A Dark Energy Camera Search for an Optical Counterpart to the First Advanced Ligo Gravitational Wave Event Gw150914

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation

Published Version
doi:10.3847/2041-8205/823/2/L33

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:30510185

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
A DARK ENERGY CAMERA SEARCH FOR AN OPTICAL COUNTERPART TO THE FIRST ADVANCED LIGO GRAVITATIONAL WAVE EVENT GW150914

(The DES Collaboration)

Draft version February 19, 2016

ABSTRACT

We report initial results of a deep search for an optical counterpart to the gravitational wave event GW150914, the first trigger from the Advanced LIGO gravitational wave detectors. We used the Dark Energy Camera (DECam) to image a 102 deg² area, corresponding to 38% of the initial trigger high-probability sky region and to 11% of the revised high-probability region. We observed in i and z bands at 4–5, 7, and 24 days after the trigger. The median 5σ point-source limiting magnitudes of our search images are \(i = 22.5 \) and \(z = 21.8 \) mag. We processed the images through a difference-imaging pipeline using templates from pre-existing Dark Energy Survey data and publicly available DECam data. Due to missing template observations and other losses, our effective search area subtends 40 deg², corresponding to 12% total probability in the initial map and 3% of the final map. In this area, we search for objects that decline significantly between days 4–5 and day 7, and are undetectable by day 24, finding none to typical magnitude limits of \(i = 21.5, 21.1, 20.1 \) for object colors \((i - z) = 1, 0, -1 \), respectively. Our search demonstrates the feasibility of a dedicated search program with DECam and bodes well for future research in this emerging field.

Subject headings: binaries: close — catalogs — gravitational waves — stars: neutron — surveys
1. INTRODUCTION

The advanced network of ground-based gravitational wave (GW) interferometers is designed to detect and study GW emission from events such as the mergers of binary systems composed of neutron stars and/or black holes to distances of hundreds of Mpc (see Abbott et al. (2013) and references therein). In mergers containing at least one neutron star, counterpart electromagnetic radiation is expected, potentially ranging from a short-duration gamma-ray burst through optical/near-IR emission from the radioactive decay of r-process nuclei to radio emission from ejecta interacting with the circum-binary medium (e.g., Li & Paczynski 1998; Nakar & Piran 2011; Metzger & Berger 2012; Barnes & Kasen 2013; Tanaka & Hotokezaka 2013; Tanaka et al. 2014; Aasi et al. 2014; Berger 2014; Cowperthwaite & Berger 2015). The detection of an electromagnetic counterpart will provide critical insight into the physics of the event, helping to determine the distance scale, energy scale, and the progenitor environment, as well as insight into the behavior of matter post-merger (e.g., the production of jets and outflows).

With this motivation, we recently began an observational program using the wide-field Dark Energy Camera (DECam; Flaugher et al. 2015) on the Blanco 4-m telescope at Cerro Tololo Inter-American Observatory to search for optical counterparts to GW triggers from the new advanced GW detectors (LIGO, Abbott et al. 2009; Virgo, Acernese et al. 2009). This program was awarded three target of opportunity nights to observe LIGO-triggered events during the 2015B semester; observations were coordinated with and managed by the Dark Energy Survey (DES). Our program is optimized for detection of kilonovae, the hypothesized optical counterparts of mergers involving neutron stars, which would appear as red transients with expected decay timescale of about a week (for an overview of our program see Abbott et al. 2016).

On 2015 September 14 at 09:50:45 UT the Advanced LIGO interferometer network detected a high-significance candidate GW event designated GW150914 (Abbott et al. 2016) and two days later provided spatial location information in the form of probability sky maps via a private GCN circular (#18330; Singer et al. 2015). We initiated observations with DECam, a 3 deg\(^2\) field-of-view instrument, on 2015 September 18 in an effort to identify an optical counterpart. Here we describe the observations and provide the results of the three-epoch search. These DECam observations are the deepest search for an optical counterpart to GW event GW150914 (Abbott et al. 2016a).

2. DECAM OBSERVATIONS OF GW150914

The detection of GW150914 was triggered by the cWB (coherent WaveBurst; Klimek et al. 2008) unmodeled burst analysis during real-time data processing. On 2015 September 16, the LIGO Virgo Collaboration (LVC) provided two all-sky localization probability maps for the event, generated from the cWB and LALInferenceBurst at the University of Sussex, Brighton, BN1 9QH, UK 58 Brookhaven National Laboratory, Bldg 510, Upton, NY 11973, USA 59 Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721, USA 60 School of Physics and Astronomy, Cardiff University, 38 Nature Institute, University of California, Berkeley, CA 94720-3411, USA 61 Department of Physics and Astronomy, Pennsylvania State University, 5000 Oak Grove Dr., Pasadena, CA 91109, USA. 62 Department of Physics, University of California, Berkeley, CA 94720-3411, USA 63 Department of Physics, The Ohio State University, Columbus, OH 43210, USA 64 Department of Physics, The Ohio State University, Columbus, OH 43210, USA 65 Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain 66 Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721, USA 67 Astronomical Observatory, University of Sussex, North Ryde, NSW 2113, Australia 68 Australian Astronomical Observatory, Pueblo Mall, Stanford, CA 94305, USA 69 Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA 70 Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA 71 Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA 72 Department of Physics, Physics & Astronomy, The Ohio State University, Columbus, OH 43210, USA 73 Department of Astronomy, The Ohio State University, Columbus, OH 43210, USA 74 Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain 75 Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, 85748 Garching, Germany 76 Department of Astronomy & Theoretical Astrophysics Center, University of California, Berkeley, CA 94720-3411, USA 77 Physics of the event, helping to determine the distance scale, energy scale, and the progenitor environment, as well as insight into the behavior of matter post-merger (e.g., the production of jets and outflows).
(LIB; Veitch et al. (2015)) analyses. The cWB online trigger analysis makes minimal assumptions about signal morphology by searching for coherent power across the LIGO network. The LIB analysis is a version of the LALInference analysis Bayesian forward-modeling-based follow up tool that uses a Sine-Gaussian signal morphology instead of models of compact binary mergers (Veitch et al. 2015); for information on both algorithms see Everick et al. (2015). The maps provided initial spatial localization of 50% and 90% confidence regions encompassing about 200 and 750 deg², respectively.

Our first observations with DECam took place on 2015 September 18 UT. Overall, we imaged 102 deg² covering 38% of the total probability in the initial cWB map; see Table 1 for a summary of our DECam observations. As shown in Figure 1, 18 deg² were centered on the LMC. For the remaining 84 deg² we obtained 3 separate epochs of imaging. At each epoch we acquired one 90-sec exposure in i band and two 90-sec exposures in z band. The first epoch spanned 4–5 days post-GW trigger (2015 September 18–19 UT), the second epoch 7 days post-GW trigger (2015 September 21 UT), and the third was obtained 24 days post-GW trigger (2015 October 08 UT).

Subsequently, in January 2016, the LVC released a revised sky map of localization probabilities from a LALInference analysis that used the assumption that the signal arises from a compact binary coalescence (CBC). That analysis also showed that the data are most consistent with models of a binary black hole merger (BBH). The LALInference-based map is considered the most accurate and authoritative localization for this event. Our 102 deg² cover a total of 11% probability in this new map, as the localization region has shifted significantly southward (see Figure 1) relative to the initial cWB map.

Our single-epoch exposures achieve median 5σ point-source limiting magnitudes of $i = 22.5$ and $z = 21.8$ with an rms variation among the images of ±0.5 mag. This value is a consequence of night-to-night variations in the observing conditions (see Table 1) and of a strong gradient in stellar density and extinction along the major axis of the region imaged (see Figure 1).

2.1. Observing Strategy

We chose the location and sequence of DECam observations using an automated observing strategy algorithm. The algorithm utilizes the GW localization map, an estimate of the event distance, and a model of the expected optical emission (e.g., Barnes & Kasen 2013). This information is folded in with observational information, including a map of sky brightness (using the DES sky brightness model; Neilsen 2012), the atmospheric transmission (using information on airmass and the interstellar dust extinction from Planck; Aberel et al. 2014), the expected seeing (from scaling laws with airmass and wavelength), and the confusion-limit probability (based on stellar density maps) to produce a full source-detection probability as a function of sky location. We used this map to observe the highest probability region that included area both inside and outside the DES footprint.

In the case of GW150914 the localization region intersected the Large Magellanic Cloud (LMC), so we designed a separate set of short observations to observe the brightest LMC stars. We obtained 5-sec i and z band exposures covering 18 deg² centered on the LMC on 2015 September 18 and 27. This shallower data set was used to search for a potential failed supernova in the LMC; the results are reported in a separate paper (Annis et al. 2016). Figure 1 shows a sky map computed for the end of the first night of observations, zoomed in to the region of interest and detailing the fields observed in each of the three epochs in red.

2.2. Image Processing

Our data analysis relies on subtracting earlier template images from the science images taken for this program. In the area that overlaps the DES footprint (25% of the total), we used DES images from the first two seasons of the survey as templates. In the 75% of the area outside of the DES footprint, we used publicly available DECam data from the NOAO Science Archive (portal-nvo.noao.edu), requiring exposures of at least 30 sec in i and z bands.

We processed the DECam search and template images using the DES Data Management single-epoch image processing software (Desai et al. 2012; Mohr et al. 2012; Sevilla et al. 2011; Gruendl et al. 2010). Its output images were used as input to the difference imaging pipeline, which we developed from the DES Supernova pipeline (Kessler et al. 2015). The main adaptation of the pipeline for our purposes was to generalize to the case of search and template images with arbitrary relative alignment. A candidate requires two SExtractor (Bertin & Arnouts 1996) detections in the first epoch in both i and z bands. To reduce the large number of detected artifacts, each detection must satisfy quality requirements...
TABLE 1
SUMMARY OF OBSERVATIONS

<table>
<thead>
<tr>
<th>Program</th>
<th>Night (UT)</th>
<th>MJD</th>
<th>Δt^a (days)</th>
<th>(PSF(FWHM)$_i$) (arcsec)</th>
<th>(airmass)</th>
<th>(depth$_i$) (mag)</th>
<th>(depth$_z$) (mag)</th>
<th>A_{eff}^b (deg2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main, 1st epoch</td>
<td>2015-09-18</td>
<td>57383</td>
<td>3.88</td>
<td>1.38</td>
<td>1.50</td>
<td>22.71</td>
<td>22.00</td>
<td>52.8</td>
</tr>
<tr>
<td></td>
<td>2015-09-19</td>
<td>57384</td>
<td>4.97</td>
<td>1.35</td>
<td>1.46</td>
<td>22.82</td>
<td>22.12</td>
<td>14.4</td>
</tr>
<tr>
<td>Main, 2nd epoch</td>
<td>2015-09-21</td>
<td>57286</td>
<td>6.86</td>
<td>2.17</td>
<td>1.51</td>
<td>22.18</td>
<td>21.48</td>
<td>67.2</td>
</tr>
<tr>
<td>Main, 3rd epoch</td>
<td>2015-10-08</td>
<td>57303</td>
<td>23.84</td>
<td>1.46</td>
<td>1.40</td>
<td>22.33</td>
<td>21.63</td>
<td>67.2</td>
</tr>
<tr>
<td>LMC, initial</td>
<td>2015-09-18</td>
<td>57383</td>
<td>3.98</td>
<td>1.14</td>
<td>1.30</td>
<td>21.32</td>
<td>20.62</td>
<td>14.4</td>
</tr>
<tr>
<td>LMC, extension</td>
<td>2015-09-27</td>
<td>57292</td>
<td>12.96</td>
<td>1.21</td>
<td>1.28</td>
<td>20.91</td>
<td>20.21</td>
<td>33.6</td>
</tr>
</tbody>
</table>

Note. — Summary of the observations performed in the “main” search program, described in this paper, and the “LMC” program, described in the companion paper (Annis et al. 2016). We observed at high airmass because the region of interest was rising at the end of the night. The PSF FWHM, and therefore the actual depth achieved, are partly affected by these high airmass conditions. The reported depth corresponding to 5-σ point source detection in the search images. Variations in cloud conditions are also responsible for the variation in depth. The effective area imaged in the main program corresponds to 28 camera fields. The area covered in the LMC program totaled 20 fields.

a Time elapsed between the trigger time and the time stamp of the first image of the night.

b Effective area imaged, considering that approximately 20% of the 3 deg2 field of view of DECam is lost due to chip gaps (10%), 3 dead CCDs (5%) and masked edge pixels (5%).

While a BBH merger is not expected to result in an optical signature, it is nevertheless of interest to search for a possible optical counterpart. As our first epoch of observations occurred 4 days after the trigger, our prior on the search is that any candidate shall be fading slowly enough to be detectable 7 days after the event, but not 24 days after the event.

Of the 84 deg2 area outside of the LMC, about 20% is lost due to camera fill-factor (see Table 1 for details) resulting in an effective area of 67.2 deg2. In addition, 30% of the area is lost due to sparse availability of templates outside of the DES footprint. Another 10% loss arises from processing issues. This results in 40 deg2 which were used in this analysis.

Based on an analysis of a sample of fake point sources injected into the images in this area, we find that the typical 80% source detection completeness in the subtracted images is at $z \approx 22.1$ and $z \approx 21.2$ mag. In the first epoch, where the observing conditions were better, we achieve that level of completeness at $i \approx 22.7$ and $z \approx 21.8$, comparable to the 5σ point source depth for those images. The fakes were in all the images we processed, thus the completeness depth reflects the variation in conditions as well.

3. ANALYSIS

3.1. Sample Selection

For the selection criteria described below, multiple observations per night (primarily in i band) are combined into a single weighted-average flux:

1. Second-epoch signal-to-noise ratio (S/N) above 2 in both i and z (to enable flux change determination with respect to the first epoch);

2. $\geq 3\sigma$ decline in both i and z fluxes from the first epoch to the second (to isolate fading sources; σ is defined by the quadrature sum of the flux errors in the first two epochs);

3. $S/N \leq 3\sigma$ in both i and z third epoch (at 24 days post-trigger, to reject long-timescale transients such as supernovae).

3.2. Results

In Table 1 we show the impact of our selection criteria on the sample of candidates as a function of the first epoch i-band magnitude. The decaying light curve requirement has the most impact in reducing the sample size. None of the candidates pass all the selection criteria. The area analyzed, 40 deg2, covers 3% of the localization probability in the final LALInference map (though it covered 12% in the initial cWB map).

To interpret these results some caveats are required. Because our selection criteria impose demands on significance in the second epoch, the actual first epoch search depth depends on the decline rate and $i - z$ color of the source model. In addition, we have not yet accounted for the degraded sensitivity to candidates located in bright galaxies.

For a particular source model, we can estimate the search depth. We applied our selection criteria to a sample of fake sources randomly placed in our search images before processing with our difference imaging pipeline. The fakes have a constant decay rate of 0.3 mags/day and are red, with ($i - z$) = 1, as expected from kilonova models. The magnitude at which we recover 50% of the fakes, $m_{50\%}$, is about 1 magnitude brighter than the 5σ point source limiting magnitude reported in Table 1, i.e., $m_{50\%} - m_{5\sigma} \approx -1$. Simulations with bluer models show that for sources with ($i - z$) = 0 the search depth is $m_{50\%} - m_{5\sigma} \approx -1.4$; for ($i - z$) = -1, the search depth is $m_{50\%} - m_{5\sigma} \approx -2.4$. We therefore achieve magnitude limit of $i = 21.5, 21.1, 20.1$ for object colors ($i - z$) = 1, 0, -1, respectively.

4. CONCLUSIONS

We presented our search for an optical counterpart to the first gravitational wave event, GW150914, using the wide-field DECam instrument. Our observations cover
102 deg2 corresponding to 11% of the total probability map. The search images used in this analysis reach median 5σ point source depth of $i = 22.5$ and $z = 21.8$ mag. Our DECam/Blanco observations are the deepest optical follow-up for this GW event.

Using selection criteria which isolate fading transients over the analysis region covering 3% of the total localization probability, we find no candidate counterparts. We are still investigating improved background rejection criteria using information such as: matching against a galaxy catalog to remove transients associated with high-redshift galaxies, angular separation between i and z exposures to reduce asteroids, and detailed simulations of supernovae and source models to better optimize selection requirements as well as the search strategy for future events.

Although these results are not surprising given the partial areal coverage and the likely BBH merger nature of the event, our search is a crucial first step and demonstrates the viability of DECam for deep optical follow-up of GW events.

Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Computing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey.

The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciências de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University.

The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478.

This research uses services or data provided by the NOAO Science Archive. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation.

REFERENCES

Acernese, F. et al. 2009, Classical and Quantum Gravity, 26, 085009
Berger, E. 2014, ArXiv:1402.29, 43

Table 2: Number of Selected Events

<table>
<thead>
<tr>
<th>mag(i)</th>
<th>raw</th>
<th>cut 1</th>
<th>cut 2</th>
<th>cut 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.0–18.5</td>
<td>84</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18.5–19.0</td>
<td>177</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19.0–19.5</td>
<td>291</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19.5–20.0</td>
<td>227</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>20.0–20.5</td>
<td>156</td>
<td>17</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>20.5–21.0</td>
<td>225</td>
<td>42</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>21.0–21.5</td>
<td>334</td>
<td>84</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>21.5–22.0</td>
<td>756</td>
<td>159</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>22.0–22.5</td>
<td>1099</td>
<td>183</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td>2349</td>
<td>491</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

Flaisher, B. et al. 2015, AJ, 150, 150
Goldstein, D. A. et al. 2015, AJ, 150, 82
Sevilla, I. et al. 2011, arXiv:1109.6741
Singer, L., et al. 2015, GCN Circular, 18330