The Afterglow and Environment of the Short Grb 111117a

Citation

Published Version
doi:10.1088/0004-637x/756/1/63

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:30410847

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
THE AFTERGLOW AND ENVIRONMENT OF THE SHORT GRB 111117A

R. Margutti1, E. Berger1, W. Fong1, B. A. Zauderer1, S. B. Cenko2, J. Greiner1, A. M. Soderberg1, A. Cucchiara4, A. Rossi2, S. Klose4, S. Schmidl3, D. Milisavljevic1, & N. Sanders4

Draft version July 18, 2012

ABSTRACT

We present multi-wavelength observations of the afterglow of the short GRB 111117A, and follow-up observations of its host galaxy. From rapid optical and radio observations we place limits of $r \geq 25.5$ mag at $\delta t \approx 0.55$ d and $F_{\nu}(5.8 \text{GHz}) \leq 18 \mu$Jy at $\delta t \approx 0.50$ d, respectively. However, using a Chandra observation at $\delta t \approx 3.0$ d we locate the absolute position of the X-ray afterglow to an accuracy of $0.22''$ (1σ), a factor of about 6 times better than the Swift/XRT position. This allows us to robustly identify the host galaxy and to locate the burst at a projected offset of $1.25 \pm 0.20''$ from the host centroid. Using optical and near-IR observations of the host galaxy we determine a photometric redshift of $z = 1.3^{+0.3}_{-0.1}$, one of the highest for any short GRB, and leading to a projected physical offset for the burst of 10.5 ± 1.7 kpc, typical of previous short GRBs. At this redshift, the isotropic γ-ray energy is $E_{\gamma,\text{iso}} \approx 3.0 \times 10^{51}$ erg (rest-frame 23–2300 keV) with a peak energy of $E_{pk} \approx 850–2300$ keV (rest-frame). In conjunction with the isotropic X-ray energy, GRB 111117A appears to follow our recently-reported $E_{x,\text{iso}}E_{\gamma,\text{iso}}E_{pk}$ universal scaling. Using the X-ray data along with the optical and radio non-detections we find that for a blastwave kinetic energy of $E_{k,\text{iso}} \approx E_{x,\text{iso}}$ erg, the circumburst density is $n_0 \approx 3 \times 10^{-4} – 1$ cm$^{-3}$ (for a range of $E_{\gamma} = 0.001 – 0.1$). Similarly, from the non-detection of a break in the X-ray light curve at $\delta t \lesssim 3$ d, we infer a minimum opening angle for the outflow of $\theta_0 \gtrsim 3 \times 10^{-8}$ (depending on the circumburst density). We conclude that Chandra observations of short GRBs are effective at determining precise positions and robust host galaxy associations in the absence of optical and radio detections.

Subject headings: gamma rays: bursts

1. INTRODUCTION

Precise localizations of short-duration gamma-ray bursts (GRB) are critical for studies of their explosion properties, environments, and progenitors. In particular, such localizations can provide secure associations with host galaxies, and hence redshift and offset measurements (e.g., Berger et al. 2007; Fong et al. 2010; Berger 2011). To date, most sub-arcsecond positions for short GRBs have relied on the detection of optical afterglows (e.g., Berger et al. 2005; Hjorth et al. 2005; Soderberg et al. 2006). However, X-ray emission is detected from a larger fraction of short bursts, and therefore observations with the Chandra X-ray Observatory can equally provide precise positions even in the absence of optical detections. Indeed, Chandra detections have been previously made for short GRBs 050709, 050724, 051221A, 080503, and 111020A (Fox et al. 2005; Berger et al. 2005; Burrows et al. 2006; Grue et al. 2006; Soderberg et al. 2006; Perley et al. 2009; Fong et al. 2012), but only in the latter case Chandra provided the sole route to a precise position (Fong et al. 2012). In the other 4 cases, the afterglow was also detected in the optical, as well as in the radio for GRBs 050724 and 051221A (Berger et al. 2005; Soderberg et al. 2006).

The advantage of precise X-ray positions is that the X-ray flux is potentially independent of the circumburst density if the synchrotron cooling frequency is located redward of the X-ray band. Thus, X-ray detections can in principle reduce any bias for small offsets that may arise from optical detections, which do depend on the density (although, see Berger 2010 for short GRBs with optical afterglows and evidence for large offsets of $\sim 50–100$ kpc).

Here, we present a Chandra detection of the X-ray afterglow of short GRB 111117A at $\delta t \approx 3$ d, which leads to a robust association with a galaxy at a photometric redshift of $z \approx 1.3$ and to a precise offset measurement. Among short GRBs, only GRBs 050724 and 051221A were detected at later times in X-rays. Using the Chandra and Swift/XRT data we study the properties of the X-ray afterglow in the context of the short GRB sample, and in conjunction with deep optical and radio upper limits we place constraints on the circumburst density. Similarly, optical/near-IR observations of the host allow us to determine its physical properties (star formation rate, stellar mass, stellar population age).

Throughout the paper we use the convention $F_{\nu}(\nu,t) \propto \nu^{\beta} t^{\alpha}$, where the spectral energy index is related to the spectral photon index by $\Gamma = 1 - \beta$. All uncertainties are quoted at 68% confidence level, unless otherwise noted. Magnitudes are reported in the AB system and have been corrected for Galactic extinction (Schlafly & Finkbeiner 2011). Finally, we use the standard cosmological parameters: $H_0 = 71 \text{ km s}^{-1} \text{ Mpc}^{-1}$, $\Omega_m = 0.73$, and $\Omega_b = 0.27$.

2. OBSERVATIONS AND ANALYSIS

GRB 111117A was detected on 2011 November 17.510 UT (Mangano et al. 2011) by the Burst Alert Telescope (BAT: Barthelmé et al. 2005) on-board the Swift satellite (Gehrels et al. 2004), with a ground-calculated positional accuracy of $1.7''$ radius (90% containment; Sakamoto et al. 2011a). The burst was also detected by the Fermi Gamma-
2.1. γ-ray Observations

We processed the Swift/BAT data with the latest version of the HEASOFT package (v6.11), using the batgrbproduct script to generate event lists and quality maps for the 64 ms mask-weighted and background-subtracted light curves (Figure 1). The ground-refined coordinates provided by Sakamoto et al. (2011a) were adopted, and standard filtering and screening criteria were applied. We also used the mask-weighting procedure to produce weighted, background-subtracted spectra.

We find that the γ-ray emission consists of two pulses with a total duration of $T_{90} = 0.47 \pm 0.05$ s (15 – 350 keV; Figure 1), classifying GRB 111117A as a short burst. The spectral time-lag between the 100 – 350 and 25 – 50 keV bands is (0.6 ± 2.4) ms, typical of short GRBs (Sakamoto et al. 2011a). The time-averaged spectrum in the 15 – 150 keV range is best fit by a single power-law model with a hard power-law index, $\Gamma_\gamma = 0.59 \pm 0.14$. The γ-ray fluence derived from this spectrum is $F_{\gamma} = (1.3 \pm 0.2) \times 10^{-7}$ erg cm$^{-2}$ in the 15 – 150 keV band, in agreement with the values reported by Sakamoto et al. (2011a) and Mangano et al. (2011b).

The Fermi/GBM spectrum in the energy range 10 – 1000 keV is best fit by a power-law with an exponential cut-off, with $\Gamma_\gamma = 0.69 \pm 0.16$ (Foley & Jenke 2011); this is consistent with the BAT spectrum. The peak energy is $E_{pk} \gtrsim 370$ keV, while the observed exponential cut-off indicates that $E_{pk} \lesssim 1$ MeV. The 10 – 1000 keV band fluence derived from this spectrum is $F_{\gamma} = (6.7 \pm 0.2) \times 10^{-7}$ erg cm$^{-2}$. We refer to Sakamoto et al. (2012) for a detailed analysis of the Fermi/GBM data.

2.2. X-ray Observations

We analyzed the data using HEASOFT (v6.11) with standard filtering and screening criteria, and generated the 0.3 – 10 keV count-rate light curve following the procedures in Margutti et al. (2012). Our re-binning scheme ensures a minimum signal-to-noise ratio $S/N = 3$ for each temporal bin. The low count statistics of the Windowed Timing (WT) observations do not allow us to constrain the spectral parameters during the interval $\delta t \approx 80 – 87$ s. We model the time-averaged spectrum in the interval 87 s to 40 ks (total exposure of about 9 ks in the Photon Counting mode) with an absorbed power-law model ($tbabs \times pbabs \times pow$ within Xspec) with a best-fit spectral photon index of $\Gamma_\gamma = 2.0 \pm 0.2$ and an intrinsic neutral hydrogen column density of $N_{HI, int} = (6.7 \pm 3.0) \times 10^{21}$ cm$^{-2}$ ($C-stat = 98$ for 152 d.o.f.) in excess to the Galactic column density, $N_{abs} = 3.7 \times 10^{20}$ cm$^{-2}$ (Kalberla et al. 2005); we adopt the best-fit photometric redshift of $z = 1.3$ derived in §3.1. From the best-fit spectrum we derive an unabsorbed count-to-flux conversion factor of 6.5×10^{-11} erg cm$^{-2}$ s$^{-1}$ (0.3 – 10 keV). Uncertainties arising from the flux calibration procedure have been propagated into the individual error-bars.

We analyzed the public Chandra data (PI: Sakamoto) with the CIAO software package (v4.3), using the calibration database CALDB v4.4.2, and applying standard ACIS data filtering. Using wavdetect we detect a source at 3.4σ significance at a position consistent with the XRT afterglow, with a net count-rate of $(3.3 \pm 1.3) \times 10^{-4}$ counts s$^{-1}$ (0.5 – 8 keV; total exposure time of 19.8 ks). Assuming the spectral parameters from the XRT analysis, this translates to an unabsorbed flux of $(3.5 \pm 1.4) \times 10^{-15}$ erg cm$^{-2}$ s$^{-1}$ (0.3 – 10 keV). DOI:10.1051/0004-6361/201321300

Fig. 1.—*Swift* BAT mask weighted light-curve in different energy bands (binning time of 64 ms). The typical 1σ error-bar is shown in each panel.
The X-ray light curve (Figure 2) exhibits an overall single power-law decay, with an apparent flare at $\delta t \approx 150$ s ($\approx 3\sigma$ confidence level). The best-fit power-law index at $\delta t \gtrsim 300$ s is $\alpha_\delta = -1.21 \pm 0.05$ ($\chi^2 = 7.6$ for 11 d.o.f.)

2.3. Optical Afterglow Limits

We obtained deep r-band observations with the Gemini Multi-Object Spectrograph (GMOS; Hook et al. 2004) mounted on the Gemini-South 8-m telescope on 2011 November 18.06 and 20.05 UT, with total exposure times of 1800 s and 2880 s, respectively. We processed the data using the gemini package in IRAF, and calibrated the photometry with several nearby point sources from the Sloan Digital Sky Survey (SDSS; Abazajian et al. 2009). We further performed digital image subtraction of the two epochs using the High Order Transformation and Point Spread Function and Template Subtraction (HOTPANTS13), but no fading source is detected within the XRT error circle, or in coincidence with the putative host galaxy to $g \geq 25.5$ mag (3σ) at $\delta t \approx 0.55$ d (Figure 2). We note that this is the deepest limit to date on the early optical emission from a short GRB (Berger 2010; Fong et al. 2011a), with the exception of GRB 080503 which was eventually detected at $\delta t \gtrsim 1$ d (Perley et al. 2009). Indeed, the median optical afterglow brightness for detected short GRBs on a similar timescale is $g \approx 23.5$ mag, a factor of at least 6 times brighter (Berger 2010; Fong et al. 2011a).

2.4. X-ray/Optical Differential Astrometry

In the absence of an optical afterglow we use the Chandra observation to refine the Swift/XRT position to sub-arcsecond accuracy. We perform differential astrometry between the Chandra data and a Gemini-North i-band observation (§2.5) to determine the relative positions of the afterglow and host galaxy, as well as to refine the native Chandra astrometry. We use SExtractor14 to determine the positions and cent-

8 The power-law index is obtained by minimizing the integral of the model over the effective duration of each temporal bin of the light-curve. This procedure is of primary importance in the case of bins with long duration and produces more accurate results than the standard χ^2 procedure, which compares the model and the data at the nominal bin time, but does not consider the finite bin duration and the evolution of the model during the time interval.

9 IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

11 http://sextractor.sourceforge.net/
RA=00^h50^m46.283^s and Dec=+23°00'39.64''; see Figure 5. The total 1σ uncertainty in the absolute position is 0.22'', accounting for the SDSS-GMOS astrometric tie, GMOS-Chandra tie, and the X-ray afterglow positional uncertainty. The Chandra position is consistent with the XRT position, but refines its uncertainty by about a factor of 6. We note that the relative position of the X-ray afterglow in the GMOS astrometric frame is 0.18'' (GMOS-Chandra tie and afterglow positional uncertainty only).

2.5. Host Galaxy Optical/Near-IR Observations

We obtained optical observations in the griz bands, and near-IR observations in JK_s bands to determine the properties of the host galaxy. The details of the observations are summarized in Table 1. The g-band observation was performed with GROND (Greiner et al. 2008) mounted at the 2.2 m MPG/ESO telescope at La Silla Observatory (Chile). The r-band observation was obtained with the Inamori-Magellan Areal Camera and Spectrograph (IMACS) on the Magellan/Baade 6.5-m telescope, while the iz band observations were performed with GMOS mounted on the Gemini-North 8-m telescope. Finally, the JK_s-band observations were obtained with the FourStar wide-field near-IR camera on the Magellan/Baade telescope. The GMOS data were reduced using the gemini package in IRAF, the IMACS and GROND data were reduced using standard packages in IRAF, and the FourStar data were reduced using a custom pipeline in python.

We identify a galaxy near the Chandra position, at RA=00^h50^m46.267^s and Dec=+23°00'40.87'' (astrometry relative to SDSS; §2.4), with a centroid uncertainty of 0.08''. The offset between the galaxy centroid and the Chandra afterglow position is 1.25'' ± 0.20''. Photometry of the galaxy is performed in a 2'' radius aperture, with the zero-point determined by common sources with SDSS (griz) and 2MASS (JK_s). The resulting magnitudes are listed in Table 1.

To determine the probability of chance coincidence for this galaxy relative to the afterglow position we adopt the methodology of Bloom et al. (2002) and Berger (2010). The expected number density of galaxies brighter than the apparent magnitude of the galaxy, m_r = 23.6 mag, is (Hogg et al. 1997; Beckwith et al. 2006):

\[\sigma(\leq m) = \frac{1}{0.33 \ln(10)} \times 10^{0.33(m_r - 24)} \approx 0.004 \ \text{arcsec}^{-2}, \]

and the probability of chance coincidence is therefore:

\[P(< \delta R) = 1 - e^{-\pi(\delta R)^2/\sigma(\leq m)} \approx 0.02. \]

Given the low value of P(< δR) and the absence of other candidate hosts in the vicinity of the afterglow position, we consider this galaxy to be the host of GRB 111117A. We note that with the XRT position alone, the probability of chance coincidence for this galaxy is much larger, P(< δR) ≈ 0.17 (using δR ≈ 3σ_XRT; see Bloom et al. 2002).

2.6. Radio Observations

We observed the location of GRB 111117A with the Karl G. Jansky Very Large Array (Perley et al. 2011) on 2011 November 18.00 UT (δt ≈ 0.5 d) at a mean frequency of 5.8 GHz with a total on-source integration time of 75 min. We used 3C48 and J0042+2320 for bandpass/flux and gain calibration, respectively, and followed standard procedures in the Astronomical Image Processing System (AIPS, Greisen 2003) for data calibration and analysis. The effective bandwidth is about 1.5 GHz after excising edge channels and data affected by radio frequency interference. We re-flagged and calibrated our data after the initial quick reduction (Fong et al. 2011b) and do not detect any significant emission in coincidence with the Chandra position to a 3σ limit of 18 μJy.

3. RESULTS AND DISCUSSION

3.1. Host galaxy properties

To determine the photometric redshift and properties of the host galaxy we use our grizJK_s band photometry. We model the host spectral energy distribution (SED) with the Maraston (2005) evolutionary stellar population synthesis models, using a Salpeter initial mass function, solar metallicity, and a red horizontal branch morphology, with the redshift (z) and stellar population age (τ) as free parameters. The resulting best-fit model is shown in Figure 4 along with the confidence regions for the redshift and age. We find that z = 1.3±0.3 and τ = 70±55 Myr (χ^2 = 1.2 for 3 d.o.f.); the results remain unchanged if we use a model with a metallicity of 0.5 Z⊙. The inferred redshift is consistent with the independent estimate by Sakamoto et al. (2012) and is one of the highest for any short GRB to date, either from spectroscopic or photometric measurements (Levan et al. 2006a; de Ugarte Postigo et al. 2006; Berger et al. 2007; Graham et al. 2009; Leibler & Berger 2010), but is in the range of expected redshifts for short GRBs with faint hosts (Berger et al. 2007).

The inferred stellar population age is at the low end of the distribution for short GRB hosts, for which τ ≈ 0.3 Gyr (Leibler & Berger 2010). The inferred host galaxy stellar mass is M_* = 4 × 10^9 M⊙, about a factor of 3 times lower than the median for short GRB hosts, but this assumes a single stellar population. Contribution from an older stellar population could increase the total mass up to a maximal value of 7 × 10^10 M⊙ if we assume the presence of a stellar population with the age of the universe at z = 1.3 (c.f., Leibler & Berger 2010). We note that the stellar population age and specific star formation rate are similar to those...
of long GRB host galaxies, for which \((\tau) \approx 60 \text{ Myr}\) and \(\langle \text{SFR}/L_B \rangle \approx 10 \, M_\odot \, \text{yr}^{-1} \, L_B^{-1}\) (Bergé 2009; Leibler & Berger 2010).

From the observed g-band flux density, which samples the rest-frame UV luminosity, we infer a star formation rate of \(SFR \approx 6 \, M_\odot \, \text{yr}^{-1}\) (Kennicutt 1998). This is higher than for most previous short GRB host galaxies (Bergé 2009). The absolute B-band magnitude is \(M_B \approx -21.0\) mag, corresponding to \(L_B \approx 0.6 \, L^*\) in comparison to the DEEP2 luminosity function at \(z \approx 1.1\) (Willmer et al. 2003). This value is typical for short GRB hosts (Bergé 2009). Combining the star formation rate and B-band luminosity, we infer a specific star formation rate of \(SFR/L_B \approx 10 \, M_\odot \, \text{yr}^{-1} \, L_B^{-1}\). This is again at the upper end of the distribution for short GRB host galaxies (Bergé 2009).

The host galaxy of GRB 111117A is overall similar to the host of short GRB 060801 (\(z = 1.130\)) in terms of its star formation rate and stellar mass (Bergé 2009). It provides additional support to the conclusion that short GRB progenitors originate from diverse stellar populations. Under the assumption that the stellar population ages can be used as a proxy for the progenitor delay time distribution (Leibler & Berger 2010), events like GRB 111117A point to delay times as short as a few tens of Myr. In the context of NS-NS/NS-BH mergers, this is suggestive of a subset of short-lived compact object binaries (e.g., Belczynski & Kalogera 2001; Belczynski et al. 2002).

3.2. Offset

The Chandra-derived projected angular offset of \(1.25 \pm 0.20''\) corresponds to a projected physical offset of \(\delta r = 10.5 \pm 1.7 \, \text{kpc}\) at \(z = 1.3\). This is comparable to the median offset of about 5 kpc for the sample of short GRBs studied by Fong et al. (2010) and Bergé (2010); see Figure 5. Indeed, as a subset, the two short bursts with precise localization from Chandra alone (GRB 1111020A from Fong et al. 2012 and GRB 111117A presented here) have similar offsets to those inferred from optical afterglows. This suggests that optical afterglows do not produce an obvious bias against large offsets, as already demonstrated for the subset of short GRBs that lack coincident host galaxies (Bergé 2010).

Different short GRB progenitor models predict distinct offset distributions. NS-NS/NS-BH merger models predict a median offset of about 5–10 kpc (Bloom et al. 1999; Fryer et al. 1999; Belczynski et al. 2006) for host galaxies with a mass comparable to the Milky Way as found for short GRBs (Bergé 2009). On the other hand, magnetar models are not expected to produce a substantial fraction of short GRBs at offsets of \(> 10\) kpc (Levan et al. 2006b; Metzger et al. 2008). Figure 5 shows that NS-NS binary models are in reasonable agreement with the observed distribution of physical offsets, from both optical and Chandra positions.

3.3. X-ray afterglow properties

At \(z = 1.3\) the X-ray afterglow of GRB 111117A lies at the upper end of the short GRB luminosity distribution, with a typical power-law decay (Figure 6). The total energy released in the \(0.3–10\) keV energy band during the X-ray afterglow (80 s to 3 d) is \(E_{x,iso} = (1.1 \pm 0.1) \times 10^{50}\) erg, typical for short GRBs (Bergé 2010). This confirms previous findings that the X-ray afterglows of short GRBs are on average \(\sim 100\) times less energetic than those of long GRBs (Margutti et al. 2012). The corresponding energy radiated in the \(0.3–30\) keV rest frame band is \(E_{x,iso} \approx 1.5 \times 10^{50}\) erg. In comparison to the isotropic \(\gamma\)-ray energy this indicates \(E_{x,iso} \approx 0.03 E_{\gamma,iso}\), which is typical of short GRBs.

We combine this result with the inferred rest frame value of \(E_{pk} \sim 850–2300\) keV to show that GRB 111117A is consistent with the recently-reported \(E_{x,iso} - E_{\gamma,iso} - E_{pk}\) correlation for long and short GRBs, and resides in the region populated.

\(^{17}\) This value is obtained by extrapolating the spectral behavior in the \(0.3–10\) keV observer frame range (0.7–23 keV rest frame) to the \(0.3–30\) keV rest frame range.

\(^{18}\) We assumed a high energy photon index \(\beta = -2.4\) (see e.g. Kaneko et al. 2006) to extrapolate the 23-2300 keV (rest-frame) spectrum to the \(1–10^{2}\) keV rest-frame range.
Fig. 6.— Upper panel: Unabsorbed 0.3–10 keV flux and luminosity light curve of GRB 111117A (red dots: Swift/XRT; red triangle: Chandra) compared to 11 short GRBs detected by Swift for which a redshift measurement is available (grey lines). The best fit power-law model has $\alpha = -1.21 \pm 0.05$ (solid black line). An apparent flare is detected at $\approx 80–200$ s (black dotted lines). The inset shows the distribution of the isotropic energy emitted during the X-ray afterglow for long GRBs (black line) and short GRBs (grey filled histogram) as computed by [Margutti et al. 2012]. For GRB 111117A we measure $E_{\text{iso}} \approx 1.1 \times 10^{50}$ erg s$^{-1}$. Lower panel: Time evolution of the hardness ratio measured between the 1.3–10 keV and the 0.3–1.5 keV energy bands.

Fig. 7.— Three-parameter correlation involving the isotropic energy emitted in the X-ray afterglow (E_{iso}; rest-frame 0.3–30 keV), the isotropic γ-ray energy ($E_{\gamma,\text{iso}}$; rest-frame 1–109 keV), and the rest-frame spectral peak energy during the prompt phase (E_{pk}). The blue circles mark GRB 111117A using the range of $E_{\text{pk}} \sim 850–2300$ keV (§2.1). The dot-dashed lines mark the 90% confidence area around the best-fit relation: $E_{\text{iso}} \propto E_{\gamma,\text{iso}}^{1.00 \pm 0.06} E_{\text{pk}}^{-0.60 \pm 0.10}$. The inset shows the evolution of $\epsilon \equiv E_{\text{iso}} / E_{\gamma,\text{iso}}$ as a function of E_{pk}. Adapted from [Margutti et al. 2012].
Fig. 8.— Relative variability flux ($\Delta F / F$) versus relative variability time scale ($\Delta t / t$) for a sample of short GRB X-ray flare candidates (orange filled circles; Margutti et al. 2011), as well as early (blue open diamonds; Chincarini et al. 2010) and late-time (light-blue stars; Bernardini et al. 2011) flares in long GRBs. A small black dot marks short GRBs with extended emission. The apparent flare detected in GRB 111117A is marked with a red filled circle. The late-time re-brightening detected in GRB 050724 is also shown for completeness with an orange open triangle. Solid, dashed and dot-dashed lines mark the kinematically allowed regions according to Ioka et al. (2005) (their equations (7) and (A2)).
by short GRBs and X-ray flashes (Figure 7) [Margutti et al. 2012]. This provides additional support to the conclusions that: (i) this correlation can be used to divide “standard” long GRBs from short GRBs, peculiar GRBs, and X-ray flashes; and (ii) the physical origin of the correlation is related to a common feature of the different classes, possibly the properties of the relativistic outflow (in particular the bulk Lorentz factor; see Bernardini et al. 2012 for details; see Fan et al. 2012 and Dado & Dai 2012 for alternative explanations).

At δt ≈ 80−250 s we find evidence for an apparent flare superimposed on the smooth X-ray afterglow decay, with a significance of ≈ 3σ (Figure 6). With a rest frame duration of ∆t ≈ 16 s and peak time of f pk ≈ 70 s, the flare is consistent with the ∆t versus f pk correlation established by long GRB flares (Cincunegui et al. 2010) and shared by short GRBs flares (Margutti et al. 2011). The flux contrast of the flare, ∆F/ F ≈ 2, is also typical of flares in short GRBs (Figure 8). Finally, the flare peak luminosity and integrated energy are L pk ≈ 10^{46} erg s^{-1} and E X, pk ≈ 1.6 × 10^{50} erg, again typical of short GRB flares (Margutti et al. 2011). We note that the value of ∆t/f pk ≈ 0.2 does not support an external shock origin, for which we expect ∆t/f pk ≥ 1 (e.g., Zhang et al. 2000; but see Dermer 2008). However, the flux contrast of ∆F/ F ≈ 2 is also at odds with the expectation for central engine variability, with ∆F/ F ≈ 100 (Lazzati et al. 2011).

3.4. Multi-wavelength Afterglow Modeling

The detected X-ray afterglow, along with the upper limits in the optical and radio allow us to extract some of the basic properties of GRB 111117A. We adopt the afterglow synchrotron model formulation of Granot & Sari (2002), which provides a mapping from the observed fluxes and break frequencies to the isotropic-equivalent kinetic energy (Eiso), circumburst density (n0), the fractions of post-shock energy in radiating electrons (εe) and magnetic fields (εB), and the electron power-law distribution index (p, with N(γ) ∝ γ-p). We consider the case of a constant density medium relevant for short GRBs. In the analysis below we adopt the best-fit redshift of z = 1.3.

The X-ray temporal and spectral indices are \(α_X = -1.21 ± 0.05\) and \(β_X = -1.0 ± 0.2\) (21). For the case of the synchrotron cooling break located redward of the X-ray band (\(ν_c < ν_X\)), the resulting values of p are 2.28 ± 0.07 and 2.0 ± 0.4 from \(α_X\) and \(β_X\), respectively; for the opposite scenario (\(ν_c > ν_X\)) the resulting values of p are 2.61 ± 0.07 and 3.0 ± 0.4. In both cases the values of p inferred from \(α_X\) and \(β_X\) are consistent, indicating that the X-ray data alone cannot distinguish the location of \(ν_c\).

The unabsorbed X-ray flux density at the time of the optical non-detection (δt ≈ 0.55 d) is \(F_{ν_X} ≈ 4.4\) nJy, compared to \(F_{ν_{opt}} < 0.23\) μJy. This leads to an observed spectral index of \(β_{OX} ≥ -0.63\), consistent with the value of p = 2.28 for the case of \(ν_c < ν_X\), if \(ν_c ≈ ν_X\) (i.e., if the relevant spectral slope between the X-ray and optical bands is \(β_{OX} = -(p-1)/2\)). On the other hand, if \(ν_c > ν_X\) we expect a spectral index of \(β_{OX} = -(p-1)/2 ≈ -0.80\), which is much steeper than the observed value. With this spectral index we would expect the optical flux to be \(≈ 0.65\) μJy, or about 1.1 mag brighter than the observed limit. Thus, the X-ray/optical comparison either requires rest-frame extinction of \(A_{V, host} ≥ 0.5\) mag or \(ν_c ≈ ν_X\). We note that for the Galactic relations between \(N_H\) and \(A_V\) (Predehl & Schmitt 1995) the extinction would imply \(N_H^{host} ≥ 10^{23}\) cm^{-2}, consistent with the marginal detection in the XRT spectrum of \((6.7 ± 3.0) × 10^{21}\) cm^{-2}.

Under the assumption that \(ν_c < ν_X\) we can use the Chandra X-ray flux density, \(F_{ν_X} ≈ 0.42\) nJy, to infer the value of the isotropic-equivalent kinetic energy:

\[E_{ν_X,iso} ≈ 7.5 × 10^{50} \text{ erg}, \]

where we have assumed \(ε_e = ε_B = 0.1\); we note that the dependence on \(ε_B\) is weak, \(E_{ν_X,iso} ∝ ε_B^{-0.07}\), while \(E_{ν_X,iso}\) is inversely proportional to \(ε_e\). The fiducial value of \(E_{ν_X,iso}\) is lower than the isotropic-equivalent γ-ray energy, \(E_{γ,iso} ≈ 3.0 × 10^{51}\) erg.

We next use the upper bounds on the radio and optical flux densities to place constraints on the circumburst density and energy. For the radio upper limit we use the synchrotron flux density relevant for \(ν_ν < ν_{rad} < ν_m\):

\[F_{ν,rad} ≈ 36 μJy/ν_0^{1/2} E_{ν_{iso,51}}^{5/6} ≤ 18 μJy, \]

while for the optical upper limit we use the synchrotron flux density relevant for \(ν_ν < ν_{opt} < ν_c\):

\[F_{ν,opt} ≈ 4.4 μJy/ν_0^{1/2} E_{ν_{iso,51}}^{1/2} ≤ 0.23 μJy. \]

The resulting allowed phase-space of \(E_{ν_{iso}}, n_0\) is shown in Figure 9. Using the value of \(E_{ν_{iso}}\) inferred from the X-ray data (Equation 5), and the corresponding limits on \(n_0\) from the optical data (\(n_0 ≤ 0.006\) cm^{-3}) and radio data (\(n_0 ≤ 0.4\) cm^{-3}), we find that the cooling frequency is located at \(ν_c ≈ (0.15−8) × 10^{17}\) Hz (i.e., \(≥ 0.06−3\) keV) at δt = 1000 s. Using instead a value of \(ε_e = 0.01\) the limits on the density are \(≤ 0.25\) cm^{-3} (optical) and \(≤ 2\) cm^{-3} (radio), and the cooling frequency is therefore \(ν_c ≈ (0.9−7) × 10^{17}\) Hz (i.e., \(≥ 0.4−3\) keV). Thus, the inferred location of \(ν_c\) is in the X-ray band, in agreement with our conclusion from the comparison of X-ray and optical flux densities.

In the alternative scenario of \(ν_c > ν_X\) both the optical and X-ray bands probe the same portion of the synchrotron spectrum, \(ν_m < ν_{opt} < ν_c\), but this time with a value of \(p = 2.61\). For the X-ray band, this gives the relation (for \(ε_e = ε_B = 0.1\)):

\[F_{ν,X} ≈ 4.4 nJy/ν_0^{1/2} E_{ν_{iso,51}}^{1/4} ≤ 0.42 nJy, \]

while for the radio band (\(ν_ν < ν_{rad} < ν_m\)) we find:

\[F_{ν,rad} ≈ 12 μJy/ν_0^{1/2} E_{ν_{iso,51}}^{5/6} ≤ 18 μJy. \]

The resulting allowed regions of \(E_{ν_{iso}}−n_0\) phase-space are shown in Figure 9. Assuming that \(E_{ν_{iso}} = E_{γ,iso} = 3.0 × 10^{51}\) erg, the X-ray flux density corresponds to \(n_0 ≈ 3 × 10^{-4}\) cm^{-3}; for \(ε_e = 0.01\) the density is instead \(≈ 0.02\) cm^{-3}, while for \(ε_B = 0.001\) the density is \(≈ 1.2\) cm^{-3}. With these values we indeed find that \(ν_c ≥ 4 × 10^{18}\) Hz (\(≥ 16\) keV) at δt = 1000 s, consistent with the assumption that \(ν_c > ν_X\).

To conclude, with the assumption that \(ν_c < ν_X\) we find that \(E_{ν_{iso}} ≈ 7.5 × 10^{50}\) erg, and \(n_0 ≤ 0.01\) cm^{-3} (\(ε_B = 0.1\)) or \(≤ 0.2\) cm^{-3} (\(ε_B = 0.01\)). The resulting location of the cooling break indicates that \(ν_c ≈ ν_X\), marginally consistent with the inherent assumption. On the other hand, if \(ν_c > ν_X\), then the assumption of \(E_{ν_{iso}} ≈ E_{γ,iso}\) indicates that \(n_0 ≈ 3 × 10^{-4}-1\) cm^{-3} (\(ε_B = 0.001−0.1\)). However, this also requires host

\footnote{We can rule out \(ε_e = ε_B = 0.01\) or \(ε_e = 0.1\) and \(ε_B ≤ 0.001\) since in these cases the upper limit on the density from the radio data is lower than the density inferred from the X-ray detections.}
galaxy extinction with $A_V^{\text{host}} \gtrsim 0.5$ mag. In both cases the inferred density is consistent with the NS-NS/NS-BH merger scenario, for which the expected densities are $n_0 \sim 10^{-6} - 1 \, \text{cm}^{-3}$ (Perna & Belczynski 2002; Belczynski et al. 2006).

Finally, the non-detection of a break in the X-ray light curve to $\delta t \approx 3$ d allows us to place a lower limit on the opening angle of the outflow from GRB 111117A. Using the formulation of (Frail et al. 2001) we find that for $E_{K,\text{iso}} = E_{\gamma,\text{iso}}$, and $n_0 \approx 3 \times 10^{-4} - 1 \, \text{cm}^{-3}$, the resulting lower limit is $\theta_j \gtrsim 3 - 10^\circ$. This range indicates a beaming correction as low as ≈ 70 and as high as about 600.

4. SUMMARY AND CONCLUSIONS

We presented multi-wavelength observations of the afterglow of short GRB 111117A, along with optical and near-IR follow-up observations of its host galaxy. These observations provide critical insight into the nature of GRB 111117A:

- Using a Chandra observation we accurately pinpoint the location of the afterglow to the outskirts of a galaxy at a photometric redshift of $z \approx 1.3$, one of the highest for any short GRB to date. The projected physical offset is about 10.5 kpc, reminiscent of previous short GRBs (Fong et al. 2010; Berger 2010). Along with the previous burst detected by Chandra alone (GRB 111020A; Fong et al. 2012) we find that short GRBs localized by optical and X-ray afterglows appear to have similar offsets.

- The host galaxy of GRB 111117A exhibits vigorous star formation activity and a young stellar population age that are at the upper bound of the distribution for short GRB hosts (Berger 2009; Leibler & Berger 2010).

- The X-ray afterglow properties are typical of short GRBs with long-lasting X-ray emission. In particular, with $E_{\gamma,\text{iso}} \approx 1.5 \times 10^{50}$ erg, $E_{\text{iso}} \approx 3 \times 10^{51}$ erg, and $E_{\text{iso}} \approx 850 - 2300 \, \text{keV}$, GRB 111117A is consistent with the three-parameter universal GRB scaling recently reported by Margutti et al. (2012). The X-ray to γ-ray energy ratio for GRB 111117A is $\epsilon \approx 0.03$, as typically found for short GRBs.

- We find evidence (statistical significance of $\approx 3 \sigma$) for an early flare superimposed on the X-ray afterglow decay with properties that are reminiscent of X-ray flare candidates detected in other short GRBs (Margutti et al. 2011). The origin of X-ray flares appears to be independent of the large scale environment since they are detected from short GRBs in both early- and late-type galaxies.

- Using the X-ray light curve, and deep upper limits in the optical and radio bands we find that if $\nu_c > \nu_X$ then $n_0^{1/2} E_{K,\text{iso},51}^{1/4} \approx 0.1 - 6$ (for $\epsilon_c = 0.1$ and $\epsilon_B = 0.001 - 0.1$). For the specific case of $E_{K,\text{iso}} = E_{\gamma,\text{iso}} \approx 3.0 \times 10^{51}$ erg, this leads to a density of $n_0 \approx 3 \times 10^{-4} - 1 \, \text{cm}^{-3}$; larger densities are ruled out independently by the radio limit, which leads to $n_0^{1/2} E_{K,\text{iso},51}^{5/6} \lesssim 0.7 - 3$ (for $\epsilon_c = 0.1$ and $\epsilon_B = 0.001 - 0.1$). However, this scenario requires substantial rest-frame extinction of $A_V^{\text{host}} \gtrsim 0.5$ mag to explain the optical non-detection. In the alternative scenario of $\nu_c < \nu_X$ we find that $E_{K,\text{iso}} \approx 7.5 \times 10^{50} (\epsilon_c/0.1)^{-1}$ erg and $n_0 \lesssim 0.1 \, \text{cm}^{-3}$.

- The lack of a clear break in the X-ray light curve at $\lesssim 3$ d, points to an opening angle of $\theta_j \gtrsim 3 - 10^\circ$, with the exact lower limit depending on the circumburst density.

\footnote{In this calculation the observer is assumed to be on-axis.}
The results of this work highlight the importance of *Chandra* for the determination of short GRB subarcsecond positions, especially in the absence of optical detections. This is critical for locating short GRBs within their host environments, particularly in comparison to *Swift/XRT* position, which are generally much larger than the host galaxy sizes.

R.M. thanks Rodolfo Barniol Duran and Cristiano Guidorzi for useful discussions. We thank Francesco di Mille for carrying out the Magellan FourStar observations, and Andy Monson for assistance with the data reduction. The Berger GRB group at Harvard is supported by the National Science Foundation under Grant AST-1109793. Partial support was also provided by NASA/Swift AO6 grant NNX10AI24G. Support for this work was provided by the David and Lucile Packard Foundation Fellowship for Science and Engineering awarded to A.M.S. S.B.C. acknowledges generous financial assistance from Gary & Cynthia Bengier, the Richard & Rhoda Goldman Fund. NASA/Swift grants NNX10A121G and NNX12AD73G, the TABASGO Foundation, and US National Science Foundation (NSF) grant AST-0908886. A.R. and S.K. acknowledge support by grant DFG Kl 766/16-1.

REFERENCES

Andersen, M. I., de Ugarte Postigo, A., Leloudas, G., & Fynbo, J. P. U. 2011, GRB Coordinates Network, 12563, 1

Berger, E. 2011, New Astronomy Reviews, 55, 1

Berger, E., Fong, W., & Sakamoto, T. 2011, GRB Coordinates Network, 12588, 1

Kennicutt, R. C., Jr. 1998, ARAA, 36, 189

Mangoano, V., et al. 2011, GRB Coordinates Network, 12559, 1

Melandri, A., Fugazza, D., Covino, S., & Palazzi, E. 2011a, GRB Coordinates Network, 12570, 1

Melandri, A. et al. 2011b, GRB Coordinates Network, 12565, 1

Oates, S. R., & Mangoano, V. 2011, GRB Coordinates Network, 12569, 1

Sakamoto, T., et al. 2011a, GRB Coordinates Network, 12561, 1

Schmidt, S., Rossi, A., Kann, D. A., & Greiner, J. 2011, GRB Coordinates Network, 12568, 1

