
Challenges & Opportunities Concerning Corporate
Formation, Nonprofit Status, & Governance for
Open Source Projects

Citation
Ritvo, Dalia Topelson, Kira H. Hessekiel, and Christopher T. Bavitz. 2017. Challenges &
Opportunities Concerning Corporate Formation, Nonprofit Status, & Governance for Open
Source Projects. Cyberlaw Clinic, Berkman Klein Center for Internet & Society Research
Publication.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:30805146

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:30805146
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Challenges%20&%20Opportunities%20Concerning%20Corporate%20Formation,%20Nonprofit%20Status,%20&%20Governance%20for%20Open%20Source%20Projects&community=1/3874488&collection=1/13015057&owningCollection1/13015057&harvardAuthors=2f9acbf588cde1761354230078dd9851&department
https://dash.harvard.edu/pages/accessibility

Organization
& Structure
of Open
Source
Software
Development
Initiatives

Challenges &
Opportunities
Concerning
Corporate
Formation, Nonprofit
Status, &
Governance for
Open Source
Projects

Dalia Topelson Ritvo
Kira Hessekiel

Christopher T. Bavitz

Harvard Law School
Berkman Klein Center for Internet & Society

March 2017

CYBERLAW CLINIC

Table of Contents

3 OVERVIEW & BACKGROUND ACKNOWLEDGMENTS

4 PART I: THE QUESTION OF INCORPORATION FOR OPEN SOURCE SOFTWARE INITIATIVES
Introduction 4
501(c)3 Status, the IRS, and Open Source 4
Shift in IRS Policy 5
Conclusion 5

6 BEYOND 501(C)(3):
 STRUCTURAL CONSIDERATIONS FOR OPEN SOURCE SOFTWARE INITIATIVES

Introduction 6
Alternative Federal Tax-Exempt Status Recognitions: 501(c)(4) & 501(c)(6) 6
Nonprofit Corporations 7
For-Profit Entities: Corporations and Limited Liability Companies 7
A Third Way: Benefit Corporations 8
Conclusion 9

10 PART II: GOVERNANCE MODELS FROM THE OPEN SOURCE WORLD & BEYOND
Introduction 10
Levels of Control & Openness 10
Model A: Benevolent Dictatorship 11
Model B: Meritocracy 13
Model C: Delegated Governance 15
Model D: Dynamic Governance 17
All About Boards: Examples from the Nonprofit World 19
Norms and Attitudes for a Successful Open Source Software Organization 20

22 CONCLUSION

23 Endnotes

27 Case Studies & Governance Model Illustrations

Suggested Citation: Bavitz, Christopher; Topelson Ritvo, Dalia & Hessekiel, Kira. Organization & Structure of
Open Source Software Development Initiatives: Challenges & Opportunities Concerning Corporate Formation,
Nonprofit Status, & Governance for Open Source Projects (March 2017). Berkman Klein Center Research Publica-
tion. Available at: https://dash.harvard.edu/handle/1/30805146

Cyberlaw Clinic
1585 Massachusetts Avenue | Suite 5018 | Cambridge, Massachusetts 02138

 +1 617.384.9125 | +1 617.495.7641 (fax)
https://clinic.cyber.harvard.edu

clinic@cyber.harvard.edu

3

OVERVIEW & BACKGROUND
This report addresses a number of key considerations that those managing open source software de-
velopment initiatives should take into account when thinking about structure, organization, and gov-
ernance. The genesis of this project involved an investigation into anecdotal reports that companies
and other institutions developing open source software were facing difficulties obtaining tax exempt
nonprofit status under Section 501(c)(3) of Title 26 of the United States Code. Based on conversations
with a number of constituents in the open source software development community, the authors have
prepared this report to address specific questions about nonprofit status alongside questions about
corporate formation and governance models more generally.

Nothing in this report should be viewed as a substitute for specific legal advice on the narrow ques-
tions facing particular organizations under particular sets of factual circumstances. But, the authors
are hopeful the document provides a general overview of the complex issues that open source initia-
tives face when balancing a need for structure and continuity with the innovative and experimental
spirit at the heart of many open source development projects.

The report has two primary parts:

• First, it addresses some formal organizational considerations that open source software initiatives
should weigh, evaluating the benefits of taking on a formal structure and the options for doing so.
The report provides information about different types of corporate organization that open source
projects may wish to consider. And, it delves into Internal Revenue Service policy and practice and
US tax law concerning questions about the tax exemptions referenced above.

• In its second half, the authors pull back to consider more broadly questions of organizational struc-
ture, offering ideas about governance models that open source organizations may wish to explore,
separate from formal corporate structure, as they seek to achieve their missions.

Different considerations may inform the choice of formal, legal organizational structures (on the one
hand) and governance models (on the other hand). By addressing both, the authors hope that this
report will be useful to the broadest possible range of managers of and contributors to open source
development initiatives.

ACKNOWLEDGMENTS
This report was produced with generous support from the MacArthur Foundation, which allowed the
Cyberlaw Clinic at the Berkman Klein Center for Internet & Society to host a small gathering in April
2016 during which stakeholders surfaced questions and concerns they have faced when operating in
this space. The authors would like to thank MacArthur and the participants in that gathering for their
contributions to the conversation and, in particular, express their appreciation for the input of Brian
Behlendorf; Nathan Freitas; Esther Lim; Ellen Lubell; Allison Randal; Wendy Seltzer; Tom Stites; and
Aaron Williamson. Nadia Eghbal and Jason Griffey offered valuable contributions as well. Finally,
Harvard Law School students enrolled in the Cyberlaw Clinic made significant contributions to this
report, including Jin-Kyu Baek; Sarah Baugh; Daniele Kleiner Fontes; Marco Medellin; and Joe Milner.

4THE QUESTION OF INCORPORATION FOR OPEN SOURCE SOFTWARE INITIATIVES

PART I

THE QUESTION OF
INCORPORATION FOR
OPEN SOURCE SOFTWARE
INITIATIVES
Introduction
Corporate formation may not be the first item
on the to-do list of an open source project just
beginning to expand. But, having a formal busi-
ness structure can confer benefits that open
source projects might find desirable as they
plan their growth.

First, a corporate entity can shield the organi-
zation’s founders and members from personal
liability should someone bring a suit against the
project. The existence of a legal entity also helps
delineate ownership of the project’s assets,
which can help open source projects sort ques-
tions of intellectual property more clearly. In
addition, all corporate formation options avail-
able in the United States come with stipulations
on how entities should be run and managed.
These requirements create structural support,
governance and process rules, and checks and
balances for how an entity should operate and
make decisions. Those tools, in turn, can help
promote the longevity of an open source project
and protect it from organizational turmoil re-
garding decision-making authority, ownership
of ideas, and financial questions.

Many open source initiatives have a desire to
adopt a mission-driven business model because
they intend for their work to give back to the
open source development community and serve
the public good. Following the example of some
of the most established open source organiza-
tions, many attempt to form as a nonprofit cor-
porations with tax-exempt status. While there
are benefits to achieving so-called 501(c)(3)
status, several alternative models of corporate
formation exist that open source projects would
be wise to consider because they may align bet-
ter with a particular project’s goals.

In this section, the authors address several vari-
eties of nonprofit designation (including tax-ex-

empt status), for-profit corporation models, and
hybrid benefit corporations to help open source
projects understand how to best utilize the ad-
vantages of corporate formation to suit their
specific needs.

501(c)3 Status, the IRS, and Open
Source
Open source projects often seek to follow in the
footsteps of well-known organizations such as
Apache and Mozilla and seek nonprofit status.
This approach may be driven by a sense that
nonprofit status exempts an organization from
paying federal and state income taxes. But, that
is not necessarily the case. In fact, an organi-
zation must qualify for a tax exemption under
federal tax law.

The Internal Revenue Code exempts certain non-
profit organizations, including “[c]orporations,
and any community chest, fund, or foundation,
organized and operated exclusively for religious,
charitable, scientific, testing for public safety,
literary, or educational purposes,” from paying
federal income taxes.1 Because this specific ex-
emption appears in 26 U.S.C. 501(c)(3), people
often refer to organizations that receive the ex-
emption as “501(c)(3)s” or as having “501(c)(3)
status.”

Historically, some open source organizations
have preferred the 501(c)(3) exemption to oth-
er 501(c) alternatives.2 Nonprofit open source
organizations generally provide their software
to the public for free.3 These organizations may
rely on donations in order to pay for any or-
ganizational expenses.4 Donors prefer to make
donations when they can take deductions for
their donations and as a result are more likely
to make donations to nonprofits with 501(c)(3)
status.5 As a result, in order to make their organi-
zations attractive to potential donors, nonprofit
open source organizations often have sought
the 501(c)(3) exemption.

At the beginning of the open source software
movement, open source organizations attained
the 501(c)(3) exemption without much difficul-
ty. Open source organizations began to apply
for 501(c)(3) status as early as 2001.6 The Mozil-
la Foundation received an Internal Revenue Ser-
vice (“IRS”) determination of its 501(c)(3) status
within six months of submitting its application.7

5THE QUESTION OF INCORPORATION FOR OPEN SOURCE SOFTWARE INITIATIVES

Over the course of the 2000s, open source orga-
nizations were able to obtain 501(c)(3) status on
a regular basis. A 2008 report by the Software
Freedom Law Center encouraged open source
organization founders to consider applying for
501(c)(3) status on the basis that “[t]he IRS has
regularly recognized organizations created for
the promotion of free and open source software
projects as having charitable purposes.”8 The
accompanying Case Study #1, which examines
the Apache Software Foundation, illustrates the
ease with which open source software organiza-
tions were able to obtain 501(c)(3) status during
this period.

Shift in IRS Policy
In the past few years, open source software or-
ganizations have begun to experience greater
difficulty in obtaining 501(c)(3) status. For ex-
ample, the Open Source Elections Technology
Foundation (OSET) (formerly the Open Source
Digital Voting Foundation) applied for 501(c)
(3) status in 2007.9 Although OSET eventually re-
ceived 501(c)(3) status, the IRS review of OSET’s
application lasted for over six years, and OSET’s
application was initially denied.10 OSET’s expe-
rience is not exceptional. According to Wired,
“numerous open source projects” reported that
the IRS had “put a freeze on their nonprofit ap-
plications.”11

The change in treatment of open source soft-
ware companies arose directly from a shift in
IRS policy. During the scandal surrounding IRS
denial of 501(c)(3) status to Tea Party organi-
zations, the United States House of Represen-
tatives Ways and Means Committee released
the IRS’s “Be on the Look Out” lists (“BOLOs”).12
The BOLOs listed kinds of organizations that the
IRS had identified as potentially unsuitable for
501(c)(3) status.13 Every released BOLO dated
between August 2010 and July 2012 included
open source organizations.14

The lists explain that open source software or-
ganizations should be monitored because “[t]he
members of these organizations are usually the
for-profit business or for-profit support techni-
cians of the software. The software is provided
for free, however; fees are charged for techni-
cal support by the for-profit.”15 The BOLOs thus
misrepresented the wide variety of open source
software business models, ignoring that many

open source software organizations do not have
affiliations with for-profit businesses. Neverthe-
less, the BOLOs drove IRS policy for at least two
years.

While the IRS has discontinued its use of BO-
LOs,16 the shift toward more stringent reviews
of 501(c)(3) applications remains. OSET was
able to obtain 501(c)(3) status, but many open
source software organizations still are waiting
for determinations.17

The accompanying Case Study #2, Case Study
#3, and Case Study #4 examine open source
software organizations’ applications for 501(c)
(3) status filed in the past five years. Together,
these examples illustrate the trend toward more
restrictive IRS review of such applications, un-
derscore the fact that an organization’s mission
remains key in the context of such review by the
Internal Revenue Service, and drive home the
point that such mission must go beyond mere
provision of free code by promoting a greater
educational or social good.

Conclusion
Since the beginning of the 21st century, open
source software organizations have pursued
501(c)(3) status in order to operate on nonprof-
it, donations-based business models. 501(c)
(3) status exempted these organizations from
federal income tax and made donations to the
organizations tax-deductible for the donors.
Originally, open source stalwarts like Apache
obtained 501(c)(3) status with ease. However,
the past few years have witnessed a sea change
in IRS treatment of nonprofit open source soft-
ware organizations. Based allegedly on suspi-
cions of abuse of 501(c)(3) status by nonprofit
open source software organizations affiliated
with for-profit software developers, the IRS has
raised its threshold for granting such nonprofits
501(c)(3) status.

In the wake of recent delays and rejections of
501(c)(3) applications, 501(c)(3) status appears
harder to obtain than ever for open source soft-
ware organizations. While some open source
software organizations may continue to obtain
501(c)(3) status, this option may be closed off –
in particular, for organizations that choose not
to or cannot offer activities to educate the pub-
lic in software development or a demonstrable

6BEYOND 501(C)(3): STRUCTURAL CONSIDERATIONS FOR OPEN SOURCE SOFTWARE INITIATIVES

connection to a charitable purpose. Given these
changes, open source software organizations
can no longer count on obtaining 501(c)(3) sta-
tus and may want to evaluate the pros and cons
of adopting alternative business structures.

BEYOND 501(C)(3):
STRUCTURAL
CONSIDERATIONS FOR
OPEN SOURCE SOFTWARE
INITIATIVES
Introduction
As open source software organizations face
greater difficulty in obtaining 501(c)(3) status,
some organizations may begin to consider al-
ternative options to the traditional 501(c)(3)
nonprofit model. A broad spectrum of options
exists; some options would require only a small
shift in operations, while others would force or-
ganizations to embrace new models altogether.
This section outlines some of these entity forma-
tion options available to open source software
initiatives and considers how those managing
open source projects might use these options to
achieve their goals.

Alternative Federal Tax-Exempt Status
Recognitions: 501(c)(4) & 501(c)(6)
Certain open source software organizations
may be able to find limited opportunities for
federal tax-exempt status by seeking recogni-
tion under other subprovisions of Section 501.
With 501(c)(3) status increasingly unattainable,
open source software organizations that wish to
obtain federal tax exempt status may need to
consider federal tax exemption under 501(c)(4)
and 501(c)(6).18

Like 501(c)(3), organizations recognized under
501(c)(4) and 501(c)(6) are exempt from feder-
al income tax.19 However, donations to organi-
zations recognized under 501(c)(4) and 501(c)
(6) are not tax deductible.20 As discussed above,
tax deductibility incentivizes donors to donate
to open source software organizations. Without
this benefit, operating on a donations-based
nonprofit business model may become more
difficult.

Moreover, recognition under 501(c)(4) and
501(c)(6) is available only to certain kinds of
organizations. 501(c)(4) status is reserved for
“civic leagues or organizations . . . devoted ex-
clusively to charitable, educational, or recre-
ational purposes.”21 As discussed above, the IRS
has become reluctant to find that open source
software organizations applying for 501(c)
(3) status operate for charitable or education-
al purposes. Furthermore, IRS guidance states
that an organization created primarily for rec-
reational purposes should apply for exemption
under 501(c)(7) rather than 501(c)(4).22 As a re-
sult, most open source software organizations
probably should not rely on 501(c)(4) for ob-
taining tax-exempt status.

Some types of open source software organiza-
tions have had some success obtaining federal
income tax exemptions under 501(c)(6). 501(c)
(6) exempts business leagues from federal in-
come tax.23 IRS guidance explains that people
found business leagues in order to promote
a business interest that the founders share in
common.24 In the open source software commu-
nity, 501(c)(6) organizations generally act as
umbrella organizations for many projects rath-
er than working directly on a single project. For
example, the Dojo Foundation and the Eclipse
Foundation are 501(c)(6) organizations that
support open source software projects.25 But, a
shift in IRS policy toward open source software
organizations applying for 501(c)(6) status –
which parallels the shift regarding 501(c)(3) ap-
plications – may be underway.

The OpenStack Foundation, which supports
the OpenStack ecosystem, was recently denied
501(c)(6) status. According to Mark McLoughlin,
an OpenStack Foundation board member, the
IRS argued that the foundation is engaging in
business regularly carried on for profit and is im-
proving business conditions only for its members
rather than for the entire industry.26 Jonathon
Bryce, the executive director of the Foundation,
noted that the Foundation is “fundamentally no
different from other similar [open source soft-
ware] 501(c)(6) organizations.”27 While Bryce
offered this statement to support the argument
that the OpenStack Foundation eventually will
receive 501(c)(6) status, the same point could
favor a shift in IRS policy toward refusing to
grant 501(c)(6) status and revoking 501(c)(6)

7BEYOND 501(C)(3): STRUCTURAL CONSIDERATIONS FOR OPEN SOURCE SOFTWARE INITIATIVES

status from other open source software umbrel-
la organizations.

Given the complexities associated with achiev-
ing exemptions from federal income tax, open
source software organizations may have to be-
gin reassessing their business models. Organi-
zations may decide to continue to operate as
nonprofits while paying federal income taxes,
generate and rely on profits, or adopt a middle
path between those two extremes.

Nonprofit Corporations
Some open source software projects may de-
cide to continue to operate as nonprofit corpo-
rations even if the organizations have to pay
federal income taxes as long as their federal
income tax burden is not excessive. Organiza-
tions form as nonprofit corporations at the state
level.28 This process of entity formation occurs
before and independent from any decision re-
garding exemption from federal income taxes.29

Depending on the laws of the state of incorpora-
tion, a nonprofit corporation may or may not be
exempt from state sales, property, and income
tax.30 For example, a Massachusetts nonprofit
corporation may qualify for state tax exemp-
tions only after receiving federal income tax
exemption.31 Once the Massachusetts nonprofit
corporation is exempt from federal income tax-
es, it must apply separately for exemption from
state sales, property, and income taxes.32 An
open source software organization interested in
continuing to operate as nonprofit corporations
should consider the laws of the state in which
the organization is incorporated in conjunction
with its own financial situation.

An organization may find, for example, that its
operating profit is so low that paying federal
and state taxes does not impose an undue bur-
den on the organization.33 In this situation, the
organization may elect to operate as a nonprof-
it corporation and would not need to change
its entity type or business model. On the other
hand, if the organization found that the result-
ing tax burden was excessive, it may need to
consider adopting a new business model.

For-Profit Entities:
Corporations & Limited Liability
Companies
For open source software organizations that
consider adopting a for-profit business model,
three primary entity forms are available: C cor-
porations, S corporations, and limited liability
companies.

C Corporations
The C corporation is the default entity type for
most businesses that seek outside investors,
particularly in the venture capital arena.34 Cor-
porations offer a few benefits that have helped
them retain relevance as new entity forms have
developed. First, corporations limit sharehold-
ers’ liability for corporate debts.35 Shareholders’
liability may not exceed the capital they have
invested in the corporation.36 Additionally, out-
side investors often prefer to invest in corpora-
tions because state corporate law is extensive
and corporate case law is well settled.37 Busi-
nesses and shareholders can thus better predict
the potential legal consequences of a business
decision and act with greater certainty. C cor-
porations also have some flexibility in structur-
ing their ownership. This flexibility can allow C
corporations to restrict voting rights to certain
classes of shareholders or offer preferred shares
that afford investors precedence in receiving
dividends over common stock holders.38 A C cor-
poration may have unlimited shareholders and
multiple classes of shareholders with different
rights.39

C corporation tax status offers both advantag-
es and disadvantages. In addition to offering
limited liability, arguably the most well-known
trait of C corporations is double taxation. Cor-
porate earnings are taxed twice—once at the
corporate level and once at the shareholder lev-
el, when the corporation makes distributions to
its shareholders.40 Additionally, corporate losses
do not pass through to shareholders, so share-
holders cannot use corporate losses to offset
their own capital gains.41

On the other hand, the double taxation struc-
ture may benefit some C corporations when
compared to the pass-through structure of S
corporations (discussed in the next section).
Unlike an S corporation – in which corporate in-

8BEYOND 501(C)(3): STRUCTURAL CONSIDERATIONS FOR OPEN SOURCE SOFTWARE INITIATIVES

come passes through the corporate structure di-
rectly to shareholders – a C corporation retains
all earnings not distributed as dividends.42 As a
result, shareholders in C corporations do not
pressure the corporation to distribute earnings
immediately, as shareholders in S corporations
might.43 C corporations, therefore, can retain
and reinvest their earnings more easily than S
corporations.44

Furthermore, while S Corporations have to elect
S Corporation status and meet IRS eligibility
requirements, C corporations retain a default
IRS status.45 C corporations do not have to exert
any extra effort to obtain their tax status and
do not run the risk of losing it.46 This default po-
sition provides greater tax certainty for the cor-
poration and its shareholders.

C corporations’ corporate and tax traits make
them a good choice for open source software
projects that wish to operate on a for-profit busi-
ness model and solicit investments from outside
investors. The relative predictability of C corpo-
rations makes them ideal for attracting angel in-
vestors and venture capital. On the other hand,
C corporations probably would not appeal to
projects that wish to limit ownership to specif-
ic investors who hope to gain pass-through tax
benefits or structure the organization beyond
the confines of settled corporate law.

S Corporations
An organization can become an S corporation
by incorporating at the state level and then
electing to be taxed as an S corporation at the
federal level.47 Because S corporations are sim-
ply corporations at the state level, they share
many characteristics with C corporations. For
instance, S corporations also offer limited liabil-
ity to shareholders and are subject to the same
laws and case law at the state level.48 Unlike C
corporations, however, S corporations may only
offer a single class of stock and may not have
more than 100 shareholders.49 Partnerships, cor-
porations, and non-resident aliens may not hold
shares of S corporations,50 limiting the pool of
potential investors for an S corporation. On the
other hand, S corporations’ gains and losses
pass through directly to shareholders, allowing
S corporations to avoid double taxation.51 Cer-
tain investors may prefer these pass-through
benefits to the certainty attached to C corpo-

ration status, as discussed above. S corporation
status may be ideal for projects that want to
limit ownership to a small group of U.S. resident
individuals who prefer S corporations’ pass-
through characteristics.

Limited Liability Companies
Limited liability companies (“LLCs”) offer the
owners flexibility to create their own rules for
the LLC via contract while limiting their liability.
Similar to shareholders of corporations, share-
holders in LLCs (generally called “members”)
“are not personally liable for the entity’s debts
and obligations.”52

LLCs’ governance and operations are largely de-
termined by an LLC operating agreement signed
by the LLC’s members.53 For example, the oper-
ating agreement may delegate management
responsibilities to a certain member or mem-
bers, or it may spread management responsi-
bilities among all members.54 Because members
can customize their LLC through contract, and
because the LLC form is a more recent creation,
LLCs do not benefit from the same legal certainty
as corporations.55 The legal consequences of an
LLC’s actions are more difficult to predict than
those of a corporation, and in certain instances
this uncertainty could have a chilling effect on
the LLC’s willingness to take risks. Like S corpo-
rations, LLCs offer pass-through tax benefits to
their members, although an LLC also may elect
to be taxed as a C corporation.56

Organizations with owners who wish to con-
struct their relationship through contract, do
not mind the greater legal uncertainty attached
to LLCs, and want pass-through tax benefits
may consider forming as an LLC. Organizations
that wish to seek funding from outside investors
who are more comfortable with the familiarity
of corporations, however, may be better served
by another type of entity.

A Third Way: Benefit Corporations
Benefit corporations offer many of the same
benefits as C corporations while also elevating
organizations’ purpose-driven missions. Benefit
corporations were created to address a gap in
the framework of legal entities. Traditionally,
U.S. federal and state law created a binary sys-
tem of entity formation: entities focused on ei-
ther generating profit or promoting a non-profit,

9BEYOND 501(C)(3): STRUCTURAL CONSIDERATIONS FOR OPEN SOURCE SOFTWARE INITIATIVES

purpose-driven mission.57 Directors of corpora-
tions owe duties to their corporations to act in
the corporations’ best interests.58 For for-profit
corporations, case law generally focuses on
whether the director acted in the corporation’s
financial best interests.59 No clear authority em-
powers for-profit corporation directors to con-
sider other interests; for instance, while a direc-
tor may be aware of the effects of a business
decision on workers, customers, or other stake-
holders, neither statutes and case law state that
a for-profit corporation director can consider
these interests on the same level as, or instead
of, the corporation’s financial interests.60

Unlike traditional corporations, benefit corpora-
tions can balance financial and non-financial
interests in making business decisions. Under
model legislation passed in several states, bene-
fit corporations have a “general public benefit”
purpose and also may identify “specific public
benefit” purposes.61 Considered to be “in the
best interests of the benefit corporation,” these
mission-based purposes are on equal foot-
ing with the corporation’s for-profit purpose.62
In making a business decision, directors may
weigh the corporation’s mission-based purpos-
es as well as the decision’s potential effects on
stakeholders, the greater community in which
the benefit corporation operates, and the envi-
ronment.63

Mission-driven open source software initiatives
may want to consider incorporating as benefit
corporations so that they can place their mis-
sion-based purpose front and center in deci-
sion-making. Benefit corporations offer oppor-
tunities and disadvantages for raising capital
when compared to traditional for-profit C cor-
porations. Because benefit corporations are
structured and operate similarly to C corpora-
tions, many investors may be attracted to bene-
fit corporations by the familiarity of their struc-
ture.64 Investor interest may increase due to
benefit corporations’ mission-driven character-
istics, particularly if investors share the corpo-
ration’s values or goals. On the other hand, ben-
efit corporations may have difficulty attracting
funding from risk-averse investors who are wary
of the challenge of balancing financial and
non-financial interests and of the lack of case
law relating to benefit corporations’ business
decisions. Benefit corporations also share C

corporations’ disadvantages, including double
taxation. Certain investors may prefer another
corporate structure. However, if an organization
wishes to maintain the C corporation’s broad
appeal to investors while also making business
decisions in line with the organization’s social
mission, the organization may wish to consider
incorporating as a benefit corporation.

Conclusion
Open source software organizations seeking to
move beyond 501(c)(3) nonprofit status may
choose from a plethora of corporate forms and
tax designations. 501(c)(4) and 501(c)(6) desig-
nation may offer a small number of open source
software projects and umbrella organizations
continuing access to exemption from federal in-
come tax. Otherwise, organizations may decide
to continue to operate as nonprofits without re-
ceiving tax-exempt status.

Other organizations may adopt a for-profit
business model and choose from among C cor-
porations, S corporations, and LLCs, depending
on each organization’s goals, need for outside
funding, and management preferences.

Finally, organizations that wish to generate
profits while also furthering a social mission
may consider incorporating as a benefit corpo-
ration. As the open source software community
begins to move beyond 501(c)(3), organizations
may move beyond a one-size-fits-all model and
increasingly explore and experiment with new
corporate structures that best fit their needs
and goals.

10GOVERNANCE MODELS FROM THE OPEN SOURCE WORLD & BEYOND

PART II

GOVERNANCE MODELS
FROM THE OPEN SOURCE
WORLD & BEYOND
Introduction
Because of the importance of community par-
ticipation and contribution in the open source
world, some projects believe that formalized
structures may hinder their growth. They worry
developers will perceive formal governance as
“red tape” and be less willing to contribute.65
Certain open source founders also fear that af-
ter implementing a governance structure, they
will lose control over the direction of the proj-
ect.66

These concerns can be dispelled by carefully
selecting an appropriate governance model. A
properly executed governance structure should
encourage developers to contribute, not hin-
der contributions. Further, founders can retain
as much control over projects as they want by
choosing a governance structure in line with
their goals and needs.67

This section of the report examines several ex-
amples of governance models, including be-
nevolent dictatorship, meritocracy (sometimes
known as enlightened dictatorship), delegated
governance, dynamic governance, and a feder-
ated model. It explores the skills and traits proj-
ect leaders may wish to develop or identify in
others to best further the goals of the project.
In highlighting known and more novel gover-
nance models, the authors hope to help fledg-
ing groups make informed choices so that they
may develop the community and practices they
envision.68

Levels of Control and Openness
Before an open source project chooses a spe-
cific governance model, it may be useful to ask
two questions: (1) how open to new contributors
should the project be; and (2) how much should
project processes be predetermined? The ways
in which a given open source initiative answers
these two questions can have significant im-
pacts on the project.

Openness: The Cathedral & Bazaar
A chief tenet of open source software develop-
ment is that anyone can contribute to a project.
But projects define “anyone” in different ways.
In the early days of large-scale open-source col-
laboration online, Eric Raymond characterized
the two ends of the spectrum of open software
development as the “cathedral” and the “ba-
zaar.”69 Even today, open source organizations
generally fall nearer to one end of this spectrum
or the other.70

In a cathedral model, a small team of dedicat-
ed contributors builds and maintains the open
source project.71 Usually, some connection to
the project or demonstration of skill is neces-
sary to participate, and product releases are
closely controlled by the project leadership.72 As
a result, cathedral projects involve fewer people
overall, and their releases happen less frequent-
ly.73 In the earliest days of open source software
development, before the Internet was used wide-
ly outside of universities, the cathedral model
was the primary means by which open source
software developed.74

On the opposite end of the spectrum is the ba-
zaar model. The term was coined to describe the
processes at Linux, one of the first open source
projects to eschew the cathedral approach.75
True bazaars are open to all contributors and
harness the power of many part-time develop-
ers who work collectively via the Internet alone.
Rather than closely monitoring every step in
the development process, a bazaar gives great
autonomy to its large base of contributors and
generally puts out frequent releases, even if they
are not perfectly honed, to correct bugs and in-
crease the sense of accomplishment among the
dispersed developers.76

Today, many open source projects fall some-
where between the bazaar and the cathedral
and sometimes shift as priorities and capaci-
ties change.77 Evaluating this spectrum can help
new project leaders envision the kind of collab-
orative ethos they would like to create for their
open-source community.

11GOVERNANCE MODELS FROM THE OPEN SOURCE WORLD & BEYOND

Control in Open-Source Organizations
Similarly, open-source projects run along a
spectrum vis a vis how much formal control ex-
ists in the organization’s governance structure.
Di Tullio and Staples, two management infor-
mation systems researchers, ran analyses of a
sample of open source software organizations
with established governance structures to bet-
ter understand the existing models in the com-
munity.78 The researchers established several
categories of “governance dimensions” within
these projects: ownership of assets, establish-
ment of project goals, community management,
software development processes, conflict reso-
lution, use of information, and use of tools.79

The organizations in their samples were then
grouped into three clusters based on their scores
in these categories, as shown in Figure 1: open
community, authoritarian community, and de-
fined community. The three organizational clus-
ters varied in how much they defined process
in development and community management.80

As the name indicates, “defined communities”
had managed processes for every function of
their organization, and the community as a
whole managed the project.81 It was these com-
munities that Di Tullio and Staples found “had
the most positive [community] climate and the

most effective coordination,” while the author-
itarian community had the poorest results in
both metrics, and the open community model
fell somewhere in between.82 The researchers
suspected the defined community model was
most successful in these areas because it had
clearly defined community roles, instructions,
and project.83 The defined community model
created “a balance between freedom [for com-
munity input] and control” over project process-
es.84 As a result, contributors felt involved in the
project while also understanding how they were
expected to contribute. Di Tullio and Staples’
research underscores the importance of clarity
in process and roles when designing an open-
source project’s governance structure.

With that general framework, the following sec-
tions examine several governance models to
help open source projects create their own ver-
sions of defined communities.85

Model A: Benevolent Dictatorship

Introduction
In a benevolent dictatorship, one or a few proj-
ect founders are the final arbiters and ultimate
decision-makers for all aspects of an open
source project.86 An open source organization
may decide to adopt a benevolent dictatorship
structure when the project’s founder wants to
keep control of the project over its lifespan.87 The
founder may want decisions to happen through
him or her – with decisions made either by the
founder or with the founder’s direction. The
founder may also may desire to be in charge of
a body of people who make decisions about the
project. Given this powerful position, a found-
er operating as benevolent dictator must have
deep knowledge about all aspects of the project
and skill and expertise in building community
and trust.

Despite this concentrated authority, a benevo-
lent dictatorship is not a one-man show. Just like
all open source software, projects governed by
benevolent dictatorships rely on contributors to
make low-level decisions and encourage partici-
pation in discussion on project direction.88

However, final decisions are made by the benev-
olent dictator and not by the community as a

Table 3. Open Source Project Governance Configurations:
Results from Cluster Analysis

Governance
dimensions

Cluster 1
Open

community
(n = 98)

Cluster 2
Authoritarian
community

(n = 58)

Cluster 3
Defined

community
(n = 28)

Ownership of
assets

Highly
restrictive

Highly
restrictive

Highly
restrictive

Chartering the
project

Community
goals

Project goals Community
goals

Community
management

Decentralized
management

Centralized
management

Decentralized
management

Software
development
processes

Undefined
process

Somewhat
defined
process

Managed
process

Conflict
resolution

Unmanaged
conflict

Unmanaged
conflict

Managed
conflict

Use of
information

Clear and
enforced

Unclear and
not enforced

Clear and
enforced

Use of tools Clear and
enforced

Unclear and
not enforced

Clear and
enforced

Figure 1: 65, from Dany Di Tullio & D. Sandy Staples (2013) The Gover-
nance and Management of Open Source Software Projects, Journal of
Management Information Systems, 30:3, 49-80, http://dx.doi.org/10.2753/
MIS0742-1222300303

12GOVERNANCE MODELS FROM THE OPEN SOURCE WORLD & BEYOND

whole. The strategy and direction of a project,
while influenced by contributors, is subject to
a final decision by the benevolent dictator (or
those the benevolent dictator appoints).89

Roles
There are multiple roles in a benevolent dicta-
torship. Most importantly, the benevolent dicta-
tor leads the technical direction of the project
and organizes the community.90 Usually, a be-
nevolent dictator is self-appointed because of
the way open-source organizations begin and
expand. If more than one or two people found
a project, one of the original developers will
sometimes declare him or herself a benevolent
dictator in order to establish a clear chain of
command.

Secondly, there are committers. Committers
not only contribute code to the project but also
screen the contributions of others – an extreme-
ly important task.91 In most cases, the benevo-
lent dictator “taps” a respected member of the
open source community to become a commit-
ter.92 Committers often have only informal con-
trol over a certain area of the project and hold

no more sway in the decision making process;
however, due to his or her respected position,
the benevolent dictator is more likely to listen to
a committer’s suggestions.93 Usually, committers
have direct access to the code repository.94

A third role is that of contributor. Contributors
are active members of the community who
make contributions to the project but usually
do not have direct access to the code.95 There is
no formal process to becoming a contributor; a
community member must merely contribute in a
beneficial way to the project.

Conflict Resolution
Little exists in the way of a formal conflict reso-
lution process in most benevolent dictatorships.
Because the dictator has the final say on all
decisions, disagreements can be handled infor-
mally within project teams.96 That being said,
the dictator may not always intervene when
conflict arises, choosing to remain on the side-
lines as the community sorts out the problem, or
until it asks for the dictator’s opinion.97

Key Elements of the Benevolent Dictatorship Model for Any Open Source
Initiative

Authority is centralized at the top
The benevolent dictator ultimately gets to call the shots in the project and retains control of the direction and scope.
He or she sets the general course, and the community follows this lead (though most benevolent dictatorships give
contributors room for creativity). The chain of command is clear to all involved.

The community perception of the dictator can impact the success of the project
No one wants to work with a difficult leader, especially if the work is voluntary. While the benevolent dictator often
garners a lot of inherent respect for his or her technical skills and vision, instances of poor leadership or disrespect-
ful behavior can alienate community members enough to abandon ship. Successful benevolent dictators must be
judicious about using their trump card and anticipate backlash from those who invest time and effort into a patch
only to see it rejected.

Individual assignments are ad hoc and functionality decisions are usually depen-
dent on the benevolent dictator
Whereas some of the governance models addressed below are more strategic about placing contributors, the be-
nevolent dictator model does not require any formal assignment of tasks. The benevolent dictator may assign cer-
tain committers to specific tasks, but all contributors are generally free to work on whatever they would like. Be-
nevolent dictatorships are very often good examples of the open bazaar at work in open source governance. Many
contributors will appreciate this freedom. But, the potential for friction between the contributor community and the
leadership increases if contributors devote time to an aspect of the project that is eventually rejected or dismissed
as non-essential. A benevolent dictator therefore needs to make her vision and priorities very clear to the community
at large so that work can progress smoothly.

13GOVERNANCE MODELS FROM THE OPEN SOURCE WORLD & BEYOND

Governance In Practice: Linux as
Benevolent Dictatorship
In 1991, Linus Torvalds made available a Unix-like
kernel on the Internet for free.98 He invited de-
velopers from anywhere to contribute code, and
within two months, Linux 1.0 was created.99 Since
then, thousands of developers have contributed
to the software and Linux has become one of the
most powerful operating systems in the world.100

Linux has no formal hierarchy that determines
which members should contribute to each proj-
ect or task.101 Any person can contribute to is-
sues about which he is passionate, although
another developer will improve her work if it is in-
adequate.102 Linus Torvalds’s authority is restrict-
ed to having the final word on what to do with
patches provided by community members.103

Despite the fact that Torvalds makes overall fi-
nal decisions, he does not wield totalitarian
power.104 Most communication about techni-
cal decisions occurs through the Linux mailing
list and Torvalds has to justify all his decisions
based on technical arguments.105 Accountability
is essential, and only by earning the communi-
ty’s respect can Torvalds’s leadership be main-
tained.106 Further, Torvalds does not personally
manage the whole kernel; instead, he has des-
ignated a few members, whom he calls “trust-
ed lieutenants,” to lead certain subsections of
the code.107 If Torvalds disagrees with a decision
made by one of his lieutenants, however, he may
overrule the lieutenant.108

Torvalds’s leadership style is not always popu-
lar in the Linux community.109 Because Torvalds
can reject a patch in which many developers
invested a large amount of time and effort, his
decisions sometimes cause tension.110 One user
wrote a long email about Torvalds’s faults, be-
ginning with the following statement:

Linus doesn’t scale, and his current way
of coping is to silently drop the vast
majority of patches submitted to him
onto the floor. Most of the time there
is no judgement [sic] involved when
this code gets dropped. Patches that
fix compile errors get dropped. Code
from subsystem maintainers that Linus
himself designated gets dropped. A
build of the tree now spits out numer-

ous easily fixable warnings, when at
one time it was warning-free. Finished
code regularly goes unintegrated for
months at a time, being repeatedly
resynced and re-diffed against new
trees until the code’s maintainer gets
sick of it. This is extremely frustrating
to developers, users, and vendors, and
is burning out the maintainers. It is a
huge source of unnecessary work. The
situation needs to be resolved. Fast.111

Despite the fact that Torvalds is not always a
favorite in the community, most contributors re-
spect his technical expertise enough to contin-
ue developing for the project. Linux thus remains
quite popular and successful.

Model B: Meritocracy

Introduction
A meritocracy (also called an enlightened dic-
tatorship) governance structure is loosely or-
ganized and rewards participants who make
valuable additions to the project.112 All members
generally are on equal footing. But, an individ-
ual’s standing can be enhanced by “merit,” or
by contributing meaningfully over a period of
time.113 Most decisions about the project are
made by the community as a whole, which de-
velops its own collective ethos on what contribu-
tions and behaviors are acceptable and usually
are more bazaar-like in operation.114 Meritocra-
cies are appropriate for open source projects
whose founders believe that the community as a
whole is best equipped to make decisions about
the direction of a project. In these cases, a for-
mal decision-making and contribution structure
is essential.

Roles
In meritocracies, there are contributors, com-
mitters, and a small project management body
(usually a committee).115 Contributors are devel-
opers who contribute to a project in any mean-
ingful way. Usually, this means contributions of
code, but can also include updating documen-
tation and supporting new users.116

Committers are community members who have
shown their dedication to the project through

14GOVERNANCE MODELS FROM THE OPEN SOURCE WORLD & BEYOND

ongoing engagement with the community. As
a result, they can make direct changes to the
code and do not have to contribute improve-
ments through patches.117 Committers also look
at contributors’ code and judge what should
and should not be included. Committers them-
selves do not technically have more authority
than contributors but undergo a different review
processes. The work of committers is judged by
the community as a whole, when the community
decides what should be allowed in the official
release.118

The largest difference between committers and
contributors is apparent when the code is re-
viewed. When a contributor submits code, it is
through a patch or pull request, which waits for
committer approval before entering the code
base.119 When a committer submits code, the
committer modifies the code base directly and
notifies relevant developers of the change. This
gives those developers a chance to review code
and suggest modifications, known as a “com-
mit-then-review” process.120

A meritocracy is generally run by a project
management committee. Members of this com-
mittee are in charge of making sure projects
run smoothly and efficiently. They review code
contributions, participate in strategic planning,

approve changes to the governance model and
manage legal issues (such as code licensing pol-
icies) within the project.121 New members of the
committee are invited to join by existing mem-
bers, and the original make-up is chosen by the
project creators.122 Though committee members
have no significant authority over other commu-
nity members, the project management commit-
tee does select committers. The committee also
makes decisions when the community cannot
reach an agreement.123

Conflict Resolution
In meritocracies, decision making usually in-
volves a proposal, a discussion, a vote (if no
agreement is reached during the discussion),
and – finally – a decision. Any community
member can propose a change by submitting
a patch or proposal through project commu-
nication channels.124 The proposed change is
reviewed and discussed by the community. In
general, if no one explicitly opposes a proposed
change, it is assumed to be approved –a pro-
cess called “lazy consensus.”125 The “lazy con-
sensus” reduces time wasted by forcing people
to explicitly agree with new contributions, and
instead only requires feedback from opponents.
If there is opposition to a proposed change, the
change is discussed and voted upon, and a de-
cision is made.126

Key Elements of the Meritocracy Model for Any Open Source Initiative

Authority is decentralized
Though the original project founders may serve on the project management committee, which leads discussion or
resolves conflict on big-picture community issues, the general direction of the project is ultimately set by the com-
munity at large.

Committers play a unique role in shaping the project
Because committers get to approve contributors’ patches and their own contributions are reviewed after the fact,
they may end up having a larger say in how the project progresses. Sometimes, this power means that meritocratic
organizations end up overlooking useful contributions because of committer biases. For example, researchers exam-
ining GitHub pull requests found that women’s pull requests were incorporated into projects nearly ten percentage
points less often than men’s, even though women who used non-gendered screennames had the best commit rates
for contributions.127 Good committers, therefore, need to be the most cognizant of community values and able to
catch internal bias.

Community norms are essential
Because a meritocratic project will follow the community’s desires, initial project members must work diligently to
create consensus on what is acceptable in the community, as well as what contributions or traits are valued. Defin-
ing “merit” is particularly imperative since both patch commits and becoming a committer depend on demonstra-
tions of bona fide “merit.” Successful meritocracies often include non-technical skills when considering a contribu-
tor’s “merit.” As evidenced in the case study below, Apache has worked to clearly define merit for their community,
explicitly including non-coding contributions in its parameters.

15GOVERNANCE MODELS FROM THE OPEN SOURCE WORLD & BEYOND

Governance in Practice: Apache as
Meritocracy
Apache is an open source organization run
through a meritocracy.128 In 1999, a group of
people that called themselves the “Apache
Group” and had organized themselves togeth-
er several years earlier, came together again to
continue to support and maintain the HyperText
Transfer Protocol Daemon (or “HTTPD”) web
server written by the National Center for Super-
computing Applications.129 The original creators
of the HTTPD web server had abandoned the
project, leaving the users with no support.130

These users came together and started de-
veloping patches and information on how to
fix problems.131 One user even created a mail-
ing list to encourage collaboration within the
group.132 As the Internet grew larger, the group
expanded, and Apache also grew.133 With its
growth, Apache needed a formalized struc-
ture for contributions and decision making.7
Apache chose a meritocracy largely because of
its origin as a large group with a common in-
terest in supporting HTTPD. There was no one
original “founder” who might want to establish
a benevolent dictatorship, or other similar tech-
nical structure. As the group grew larger, more
and more developers contributed to the project,
and more people started using it and wanting to
contribute.

At first, users would only contribute small chang-
es, such as by making minor patches or reply-
ing to emails on the user list. When the group
decided a user had established enough “merit”
to be trusted with more responsibility, it grant-
ed the user direct access to the code repository.
As the group grew even bigger, it formalized its
governance into what it is today. If a contrib-
utor consistently participates in a meaningful
way, he or she can become a committer. Cer-
tain committers later become “members,” the
Apache designation for participants in the main
project management committee, which gives
them a role in the foundation and a voice in cer-
tain organization-wide votes.134

Apache has scaled to become a large and suc-
cessful organization because newcomers are
considered volunteers who want to help (rather
than competing for the limited power and re-
sources in the organization). At the same time,

Apache – like other meritocratic organizations
– sometimes struggles with questions about
process and conflict resolution because of the
inherent power of committers and its minimal
conflict resolution strategies.135 Apache makes
efforts to combat this by publicly stating that
they “value the community more than the code,”
and providing community building resources,
such as a mentorship program for new contrib-
utors.136 Apache also explicitly states that one
can become a committer through dedication to
community building and product management,
not only code contributions.137

Model C: Delegated Governance

Introduction
When an open-source project’s founders want
to allow the community to take ownership and
leadership in the project while establishing a
more regulated set of processes for its progres-
sion, they may turn to a delegated governance
structure. In a delegated governance, a body of
leaders, sometimes known as the “Community
Council,” is chosen or elected to oversee the
project, resolve conflicts within the community,
modify the community norms and processes,
and determine the project’s core values.138 De-
pending on the size of the project, a delegated
governance system may have several sub-coun-
cils that manage specific aspects of the proj-
ect or community and report back to the main
Community Council. Like a meritocracy, the
delegated governance model involves more
contributors in governance than a benevolent
dictatorship. But, it also has a clear hierarchical
structure and a designated set of leaders.

Roles
Like meritocracies and benevolent dictatorships,
delegated governance involves regular commu-
nity contributors and committers who help man-
age the approval process for patches. The key
difference between meritocracy and delegated
governance is the addition of councils, which
do have authority over the direction of work and
the management of the community. Council
members may be chosen initially by the found-
er of the project but afterward elected through
a community-wide vote.139

16GOVERNANCE MODELS FROM THE OPEN SOURCE WORLD & BEYOND

The size and responsibilities of the council will
depend on the organization. Councils are gen-
erally responsible for overseeing the issues they
are tasked to cover, and discussing them and
voting when questions arise. Normally, these
positions are held for terms of a few years, and
some organizations enforce term limits to ensure
community members have ample opportunity
to circulate into leadership roles.140 If an organi-
zation is large enough, different subcouncils will
have authority over areas of the project, from
technical direction to community culture to dis-
tribution, each run by council members who
ideally have relevant expertise.141 While contrib-
utors and committers may navigate small-scale
decisions about features or content on their
own, larger discussion about the project’s over-
all direction take place in councils.

Conflict Resolution
In the delegated governance model, minor dis-
agreements are managed through a “lazy con-
sensus” model, similar to a meritocracy. When
this process fails to resolve the issue, the group
in question may choose to escalate the issue by

bringing it to the relevant council for discussion
and a vote.142 In an organization with different
tiers of councils, a sub-council may vote to es-
calate the issue up the decision-making lad-
der based on its applicability to the project at
large or the sub-council’s inability to reach an
agreement. Whereas a pure meritocracy makes
these decisions directly or through group delib-
eration, a delegated governance model uses a
representatives to resolve issues.

Within the organization’s councils, and partic-
ularly the top tier, conflicts may be resolved
in different ways depending on the size and
make-up of the group. If the council has an even
number of members, certain members may re-
ceive tie-breaking power.143 If the project found-
er holds a place on the Community Council, he
or she may have that role. Additionally, some
more commercially-focused projects reserve a
council seat or seats for employees of for-profit
companies that contribute significantly to the
open-source project’s development, which may
impact the democratic nature of project gover-
nance.144

Key Elements of the Delegated Governance Model for Any Open Source
Initiative

Authority is centralized at the top, but also distributed through a chain of command
The delegated governance model has a central seat of power in the Community Council, but its subcouncils get to
exercise authority over particular project areas, escalating questions up the chain of command when necessary.

Many community members can hold some form of leadership role

Open source organizations that use delegated governance have more opportunities than a benevolent dictatorship
or a meritocracy to recognize community members by giving them leadership positions. This vote of confidence
can keep a contributor more invested in the project and allow for greater specialization within the project. On the
other hand, more leaders means more deliberation, and conflicts may take longer to resolve than in other forms of
governance.

Control over project direction will vary depending on how councils are selected

If a project’s founders sit on or appoint the Community Council, it is likely they will retain a certain level of control
over the project. If the councils are elected by community members, community representatives will have the ability
to exert influence over the project’s evolution. In some scenarios, this will mean a nimbler organization that adapts
quickly to change, but in others, complete changeover could cause organizational whiplash as priorities change
rapidly from one election to the next.

17GOVERNANCE MODELS FROM THE OPEN SOURCE WORLD & BEYOND

Governance In Practice: Is Ubuntu an
Example of Delegated Governance?

Though delegated governance was first con-
ceived and described by Jono Bacon, an open
source thought leader and community manager
of Ubuntu, there are several ways in which Ubun-
tu does not embody the definition of delegated
governance as Bacon describes it.145 Founded
by software entrepreneur Mark Shuttleworth
in 2004, Ubuntu was established early on with
the goal of creating an open source Linux distri-
bution that was commercially useful while also
allowing for open and transparent governance
by the open source developing community.146
The solution Shuttleworth created is to establish
governing councils whose membership is open
to all of the Ubuntu contributing community.

Ubuntu has a Community Council that handles
all aspects of how the Ubuntu community func-
tions, and a Technical Board that is responsible
for all technical policy and process decisions.147
The figure below highlights the organization’s
structure:

The Ubuntu council system establishes a clear
path for managing the software’s development
and maintenance and escalating issues should
they arise. What this diagram also reveals, how-
ever, is Shuttleworth’s role lodged within the del-
egated governance model. Shuttleworth sits on
the Community Council and Technical Board
and has tie-breaking power in each, though he
cannot override the decisions of either of his own
volition. Additionally, Shuttleworth’s for-profit
company, Canonical, which relies heavily on
Ubuntu’s product for its own work, has employ-
ees who work in the Ubuntu community as part
of their role.148 Finally, Shuttleworth nominates
Community Council and Technical Board posi-
tions (though any community member can indi-
cate their desire to be nominated), which then
go to a vote in the relevant community.149

Shuttleworth made these choices intentionally
when designing Ubuntu to ensure that the proj-
ect harnesses the power of its community while
keeping in line with the needs of Canonical, and
to that end the structure has been effective for
Ubuntu’s continued development and growth.
Given the amount of influence Shuttleworth
and Canonical wield over the project, some
may feel this makes the governance structure
fall less squarely in the delegated governance
model. Open-source projects could adapt this
model to be more democratic by eliminating the
tie-breaking power of a particular board mem-
ber and creating a more open process for filling
out council seats, such as an election.

Model D: Dynamic Governance

Introduction
The dynamic governance model, also known as
sociocracy, is one designed to distribute author-
ity to every sector of an organization.150 Both
businesses and nonprofits have used this model
to empower employees and remove top-down
authority. Because the open source communi-
ty overall feels strongly about the importance
of community input and involvement, this very
distributed model may appeal to certain open
source initiatives.

Roles
According to experts from the Sociocratic Cen-
ter of the Netherlands, the defining characteris-
tic of dynamic governance is the “double-linked
circle.” A dynamically governed organization
is divided into different circles of participants,
each with specific responsibilities.151 In most dy-
namic governance models, all members of an
organization sit on one of its circles, which deal
with a specific area of the organization, much
like subcouncils in a meritocracy.152 Circles are
organized hierarchically, culminating with the
“general circle” (where executive leaders sit),
but each circle membership also includes two
representatives from the circle below (if there is
one) and the circle above.153

This “double link” connects the leader of the cir-
cle (a team manager, for example) to the group
higher up, as well as an elected member who
does not hold a specific leadership position.154
Within any particular circle, members deliber-

Community Council

Mark Shuttleworth

Technical Board

IRC Council Forums
Council

LoCo
Council

MOTU
Council

Figure 2: From Jono Bacon’s “The Art of Community,” chapter 8 “Gover-
nance - Ubuntu Governance Example”, O’REILLY MEDIA (2009).

18GOVERNANCE MODELS FROM THE OPEN SOURCE WORLD & BEYOND

ate and reach consensus on any decisions re-
garding working process and policies.155 While
the circle’s participants handle long-term di-
rection or strategy questions through regular
meetings and discussions, the manager or team
leader organizes day-to-day activities, assign-
ing particular circle members to tasks in accor-
dance with the circle and organization’s larger
goals.156 The deliberative process within a par-
ticipant circle ideally follows this model: group
discussion on a topic to identify a solution and
people to implement it; enactment of the solu-
tion and monitoring the results; and measuring
the impact and soliciting group feedback to de-
termine next steps.157

Dynamic governance is well suited for an open
source organization committed to keeping the
average contributor as engaged in the workings
of the project as possible because it tradition-
ally necessitates a certain level of commitment
from all levels, including volunteers. In the same
way, every contributor in an open-source proj-
ect would ideally be part of a circle, involving
that contributor in the leadership structure.

Given that open source contributors may come
from all over the world and may not be able
to meet live consistently for a circle, project

founders could modify this aspect of the mod-
el to find the level of project involvement best
for their community. Projects can organize cir-
cles around specific technical deliverables or
community management needs that are dou-
ble-linked to the general circle, where project
founders may sit. Some dynamic governance
models include external experts or stakeholders
in the general circle, which some open-source
projects might find is a useful way to bring a
diversity of skills into the organization.158

Conflict Resolution
Consensus is the means of resolving all disagree-
ments in the dynamic governance model. When
a circle member identifies a problem or ques-
tion, the group convenes to discuss it, allowing
all circle members an opportunity to voice their
opinions and ask questions.159 In the world of dy-
namic governance, a circle arrives at consensus
when none of its members still hold a reason-
able objection to the proposed solution.160 The
requirements of consensus do not mean that a
circle cannot move forward until one side sways
the other to abandon their argument; a circle
may choose an action that allows the group to
get more information about the problem, seek
outside guidance, or ask a higher-up circle to
weigh in.

Key Elements of the Dynamic Governance Model for Any Open Source
Initiative

Decision-making power is highly dispersed throughout the community
In a dynamic governance model, every contributor will have a voice in how the project functions, even if some ideas
come from the top down, which can create a strong sense of belonging and empowerment for all. This model does,
however, require contributors to commit to being involved consistently, while other governance structures allow the
average contributor to flit in and out, handling discrete tasks but staying unengaged with the organization itself.
Certain contributors will find this level of commitment more appealing than others.

Need for consistency may limit community growth potential
Because every contributor would be part of a project circle in an open source project with a dynamic governance
structure, it may be challenging to add new contributors as soon as they show up, or to add a lot very quickly. For
projects that expect to expand rapidly, dynamic governance may not be a sustainable model, as it lends itself more
to a cathedral than a bazaar. Small- to mid-sized projects that want to collaborate closely with all contributors will
find dynamic governance a better fit.

Understanding and acceptance of deliberative processes and governance structure
at all levels is essential
One risk of a decentralized model is that, lacking a strong central authority, smaller decisions get drawn out and
institutional hang-ups will derail work toward the organization’s goals. To avoid this pitfall, open source leaders must
do their best to educate the community about how the dynamic governance model should work within the organiza-
tion and to establish very clear procedures for how the circle model should run. It may also be helpful to identify the
ideal size of each circle and develop a process for funneling new contributors to the areas of greatest need.

19GOVERNANCE MODELS FROM THE OPEN SOURCE WORLD & BEYOND

All About Boards: Examples from the
Nonprofit World

Introduction
A traditional, formal nonprofit is legally obligat-
ed to have a board of directors charged with en-
suring “prudent use of all assets,” adherence to
applicable laws and ethical mandates, and col-
lective decision-making “in the best interest of
the nonprofit corporation.”161 But these boards
often take on a role in organizational gover-
nance beyond their legal obligations, and many
unincorporated or all-volunteer organizations
rely on the board structure for leadership and
volunteer management. Open source organiza-
tions could use lessons from the nonprofit world
to leverage the board of directors model, even if
they are not a nonprofit, as a stand-alone gov-
ernance model, as a feature of any of the tradi-
tional open-source governance models we have
already discussed, or as a separate “big-pic-
ture” evaluative body. Additionally, recommen-
dations about board selection and membership
are also applicable to an open-source project
looking to fill leadership roles.

The essential purpose of a board in a nonprof-
it or mission-oriented organization is to advise
and steer the direction and long-term vision of
group. As an entity, the board can accomplish
this in a number of ways. In volunteer-run orga-
nizations, the board will act as the staff, creat-
ing and maintaining organizational documents,
galvanizing and assigning volunteers to specif-
ic tasks, procuring funding, and other tasks as
needed.162 In a publication on all-volunteer or-
ganization boards, the National Center for Non-
profit Boards and the Support Center for Non-
profit Management also highlight the board’s
role in recruiting new volunteer leaders and
collectively working to evolve the organization,
bringing in outside help if necessary.163 The most
effective all-volunteer boards members also reg-
ularly confer with the community they repre-
sent, making sure that the board as a whole un-
derstands community needs and concerns, and
also that the community feels heard by those at
the helm.164 To tackle specific aspects of their or-
ganization’s work, board members may oversee
committees tasked with different aspects of the
organization’s work, similar to the sub-council
system in a delegated governance. A board of

directors typically includes roles such as a pres-
ident and vice president who oversee the entire
organization, a secretary who records the de-
liberations of the group, a treasurer who tracks
the organization’s finances, and other posts
and committees specific to the organization’s
needs.165

Choosing a Board
Nonprofits use a variety of methods to choose
board composition. Many nonprofits organize
a nominating committee made up of existing
board members to identify community mem-
bers or others who match the board’s needs.
These committees may also evaluate the current
board’s efficacy and make suggestions to im-
prove performance.166 In this model, board mem-
bers do not always come from within the orga-
nization. If the nominating committee identifies
a particular institutional need that the current
community cannot fill, they will recruit outsiders
who have the requisite skills and find the organi-
zation’s mission compelling.

Other organizations opt for a more democrat-
ic model, electing board leadership through
a member vote.167 Some experts in nonprofit
management worry that an elected board can
become a soapbox for individuals rather than
a platform for the organization – an organiza-
tion’s paid leadership may struggle to connect
with board members or motivate them to serve
the organization rather than themselves.168 But,
for all-volunteer organizations (like many open
source projects), an election may help keep
members engaged and give recognition to those
who are particularly committed.

Notably, organizations need not wed themselves
to a particular selection model – some seats on
a board might come from a nominating process,
while others could be reserved for elected com-
munity representatives. One suggestion from
McKinsey & Company nonprofit consultants is
to establish a two-tiered board.169 In this format,
one tier meets regularly and consists of mem-
bers who are directly involved with the project,
and the other meets annually or semi-annually
in an advisory capacity, with members who are
experienced but not part of the day-to-day op-
erations of the project. 170

20GOVERNANCE MODELS FROM THE OPEN SOURCE WORLD & BEYOND

The suggestions above help illustrate how a
board structure can be a helpful format for or
supplement to the technical governance of a
open-source organization, nonprofit or other-
wise. In a small organization, a board can dep-
utize community members and create a clear
division of responsibilities, which can expand
into councils or other governing sub-bodies over
time as the project expands.

A board can also serve as the place where oth-
er important but non-development-related work
gets done. The recent experience of the io.js
community demonstrates how such a format
might work. Io.js originated from the existing
open-source project node.js (begun by Joyent)
because many members felt its organization-
al and copyright ownership structures posed
serious problems.171 While the new technical
governance model spurred higher contributor
engagement and a better product, project lead-
ers realized they were neglecting non-technical
concerns that might once again cause problems
for the project itself if ignored, such as financial
planning, legal advising and public relations.172
As a result, io.js leaders worked with entities at
Joyent and the Linux Foundation to create their
own foundation and board to supplement their
delegated governance technical structure.173
This format enabled the io.js community to man-
age technical and organizational well-being
needs separately and concurrently. Though io.js
chose to go the nonprofit route, other corporate
forms could also use a similar vision of a distinct
but connected process board and development
team to advance their organization.

Federated Nonprofits (“Model E”)
One governance model that open-source orga-
nizations may want to consider from the non-
profit world is the federated nonprofit (separate-
ly described as “Model E” in the accompanying
illustrations). The federated nonprofit organiza-
tional structure is employed by groups like Girl
Scouts of America, the American Red Cross,
and other national nonprofits with semi-auton-
omous regional chapters.174 These chapters run
programs, fundraise, and self-govern for their
particular region, often relying heavily on the
contributions of volunteers but also coordinate
with and take direction from a national govern-
ing body.175

Generally, regional chapters take direction
from the national organization on policies and
the services they provide to the community, but
make day-to-day decisions on their own and
occasionally develop programs specific to their
needs. Regional chapters or affiliates have their
own leadership teams to run daily operations,
supported by the organization’s members. To
connect the regional and national, many fed-
erated nonprofits periodically host national
gatherings for members.176 National boards of
directors may be appointed without input from
lower-levels, but in some federated nonprofits,
members elect the board.177 In the most partici-
patory federated nonprofits, members will also
vote on certain policy decisions or amendments
to the organization’s bylaws.178

Most small- to medium-sized open-source proj-
ects would find the federated model too siloed
for their organization’s needs. To some, semi-in-
dependent project chapters might sound like a
great way to induce software to fork into dis-
crete projects, something that early-stage orga-
nizations generally want to avoid. However, for
a larger, better-established open-source orga-
nization that works on multiple projects, or for
those that create different software versions for
specific applications, a federated model would
allow these teams to operate independently
in their spheres while remaining connected to
the top-level leadership through the election of
board members.

An open source organization could also choose
to give contributors voting rights on certain as-
pects of project direction at the global level.
Whereas in the dynamic governance model, sub-
councils are responsible for different aspects of
how the project functions, including communi-
ty and process, a federated model would have
each project team be more autonomously re-
sponsible for its own community, process, and
technical teams. Project chapters could employ
a meritocratic, delegated governance, or other
governance model within themselves while re-
maining linked to the umbrella organization.

Norms and Attitudes for a Successful
Open Source Software Organization
Regardless of the governance model an orga-
nization adopts, community norms and leader-
ship qualities can play a major part in shaping

21GOVERNANCE MODELS FROM THE OPEN SOURCE WORLD & BEYOND

how the organization operates. Establishing
models for leadership and community behavior,
either explicitly or through leading by example,
can lay the groundwork for strong, productive,
and amicable relationships both between lead-
ership members and within the organization as
a whole.

One major challenge for all organizations – but
particularly those focused on specific skillsets
(like institutions engaged in open-source soft-
ware development) – is recognizing the val-
ue of outside perspectives and non-technical
skills. Because the heart of every open source
project is the development and maintenance of
the project’s code, it’s not always apparent how
non-technical contributions should be recog-
nized, or how they might improve development
processes or community relations.

In the same vein, those who are the best develop-
ers and code contributors may not always pos-
sess the soft skills required for open-source lead-
ership roles. Many of the most successful open
source companies are ones that recognized this
possibility early on and constructed their com-
munity intentionally to welcome non-technical
contributions and identify community members
with leadership potential, whether or not they
were the strongest developers.

Apache, as the case study illustrates, is one ex-
ample where an organization learned to iden-
tify non-technical needs and how to fill them.
Sometimes Apache taps particular contributors
who show a capacity for long-term planning
and leadership to step into non-technical roles,
while at other times members are recruited and
selected solely for having non-technical skills.
Consciously selecting for specific non-technical
skills and qualities has allowed Apache to create
a diversity of backgrounds within the communi-
ty, which in turn made the organization nimbler
and more capable.

Ubuntu’s community manager Jono Bacon ex-
amined the qualities that make Ubuntu’s Com-
munity Council work in his book The Art of Com-
munity. He identifies several traits he thinks all
open-source leadership teams should possess.179
According to Bacon, a good community leader
should be, in some combination:

• a good listener, who can make community
members feel heard and can use this skill to
get a read on the community and resolve is-
sues;

• detail-oriented;
• able to recognize his or her biases and strive

to set them aside in order to understand all
sides;

• “a fair fighter” who will champion ideas they
feel are best for the community while also
being willing to concede or compromise for
the greater good; and

• reliable, to show up when asked and partici-
pate wholeheartedly.180

Nonprofits and mission-driven organizations
also encounter many of the same issues that
open-source organizations face, regardless
of mission, including organizing a leadership
structure to govern their peers and/or a commu-
nity they wish to help. Many of these groups are
governed by a Chief Executive Officer and vol-
unteer board, but the model of cultivating lead-
ership that they provide could translate well to
other governance models.

One suggestion from the nonprofit consulting
world is creating opportunities for training in
leadership skills for current organizational lead-
ership, or those who wish to join it.181 Depending
on the leadership model, term limits can also
help to keep the governing body dynamic and
motivated. So can establishing “formal targets”
for the leadership’s make-up, such as mandat-
ing equal gender distribution or a minimum per-
centage of members in a particular age range
or from diverse backgrounds.182

Finally, a clear understanding of the project’s
mission and goals is equally as important in
cultivating group leadership and a governance
structure as it is in determining a formal cor-
porate governance structure. Having a specif-
ic vision helps define expectations of those in
leadership roles, both in terms of what a lead-
er needs to accomplish and what qualities she
should develop. Leaders who understand the
mission of an organization are able “to connect
[their] actions to the ultimate purpose of the or-
ganization,” thereby making them more invest-
ed and dedicated in furthering the mission and,
in turn, motivating the community.183

22

CONCLUSION
When open source creators launch new proj-
ects, their primary concerns may be technical.
But expanding their focus to the organizational
can have enormous benefits. Projects that make
thoughtful decisions around corporate forma-
tion may streamline dealings with the IRS and
also create stable entities that will help them
be sustainable and dedicated to their ultimate
missions. Projects that spend time considering
questions about corporate formation set them-
selves up to: create a welcoming project com-
munity with engaged and invested contributors;
and then govern that community effectively.

The formation and governance options in this
report may not fit every project’s needs and
goals. Open source initiatives have a wide array
of interests; while they rely on similar tools, they
create many different products and rely on dif-
ferent processes in their development activities.
The authors encourage open source project cre-
ators and contributors to take what resonates
from this guide – whether a whole model or a
few practices – and use those lessons to shape
their organizations as they see fit.

Though it is sometimes overlooked, the history
of the open source movement shows us that the
projects that defined their corporate structure
and governance practices early and concretely
set themselves up for success. While some ele-
ments of the landscape have changed – most
notably the IRS’s attitude toward open source
projects – the benefits of intentionality remain.
By setting the tone early on through decisions
on formation and governance, project founders
can harness the unique power of open source
communities to create sustainable open source
projects from which we can all benefit.

23

Endnotes
1 26 U.S.C. 501(c)(3) (2012).
2 See Jim Nelson, The New 501(c)(3) and the

Future of Free Software in the United States,
Yorba Blog Archives (Jun. 30, 2014), http://
blogs.gnome.org/jnelson/2014/06/30/the-new-
501c3-and-the-future-of-free-software-in-the-
united-states/.

3 See, e.g., The Mozilla Manifesto, Mozilla Foun-
dation, https://www.mozilla.org/en-US/about/
manifesto/ (last visited Dec. 4, 2014) (Mozilla’s
list of principles includes the following: “Free
and open source software promotes the devel-
opment of the Internet as a public resource.);
The Linux Kernal Organization, The Linux Kernal
Archives, www.kernel.org/nonprofit.html (last
visiting Dec. 4, 2014) (“The Linux Kernel Orga-
nization [was] established . . . to distribute the
Linux kernel and other Open Source software
to the public without charge.”); Foundation
Project, The Apache Software Foundation,
www.apache.org/foundation (last visited Dec.
4, 2014) (“Apache™ projects deliver enter-
prise-grade, freely available software prod-
ucts.”).

4 See The Economics of Open Source Donations,
Packt Publishing, https://www.packtpub.com/
books/content/economics-open source-dona-
tions (last visited Dec. 4, 2014) (describing typ-
ical organizational costs for free open source
software organizations that are covered by
donations).

5 See Nelson, supra note 2.
6 See The Apache Software Foundation, Form

1023: Application for Recognition of Exemption
Under Section 501(c)(3) of the Internal Revenue
Code (2000), available at http://www.apache.
org/foundation/records/ASF-1023.pdf; I.R.S.
Final Determination Ltr. (Feb. 21, 2001), available
at http://www.apache.org/foundation/records/
ASF-501c3.pdf.

7 See Mozilla Foundation, Form 1023: Applica-
tion for Recognition of Exemption Under Sec-
tion 501(c)(3) of the Internal Revenue Code
(2000), available at http://static.mozilla.com/
foundation/documents/mf-irs-501c3-applica-
tion-form-1023.pdf; I.R.S. Final Determination Ltr.
(Jun. 17, 2004), available at http://static.mozilla.
com/foundation/documents/mf-irs-determina-
tion-letter.pdf.

8 Richard Fontana et al, Software Freedom L.
Ctr, A Legal Issuer Primer for Open Source
and Free Software Projects 24 (2008).

9 Robert McMillan, Open Source Voting Ma-
chine Reborn After 6-Year War With IRS, Wired
(Aug. 6, 2013, 6:30 AM) http://www.wired.
com/2013/08/osdv/all/.

10 Id.
11 Id.
12 Id.
13 Id.
14 See Internal Revenue Service, Be on the Look

Out List (Aug. 2010); Be on the Look Out List
(Nov. 2010); Be on the Look Out List (Feb. 2011);
Be on the Look Out List (Feb. 2012); Be on the
Look Out List (Jul. 2012) available at http://
democrats.waysandmeans.house.gov/press-re-
lease/new-irs-information-shows-“progres-
sives”-included-bolo-screening-list.

15 Internal Revenue Service, Be on the Look Out
List (Feb. 2012), supra note 14.

16 Kelly Phillips Erb, IRS Gets Big Win In Court As
Judge Dismisses Tea Party Targeting Cases,
Forbes (Oct. 23, 2014, 5:47 PM), http://www.
forbes.com/sites/kellyphillipserb/2014/10/23/
irs-gets-big-win-in-court-as-judge-dismisses-tea-
party-targeting-cases/.

17 McMillan, supra note 9.
18 See Karen Copenhaver et al., Black Duck

Software, Open Source Projects and Founda-
tions: A User’s Guide 15–16 (Aug. 2014), available
at https://www.blackducksoftware.com/files/
webmedia/_webinars/08-28-14_OSSFounda-
tions.pdf.

19 26 U.S.C. 501 (2012).
20 Internal Revenue Service, supra note 14, at

48.
21 26 U.S.C. 501(c)(4) (2012).
22 Internal Revenue Service, supra note 14, at

48.
23 26 U.S.C. 501(c)(6) (2012).
24 Internal Revenue Service, supra note 14, at

49.
25 See Structure and Voting, Dojo Foundation,

http://dojofoundation.org/about/structure (last
visited Dec. 5, 2014); About the Eclipse Founda-
tion, Eclipse Foundation, http://www.eclipse.
org/org/ (last visited Dec. 5, 2014).

26 Mark McLoughlin, May 11 OpenStack Foun-
dation Board Meeting, Just Another GNOME
Blogs Weblog (May 17, 2014, 2:52 PM), http://
blogs.gnome.org/markmc/2014/05/17/may-11-
openstack-foundation-board-meeting/.

27 Id.
28 Internal Revenue Service, Notice 844: Feder-

al Tax Obligations of Non-Profit Corporations

24

(Feb. 28, 2013), available at http://www.irs.gov/
pub/irs-pdf/n844.pdf.

29 Id.
30 Id.
31 Nonprofit Corporation Information, Secretary

of the Commonwealth of Massachusetts,
http://www.sec.state.ma.us/cor/corpweb/
cornp/npinf.htm.

32 Id.
33 Comment from Andy Updegrove, legal counsel

at the Linux Foundation, during Mishi Choud-
hary et al., Organizing FOSS Entities, at Soft-
ware Freedom L. Ctr. 10th Anniversary Conf.
(Oct. 31, 2014), available at http://moglen.law.
columbia.edu/sflc_at_10/2014-10-31-organiz-
ing-foss-entities.m4v.

34 See Joe Wallin, 12 Reasons For A Startup Not To
Be An LLC, Startup Law Blog (Sept. 30, 2011),
http://www.startuplawblog.com/2011/09/30/12-
reasons-for-a-startup-not-to-be-an-llc/.

35 1 Jerold Friedland, Tax Planning for Part-
ners, Partnerships, and LLCs § 1.02 (Matthew
Bender ed., 2000).

36 Id.
37 Id.
38 Joe Wallin, C Corps v. S Corps, Startup Law

Blog (Jun. 9, 2013), http://www.startuplawblog.
com/2013/06/09/c-corps-v-s-corps/.

39 Id.
40 1 Friedland, Tax Planning for Partners,

Partnerships, and LLCs § 1.02, supra note 35.
41 Id.
42 Jeremy Halpern, Nutter McClennan &

Fish LLP, Choosing an Entity for Startups,
available at http://www.nutter.com/files/Up-
loads/Documents/Halpern-Choosing-an-Enti-
ty-for-Startups.pdf.

43 Wallin, supra note 38.
44 Id.
45 Id.
46 Id.
47 1 Friedland, Tax Planning for Partners,

Partnerships, and LLCs § 1.02, supra note 35.
48 Id.
49 S Corporations, Internal Revenue Service,

http://www.irs.gov/Businesses/Small-Business-
es-&-Self-Employed/S-Corporations.

50 Id.
51 Id.
52 1 Friedland, Tax Planning for Partners,

Partnerships, and LLCs § 1.02, supra note 35.
53 Id.
54 Id.

55 Wallin, supra note 34.
56 1 Friedland, Tax Planning for Partners,

Partnerships, and LLCs § 1.02, supra note 35.
57 William H. Clark et al., The Need and Ratio-

nale for the Benefit Corporation: Why It
is the Legal Form that Best Addresses the
Needs of Social Entrepreneurs, Investors,
and, Ultimately, the Public 7 (Nov. 16, 2011).

58 Id. at 8.
59 Id. at 10.
60 Id.
61 Id. at 15–16.
62 Id. at 16.
63 Id. at 17.
64 Id. at 28.
65 See Governance Models, OSS Watch (2014),

http://oss-watch.ac.uk/resources/governanc-
emodels (last visited Dec. 5, 2014) (discussing
barriers to governance models

66 Id.
67 Id.
68 In the course of our discussion, we will some-

times refer to the size of an open-source project
to explain how a governance model might work
when involving a certain number of contrib-
utors. For the purposes of this guide, we use
“small” to refer to a project with less than 20
contributors, “medium” to refer to those with
between 20 and 100 contributors, and large to
refer to those with more than 100.

69 Eric Steven Raymond, The Cathedral and the
Bazaar: Musings on Linux and Open Source by
an Accidental Visionary, O’Reilly Media, Inc.
(1999) https://books.google.com/books/about/
The_Cathedral_the_Bazaar.html?id=F6qgFtL-
wpJgC&printsec=frontcover&source=kp_read_
button&hl=en#v=onepage&q&f=false.

70 Id., OSS WATCH
71 Id.
72 Id.
73 Id.
74 Id.. Raymond.
75 Id.
76 Id.
77 Id., OSS WATCH.
78 Dany Di Tullio & D. Sandy Staples (2013) The

Governance and Control of
Open Source Software Projects, Journal of Man-

agement Information Systems, 30:3, 49-80,
http://dx.doi.org/10.2753/MIS0742-1222300303

79 Id., 65.
80 Id.
81 Id.

http://oss-watch.ac.uk/resources/governancemodels
http://oss-watch.ac.uk/resources/governancemodels

25

82 Id., 68.
83 Id.
84 Id., 72.
85 Illustrations of each of the models addressed

herein accompany this report.
86 See Benevolent Dictator Governance Model,

OSS Watch, http://oss-watch.ac.uk/resourc-
es/benevolentdictatorgovernancemodel (last
visited Dec. 5, 2014); see also Karl Fogel,
Producing Open Source Software, ch.
4, available at http://producingoss.com/ht-
ml-chunk/social-infrastructure.html#benevo-
lent-dictator-qualifications; Benevolent Dictator,
P2P Foundation, http://p2pfoundation.net/
Benevolent_Dictator (last visited Dec. 5, 2014);
Randy Fay, How Do Open Source Communities
Govern Themselves?, RandyFay.com (March 5,
2012, 8:41 PM), http://randyfay.com/content/
how-do-open-source-communities-govern-them-
selves (listing open-source organizations with
benevolent dictatorships).

87 Id., OSS WATCH.
88 Id., Fogel.
89 Id., OSS WATCH
90 Id.
91 Id.
92 Benevolent Dictator Model, OUTERCURVE

FOUNDATION, (2014), http://www.outercurve.
org/resources/governance/benevolent_dictator.
html.

93 Id.
94 Id.
95 Id., OSS WATCH
96 Id., OSS WATCH.
97 Id., OSS WATCH
98 Linux – Governance, P2P Foundation, http://

p2pfoundation.net/Linux_-_Governance (last
visited Dec. 5, 2014).

99 Id.
100 Id.
101 Id.
102 Id.
103 Id.
104 Id.
105 Id.
106 Id.
107 Id.
108 Id.
109 Id.
110 Id.
111 Id.
112 See Meritocratic Governance Models, OSS

Watch, http://oss-watch.ac.uk/resources/

meritocraticgovernancemodel (last visited Dec.
5, 2014). (discussing the meritocratic gover-
nance model in depth); see also Ross Gardler,
Meritocratic Governance Models, Outercurve
Foundation (Sept. 25, 2012), http://www.outer-
curve.org/blog/2012/09/25/Meritocratic-Gov-
ernance-Models-by-guest-blogger-Ro/; Bacon,
Jono The Art of Community, O’REILLY MEDIA,
INC., (2009)

113 Id., OSS WATCH
114 Id., Bacon.
115 Id., OSS WATCH
116 Id.
117 Id.
118 Id.
119 Ross Gardler, Essential Tools for Running a

Community-Led Project, OSS WATCH, (Sept. 9,
2013) http://oss-watch.ac.uk/resources/com-
munitytools.

120 Id.
121 Id., OSS WATCH
122 Id.
123 Id.
124 Id.
125 Id.
126 Id.
127 Terrell J, Kofink A, Middleton J, Rainear C,

Murphy-Hill E, Parnin C. (2016) Gender bias in
open source: Pull request acceptance of women
versus men. PeerJ PrePrints 4:e1733v1 https://
doi.org/10.7287/peerj.preprints.1733v1

128 How the ASF Works, The Apache Software
Foundation, http://www.apache.org/founda-
tion/how-it-works.html (last visited Dec. 5, 2014).

129 Id.
130 Id.
131 Id.
132 Id.
133 Id.
134 Id.
135 Ceki Gülcü, The Forces and Vulnerabili-

ties of the Apache Model http://ceki.blog-
spot.com/2010/05/forces-and-vulnerabi-
lites-of-apache.html (May 21, 2010).

136 Contributors, APACHE SOFTWARE FOUNDA-
TION, https://community.apache.org/contrib-
utors/ (last visited June 9, 2016); Mentoring
Programme, APACHE SOFTWARE FOUNDATION,
https://community.apache.org/mentoringpro-
gramme.html (last visited June 9, 2016).

137 Id., Contributors.
138 Bacon, Jono The Art of Community, O’REIL-

LY MEDIA, INC., (2009) http://proquest.sa-

26

faribooksonline.com.ezp-prod1.hul.harvard.
edu/9780596805357/learning_from_the_lead-
ers

139 Id.
140 Id.
141 Id.
142 Id.
143 Id.
144 Id.
145 Bacon, Jono The Art of Community, O’REIL-

LY MEDIA, INC., (2009) http://proquest.sa-
faribooksonline.com.ezp-prod1.hul.harvard.
edu/9780596805357/learning_from_the_lead-
ers

146 Id.
147 Id.
148 Id.
149 Governance, UBUNTU (2016), http://www.ubun-

tu.com/about/about-ubuntu/governance (last
accessed May 5, 2016).

150 John A. Buck & Gerard Endenburg, The Cre-
ative Forces of Self-Organizing, SOCIOCRAC-
TIC CENTER, http://sociocracyconsulting.com/
wp-content/uploads/2015/09/CreativeForc-
es-updated2012.pdf (2012).

151 Id.
152 Id.
153 John A. Buck & Kerry Koch-Gonzalez, Dynamic

Governance for Nonprofit Organizations, THE
SOCIOCRACY CONSULTING GROUP, http://
sociocracyconsulting.com/wp-content/up-
loads/2014/01/DG-for-Nonprofits-v1-11-14.pdf
(2014); Sheella Mierson, Dynamic Leadership,
THE SOCIOCRACY CONSULTING GROUP,
http://sociocracyconsulting.com/wp-content/
uploads/2016/02/Dynamic-leadership-v1.1.pdf
(2016).

154 Id., Mierson.
155 Id., Buck & Endenburg.
156 Id.
157 Id.
158 Id., Buck & Koch-Gonzalez
159 Id., Buck & Endenburg
160 Id.
161 Board Roles and Responsibilities, NATION-

AL COUNCIL OF NONPROFITS, https://www.
councilofnonprofits.org/tools-resources/
board-roles-and-responsibilities (last accessed
May 23, 2016).

162 Why Do You Need a Board? THE BRIDGESPAN
GROUP, http://www.bridgespan.org/Publi-
cations-and-Tools/Nonprofit-Boards/Nonprof-
it-Boards-101/Why-Do-You-Need-a-Board.aspx#.

V0N_OTUrK73 (last accessed May 23, 2016).
163 Jan Masaoka All Hands on Board: The board of

directosr in an all-volunteer organization, THE
NATIONAL CENTER FOR NONPROFIT BOARDS,
THE SUPPORT CENTER FOR NONPROFIT MAN-
AGEMENT, http://blueavocado.org/sites/de-
fault/files/All-Hands-on-Board-3.pdf (1999).

164 Id.
165 John Riddle with Tere Drenth, Managing a Non-

profit, ADAMS MEDIA CORPORATION (2002).
166 Finding the Right Board Members for Your Non-

profit, NATIONAL COUNCIL OF NONPROFITS,
https://www.councilofnonprofits.org/tools-re-
sources/finding-the-right-board-members-your-
nonprofit (last accessed May 24, 2016).

167 Jan Masaoka, Boards of All-Volunteer Organiza-
tions, BLUE AVOCADO, http://www.blueavoca-
do.org/content/boards-all-volunteer-organiza-
tions (last accessed May 24, 2016).

168 Peter F. Drucker, Managing the Nonprofit Or-
ganization: Principles and Practices, COLLINS
BUSINESS (2005).

169 Id., Jansen & Kilpatrick
170 Id.
171 Mikael, Growing Up, NODE & JAVASCRIPT: ME-

DIUM https://medium.com/node-js-javascript/
growing-up-27d6cc8b7c53#.jz9yqr74e (May 7,
2015).

172 Id.
173 Id.
174 Candance Widmer & Susan Houchin, Gover-

nance of National Federated Organizations,
NATIONAL CENTER FOR NONPROFIT BOARDS,
(1999).

175 Id.
176 Id.
177 Id.
178 Id.
179 Bacon, Jono The Art of Community, O’REILLY

MEDIA, INC., (2009)
180 Id., at “Setting Up a Community Council,” ch.

8.
181 Paul J. Jansen & Andrea R. Kilpatrick, The

Dynamic Nonprofit Board, McKINSEY & COM-
PANY, http://www.mckinsey.com/industries/
social-sector/our-insights/the-dynamic-nonprof-
it-board, (last visited May 20, 2016).

182 Id.
183 Steve McCurley & Rick Lynch, Volunteer Man-

agement: Mobilizing all the Resources of the
Community, HERITAGE ARTS PUBLISHING
(1996), at 12.

http://proquest.safaribooksonline.com.ezp-prod1.hul.harvard.edu/9780596805357/learning_from_the_leaders
http://proquest.safaribooksonline.com.ezp-prod1.hul.harvard.edu/9780596805357/learning_from_the_leaders
http://proquest.safaribooksonline.com.ezp-prod1.hul.harvard.edu/9780596805357/learning_from_the_leaders
http://proquest.safaribooksonline.com.ezp-prod1.hul.harvard.edu/9780596805357/learning_from_the_leaders
http://www.ubuntu.com/about/about-ubuntu/governance
http://www.ubuntu.com/about/about-ubuntu/governance

27

Case Study #1:
Apache Software Foundation
The Apache Software Foundation (“Apache”) was founded in 19991 to provide an organizational framework and
support services for a variety of open source software projects.2 Apache’s most well-known project is the HTTP
Server Project, which provides the world’s most widely used server software.3 The vast majority of Apache’s
revenue comes from donations.4 Apache’s donations web page notes that “donations to [Apache] should be
tax-deductible.”5

Apache applied for 501(c)(3) status in or around mid-2000.6 After responding to an IRS request for additional
information,7 Apache was granted 501(c)(3) status in February 2001.8

In Apache’s application for 501(c)(3) status, the organization described its activities in general terms and pro-
vided some arguments for linking its work to one of the exempt purposes listed in 26 U.S.C. 501(c)(3). In the
narrative description of the organization’s activities, Apache emphasized its goals of “supplying hardware,
communications, and business infrastructure” for open source software projects; “creat[ing] an independent
legal entity to which individuals can donate resources”; and “provid[ing] a means for individual volunteers to
be sheltered from legal suits.”9 According to the application, Apache’s activities constituted a scientific purpose
because “the organization is using its research for the public benefit through the open source software it de-
velops and sponsors.”10

Apache did not argue that the foundation itself directly produces any public benefits. Instead, Apache por-
trayed itself as an umbrella organization for open source software projects. In stating its exempt purpose,
however, Apache asserted that its exempt purpose could rest on the basis of the research conducted by proj-
ects supported by Apache. Because the public might benefit from the projects’ software, Apache implies, its
research is “for the public benefit.” Apache’s response to the IRS’s request for additional information did not
provide any additional arguments to support the assertion that Apache had an exempt purpose, other than by
offering greater detail regarding its individual projects.11 The IRS granted 501(c)(3) status to Apache.

The IRS considers research to be “in the public interest” if the organization in question meets any one of a num-
ber of requirements. One way of satisfying these requirements is for the organization to make the results of its
research “available to the public on a nondiscriminatory basis.”12 In its application, Apache explained that its
software was copyrighted in a way that granted “the general public the maximum flexibility and access to the
software and to allow its reuse to as large an extent as possible.”13 Compared with open source projects that
have applied more recently, this “public interest” argument is more loosely constructed.

Apache’s application process illustrates a trend at the IRS toward more restrictive standards for granting 501(c)
(3) status. Apache received 501(c)(3) status less than a year after submitting its original application. The or-
ganization managed to survive multiple rounds of review without providing the level of detail or all the kinds
of information required by current IRS guidance. The differences in the Apache application process and the
specificity required for 501(c)3 status points to a shift in policy and a new understanding of open source orga-
nizations at the IRS that has resulted in higher thresholds for success.

1 See The Apache Software Foundation, Form 1023: Application for Recognition of Exemption Under Section 501(c)(3) of the Internal Revenue
Code (2000), available at http://www.apache.org/foundation/records/ASF-1023.pdf; I.R.S. Final Determination Ltr. (Feb. 21, 2001), available at http://
www.apache.org/foundation/records/ASF-501c3.pdf.
2 The Apache Software Foundation, supra note 1.
3 November 2014 Web Server Survey, Netcraft, http://news.netcraft.com/archives/category/web-server-survey/ (last visited Dec. 5, 2014).
4 See The Apache Software Foundation, Form 990: Return of Organization Exempt from Income Tax 1 (Dec. 15, 2013), available at http://
www.apache.org/foundation/records/990-2012.pdf.
5 Donating to the Apache Software Foundation, The Apache Software Foundation, http://www.apache.org/foundation/contributing.html
(last visited Dec. 5, 2014).
6 See The Apache Software Foundation, supra note 1.
7 See The Apache Software Foundation, Amendments to Form 1023, available at http://www.apache.org/foundation/records/ASF-1023-
Amendments.pdf.
8 See I.R.S. Final Determination Ltr., supra note 1.
9 The Apache Software Foundation, Form 1023, supra note 7.
10 Id.
11 See The Apache Software Foundation, supra note 1.
12 Id.
13 The Apache Software Foundation, supra note 1, at 8.

28

Case Study #2:
X.Org14

Launched in 1997, the X.Org project develops “an open source implementation of the X Window System,”15 which
provides the foundation for graphical user interfaces.16 In addition to its development activities, the X.Org Foun-
dation (“X.Org”) also hosts conferences and internship programs for students.17 Through its “Endless Vacation
of Code” program, students submit project proposals, and those selected get to work full-time over a three- to
four-month periods with a stipend of $5,000 to $6,000 and support from a lead member of the organization’s
technical community.18 X.Org also offers the same opportunity without funding for non-students. Prior to re-
ceiving nonprofit status, the organization had received “significant funding” from Intel, Google, and Oracle.19
The organization now solicits donations from the general public.20 X.Org does not have any paid employees.21

X.Org submitted its application for 501(c)(3) status in April 2011.22 The IRS granted X.Org 501(c)(3) status in May
2012.

In its application, X.Org argued that it was organized exclusively for scientific, educational, and charitable
purposes but placed greater emphasis on the latter two purposes. The application did not advance a particu-
larly notable case that X.Org had a scientific purpose. The application stated that the X Window System proj-
ect “focuses on stability and open standards,” which could have led to a discussion of how X.Org’s research
benefits the public.23 However, X.Org did not frame most of its activities as research in the text, using the word
“research” only twice.24 Nor did the application make a strong case for satisfying one of the scientific purpose
requirements. For example, X.Org did not directly address the IRS standard of research “available to the public
on a nondiscriminatory basis,” focusing instead on its open source licenses.25

X.Org made a much stronger argument for having an educational purpose. 557 defines “educational” for the
purposes of obtaining 501(c)(3) status as meaning either “[t]he instruction or training of individuals for the
purpose of improving or developing their capabilities” or “[t]he instruction of the public on subjects useful to in-
dividuals and beneficial to the community.”26 The list of organizations that may qualify as educational includes
“[a]n organization whose activities consist of conducting public discussion groups, forums, panels, lectures, or
other similar programs.”27

In its application, X.Org presented its activities in order to match these requirements. For example, X.Org stated
that it was founded in order to “ensure that the public has access to educational and scientific literature that
furthers their use of the X Window System,”28 thus demonstrating how X.Org’s work creates valuable opportuni-
ties for the public to further their understanding of the system. The application also stated that X.Org publishes
“human-readable source code, documentation, and materials,”29 which X.Org argued helps users “improve
their ability to design and implement software.”30

14 Note that the IRS revoked X.Org’s 501(c)(3) status in 2013 because the organization failed to file its tax returns. See Michael Larabel, X.Org
Foundation Loses Its 501(c)(3) Status, Phoronix (Aug. 23, 2013, 1:22 PM) http://www.phoronix.com/scan.php?page=news_item&px=MTQ0MzU.
15 X.Org Foundation, http://www.x.org/wiki/ (last visited Dec. 5, 2014).
16 The X Window SystemTM, X.Org Foundation, http://www.opengroup.org/desktop/x/ (last visited Dec. 5, 2014).
17 501(c)(3) Status Determination, X.Org Foundation, http://www.x.org/wiki/Other/Press/501c3StatusDetermination/ (last visited Dec. 5,
2014).
18 The X.Org Endless Vacation of Code (EVoC), X.Org Foundation, http://www.x.org/wiki/XorgEVoC/ (last visited Dec. 5, 2014).
19 X.Org Foundation, supra note 203.
20 Id.
21 X.Org Foundation, supra note 201.
22 Justin C. Colannino, Re: Form 1023 Application for Recognition of Exemption of X.ORG FOUNDATION (Apr. 29, 2011), available at http://ww-
w.x.org/foundation/irs-form-1023/1-Cover.pdf.
23 X.Org Foundation, Addendum to Form 1023 2 (Apr. 22, 2011), available at http://www.x.org/foundation/irs-form-1023/4-ExhibitC.pdf.
24 Id.
25 Id.
26 See Internal Revenue Service, Be on the Look Out List (Aug. 2010); Be on the Look Out List (Nov. 2010); Be on the Look Out List (Feb. 2011); Be
on the Look Out List (Feb. 2012); Be on the Look Out List (Jul. 2012) available at http://democrats.waysandmeans.house.gov/press-release/new-irs-infor-
mation-shows-“progressives”-included-bolo-screening-list.
27 Id. at 26.
28 X.Org Foundation, supra note 15, at 2.
29 Id.
30 Id.

29

X.Org additionally asserted that the release and use of source code fit the second definition of “educational”
by calling software development “an activity beneficial to the community.”31 In order to buttress this argument,
X.Org cited case law in which the Second Circuit observed that a programmer reading code “might use this in-
formation to improve personal programming skills.”32 X.Org also highlighted the specific educational activities
it sponsors, including the Endless Vacation of Code, conferences, and “active mailing list and wiki” as exam-
ples.33 This description allowed X.Org to fit the model of an educational organization “whose activities consist
of conducting public discussion groups, forums, panels, lectures, or other similar programs.”

X.Org also established that it has a charitable purpose as a second justification for 501(c)(3) status. According
to 557, a charitable organization must show that it is intended to benefit the public interest34 by advancing
education, assisting the poor, or erecting public works.35 A charitable organization may show that it advances
education by offering scholarships.36

To that end, X.Org discussed the Endless Vacation of Code program in detail. The application emphasized that
students enrolled in the Endless Vacation of Code receive “a monetary reward” upon completion of program
goals.37 X.Org also argued that it assisted the poor by providing its software to the public for free. This benefit
is amplified because X.Org code is built into other popular software, driving down development costs, which
gives everyone, including the poor, greater access to good software.38

Finally, X.Org argued that its software development constitutes the erection of a public work. X.Org defined
public works as facilities or processes that are “beneficial to the general public” by generalizing from examples
like public swimming pools, playgrounds, or public transportation. Whereas traditional examples of public
works are created to benefit a specific community,39 X.Org’s software allows anyone who wants to download its
software or incorporates its code to benefit, removing the hampers of “occupancy limitations” or “convenience
of physical location.”40 This argument attempts to expand “public works” to accommodate digital products and
services offered to the public and unrestricted by license requirements.

X.Org’s application provides multiple arguments for federal tax exemption that differed from Apache’s approach
(addressed in the accompanying Case Study #1). In Apache’s application, the organization described its soft-
ware development activities, briefly asserted that its activities constituted scientific research that benefited
the public, and claimed that the organization was founded for an exempt scientific purpose. In contrast, X.Org
emphasized its non-development activities, including an internship and scholarship program, and described
how open-source software development can fit the concept of public works.

The IRS had already begun to subject open-source software organizations to closer review when X.Org submit-
ted its application.41 Therefore, X.Org’s efforts to cast itself as an educational and charitable organization may
have been in response to these heightened standards. Regardless of X.Org’s motivations for advancing these
arguments, their application demonstrates that open source organizations often have means other than “sci-
entific purposes” to advocate for tax-exempt status.

31 Id.
32 Id. (citing Universal City Studios, Inc. v. Corley 273 F.3d 429, 448 (2d Cir. 2001)).
33 Id. at 2–3.
34 Internal Revenue Service, supra note 26, at 28.
35 Id.
36 Id.
37 X.Org Foundation, supra note 15, at 3.
38 Id.
39 Id.
40 Id.
41 McMillan, supra note 9 (discussing OSET’s submission of its application for 501(c)(3) status in 2007).

30

Case Study #3:
Yorba Foundation
The Yorba Foundation (“Yorba”) is a nonprofit organization that develops Linux desktop software.42 Its projects
include Shotwell, a photo manager;43 Geary, an IMAP email client;44 and California, a calendar application.45
Yorba’s projects are hosted by GNOME, but Yorba and the GNOME Foundation are legally and financially in-
dependent of one another.46 Yorba applied for 501(c)(3) status in 2009 and received a final determination letter
rejecting the application in 2014.47

In its application, Yorba advanced many of the same arguments used by X.Org (described in the accompanying
Case Study #2). Yorba claimed that it was organized for charitable and scientific purposes.48 Like X.Org, Yorba
attempted to show that it advanced education, assisted the poor, and erected a public work. Yorba claimed to
advance education by making available to the public its source code as well as a wiki and user guide.49

Yorba’s assertion that “[f]ree and open source software fundamentally has an educational component”50 was
reminiscent of arguments made by X.Org,51 but unlike X.Org, Yorba did not offer any conferences, internships,
or scholarship programs. In explaining how its software assists the poor, Yorba noted that its products provide
free alternatives “to software that can sell for as much as $1,000 a license.”52 In contrast, X.Org suggested that
its software helped to drive down development costs, without a specific price comparison.53 Yorba similarly
framed free open-source software as a public work because the software, “through free and open source li-
censing, [is] dedicated to the public.”54 This argument differs slightly from X.Org’s argument, which focused
on the public actually deriving benefits from X.Org’s software. Yorba does not advance a detailed argument
in support of its scientific purpose claim, stating simply that “free and open source software project creates a
public domain of technical knowledge that anyone can learn and use.”55

Yorba application for 501(c)(3) status was rejected, and the IRS justified its decision by defining key terms and
concepts narrowly, possibly a result of a shift in policy toward open-source organizations. For example, while
Yorba and X.Org both claimed to serve the public as a charitable class, in the Yorba determination letter the
IRS decided that the public does not qualify because not “all members of public [sic] share any charitable
characteristics.”56 The IRS also refused to accept that source code has educational value. The IRS explained
that educational activities must involve “instruction” or “training,” while Yorba provided its source code “with-
out any additional activity.”57 The IRS contended that the purpose of providing source code to users is to allow
them to modify the code and that any learning in that process is “incidental,”58 undercutting the educational
value of source code articulated by both organizations.

The IRS also rejected the proposition that no-cost, non-proprietary software constitutes a public work. The IRS
referred to historical sources to define “public works” as including only physical facilities “ordinarily provided
at public expense.”59 Based on these sources, the IRS decided that “intangibles” like software do not constitute

42 Kendra Albert, Open Source Madness, Electronic Frontier Foundation (Jul. 16, 2014), https://www.eff.org/deeplinks/2014/07/open-
source-madness.
43 Shotwell, GNOME Wiki, https://wiki.gnome.org/Apps/Shotwell (last visited Dec. 5, 2014).
44 Geary, GNOME Wiki, https://wiki.gnome.org/Apps/Geary (last visited Dec. 5, 2014).
45 California, GNOME Wiki, https://wiki.gnome.org/Apps/California (last visited Dec. 5, 2014).
46 Jim Nelson, Yorba and GNOME, Yorba Blog Archives (Dec. 23, 2013), http://blogs.gnome.org/jnelson/2013/12/23/yorba-and-gnome/.
47 Nelson, supra note 2.
48 I.R.S. Final Determination Ltr. 1 (May 22, 2014), available at http://yorba.org/docs/IRS-determination-letter-final.pdf.
49 Id. at 2.
50 Id. at 2.
51 X.Org Foundation, supra note 15, at 2.
52 I.R.S. Final Determination Ltr., supra note 48, at 2.
53 X.Org Foundation, supra note 15, at 3.
54 I.R.S. Final Determination Ltr., supra note 48, at 8.
55 Id. at 3.
56 Id.
57 Id. at 9–10.
58 Id. at 10.
59 I.R.S. Final Determination Ltr., supra note 234, at 8 (citing Comment (k) Restatement 3d Trusts; The Statute of Charitable Uses, 43 Eliz. I, c.4
(1601) (describing as charitable the construction of “bridges, ports, havens, causeways . . . and highways”); Black’s Law Dictionary, 7th ed. (defining
“public works” as “[s]tructures, such as roads or dams built by the government for public use and paid for by public funds”)).

31

public works.60 Even if intangibles could qualify as public works, the IRS argued they would not qualify because
open-source software is not “ordinarily provided at public expense” by governmental agencies.61 This narrow
formulation of “public works” differs significantly from the definitions put forth by Yorba and X.Org that hinge
on whether the resource is intended to benefit or actually benefits the public.

Finally, the IRS rejected the argument that open-source software development constitutes scientific research,
for which neither organization advanced strong arguments. The IRS classified Yorba’s software development as
“routine product development,” rather than “testing to validate scientific hypotheses.”62 Based on this classi-
fication, the IRS found Yorba’s activities to be more commercial than scientific. By narrowing terms and refor-
mulating concepts, the IRS raised the threshold an open-source software organization would need to meet in
order to obtain 501(c)(3) status.

Yorba’s determination letter need not doom nonprofit open-source software development. IRS determination
letters have no precedential value.63 As a result, the conclusions reached in the Yorba determination letter are
not binding on subsequent determination letters, though they may provide insight into how the IRS thinks about
certain issues at a given point in time. The IRS may reach different or even opposite conclusions in the future.
Second, the differences between Yorba’s and X.Org’s activities may point to the sorts of activities the IRS will
look for in deciding whether to grant 501(c)(3) status to open-source software organizations. X.Org offered con-
ferences and a scholarship/internship program to students in order to train and instruct software developers
in their use of X.Org’s software. Yorba did not offer any comparable educational activities. Learning from the
experience of Yorba, an open-source software organization considering 501(c)(3) status may want to consider
whether and how they are furthering software development education and emphasize such actions in their
application

60 Id.
61 Id. at 9.
62 Id. at 10.
63 26 U.S.C. 6110(k)(3) (2012).

32

CASE STUDY #4:
BRAVE NEW SOFTWARE
Brave New Software (“BNS”), an open-source software organization “dedicated to keeping the Internet open
and decentralized” through the creation of tools to combat censorship and other limitations to internet access,
submitted a 501(c)3 status application in August of 2010.64 A letter from the State Department advocating for
an expedited process accompanied their application. As is the case with many OSS organizations, the IRS took
nearly two years to make an initial determination on BNS’s case, issuing a rejection in May 2012. The IRS re-
sponded to each of the 501(c)3 purposes BNS argued it qualified for: charitable (and within that, “lessening the
burdens of the US government,” promoting human and civil rights, “promoting relief of the poor and distressed
or underprivileged,” and “erection or maintenance of public works”), educational, and scientific.65

The IRS contended that several pronouncements by the State Department about their desire to fight internet
censorship did not suffice to prove that the work of BNS was related to a burden of the US government. The
IRS felt that a State Department grant to BNS also did not indicate that the department needed BNS’s help to
combat censorship, but more closely resembled a “payment for a service” than burden sharing.66 Next, the IRS
argued that First Amendment and UN international protections of free speech and freedom of expression could
not be expanded to include a human right to internet access, and therefore, BNS could not qualify as promoting
human and civil rights through their work.

Regarding the claim of “promoting relief of the poor,” the IRS determined that because BNS did not limit who
could use their censorship circumvention software, their actions did not sufficiently impact a distressed or
marginalized group to meet this standard.67 Confusingly, their rejection of BNS’s claim as a creator of a public
work stated that BNS’s software to combat censorship was too targeted to qualify as a public work (since only
those dealing with censorship could benefit from it), and, moreover, that software did not meet the traditional
definition of a public work (similar to the determination in Yorba’s application).68

Turning to the educational purpose, the IRS found that BNS did not educate the public through its publication
of code or materials to help understand how to use its software because those were activities that a commercial
group might perform to promote its products.69

Additionally, the IRS determined that BNS did not promote education through the creation of its software be-
cause the censorship circumvention software could be used to access anything online, including potentially
illegal or dangerous materials that the IRS believed countries had the right to restrict. Finally, the IRS concluded
that BNS did not meet the scientific purpose definition because its activities most closely resembled commer-
cial product research development, not scientific research, and BNS is not a publisher or advocate of scientific
scholarly literature.70

BNS and its attorneys responded to the denial in June of 2012 and offered arguments to counter most of the
IRS’ claims, starting with the IRS determination that the US government did not consider itself responsible
for promoting internet freedom. BNS pointed to the announcement of the Internet Freedom Program by the
State Department, where Secretary Clinton used the word burden to describe the US role in combatting online
censorship, as well as other instances when the government talked about the need to support censorship cir-
cumvention technologies.71 Further, BNS argued that the State Department specifically designed their Internet
Freedom Program to reflect the fact that the government did not have the means to fulfill their burden in com-
batting internet censorship.

BNS corrected the IRS’s reading of their program’s human rights focus, pointing out that “freedom of expression

64 “About Us,” Brave New Software (accessed March 15, 2016) http://www.bravenewsoftware.org/; “IRS Ruling Documentation,” Open Source
Initiative (accessed March 15, 2016) https://wiki.opensource.org/bin/Main/Projects/entities-wg/IRS+Ruling+Documentation/
65 Lerner, Lois G., “Letter of Denial,” Internal Revenue Service (May 16, 2012), https://wiki.opensource.org/bin/Main/Projects/entities-wg/
IRS+Ruling+Documentation/#HBraveNewSoftwareProject2CInc.
66 Id., at 13.
67 Id.
68 Id.
69 Id.
70 Id.
71 Williamson, Aaron & Adam Fisk, Brave New Software Project Letter of Protest, June 28, 2012

33

online depends on uncensored access,” and that their goal was not to tout internet access as a human right.72
In response to the IRS’s assertion that any group that aids the distressed or underprivileged must make sure
their resources were primarily available to the groups in question, BNS used unrestricted internet access at
libraries, a traditional class of non-profit, as a counter-example. BNS referenced several well-known occasions
when library users or libraries themselves have promoted or engaged in illegal activities, such as endorsing
WikiLeaks or allowing the Unabomber to plan his attacks on a public computer.73 According to BNS, this type of
policy is permitted, even if the results are illegal activity, because neither US nor international law uses prior
restraint as a policy with regards to online speech, given that such policies often preemptively limit free speech.
References to the United States State Department used by the IRS to indicate support for prior restraint were
actually discussing the right of states to punish illegal activity after the fact.74

Nonetheless, BNS imagined these improper uses would be incidental when measured against uses as intended.
BNS again returned to the example of libraries when refuting the IRS’s rejection of its activities as educational,
reminding the agency that if educational organizations could only provide access to “educational” materi-
als, most libraries would be ineligible.75 BNS also highlighted the many programs they offered to educate the
public on combatting censorship. Finally, the organization indicated the IRS’s determination that its work was
too broad to qualify as promoting relief of underprivileged groups, but too narrow to qualify as a public work
seemed problematic.

The IRS did not respond to BNS’s letter of protest until nearly two years later, in June of 2014 when it reversed its
decision.76 Unfortunately, the notice of approval does not contain any information about what occurred in the
intervening time or what elements of BNS’s letter proved persuasive.

As the IRS notes, each individual IRS application is considered on its merits, and previous approvals or denials
are not precedential. In addition, the fact that BNS had substantial support from the US Department of State
makes this case unique in certain aspects. Nonetheless, there are some lessons we can draw from this exchange
that can aid fledgling OSS organizations considering non-profit status.

As X.Org and Yorba both confirm, organizations should not try to contend that they fulfill a scientific purpose
unless their software development contributes directly to scientific research as defined by the IRS – “the orga-
nization must (1) engage in scientific research; (2) the scientific research must not include activities that are
incident to commercial or industrial operations; and, (3) the scientific research must be undertaken in the pub-
lic’s interest” – or helps disseminate scientific research.77 While OSS organizations may feel tempted to check
as many boxes as possible in a 501(c)3 application, it may be more effective to concentrate on other exempt
categories that have a direct tie to the organization’s mission. The use of scientific tools does not make an ac-
tion “scientific” in the eyes of the IRS, and they are unlikely to see anything outside the traditional confines of
scientific research and debate as appropriate for such a designation. This line of argument was the only one
that BNS abandoned in their response to the IRS’ initial decision.

Open source software initiatives can also follow BNS’s example in highlighting the parallels between their pur-
pose and services and existing classes of non-profit organizations. In its reply to the IRS, BNS compared the
example of libraries providing internet access and non-educational content to visitors to their own program to
demonstrate that similar First Amendment reasoning against prior restraint apply in both.78 This parallel helped
illustrate that the IRS’s claim that an educational organization should only provide access to educational ma-
terials was inconsistent with its view of a large class of charitable organizations.

While BNS made this point in fighting back against an initial IRS decision, other organizations could make par-
allels preemptively to groups that traditionally get IRS approval. Doing so may make the functions of an OSS’s
services more comprehensible for the IRS staff. Providing analog examples can help move the conversation
from the realm of technological capabilities into a discussion of the aims of the organization.

Finally, while few OSS organizations (or non-profits in general) enter the 501(c)3 process with endorsements

72 Id., at 4.
73 Id.
74 Id.
75 Id.
76 Id., Open Source Initiative.
77 Id., Lerner, at 18.
78 Id., Williamson & Fisk.

34

and a mandate from the federal government, other groups could emulate the tactics BNS used to convey the
connection between their mission and an evidenced need in the world. Organizations that are able to cite a
specific problem in human rights work, education, or other exempt class and demonstrate how the use of open-
source technology can directly remedy that problem stand a better chance of approval than those who focus
their discussion on the merits of OSS alone. OSS organizations without a clear connection to real-world prob-
lems or human rights implications may find getting 501(c)3 status challenging, given the IRS’s skepticism and
limited understanding of software development and its potential applications.

35

MODEL A:
BENEVOLENT DICTATORSHIP

Benevolent Dictator

Leads the technical direction of the project
and organizes the community; final say on
project decisions and community disputes

Committers

Can make direct changes to the code
(approved in official release deliberations);
evaluate committers’ code

Contributors

Developers who contribute to a project in
any meaningful way.

KEY

Represents pattern of escalation

36

MODEL B:
MERITOCRACY

Project Management Committee

Reviews code contributions, participates in strategic
planning, approves changes to the governance model
and manages legal issues within project; selects
committers; resolves community disputes

Committers

Can make direct
changes to the code
(approved in official
release deliberations);
evaluate committers’
code

Contributors

Developers who
contribute to a project
in any meaningful
way.

KEY

Represents collaborative,
non-hierarchical nature of
meritocratic structure

37

MODEL C:
DELEGATED
GOVERNANCE

Community Council

Reviews all activities of organization; may
include founders. Members are elected and
may have term limits.

Process
Subcouncil

KEY

Represents pattern of escalation

Project

Technical
Subcouncil

Project
Team

Project
Team

38

General Circle

Highest governing body, where project
founders, project circle team leaders, and
representative contributors from each project
circle sit

Technical Project
Circle A

Community
Circle

Technical Project
Circle B

Subcircle A Subcircle B

KEY

Paired arrows represent double linkage
between circles (one circle leader, one circle
representative)

MODEL D:
DYNAMIC
GOVERNANCE

39

MODEL E:
FEDERATED NONPROFIT

Board of Directors

Project Team 1 Project Team 1 Project Team 1 Project Team 1

Contributors Contributors Contributors Contributors

KEY

Represents escalation from chapter members
(contributors) to chapter leadership

Represents collaboration between chapters
and executive board of directors

Represents voting and referendum power of
contributors at the executive level

	_Ref279311043
	_Ref278446648
	_Ref279385259
	_Ref279385948
	_Ref278644409
	_Ref279388166
	_Ref279311060
	_Ref279304075
	_Ref279304743
	_GoBack
	_Ref278552041
	_Ref279386222
	_Ref278701987
	_Ref278701137
	_Ref278701249
	_Ref278790211
	_Ref278881534
	_GoBack
	OVERVIEW AND BACKGROUND
	ACKNOWLEDGMENTS
	PART I
	THE QUESTION OF INCORPORATION
FOR OPEN SOURCE SOFTWARE INITIATIVES
	Introduction
	501(c)3 Status, the IRS, and Open Source
	Shift in IRS Policy
	Conclusion

	BEYOND 501(C)(3): STRUCTURAL
CONSIDERATIONS FOR O/S SOFTWARE INITIATIVES
	Introduction
	Alternative Federal Tax-Exempt Status Recognitions: 501(c)(4) & 501(c)(6)
	Nonprofit Corporations
	For-Profit Entities:
	Corporations and Limited Liability Companies
	A Third Way: Benefit Corporations
	Conclusion

	PART II
	GOVERNANCE MODELS FROM
THE OPEN SOURCE WORLD AND BEYOND
	Introduction
	Levels of Control and Openness
	Model A: Benevolent Dictatorship
	Model B: Meritocracy
	Model C: Delegated Governance
	Model D: Dynamic Governance
	All About Boards: Examples from the Nonprofit World
	Norms and Attitudes for a Successful Open Source Software Organization

	CONCLUSION
	Endnotes
	Case Study #1:
Apache Software Foundation

