host galaxy properties

To determine the photometric redshift and properties of the host galaxy we use our grizJK_s band photometry. We model the host spectral energy distribution (SED) with the Maraston (2005) evolutionary stellar population synthesis models, using a Salpeter initial mass function, solar metallicity, and a red horizontal branch morphology, with the redshift (z) and stellar population age (τ) as free parameters. The resulting best-fit model is shown in Figure 4 along with the confidence regions for the redshift and age. We find that z = 1.3^{+0.3}_{-0.2} and τ = 70^{+55}_{-40} Gyr (χ^2 = 1.2 for 3 d.o.f.); the results remain unchanged if we use a model with a metallicity of 0.5 Z⊙. The inferred redshift is consistent with the independent estimate by Sakamoto et al. (2012) and is one of the highest for any short GRB to date, either from spectroscopic or photometric measurements (Levan et al. 2006; de Ugarte Postigo et al. 2006; Berger et al. 2007; Graham et al. 2009; Leibler & Berger 2010), but is in the range of expected redshifts for short GRBs with faint hosts (Berger et al. 2007).

The inferred stellar population age is at the low end of the distribution for short GRB hosts, for which ⟨τ⟩ ≈ 0.3 Gyr (Leibler & Berger 2010). The inferred host galaxy stellar mass is M_∗ ≈ 4 × 10^9 M_S⊙, about a factor of 3 times lower than the median for short GRB hosts, but this assumes a single stellar population. Contribution from an older stellar population could increase the total mass up to a maximal value of ≈ 7 × 10^{10} M_S⊙ if we assume the presence of a stellar population with the age of the universe at z = 1.3 (c.f., Leibler & Berger 2010). We note that the stellar population age and specific star formation rate are similar to those
of long GRB host galaxies, for which \((\tau) \approx 60\) Myr and \(\langle SFR/L_B \rangle \approx 10 M_\odot\ yr^{-1} L_B^{-1}\) (Berger 2009; Leibler & Berger 2010).

From the observed g-band flux density, which samples the rest-frame UV luminosity, we infer a star formation rate of \(SFR \approx 6 M_\odot\ yr^{-1}\) (Kennicutt 1998). This is higher than for most previous short GRB host galaxies (Berger 2009). The absolute B-band magnitude is \(M_B \approx -21.0\) mag, corresponding to \(L_B \approx 0.6 L^*\) in comparison to the DEEP2 luminosity function at \(z = 1.1\) (Willmer et al. 2003). This value is typical for short GRB hosts (Berger 2009). Combining the star formation rate and B-band luminosity, we infer a specific star formation rate of \(SFR/L_B \approx 10 M_\odot\ yr^{-1} L_B^{-1}\). This is again at the upper end of the distribution for short GRB host galaxies (Berger 2009).

The host galaxy of GRB 111117A is overall similar to the host of short GRB 060801 (\(z = 1.130\)) in terms of its star formation rate and stellar mass (Berger 2009). It provides additional support to the conclusion that short GRB progenitors originate from diverse stellar populations. Under the assumption that the stellar population ages can be used as a proxy for the progenitor delay time distribution (Leibler & Berger 2010), events like GRB 111117A point to delay times as short as a few tens of Myr. In the context of NS-NS/NS-BH mergers, this is suggestive of a subset of short-lived compact object binaries (e.g., Belczynski & Kalogera 2001; Belczynski et al. 2002).

3.2. Offset

The Chandra-derived projected angular offset of \(1.25 \pm 0.20\)" corresponds to a projected physical offset of \(\delta R = 10.5 \pm 1.7\) kpc at \(z = 1.3\). This is comparable to the median offset of about 5 kpc for the sample of short GRBs studied by Fong et al. (2010) and Berger (2010; see Figure 5). Indeed, as a subset, the two short bursts with precise localizations from Chandra alone (GRB 111102A from Fong et al. 2012 and GRB 111117A presented here) have similar offsets to those inferred from optical afterglows. This suggests that optical afterglows do not produce an obvious bias against large offsets, as already demonstrated for the subset of short GRBs that lack coincident host galaxies (Berger 2010).

Different short GRB progenitor models predict distinct offset distributions. NS-NS/NS-BH merger models predict a median offset of about 5–10 kpc (Bloom et al. 1999; Fryer et al. 1999; Belczynski et al. 2006) for host galaxies with a mass comparable to the Milky Way as found for short GRBs (Berger 2009). On the other hand, magnetar models are not expected to produce a substantial fraction of short GRBs at offsets of \(\gtrsim 10\) kpc (Levan et al. 2006b; Metzger et al. 2008). Figure 5 shows that NS-NS binary models are in reasonable agreement with the observed distribution of physical offsets, from both optical and Chandra positions.

3.3. X-ray afterglow properties

At \(z = 1.3\) the X-ray afterglow of GRB 111117A lies at the upper end of the short GRB luminosity distribution, with a typical power-law decay (Figure 6). The total energy released in the \(0.3–10\) keV energy band during the X-ray afterglow (80 s to 3 d) is \(E_{x,\text{iso}} = (1.1 \pm 0.1) \times 10^{50}\) erg, typical for short GRBs (Figure 6 inset). This confirms previous findings that the X-ray afterglows of short GRBs are on average ~100 times less energetic than those of long GRBs (Margutti et al. 2012). The corresponding energy radiated in the \(0.3–30\) keV rest frame band is \(E_{x,\text{iso}} \approx 1.5 \times 10^{50}\) erg. In comparison to the isotropic \(\gamma\)-ray energy this indicates \(E_{x,\text{iso}} \approx 0.03 E_{\gamma,\text{iso}}\), which is typical of short GRBs.

We combine this result with the inferred rest frame value of \(E_{pk} \sim 850–2300\) keV to show that GRB 111117A is consistent with the recently-reported \(E_{x,\text{iso}} - E_{\gamma,\text{iso}} - E_{pk}\) correlation for long and short GRBs, and resides in the region populated by these GRBs.

\[\text{TABLE 1}\]

<table>
<thead>
<tr>
<th>Date (UT)</th>
<th>(\Delta t) (d)</th>
<th>Telescope</th>
<th>Instrument</th>
<th>Filter</th>
<th>Exposures (s)</th>
<th>(\theta_{\text{WMH}}) (arcsec)</th>
<th>Host* (AB mag)</th>
<th>(A_V) (AB mag)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011 Nov. 18.08</td>
<td>0.57</td>
<td>Magellan/Baade</td>
<td>IMACS</td>
<td>(r)</td>
<td>4 x 300</td>
<td>1.06</td>
<td>23.72 ± 0.11</td>
<td>0.069</td>
</tr>
<tr>
<td>2011 Nov. 28.13</td>
<td>10.62</td>
<td>MPG/ESO</td>
<td>GROND</td>
<td>(g)</td>
<td>8 x 375</td>
<td>1.07</td>
<td>24.14 ± 0.18</td>
<td>0.120</td>
</tr>
<tr>
<td>2011 Nov. 28.25</td>
<td>10.74</td>
<td>Gemini-North</td>
<td>GMOS</td>
<td>(i)</td>
<td>10 x 180</td>
<td>0.75</td>
<td>23.66 ± 0.08</td>
<td>0.051</td>
</tr>
<tr>
<td>2011 Nov. 28.27</td>
<td>10.76</td>
<td>Gemini-North</td>
<td>GMOS</td>
<td>(z)</td>
<td>10 x 180</td>
<td>0.83</td>
<td>23.04 ± 0.18</td>
<td>0.038</td>
</tr>
<tr>
<td>2011 Dec. 7.07</td>
<td>19.56</td>
<td>Magellan/Baade</td>
<td>FourStar</td>
<td>(J)</td>
<td>15 x 60</td>
<td>0.78</td>
<td>22.55 ± 0.30</td>
<td>0.027</td>
</tr>
<tr>
<td>2011 Dec. 7.07</td>
<td>19.54</td>
<td>Magellan/Baade</td>
<td>FourStar</td>
<td>(K_s)</td>
<td>10 x 90</td>
<td>0.68</td>
<td>≥ 22.10</td>
<td>0.011</td>
</tr>
</tbody>
</table>

Note. — *These values have been corrected for Galactic extinction, \(A_V\) [Schlafly & Finkbeiner 2013].

![Figure 5.](image-url) Cumulative distribution of projected physical offsets for short GRBs with sub-arcsecond positions (red; Fong et al. 2010; Berger 2010; Fong et al. 2012), including GRB 111117A, and for long GRBs (black; Bloom et al. 2003). Also shown are population synthesis model predictions for NS-NS binaries (Bloom et al. 1999; Fryer et al. 1999; Belczynski et al. 2006). Arrows mark the offsets of the two short GRBs localized by Chandra alone, GRB 111117A from this work and GRB 111020A from Fong et al. (2012). These offsets are somewhat larger than the median short GRB offset of about 5 kpc.
Fig. 6. — Upper panel: Unabsorbed $0.3 - 10$ keV flux and luminosity light curve of GRB 111117A (red dots: *Swift*/XRT; red triangle: *Chandra*) compared to 11 short GRBs detected by *Swift* for which a redshift measurement is available (grey lines). The best fit power-law model has $\alpha_x = -1.21 \pm 0.05$ (solid black line). An apparent flare is detected at $\approx 80 - 200$ s (black dotted lines). The inset shows the distribution of the isotropic energy emitted during the X-ray afterglow for long GRBs (black line) and short GRBs (grey filled histogram) as computed by [Margutti et al. (2012)]. For GRB 111117A we measure $E_{x,\text{iso}} \approx 1.1 \times 10^{50}$ erg s$^{-1}$. Lower panel: Time evolution of the hardness ratio measured between the $1.3 - 10$ keV and $0.3 - 1.5$ keV energy bands.

Fig. 7. — Three-parameter correlation involving the isotropic energy emitted in the X-ray afterglow ($E_{x,\text{iso}}$; rest-frame $0.3 - 30$ keV), the isotropic γ-ray energy ($E_{\gamma,\text{iso}}$; rest-frame $1 - 10^8$ keV), and the rest-frame spectral peak energy during the prompt phase (E_{pk}). The blue circles mark GRB 111117A using the range of $E_{pk} \sim 850 - 2300$ keV (± 1). The dot-dashed lines mark the 90% confidence area around the best-fit relation: $E_{x,\text{iso}} \propto E_{\gamma,\text{iso}}^{1.00 \pm 0.06} E_{pk}^{-0.60 \pm 0.10}$. The inset shows the evolution of $\epsilon \equiv E_{x,\text{iso}} / E_{\gamma,\text{iso}}$ as a function of E_{pk}. Adapted from [Margutti et al. (2012)].
Fig. 8.— Relative variability flux ($\Delta F / F$) versus relative variability time scale ($\Delta t / t$) for a sample of short GRB X-ray flare candidates (orange filled circles; Margutti et al. 2011), as well as early (blue open diamonds; Chincarini et al. 2010) and late-time (light-blue stars; Bernardini et al. 2011) flares in long GRBs. A small black dot marks short GRBs with extended emission. The apparent flare detected in GRB 111117A is marked with a red filled circle. The late-time re-brightening detected in GRB 050724 is also shown for completeness with an orange open triangle. Solid, dashed and dot-dashed lines mark the kinematically allowed regions according to Ioka et al. (2005) (their equations (7) and (A2)).
by short GRBs and X-ray flashes (Figure 7 [Margutti et al. 2012]). This provides additional support to the conclusions that: (i) this correlation can be used to divide “standard” long GRBs from short GRBs, peculiar GRBs, and X-ray flashes; and (ii) the physical origin of the correlation is related to a common feature of the different classes, possibly the properties of the relativistic outflow (in particular the bulk Lorentz factor; see Bernardini et al. 2012 for details; see Fan et al. 2012 and Dado & Dai 2012 for alternative explanations).

At δt ≈ 80–250 s we find evidence for an apparent flare superimposed on the smooth X-ray afterglow decay, with a significance of ≳ 3σ (Figure 6). With a rest frame duration of Δt ≈ 16 s and peak time of tpk ≈ 70 s, the flare is consistent with the Δt versus tpk correlation established by long GRB flares (Chincarini et al. 2010) and shared by short GRB flares (Margutti et al. 2011). The flux contrast of the flare, ΔF / F ≈ 2, is also typical of flares in short GRBs (Figure 8). Finally, the flare peak luminosity and integrated energy are Lpk ≈ 10^{48} erg s^{-1} and E_X ≈ 1.6 × 10^{50} erg, again typical of short GRB flares (Margutti et al. 2011). We note that the value of Δt / tpk ≈ 0.2 does not support an external shock origin, for which we expect Δt / tpk ≳ 1 (e.g., Zhang et al. 2006), but see Dermer 2008. However, the flux contrast of ΔF / F ≈ 2 is also at odds with the expectation for central engine variability, with ΔF / F ≈ 100 (Lazzati et al. 2011).

3.4. Multi-wavelength Afterglow Modeling

The detected X-ray afterglow, along with the upper limits in the optical and radio allow us to extract some of the basic properties of GRB 111117A. We adopt the afterglow synchrotron model formulation of Granot & Sari (2002), which provides a mapping from the observed fluxes and break frequencies to the isotropic-equivalent kinetic energy (E_{K,iso}), circumburst density (n_0), the fractions of post-shock energy in radiating electrons (ε_e) and magnetic fields (ε_B), and the electron power-law distribution index (p, with N(γ) ∝ γ^{-p}). We consider the case of a constant density medium relevant for short GRBs. In the analysis below we adopt the best-fit redshift of z = 1.3.

The X-ray temporal and spectral indices are α_X ≈ −1.21 ± 0.05 and β_X ≈ −1.0 ± 0.2 (Figure 12). For the case of the synchrotron cooling break located redward of the X-ray band (ν_c < ν_X), the resulting values of p are 2.28 ± 0.07 and 2.0 ± 0.4 from α_X and β_X, respectively; for the opposite scenario (ν_c > ν_X) the resulting values of p are 2.61 ± 0.07 and 3.0 ± 0.4. In both cases the values of p inferred from α_X and β_X are consistent, indicating that the X-ray data alone cannot distinguish the location of ν_c.

The unabsorbed X-ray flux density at the time of the optical non-detection (δt ≈ 0.55 d) is F_{ν,X} ≈ 4.4 mJy, compared to F_{ν,opt} ≲ 0.23 µJy. This leads to an observed spectral index of β_{OX} ≳ −0.63, consistent with the value of p < 2.28 for the case of ν_c < ν_X. If ν_c ≈ ν_X (i.e., if the relevant spectral slope between the X-ray and optical bands is β_{OX} = (p−1)/2), the other hand, for ν_c > ν_X we expect a spectral index of β_{OX} = (p−1)/2 ≈ −0.80, which is much steeper than the observed value. With this spectral index we would expect the optical flux to be ≳ 0.65 mJy, or about 1.1 mag brighter than the observed limit. Thus, the X-ray/optical comparison either requires rest-frame extinction of A_vhost ≳ 0.5 mag or ν_c ≈ ν_X.

We note that for the Galactic relations between N_H and A_v (Predehl & Schmitt 1995) the optical extinction would imply N_H^host ≳ 10^{23} cm^{-2}, consistent with the marginal detection in the XRT spectrum of (6.7 ± 3.0) × 10^{21} cm^{-2}.

Under the assumption that ν_c < ν_X we can use the Chandra X-ray flux density, F_{ν,X} ≈ 0.42 nJy, to infer the value of the isotropic-equivalent kinetic energy:

\[E_{K,iso} ≈ 7.5 \times 10^{50} \text{ erg} \]

where we have assumed ε_e = ε_B = 0.1; we note that the dependence on ε_B is weak, E_{K,iso} ∝ ε_B^{-0.07}, while E_{K,iso} is inversely proportional to ε_e. The fiducial value of E_{K,iso} is lower than the isotropic-equivalent γ-ray energy, E_{γ,iso} ≈ 3.0 × 10^{51} erg.

We next use the upper bounds on the radio and optical flux densities to place constraints on the circumburst density and energy. For the radio upper limit we use the synchrotron flux density relevant for ν_d < ν_rad < ν_m:

\[F_{ν,rad} ≈ 36 \mu \text{Jy}^{1/2} E_{K,iso,51}^{5/6} \lesssim 18 \mu \text{Jy}, \]

while for the optical upper limit we use the synchrotron flux density relevant for ν_m < ν_opt < ν_c:

\[F_{ν,opt} ≈ 4.4 \mu \text{Jy}^{1/2} E_{K,iso,51}^{3.2} \lesssim 0.23 \mu \text{Jy}. \]

The resulting allowed phase-space of E_{K,iso} and n_0 is shown in Figure 9. Using the value of E_{K,iso} inferred from the X-ray data (Equation 4), and the corresponding limits on n_0 from the optical data (n_0 ≲ 0.006 cm^{-3}) and radio data (n_0 ≲ 0.4 cm^{-3}), we find that the cooling frequency is located at ν_c ≈ (0.15−8) × 10^{17} Hz (i.e., ν_c ≳ 0.06−3 keV) at δt = 1000 s. Using instead a value of ε_B = 0.01 the limits on the density are n_0 ≲ 0.25 cm^{-3} (optical) and n_0 ≲ 2 cm^{-3} (radio), and the cooling frequency is therefore ν_c ≳ (0.9−7) × 10^{17} Hz (i.e., ν_c ≳ 0.4−3 keV). Thus, the inferred location of ν_c is in the X-ray band, in agreement with our conclusion from the comparison of the X-ray and optical flux densities.

In the alternative scenario of ν_c > ν_X both the optical and X-ray bands probe the same portion of the synchrotron spectrum, ν_m < ν_opt < ν_c, but this time with a value of p = 2.61. For the X-ray band, this gives the relation (for ε_c = ε_B = 0.1):

\[F_{ν,X} ≈ 4.4 \text{nJy}^{1/2} E_{K,iso,51}^{4} \lesssim 0.42 \text{nJy}, \]

while for the radio band (ν_d < ν_rad < ν_m) we find:

\[F_{ν,rad} ≈ 12 \mu \text{Jy}^{1/2} E_{K,iso,51}^{5/6} \lesssim 18 \mu \text{Jy}. \]

The resulting allowed regions of E_{K,iso}−n_0 phase-space are shown in Figure 9. Assuming that E_{K,iso} = E_{γ,iso} = 3.0 × 10^{51} erg, the X-ray flux density corresponds to n_0 ≃ 3 × 10^{−4} cm^{-3} for ε_B = 0.01 the density is instead ε_B = 0.01 ≃ 0.02 cm^{-3}, while for ε_B = 0.001 the density is ≃ 1.2 cm^{-3}. With these values we indeed find that ν_c ≳ 4 × 10^{17} Hz (l ≳ 16 keV) at δt = 1000 s, consistent with the assumption that ν_c > ν_X.

To conclude, with the assumption that ν_c < ν_X we find that E_{K,iso} ≃ 7.5 × 10^{50} erg, and n_0 ≲ 0.01 cm^{-3} (ε_B = 0.1) or ≲ 0.2 cm^{-3} (ε_B = 0.01). The resulting location of the cooling break indicates that ν_c ∝ ν_X, marginally consistent with the inherent assumption. On the other hand, if ν_c > ν_X, then the assumption of E_{K,iso} ≃ E_{γ,iso} indicates that n_0 ≃ 3 × 10^{−4}−1 cm^{-3} (ε_B = 0.001−0.1). However, this also requires host 21

We can rule out ε_c = 0.01 or ε_c = 0.1 and ε_B ≲ 0.001 since in these cases the upper limit on the density from the radio data is lower than the density inferred from the X-ray detections.

This range indicates a beaming correction as low as ≈ provide critical insight into the nature of GRB 111117A: follow-up observations of its host galaxy. These observations of short GRB 111117A, along with optical and near-IR glow of short GRB 111117A, for which the expected densities are 0 to − cm. The angle of the outflow from GRB 111117A. Using the formula- horizontal black line. The panels are for different combinations of ν and/or radio upper limits (hatched regions). The top row is for the case ν > νX for which the optical limit is redundant with respect to the X-ray detection. Here the case of EK,iso = Eγ,iso is marked by the bottom row is for the case ν < νX for which the optical limit is redundant with respect to the X-ray detection. Here the case of EK,iso = Eγ,iso is marked by the horizontal black line. The panels are for different combinations of ε and εB.

The host galaxy of GRB 111117A exhibits vigorous star formation activity and a young stellar population age that are at the upper bound of the distribution for short GRB hosts (Perna & Belczynski 2002; Belczynski et al. 2006).

4. SUMMARY AND CONCLUSIONS

We presented multi-wavelength observations of the afterglow of short GRB 111117A, along with optical and near-IR follow-up observations of its host galaxy. These observations provide critical insight into the nature of GRB 111117A:

- Using a Chandra observation we accurately pinpoint the location of the afterglow to the outskirts of a galaxy at a photometric redshift of z ≈ 1.3, one of the highest for any short GRB to date. The projected optical offset is about 10.5 kpc, reminiscent of previous short GRBs (Fong et al. 2010; Berger 2010). Along with the previous burst detected by Chandra alone (GRB 111020A; Fong et al. 2012) we find that short GRBs localized by optical and X-ray afterglows appear to have similar offsets.
- The host galaxy of GRB 111117A exhibits vigorous star formation activity and a young stellar population age that are at the upper bound of the distribution for short GRB hosts (Berger 2009; Leibler & Berger 2010).

- The X-ray afterglow properties are typical of short GRBs with long-lasting X-ray emission. In particular, with Eγ,iso ≈ 1.5 × 1050 erg, Eiso ≈ 3 × 1051 erg, and Eiso ≈ 850–2300 keV, GRB 111117A is consistent with the three-parameter universal GRB scaling recently reported by Margutti et al. (2012). The X-ray to γ-ray energy ratio for GRB 111117A is ε ≈ 0.03, as typically found for short GRBs.
- We find evidence (statistical significance of ≈ 3σ) for an early flare superimposed on the X-ray afterglow decay with properties that are reminiscent of X-ray flare candidates detected in other short GRBs (Margutti et al. 2011). The origin of X-ray flares appears to be independent of the large scale environment since they are detected from short GRBs in both early- and late-type galaxies.
- Using the X-ray light curve, and deep upper limits in the optical and radio bands we find that if ν > νX then n0/2 EK,iso,51 ≈ 0.1–6 (for εe = 0.1 and εB = 0.001–0.1). For the specific case of EK,iso = Eγ,iso ≈ 3.0 × 1051 erg, this leads to a density of n0 ≈ 3 × 10−4–1 cm−3; larger densities are ruled out independently by the radio limit, which leads to n0/2 EK,iso,51 ≲ 0.7–3 (for εe = 0.1 and εB = 0.001–0.1). However, this scenario requires substantial rest-frame extinction of AB,host ≳ 0.5 mag to explain the optical non-detection. In the alternative scenario of ν < νX we find that EK,iso ≈ 7.5 × 1050(εe/0.1)−1 erg and n0 ≲ 0.1 cm−3.
- The lack of a clear break in the X-ray light curve at ≤ 3 d, points to an opening angle of θj ≳ 3–10°, with the exact lower limit depending on the circumburst density.

In this calculation the observer is assumed to be on-axis.
The results of this work highlight the importance of Chandra for the determination of short GRB sub-arcsecond positions, especially in the absence of optical detections. This is critical for locating short GRBs within their host environments, particularly in comparison to Swift/XRT position, which are generally much larger than the host galaxy sizes.

R.M. thanks Rodolfo Barniol Duran and Cristiano Guidorzi for useful discussions. We thank Francesco di Mille for carrying out the Magellan FourStar observations, and Andy Monsen for assistance with the data reduction. The Berger GRB group at Harvard is supported by the National Science Foundation under Grant AST-1107973. Partial support was also provided by NASA/Swift AO6 grant NNX10AI24G. Support for this work was provided by the David and Lucile Packard Foundation Fellowship for Science and Engineering awarded to A.M.S S.B.C. acknowledges generous financial assistance from Gary & Cynthia Bengier, the Richard & Rhoda Goldman Fund. NASA/Swift grants NNX10AI21G and NNX12AD73G, the TABASGO Foundation, and US National Science Foundation (NSF) grant AST-0908886. A.R. and S.K. acknowledge support by grant DFG Kl 766/16-1.

S.S. acknowledges support by a Landesstipendium. Part of the funding for GROND (both hardware and personnel) was generously granted by the Leibniz-Prize to G. Hasinger (DFG grant HA 1850/28-1). Observations were obtained with the VLA (program 10C-145) operated by the National Radio Astronomy Observatory. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile. This work is based in part on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministério de Ciencia, Tecnología e Innovación Productiva (Argentina).
Zhang, B., Fan, Y. Z., Dyks, J., Kobayashi, S., Mészáros, P., Burrows, D. N.,

Network, 12560, 1