
Automated Workflow Synthesis

Citation
Zhang, Haoqi, Eric Horvitz, and David C. Parkes. 2013. Automated Workflow Synthesis. In
Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence (AAAI-13),
Bellevue, WA, July 14-18, 2013: 1020-1026.

Published Version
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6457

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:30782202

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:30782202
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Automated%20Workflow%20Synthesis&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=0d61c9ea3c45e20b0706dd4210231f83&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Automated Workflow Synthesis

Haoqi Zhang
Northwestern EECS
Evanston, IL 60208

hq@northwestern.edu

Eric Horvitz
Microsoft Research

Redmond, WA 98052
horvitz@microsoft.com

David C. Parkes
Harvard SEAS

Cambridge, MA 02138
parkes@eecs.harvard.edu

Abstract

By coordinating efforts from humans and machines, hu-
man computation systems can solve problems that ma-
chines cannot tackle alone. A general challenge is to de-
sign efficient human computation algorithms or work-
flows with which to coordinate the work of the crowd.
We introduce a method for automated workflow synthe-
sis aimed at ideally harnessing human efforts by learn-
ing about the crowd’s performance on tasks and synthe-
sizing an optimal workflow for solving a problem. We
present experimental results for human sorting tasks,
which demonstrate both the benefit of understanding
and optimizing the structure of workflows based on ob-
servations. Results also demonstrate the benefits of us-
ing value of information to guide experiments for iden-
tifying efficient workflows with fewer experiments.

Introduction
Human computation (von Ahn 2005; Law and von Ahn
2011) centers on models and methods for incorporating
humans in problem-solving efforts when machines cannot
tackle the problem alone. In the last several years, there has
been a rise in human computation algorithms or workflows
that enable a crowd to tackle complex problems by decom-
posing them into more manageable, self-contained tasks and
coordinating contributions across tasks. Workflows are pow-
ering crowdsourcing applications for problems such as copy
editing (Bernstein et al. 2010), nutrition analysis (Noronha
et al. 2011), and article writing (Kittur et al. 2011).

A workflow can draw on a crowd to perform a variety of
tasks. For example, a workflow for nutrition analysis may
ask the crowd to identify food items in a photograph, de-
scribe them in natural language, match descriptions to a food
database, and measure portion sizes. Since responses from
the crowd are inherently noisy and submitted answers can be
incorrect, the quality of task solutions is non-deterministic.
A workflow may apply quality control mechanisms that use
redundancy or voting to mitigate potential errors in tasks.
Such approaches help to mitigate errors in the final solution,
but incur costs of additional effort.

A general challenge for human computation is to design
workflows that make ideal use of human effort. This involves

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

reasoning about how to decompose a problem into a set of
tasks, how much effort to devote to each task, and how to
coordinate among the inputs and outputs of the tasks. Mak-
ing good decisions relies on understanding human perfor-
mance on specific tasks, and on understanding how poten-
tially noisy and erroneous outputs from each task influence
the final solution, either directly or through other tasks that
follow in a chain of analysis. The space of possible work-
flows for solving a problem is large even for a handful of
configurable tasks. Thus, learning and reasoning about the
efficiency of workflows is a difficult challenge. Designers
may test only a small set of designs, make ad-hoc decisions,
and ultimately deploy inefficient workflows.

We introduce a general method for automated workflow
synthesis, centered on constructing models of human per-
formance on tasks to provide guidance on enhancing the
efficiency of workflows. Over repeated interactions, an au-
tomated system selects experiments to refine current mod-
els, with the intent of discovering an efficient workflow con-
structed of a set of tasks that meets desired objectives and
satisfies resource constraints. To reason about the effect of
task performance on the overall performance of a workflow,
we develop a simulation-based approach that uses learned
models to estimate the cost and solution quality associated
with a workflow. To synthesize more efficient workflows af-
ter fewer experiments, we develop a value-of-information
elicitation strategy that chooses the next experiment based
on which experiment is expected to best inform the choice
of the optimal workflow.

We illustrate the effectiveness of the approach in a case
study on human sorting tasks, in which human judgment is
needed to compare the objects to be sorted. We focus on the
design of workflows within a class of quicksort algorithms
in which pivot selection and pairwise comparison tasks are
performed by the crowd. Experimental results demonstrate
that optimized workflows achieve a 13% reduction in errors
over baseline comparisons at the same level of effort. Results
also show that the value-of-information elicitation strategy
reveals better workflows more quickly than selecting ex-
periments that uniformly reduce uncertainty across models.
More broadly, the results illustrate how a system can au-
tomatically synthesize efficient workflows by understanding
the interplay between workflow structure and human perfor-
mance on tasks.

Related Work
Program synthesis considers the use of appropriate de-
sign tactics to systematically derive a program based on a
problem specification. In the context of sorting, Darling-
ton (1978) and Smith (1985) demonstrated how to derive
sorting algorithms using logical transformations and reduc-
tions. Closer to our work, Li et al. (2007) demonstrated
how to synthesize sorting algorithms that are optimized
for particular computer architectures. Because humans can
make mistakes, work on automated workflow synthesis must
tackle the added challenge of learning and reasoning about
human performance on different kinds of tasks.

By synthesizing workflows involving heterogeneous
tasks, we extend previous work by Huang et al. (2010) on au-
tomatically designing human computation tasks with identi-
cal, parallel subtasks. Our work also extends previous work
by Shahaf and Horvitz (2010), which introduced formula-
tions for sequencing tasks optimally. By using simulation
approaches, we can reason about complex workflows that
extend beyond sequencing tasks to cases where the relation-
ship between the crowd’s performance on tasks and the qual-
ity of the final solution is difficult to capture analytically.
Furthermore, while Shahaf and Horvitz focused primarily
on the optimization challenge, we address simultaneously
the problem of learning about human performance on tasks.

We seek in automated workflow synthesis to efficiently
discover workflows that embody effective structures and
strategies for solving a problem (e.g., the choice of which
tasks to include, the allocation of effort to tasks, and the de-
sign of the control flow). In optimizing over a space of pos-
sible workflows, our work stands in contrast to previous ef-
forts on optimizing a particular workflow through decision-
theoretic optimization (Dai, Mausam, and Weld 2010; 2011;
Kamar, Hacker, and Horvitz 2012). Given a predefined
workflow, these earlier approaches make online decisions
at run time on whether to request additional work based on
the current state of problem solving. They focus on mak-
ing local adjustments and do not consider changes to the
larger problem-solving strategy. Furthermore, by reasoning
about workflows constructed from a set of tasks, the methods
we describe can optimize the interplay among tasks within
workflows. Such consideration of the fundamental structure
of workflows comes in distinction to the work by Lin et
al. (2012), which considers optimizing the switching among
a fixed set of workflows.

Several studies to date have focused on enabling efficient
computation in human-powered database systems that re-
cruit a crowd to perform operations such as filters, sorts,
and joins. For example, Marcus et al. (2011b; 2011a) in-
troduces a declarative workflow engine called Qurk, and
proposes optimizations for sorts and joins such as batching
tasks, using numerical ratings, and pre-filtering tables be-
fore joins. Venetis et al. (2012) introduces local search pro-
cedures for optimizing workflows for retrieving the maxi-
mum item from a set, which we adapt for optimizing sorting
workflows. In contrast to these efforts, which focus on opti-
mizing for a specific setting, we present a unifed approach to
automated workflow synthesis that simultaneously consid-
ers tasks, models, and optimization procedures within an au-

Figure 1: Human quicksort applied to ordering grayscale
tiles from light to dark. A workflow specifies the number of
workers to allocate to each pairwise comparison and pivot
selection task at each level of recursion.

tomated experimentation process that can discover efficient
workflows for problems automatically.

In artificial intelligence, the study of metareason-
ing (Horvitz, Cooper, and Heckerman 1989; Russell and
Wefald 1991) seeks to enable agents with bounded time and
computational resources to make intelligent decisions about
how to reason, what to reason about, how long to deliber-
ate for, and when to take action. Due to the cost of human
effort, our system for automated workflow synthesis faces
a similar problem in that it must decide which experiments
to conduct, how much resources to devote to experimenta-
tion, and when to stop experimenting. In using information
value to inform elicitation decisions, we adopt a decision-
theoretic framework that draws on principles introduced by
Horvitz (1987; 1990) for decision-theoretic metareasoning.

Human Sorting Tasks
As an illustrative example, we consider as a case study the
problem of finding efficient workflows for human sorting
tasks. In a human sorting task, human perception and judg-
ment are used to determine the ordering among objects.
Examples of human sorting tasks include sorting objects
by their visual appeal (Little et al. 2010), ranking edited
versions of a paragraph by writing quality (Bernstein et
al. 2010), and ranking web pages by their relevance to a
query (Alonso, Rose, and Stewart 2008).

Workflows for human sorting tasks may recruit crowd
workers to perform a variety of tasks, such as comparing
pairs of elements, grouping elements into buckets, finding
outliers, checking if a list is sorted, or even sorting a small
list directly. The effectiveness of a workflow depends on its
problem-solving strategy and on how well the crowd per-
forms the tasks it calls upon. Since people can make mis-
takes, solutions may not be perfectly sorted, and redundancy
may be needed to achieve good solutions.

We focus on the sample problem of automatically synthe-
sizing a workflow from a class of workflows based on quick-
sort, which use the crowd to perform pairwise comparison
and pivot selection operations. We consider how much re-
dundancy to require for each pairwise comparison and pivot
selection task that is assigned to the crowd at different points
in the computation (see Figure 1). These decisions influence
the quality of the solution, as well as the number of opera-
tions and thus the cost required to compute a solution.

We consider optimizing over two sets of parameters, rd
and kd, that determine the number of people to recruit for
identifying the median of three randomly chosen elements
as the pivot (rd), and the number of people to recruit for
comparing a pair of objects (kd), at the d-th level of recur-
sion. For any task, the workflow takes the majority answer
from people recruited to perform the task as output, breaking
ties randomly as needed. In cases where rd = 0, a random
element is chosen as the pivot.

The performance of a workflow in this class depends
on how well the crowd can identify the median and per-
form pairwise comparisons, and on the implications of the
crowd’s performance on the quality of the solution and the
cost incurred. We assume that each call to a pairwise com-
parison or pivot selection task incurs known costs ck and cr,
which are additive and independent of task input. The qual-
ity of the crowd’s work is assumed to be imprecisely known
a priori, and can only be learned through experimentation.

To evaluate solution quality, we consider two standard
measures of sortedness. Given a list {l1, . . . , ln} that should
be sorted in ascending order, the number of inversions is the
number of pairwise elements that are out of order, which
occurs whenever lj < li for j > i. The number of runs
is the number of adjacent pairwise elements that are out of
order, such that li+1 < li. The goal is to find parameters val-
ues rd, kd such that human quicksort based on these values
produces solutions with few inversions or runs on average,
while staying within a cost budget C.

Inversions and runs provide global and local measures of
sortedness respectively; workflows optimized for the two
objectives may be qualitatively different. For example, a
workflow optimized for runs may allocate more effort at
deeper levels of recursion where more local elements are
sorted. In addition to the objective, the crowd’s performance
on tasks may also affect the choice of workflow. For exam-
ple, if the crowd makes more mistakes when elements being
compared are close in value, shifting effort to deeper levels
of recursion where elements being compared are likely to be
closer may be a good problem-solving strategy.

Automated Workflow Synthesis
Abstracting from human sorting tasks, we now introduce an
automated system to identify efficient workflows for solv-
ing a problem. We consider a finite set S = {s1, . . . , sm}
of base-level tasks that can be used as part of a workflow.
An instance of a task represents a single piece of work that
can be performed by an individual crowd worker.1 Tasks dif-
fer in the type of work or in the details of how the work is
requested, such as the user interface or the instructions.

We assume a worker-independent task function fs for
each task s ∈ S. The task function maps an input instance
to a probability distribution over the possible responses that
workers may provide for the task-input pair, some of which
may be incorrect. We assume that each instance of a task
incurs a known cost, which may be monetary or be based
on a measure of the time or effort required to complete the

1For example, on Amazon Mechanical Turk the base-level tasks
are the human intelligence tasks (HITs) assigned to workers.

task instance. We assume that the system does not know how
well the crowd performs each task a priori. That is, fs is im-
precisely known and more can be learned about this function
via experimentation.

The workflow design space considers a (possibly infinite)
set of workflows A = {A1, A2, . . .}. Workflows differ in
the tasks they include, their allocation of effort to tasks, or
their control flow. We let Si ⊆ S denote the set of tasks in
Ai. Given a problem instance as input, the algorithm func-
tion Fi provides a distribution over the possible solutions
returned by running workflow Ai. The algorithm function
considers workers performing instances of tasks as they are
assigned and models the effect of workers’ responses on the
solution returned by the workflow. In a generative sense, the
solution distribution from Fi is constructed by simulating
Ai and sampling from the output distribution provided by fs
whenever the workflow calls on an instance of task s ∈ Si.

An efficient workflow for solving a problem may be tai-
lored to the distribution of problem instances and to the
crowd’s abilities. To learn about the crowd’s performance
on tasks, the system can experiment with different tasks and
observe the crowd’s outputs. At any time, the system can se-
lect from a set of possible experiments E = {e1, . . . , em},
each of which corresponds to a particular task-input pair that
can be presented to a crowd worker. Since the crowd’s re-
sponses are non-deterministic, running the same experiment
twice may result in different observations.

Given a distribution over problem instances and a measure
of the solution quality, the system aims to identify a workflow
A∗ ∈ A with the maximum expected solution quality while
satisfying cost constraints.2 A general goal is to discover, af-
ter a small number of experiments, an efficient workflow that
obtains high quality solutions and satisfies cost constraints.

An Active, Indirect Elicitation Approach
In order to synthesize workflows that are tailored to the
crowd’s performance on tasks, we introduce active, indirect
elicitation (Zhang and Parkes 2008) as a general approach
for automated workflow synthesis. For each task s ∈ S, we
construct a task performance model f̂s to predict the output
from the task function fs. Proceeding in rounds, an elicita-
tion strategy selects which experiments to conduct. An infer-
ence procedure updates f̂s based on observed outputs from
experiments to refine the system’s knowledge of the crowd’s
task performance. This allows the system to better predict
the performance of different workflows under consideration.

At any time during the experimentation process, the sys-
tem uses its current knowledge to optimize the choice of
workflow and to select subsequent experiments. For any task
s, we assume that the system can use the current task per-
formance model f̂s to estimate a distribution over outputs
for any input to fs. Under this assumption, the system can
simulate a workflow Ai on a machine by sampling from the
output distribution provided by f̂s whenever the algorithm

2Our approach is agnostic to details of the objective. We can
also consider optimizing for more complex preference models that
define explicit tradeoffs between solution quality and cost.

makes a call to task s ∈ Si. This allows the system to esti-
mate a distribution over possible solutions for any workflow
applied to a problem instance. Simulations can thus be used
to estimate the solution quality and costs for any workflow
based on current knowledge. Simulations can also be used
to evaluate workflows under different hypotheses about fs;
this may be helpful for choosing an experiment.

Elicitation Strategy: Value of Information
An automated workflow synthesis problem may consider a
large space of possible workflows that each draw on diverse
tasks. We would like to determine which experiment to con-
duct at any time that would best improve the choice of work-
flow. Since the goal is ultimately to discover efficient work-
flows and not to learn about the crowd’s performance on
tasks per se, it is not necessarily best to learn about task-
input pairs on which the fewest experiments have been con-
ducted. For example, if the system already knows that a task
is unlikely to help produce high-quality solutions, learning
about it is unlikely to improve the choice of workflow.

Following this intuition, we consider a value-of-
information elicitation strategy that selects experiments
based on which task-input pair is most likely to reveal in-
formation that improves the choice of the optimal workflow.
Let A∗

f̂
denote the optimal choice of workflow based on

current task performance models. That is, A∗
f̂

achieves the
highest average solution quality across all workflows that
satisfy cost constraints when simulated using f̂s for task s
on problem instances drawn from a known distribution. For
each experiment e ∈ E that involves the task se, let Oe =
{o1e, . . . , oke} denote the set of potential outcomes from ex-
periment e based on f̂se . We let f̂o

i
e denote the updated task

performance models under the assumption that we conduct
experiment e and observe outcome oie, and let A∗

f̂oie
denote

the optimal choice of workflow with respect to f̂o
i
e .

The difference in solution quality between A∗
f̂

and each
of the workflows A∗

f̂oie
, evaluated with respect to our knowl-

edge after observing oie, captures the expected value to be
gained if we were to update our choice of workflow to de-
ploy after conducting a single experiment e. By comparing
experiments in this way, we can find the experiment that my-
opically maximizes the expected value of information (VOI)
by solving the following optimization problem:

maxe∈E
∑

oie∈Oe

Pr(oie|f̂se)[v(A∗f̂oie
|f̂o

i
e)− v(A∗

f̂
|f̂o

i
e)] (1)

Pr(oie|f̂) is an estimate of the likelihood of observing out-
come oie when conducting experiment e based on the task
performance model f̂ , and v(A|f̂) is a measure of the ex-
pected quality of solutions provided by workflow A based
on task performance model f̂ .

Since an individual experiment only obtains a single out-
put from the crowd, it may not contain enough information
to change the decision about the best workflow. For this
reason, in practice we may wish to conduct experiments in
batch. Outside of any computational concerns, the elicitation

strategy remains essentially the same, but with each experi-
ment representing a set of experiments.

Beyond informing the system about the best experiments
to conduct, VOI can be used to determine whether experi-
mentation should be halted. We halt when the expected value
of an experiment is less than its cost. For simplicity, we will
not model the cost of experimentation explicitly and focus
on discovering efficient algorithms after few experiments.

Case Study on Human Quicksort
Having introduced a general approach for automated work-
flow synthesis, we return to our case study on human sorting
tasks and demonstrate how to synthesize human quicksort
workflows that are tailored to the crowd’s abilities.

Task Performance Models
We first construct models for the pairwise comparison and
pivot selection tasks. Since it is infeasible to learn a model
for every combination of input values separately, we con-
sider grouping sets of input values into clusters, and learn-
ing a model for each task-cluster pair. In the simplest instan-
tiation, there may only be a single cluster per task, and the
model may only attempt to learn an input-independent prob-
ability distribution over outputs. We can consider arbitrarily
more complex models by considering finer-grained clusters.

For each model, we use the Beta and Dirichlet distribu-
tions to represent our knowledge and uncertainty over the
actual output distributions for pairwise comparison and pivot
selection tasks, respectively. For example, for pairwise com-
parisons, a Beta distribution’s α and β parameters can cap-
ture the number of correct and incorrect answers respec-
tively, and be updated by incrementing α by 1 if the answer
to an experiment is correct or incrementing β by 1 other-
wise. For pivot selections, a Dirichlet distribution with three
parameters maintains counts over the frequency of the cor-
rect output and the two possible incorrect outputs, and can
be similarly updated. These distributions are reasonable rep-
resentations of uncertainty as sampling processes progress
and have conjugate properties that allow for efficient updat-
ing with observations (Howard 1970).

Optimizing Human Quicksort
For the human quicksort workflows we consider, the number
of possible workflows is exponential in the assignment of ef-
fort to tasks at different levels of recursion. For tractability,
we use local search to find workflows that are approximately
optimal with respect to task performance models. We do this
by adapting to our setting the local search procedures intro-
duced by Venetis et al. (2012) for optimizing workflows for
finding the maximum element in a set.

To perform the search, we assume that there is a fixed, fi-
nite set of possible values to assign to parameters rd and kd.
Given task performance models, we first compute the opti-
mal constant sequence workflow, which selects fixed values
for r∗ and d∗ such that rd = r∗ and kd = k∗ for all recur-
sion levels d. Better workflows may exist that allocate effort
non-uniformly at different levels of recursion. For simplic-
ity, we fix the number of people to assign to pivot selection

Figure 2: Example HIT for the pivot selection task.

tasks (rd) and consider a greedy hill-climbing procedure that
iteratively varies the number of people to assign to pairwise
comparison tasks (kd). For every pair of parameter values ki
and kj for which ki > 1, we consider the effect of decre-
menting ki and incrementing kj up to the point that the re-
sulting workflow just satisfies cost constraints. Given that
swaps improve the solution quality, we apply the best such
swap, and repeat the process to incrementally improve the
choice of workflow until no such improvements exist.

Experimental Setup
We consider a human sorting task that requires people to sort
a list of grayscale tiles from light to dark. We choose this ex-
ample because comparisons are objective, tasks are easy to
describe, and tasks may vary in difficulty (e.g., based on the
closeness of tiles’ grayscale values). The straightforward na-
ture of the task makes it easy for us to evaluate answers, and
allows for exploration of models that depend on characteris-
tics of specific task instances. To study human performance
on tasks in this domain, we recruited workers from Amazon
Mechanical Turk (Turkers) to complete pairwise comparison
and median-of-three pivot selection tasks (see Figure 2).3

To simplify the evaluation, we use the Turkers’ responses
to construct ground truth models of task functions. Each
ground truth model maintains a distribution over answers
based on the empirically observed answers from Turkers.
When evaluating the active, indirect elicitation approach, in-
stead of actually posting jobs on Mechanical Turk for experi-
ments that an elicitation strategy chooses, we instead sample
from the ground truth distribution to simulate the answers
that the crowd would provide in an experiment. If the mod-
els are accurate, results of the simulated experiments would
approximate the crowd’s actual performance, but with evi-
dence obtained a priori to allow for a simpler evaluation.

For both the ground truth and task performance models,
we cluster inputs to tasks based on the closeness of objects
being compared. For pairwise comparison tasks, we con-
sider clusters based on the distance in grayscale value be-
tween pairs of objects. For pivot selection tasks, we con-
sider clusters based on the minimum distance between the
grayscale value of the median element and a non-median el-

3For pairwise comparison tasks, we posted 100 HITs each with
10 assignments. We sampled pairs of grayscale values at random,
restricting the difference in grayscale values to between 1 and 10.
We used a scale with 128 values, which we chose so that minimal
differences in darkness are barely distinguishable. For pivot selec-
tion tasks, we also posted 100 HITs each with 10 assignments. We
sampled three grayscale values for tiles at random, restricting the
difference in value between the median element and the other 2 el-
ements to between 1 and 10. Workers were required to have a 98%
approval rating, and were paid $0.01 per HIT.

Pairwise Pivot

Difference Pr(correct) Pr(median) Pr(closer)

1 0.74 0.585 0.27
2 0.87 0.69 0.16
3 0.94 0.74 0.13
4 0.98 0.82 0.10
≥5 0.997 0.85 0.08

Table 1: Ground truth models based on Turkers’ perfor-
mance on pairwise comparison and pivot selection tasks as
a function of the (minimum) difference in grayscale value.

ement. We consider five clusters per task, for distances of 1,
2, 3, 4, and 5+.

We maintain a model for each task-cluster pair. For pivot
selection, the Dirichlet models maintain counts for selecting
the median (α1), the element closer to the median (α2), and
the element farther from the median (α3). As priors, we ini-
tialize all pairwise comparison models with (α, β) = (4, 1),
and all pivot selection models with (α1, α2, α3) = (6, 1, 1).

In the active, indirect elicitation process, the set of possi-
ble experiments includes an experiment for each task-cluster
pair. We batch experiments to sets of five observations each,
such that any update to a model is based on five samples
drawn from the ground truth distribution. We compare the
VOI elicitation strategy with a uniform strategy that chooses
the next experiment based on the model that has been exper-
imented on the fewest times thus far. We hypothesize that
learning will typically lead to better workflows regardless
of elicitation strategy, but that the VOI strategy will identify
better workflows after fewer experiments.

We consider optimizing with respect to random permu-
tations of a list with 20 tiles holding grayscale values 1
through 20, with costs ck = cr = 1 and budget C = 250.
We consider kd ∈ {1, 3, 5, 7} and rd = r ∈ {0, 1, 3} as
possible values for kd and rd, where d ∈ {1, 2, 3, 4, 5, 6+}.

Results
From the Mechanical Turk experiment, we found that people
make more mistakes in pairwise comparison tasks when tiles
are closer in value (see Table 1). We observe that when tiles
differ in value by 1, the crowd makes twice as many mistakes
(26% error rate) as when tiles differ in value by 2 (13%),
and about four times as many mistakes as when tiles differ
in value by 3 (6%). For pivot selection tasks, we found that
people make more mistakes when one or more of the non-
median elements is close to the median.

Table 2 shows the average configuration and solution
quality of workflows synthesized for minimizing runs and
inversions. To compare workflows synthesized before and
after learning, we optimize with respect to both the prior dis-
tributions and the ground truth distributions. The best con-
stant sequence workflow serves as a baseline for what a de-
signer may deploy without reasoning about the specifics of
the objective or learning about human performance on tasks.

When minimizing runs, we observe that both prior to
learning and with knowledge of the ground truth, synthe-
sized workflows outperform the baseline by allocating more

k1 k2 k3 k4 k5 k6+ r error

Runs
Baseline 3 3 3 3 3 3 3 3.24
Prior distribution 1.9 3.4 4.2 4.3 4.5 4.0 2.3 2.97
Ground truth 2.0 3.3 4.6 5.3 5.1 4.9 1.3 2.74

Inversions
Baseline 3 3 3 3 3 3 3 4.23
Prior distribution 3.5 3.0 3.0 3.0 4.3 3.8 2.9 4.21
Ground truth 3.0 3.3 3.8 4.3 4.3 4.4 1.4 3.66

Table 2: Average configuration and solution quality of op-
timized workflows. The best constant sequence workflow
serves as a baseline. Values are averaged over 500 trials.

Figure 3: Performance of workflows optimized through the
process of learning. Values are averaged over 500 trials.

effort to pairwise comparisons at deeper levels of recursion.
Since in quicksort nearby elements are sorted at these deeper
levels, optimizing for runs shifts effort to these levels even
when errors are assumed to be uniform. We observe that,
with knowledge of the ground truth, even more effort is
spent on pairwise comparisons at deeper levels to account
for people making more errors when elements are close.

When minimizing inversions, optimization does not lead
to effective workflows in the absence of accurate error mod-
els. Assuming that errors are uniform, workflows synthe-
sized prior to learning allocate slightly more effort upfront
in order to avoid large errors that may result in multiple in-
versions. But since errors are most likely to occur when el-
ements being compared are close at deeper levels of recur-
sion, that policy turns out to be a poor strategy. We observe
that workflows synthesized based on ground truth models
allocate more effort at deeper levels (but not as much as for
minimizing runs), which results in 13% fewer inversions.

These results show that understandings of a workflow’s
structure and human performance on tasks jointly contribute
to synthesizing better workflows. For runs, knowing that
quicksort compares closer items at deeper levels of recur-
sion led to an improved workflow even prior to learning. For
inversions, recognizing that people make more errors when
items are close was crucial for finding an effective workflow.

Experiments reduce uncertainty in task performance mod-
els and inform decisions for synthesizing workflows. Focus-
ing on the influence of learning on minimizing inversions,
Figure 3 shows that workflows optimized using current task
performance models improve over time as the system con-
ducts more experiments using the uniform strategy.

Figure 4 compares the average number of inversions when
using workflows that are optimized based on updated models
following each experiment for the VOI and uniform strate-

Figure 4: Comparison of the performance of workflows op-
timized following each experiment for the VOI and uniform
elicitation strategies. Values are averaged over 500 trials.

Figure 5: Comparison of the performance of the best work-
flows discovered thus far for the VOI and uniform elicitation
strategies. Values are averaged over 500 trials.

gies. We observe that after the early rounds of learning,
workflows optimized based on information gathered using
the VOI strategy outperform workflows optimized based on
information gathered using the uniform strategy. Comparing
the best workflows from those synthesized after each exper-
iment conducted thus far, Figure 5 shows that the VOI strat-
egy discovers, after fewer experiments, workflows that lead
to fewer inversions.4 The difference is most significant be-
fore all of the models become refined, suggesting that the
VOI strategy may be particularly useful when models are
complex and experimentation is costly.

Conclusion
We introduced a general methodology for automated work-
flow synthesis. Experimental results showed that reasoning
about workflow structure and learning about human task per-
formance can lead to more efficient workflows for human
computation. Results also highlighted the benefits of using
VOI to discover efficient workflows after fewer experiments.

Research directions on automated workflow synthesis in-
clude developing procedures that optimize workflows over
richer design spaces composed of larger sets of tasks and
more varied control structures. The design space may also
involve decisions about how machine competencies can be
harnessed to complement human work. Finally, we are in-
terested in synthesizing workflows that include components
that perform decision-theoretic control at one or more lev-
els of analysis. Such an extension will require procedures
for learning and reasoning about high-level problem-solving
strategy and finer-grained control structures simultaneously.

4Because the local search optimization may search over differ-
ent sets of workflows for different models, we observe in Figure 5
that the best workflows discovered through learning can sometimes
outperform the workflows synthesized based on the ground truth.

Acknowledgments
The research was sponsored in part by the Army Re-
search Laboratory under Cooperative Agreement Number
W911NF-09-2-0053 and by National Science Foundation
under Grant Number CCF-0953516. The views and conclu-
sions contained in this document are those of the authors and
should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Labora-
tory or the U.S. Government. The U.S. Government is au-
thorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on.

References
Alonso, O.; Rose, D. E.; and Stewart, B. 2008. Crowdsourc-
ing for relevance evaluation. SIGIR Forum 42(2):9–15.
Bernstein, M. S.; Little, G.; Miller, R. C.; Hartmann, B.;
Ackerman, M. S.; Karger, D. R.; Crowell, D.; and Panovich,
K. 2010. Soylent: a word processor with a crowd in-
side. In Proceedings of the 23nd annual ACM symposium
on User interface software and technology, UIST ’10, 313–
322. ACM.
Dai, P.; Mausam; and Weld, D. S. 2010. Decision-theoretic
control of crowd-sourced workflows. In Proceedings of the
24th AAAI Conference on Artificial Intelligence, AAAI ’10,
1168–1174.
Dai, P.; Mausam; and Weld, D. S. 2011. Artificial intelli-
gence for artificial artificial intelligence. In Proceedings of
the 25th AAAI Conference on Artificial Intelligence, AAAI
’11, 1153–1159.
Darlington, J. 1978. A synthesis of several sorting algo-
rithms. Acta Informatica 11:1–30. 10.1007/BF00264597.
Horvitz, E.; Cooper, G.; and Heckerman, D. 1989. Reflec-
tion and action under scarce resources: Theoretical princi-
ples and empirical study. In Proceedings of the 11th Inter-
national Joint Conference on Artificial Intelligence, IJCAI
’89, 1121–1127.
Horvitz, E. J. 1987. Reasoning about beliefs and actions
under computational resource constraints. In Proceedings of
the Third Workshop on Uncertainty in Artificial Intelligence,
429–444.
Horvitz, E. J. 1990. Computation and Action Under
Bounded Resources. Dissertation, Stanford.
Howard, R. 1970. Decision analysis: Perspectives on in-
ference, decision, and experimentation. Proceedings of the
IEEE 58(5):632–643.
Huang, E.; Zhang, H.; Parkes, D. C.; Gajos, K.; and Chen,
Y. 2010. Toward automatic task design: A progress report.
In Proceedings of the 2nd Human Computation Workshop,
HCOMP ’10.
Kamar, E.; Hacker, S.; and Horvitz, E. 2012. Combining
human and machine intelligence in large-scale crowdsourc-
ing. In Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems - Volume 1,
AAMAS ’12, 467–474. Richland, SC: International Foun-
dation for Autonomous Agents and Multiagent Systems.

Kittur, A.; Smus, B.; Kraut, R.; and Khamkar, S. 2011.
Crowdforge: Crowdsourcing complex work. In Proceedings
of the 24th annual ACM symposium on User interface soft-
ware and technology, UIST ’11.
Law, E., and von Ahn, L. 2011. Human Computation. Mor-
gan & Claypool Publishers.
Li, X.; Garzaran, M. J.; and Padua, D. 2007. Optimizing
sorting with machine learning algorithms. In Proceedings of
the IEEE International Parallel and Distributed Processing
Symposium, IPDPS ’07.
Lin, C.; Mausam; and Weld, D. 2012. Dynamically switch-
ing between synergistic workflows for crowdsourcing. In
Proceedings of the 26th AAAI Conference on Artificial In-
telligence, AAAI ’12.
Little, G.; Chilton, L. B.; Goldman, M.; and Miller, R. C.
2010. Turkit: human computation algorithms on mechanical
turk. In Proceedings of the 23nd annual ACM symposium
on user interface software and technology, UIST ’10, 57–
66. New York, NY, USA: ACM.
Marcus, A.; Wu, E.; Karger, D.; Madden, S.; and Miller, R.
2011a. Human-powered sorts and joins. Proceedings of the
VLDB Endowment 5(1):13–24.
Marcus, A.; Wu, E.; Karger, D. R.; Madden, S.; and Miller,
R. C. 2011b. Crowdsourced databases: Query processing
with people. In Proceedings of the 5th Biennial Conference
on Innovative Data Systems Research, CIDR ’11.
Noronha, J.; Hysen, E.; Zhang, H.; and Gajos, K. Z. 2011.
Platemate: Crowdsourcing nutrition analysis from food pho-
tographs. In Proceedings of the 24th annual ACM sympo-
sium on User interface software and technology, UIST ’11,
1–12.
Russell, S., and Wefald, E. 1991. Principles of metareason-
ing. Artificial Intelligence 49(1-3):361–395.
Shahaf, D., and Horvitz, E. 2010. Generalized task markets
for human and machine computation. In Proceedings of the
24th AAAI Conference on Artificial Intelligence, AAAI ’10,
986–993.
Smith, D. R. 1985. Top-down synthesis of divide-and-
conquer algorithms. Artificial Intelligence 27,1:43–96.
Venetis, P.; Garcia-Molina, H.; Huang, K.; and Polyzotis, N.
2012. Max algorithms in crowdsourcing environments. In
Proceedings of the 21st international conference on World
Wide Web, WWW ’12, 989–998. New York, NY, USA:
ACM.
von Ahn, L. 2005. Human Computation. Ph.D. Dissertation,
Carnegie Mellon University.
Zhang, H., and Parkes, D. C. 2008. Value-based policy
teaching with active indirect elicitation. In Proceedings
of the 23rd National Conference on Artificial Intelligence,
AAAI ’08, 208–214.

