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Abstract—Employing software metrics, such as size and 
complexity, for predicting defects has been given a lot of 
attention over the years and proven very useful. However, the 
few studies looking at software architecture and vulnerabilities 
are limited in scope and findings. We explore the relationship 
between software vulnerabilities and component metrics (like 
code churn and cyclomatic complexity), as well as architecture 
coupling metrics (direct, indirect, and cyclic coupling). Our case 
is based on the Google Chromium project, an open source 
project that has not been studied for this topic yet. Our findings 
show a strong relationship between vulnerabilities and both 
component level metrics and architecture coupling metrics. 
Unfortunately, the effects of different types of coupling are 
somewhat hard to distinguish.  

Keywords—software, architecture, complexity, coupling, 
vulnerabilities 

I. INTRODUCTION 
Cyber security incidents and software vulnerabilities cause 

big problems with increasing societal impact. Both individual 
home users and large corporations face similar problems with 
exploited software vulnerabilities leading to loss in 
confidentiality, integrity, and availability, and at the end of the 
day - time and money. Many seem to agree that software 
architecture complexity is a key issue when it comes to 
software vulnerabilities. Quoting a well-cited blog post by 
Bruce Schneier1 “The worst enemy of security is complexity”. 
The basic argument is that poorly designed and maintained 
software systems tend to embed highly complex code and 
architectures, which in turn increase the likely occurrence of 
vulnerabilities waiting to be exploited. However, few studies 
have explored the relationship of complexity to vulnerabilities 
and the findings to this point are inconclusive [1][2] and far 
from generalizable. 

Some existing studies of software vulnerabilities include 
direct coupling as a predictive variable, e.g. [3][4][5]. 
However, to our knowledge, other coupling measures such as 
indirect coupling and cyclic coupling have not been tested in 
relation to vulnerabilities. These measures have been shown to 
affect other software performance outcomes such as defects 
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e.g. [6], productivity e.g. [7], and maintenance cost e.g. [8]. 
Our theory is that this is also the case for software 
vulnerabilities. 

In this paper, we measure (and visualize) the Google 
Chrome software architecture and explore the correlation 
between software vulnerabilities and component-level metrics 
and different architecture coupling measures. Our component 
metrics include: code churn, source lines of code, cyclomatic 
complexity, and comment ratio. Our coupling measures fall 
into three categories: direct coupling (fan-in & fan-out), 
indirect coupling (fan-in & fan-out), and cyclic coupling. 
Studying 16,268 C-files of the March 2016 Chrome release and 
linking them to 290 files that were changed in order to fix 185 
vulnerabilities, we found that both component metrics and the 
different coupling measures are significantly correlated with 
vulnerabilities. However, due to limitations of the sample, 
when testing a set of regression models, we could not untangle 
the impact of the different coupling measures.  

Our main contribution in this paper is to add new findings 
to the work on software metrics and vulnerabilities, bringing 
the field closer to generalizable and conclusive results. To this 
end, we focus on the Chromium project, which has not been 
studied from the perspective of vulnerabilities. Our correlations 
are both strong and significant. They indicate that architectural 
coupling measures might be used in addition to component-
level metrics to improve vulnerability prediction models. 
although this needs additional exploration. 

The rest of this paper is organized as follows: Section II 
presents related work in three areas; software metrics and 
defects, software metrics and vulnerabilities, and impact of 
architectural coupling on different performance measures. In 
Section III we describe our measures of complexity and 
coupling. The Chromium project is described in Section IV, 
followed by our analysis of Chrome and software 
vulnerabilities in Section V. Our study and potential future 
work are discussed in Section VI. Section VII concludes the 
paper. 

II. RELATED WORK 
For purposes of exposition, we have divided related work 

in three categories: studies relating software metrics and 



defects; studies relating software metrics and vulnerabilities; 
and studies relating architecture coupling measures to different 
performance outcomes.  

A. Software Metrics and Defects 
Numerous studies have looked at the relationship between 

software metrics and defects. We discuss those that use 
measures most closely related to the ones we test. For the 
interested reader [9] and [10] present comprehensive literature 
studies on this topic.  

In [11] Kitchenham et al. found that the number of files 
used by a given file, a coupling measure we label “direct fan 
out,” is associated with defects, although source lines of code, 
a code measure, was a stronger indicator. A similar study by 
Basili et al. [12] found the opposite: that coupling measures 
were better able to predict faults traditional code metrics, such 
as lines of code. In [11], Nagappan and Ball showed that code 
churn, a relative measure of change in a file, is an early 
indicator of defect density. Schröter et al. looked at usage 
dependencies, a form of coupling between components and 
showed that these are good predictors of defects [14]. 
Zimmermann and Nagappan studied network measures of 
coupling, such as density and centrality, for defect prediction 
and found that these perform better than other complexity 
metrics [15]. Steff and Russo then showed that dependency 
changes are strong defect indicators [16].  

From these and other studies, it appears that both coupling 
measures and component-level metrics have proven successful 
in defect prediction. Since vulnerabilities are a special class of 
defects, our working hypothesis is that the coupling measures 
and code metrics should also predict vulnerabilities.  

B. Software Metrics and Vulnerabilities 
While much attention has been paid to defects, less work 

has been done to examine the relationship between coupling 
measures and code metrics and vulnerabilities. However, 
elevated concerns about cyber security have brought more 
attention to this topic. 

Neuhaus et al. studied the Mozilla project and found 
correlation between vulnerabilities and include statements [17]. 
In [18], the same authors used Red Hat to investigate the 
correlation between package dependencies and vulnerabilities. 
Zimmermann et al. also found weak correlation between a set 
of software metrics and vulnerabilities [19]. Nguyen and Tran 
used dependency graphs to look at vulnerabilities in the 
Mozilla Firefox Javascript Engine [20]. Shin et al. investigated 
the same codebase, but focused on complexity metrics [3]. 
Moshtari et al. [5] replicated and extended this work by 
including a more complete set of vulnerabilities and looking at 
more software applications, including Eclipse, Apache Tomcat, 
Firefox, Linux Kernel, and OpenSCADA. They concluded that 
their software (complexity) metrics are good predictors of 
vulnerabilities. Chowdhury and Zulkernine [21] investigated 

the relation between complexity, coupling, cohesion, and 
vulnerabilities in Mozilla Firefox. They were able to predict a 
majority of the files associated with vulnerabilities with 
tolerable false positive rates. Hovsepyan et al. [22] looked at 
design churn as a predictor of vulnerabilities in ten Android 
applications and found a statistically significant relationship 
between design churn and vulnerabilities in some but not all 
applications. 

Morrison et al. [2] did not find any significant relation 
between complexity and vulnerabilities in their study of 
Microsoft products. They suggested that a set of security-
specific metrics might be needed in vulnerability prediction 
models. Shin and Williams [1] similarly found the relationship 
between software complexity and vulnerabilities to be weak, 
and also recommended that new complexity metrics be 
developed for understanding security related defects.  

The studies on software vulnerabilities and various metrics 
provide a mixed picture of the relationship. Most find some 
correlation or predictability, but some don’t and the overall 
findings are weak. Most agree that there is a need to continue 
exploring this topic. We note that studies to date have not 
looked at architectural measures in conjunction with code-level 
complexity metrics. In most cases, coupling is omitted as a 
predictive variable: when included it is limited to direct 
coupling.  

C. Coupling metrics for outcome prediction 
In [23] MacCormack et al. used indirect coupling and 

cyclic coupling to measure modularity and show that modular 
organizations produce modular software products, verifying the 
so-called mirroring hypothesis. Akaikine [8] and Sturtevant [7] 
also studied indirect and cyclic coupling in two separate cases. 
They found significant differences in defect density, defect 
resolution time, and developer productivity as a function of 
coupling measures. 

Baldwin et al. present empirical work using 1,286 software 
releases from 17 different software applications showing that 
most of the software systems contain one large cyclic group of 
interdependent files (high cyclic coupling / high levels of 
indirect coupling), calling it the Core [24]. Heiser et al. [25] 
studied cyclic coupling and indirect coupling (using the 
suggested method in [24]) for organizational transformation 
planning in a development organization. In [26], they used the 
same methodology to develop a strategy to prioritize software 
feature production. 

MacCormack and Sturtevant looked at the impact of 
coupling (indirect and cyclic) on software defect related 
activity [6]. Lagerström et al. used cyclic and indirect coupling 
in a biopharmaceutical case to visualize and measure 
modularity in an enterprise architecture [27]. In subsequent 
work, the same authors showed that it was more costly to 
change software applications with many cyclic dependencies 
than those with few or no cyclic dependencies  [28][29]. 



In summary, software metrics have been successful in 
studies predicting the location of general defects. Work on 
vulnerabilities, however, is not as extensive or as conclusive, 
although there have been promising findings. Moreover, 
coupling measures have not been widely used in vulnerability 
studies, although they known to be correlated with other 
performance measures including defects. In this paper, we aim 
to explore software metrics including architecture coupling 
measures in relation to software vulnerabilities by studying the 
Google Chrome codebase. 

III. MEASURING SOFTWARE COMPONENT AND ARCHITECTURE 
COUPLING METRICS 

As noted in the previous section software metrics have 
been used as predictors of behavior in many studies. We focus 
on the most common and widely used component metrics, as 
well as a set of architectural coupling measures.  

A. Software component metrics 
The most common and also the simplest software metrics is 

measuring source lines of code (SLOC), basically counting the 
number of lines in a software file not including comments. This 
is a measure of size and has been shown to predict defects, cost 
and complexity e.g. [30][31]. 

In 1976 McCabe proposed the cyclomatic complexity 
(MCCABE) measure [32]. It is now one of the most common 
complexity metrics used in software studies [9]. Basically, the 
McCabe metric counts the number alternative execution paths 
that can be followed as a program executes. Alternative paths 
through a procedure result from conditional branching 
statements (if statement, switch/case statement, while loops, et 
cetera).  McCabe scores may be calculated for procedures 
(called functions in C or C++) or class methods. We calcuate 
cyclomatic complexity for all functions and methods within a 
C-file, and then use the maximum figure observed within that 
file. In prior work, McCabe scores have been predictive of 
higher defect rates and lower productivity. 

The comment ratio (COMMR) is a measure of how well 
commented the source code is. It is a comments-to-code ratio 
rather than a pure count of number of comment lines. This 
measure is also frequently used when analyzing software, e.g. 
[33]. However, there is no theoretical prediction as to 
correlation of comments to complexity or defects (i.e. complex 
or defective code may generate many comments or few 
comments). 

Code churn (CHURN) measures the activity within each 
file in terms of number of lines of code being added, modified, 
or deleted. This metric is also frequently used in software 
studies, especially for defect prediction e.g. [13]. Recently it 
has proved predictive in some vulnerability studies e.g. [3].  

B. Architecture coupling measures 
Files in a software can be coupled in different ways: 

directly, indirectly, or cyclically.  

Fig. 1.1 represents the base case, in which the files are not 
coupled to any other files.  In Fig. 1.2, file A is directly 
coupled with files B and C, i.e. B and C depend on A, but A 

does not depend on B and C. Thus A has a direct fan-in (DFI) 
of two and a direct fan-out (DFO) of zero. Modular systems 
theory predicts that files with higher levels of direct coupling 
are more defect prone, given the difficulty assessing the 
potential impact of changing the coupled files on the dependent 
files [34]. Hence we predict that coupled files would be more 
likely to contain vulnerabilities than a similar file with no 
coupling (e.g., as indicated in Fig. 1.1). Support for such a 
relationship is found in empirical studies of software, in which 
the components are source files or classes, and dependencies 
denote use relationships between them [3]. 

Fig. 1.3 depicts a more complex set of relationships 
between software files.  File A is directly coupled to B and is 
indirectly coupled to files C and D (through B). That is, A has 
an indirect fan-in (IndFI) of three and an indirect fan-out 
(IndFO) of zero. In this architecture, changes may propagate 
between files that are not directly connected, via a “chain” of 
dependencies.  While indirect coupling relationships are likely 
to be weaker than direct coupling relationships, the former are 
not as visible to a software developer, hence may be 
overlooked and more likely to produce unintended system 
behaviors. Measures of indirect coupling have been shown to 
predict both the number of defects and the ease (or difficulty) 
with which a software system can be adapted [6][35]. 

Fig. 1.4 illustrates a third pattern of coupling between files, 
called cyclic coupling (CYCLIC) [36][37]. In this architecture, 
A is coupled with C, C is coupled with B, and B is coupled 
with A. These files form a cyclic group – a group of files that 
are mutually interdependent. In contrast to Fig. 1.3, there is no 
ordering of these files, such that one can be changed (or 
developed) before the others.  Rather, files in cyclic groups 
must often be changed concurrently, to ensure that they 
continue to work together effectively. When cyclic groups are 
large, this presents a significant challenge, increasing the 
likelihood of defects [36], and possibly vulnerabilities. We 

 
 

Fig. 1. Different coupling relationships between software files. 
 



measure cyclic coupling as whether a file belongs to the largest 
cyclic group in the architecture or not, as explained in [24].  

The patterns described above represent related, but 
conceptually distinct, patterns of coupling that exist between 
files. We note however, that measures of these different types 
are likely to be correlated. Specifically, files with high levels of 
direct coupling are, all else being equal, more likely to have 
high levels of indirect coupling. And files with high levels of 
indirect coupling are, all else being equal, more likely to be 
members of cyclic groups.  It will be important to be sensitive 
to these issues in our empirical tests. 

Table 1 presents the different types of metrics we use. It 
differentiates between component level metrics (source lines of 
code, cyclomatic complexity, commenting ratio, and code 
churn) and the architectural coupling measures, (direct 
coupling, indirect coupling, and cyclic coupling). 

IV. THE CHROMIUM PROJECT 
The Google Chromium project2 is an open source web-

browser project from which the Chrome browser gets its source 
code. It is mainly written in C++ and is available for multiple 
platforms such as Linux, OS X 10.9 and later, Windows 7 and 
later, and iOS. The earliest version was released late 2008, 
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Fig. 2. A visualization of the Google Chrome 2016 software architecture showing all direct dependencies and sorted by different coupling categories. 
This figure shows the full set of files associated with Chrome, thus a larger number of files than what is used in our analysis. The Silverthread analysis 
tool produced the figure, see [6] for more information. The coupling categories shown in the figure are based on the number of indirect fan-in and fan-
outs, where; the “Shared” group contains files that have high fan-in and low fan-out, “Core” is the largest cyclic group with both high fan-in and fan-out, 
“Peripheral” files have low indirect coupling, the “Control” group has low fan-in and high fan-out, and the “Singletons” have no coupling at all.  

 
 

Table 1. Component-level and architecture coupling metrics used in this 
study. 

Component-level metrics Architecture coupling metrics 

Source Lines of Code (SLOC) Direct Coupling (DFI & DFO) 

Cyclomatic Complexity 
(MCCABE) 

Indirect Coupling (IndFI & IndFO) 

Commenting Ratio (COMMR) Cyclic Coupling (CYCLIC) 

Code Churn (CHURN)  

 



while the first stable non-beta version (5.0.306.0) was released 
in early 2010. Our main focus in this study is the March 31st 
2016 version called 50.0.2661.57.  

A. Chrome metrics and coupling 
We have measured the Chrome software architecture in 

terms of traditional software metrics; source lines of code 
(SLOC), cyclomatic complexity (MCCABE), commenting ratio 
(COMMR), and the amount of activity (CHURN) spent in each 
file to fix “regular” defects (not vulnerabilities). We also 
calculated the different coupling measures; direct (DFI & 
DFO), indirect (IndFI & IndFO), and cyclic (CYCLIC). All 
metrics and the architecture visualization (Fig. 2) were derived 
using a commercial analysis tool from Silverthread3 and each 
metric is explained in section III. All variables are measured as 
positive integers, except COMMR which is a positive rational 
number and CYCLIC which is a binary (1/0) number.  

The binary cyclic coupling metric indicates whether a file 
belongs to the largest cluster of cyclically dependent files (1) or 
not (0). The largest cyclic group is labeled the Core in Fig. 2: it 
contains 44% of the files in the codebase. The next largest 
cyclic group is much smaller containing only 118 files. How 
this cluster is derived is explained in detail in [24]. In Table 2 all 
metrics are presented with their real numbers. Due to the nature 
of our data all variables (except the binary CYCLIC variable) 
are converted to their natural logarithms (LN) in calculating 
correlations (Table 4) and in our regression models (Table 5). 

Our dependent variable (VULN, 1/0) has a value of one if 
the file in question was changed  to fix a defect classified as a 
vulnerability, and zero otherwise. 

In an attempt to untangle the coupling measures relation to 
vulnerabilities we have also used direct coupling within the 
main cyclic group (DFIxC & DFOxC) and outside of this 
group (DFIxNoC & DFOxNoC).  

B. Chrome vulnerabilities 
We collected the Google Chrome related vulnerabilities 

using the bug Tracker system4 used by the developers in the 
Chromium project. In Tracker, bugs classified as 
vulnerabilities are registered with both their external CVE5 ID 
and the internally used bug ID. (CVE, which stands for 
Common Vulnerabilities and Exposures, is a published list of 
security vulnerabilities that provides unique IDs for publicly 
known security issues. Some CVEs are associated with 
multiple internally defined bugs.)  

We then used the internal bug IDs to track the files in the 
Chrome architecture that were changed in order to fix each 
vulnerability-classified bug. We did this by extracting the 
commits that specified fixing a vulnerability bug that was 
tagged with the internal bug ID. 
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As noted in [38] many CVEs are associated with external 
projects, thus not identifiable using the Chrome commits. 
Nguyen and Massacci claim that two thirds of the Chrome 
vulnerabilities are unverifiable due to this issue, which seems 
to be in line with our findings. We found 1,063 unique CVEs 
(on April 14th, 2016) associated with 1,070 bugs in the Chrome 
bug Tracker. Going through the commits gave us 407 bugs 
associated with 390 CVEs, which were fixed by patching 965 
C- & header-files.  

The architecture displayed in Fig. 2 contains the complete 
Google Chrome architecture as of March 31st, 2016, including 
both C-files and header files. These in turn were associated 
with 288 CVEs corresponding to 294 internal vulnerability 
bugs fixed by modifying 621 files. At this point, we excluded 
the header-files since these come hand in hand with the C-files 
and are thus associated with the same bugs and CVEs. In doing 
so we found only nine non-redundant CVEs and vulnerability 
bugs, and decreased the total number of files for analysis by 
32,418 files.  

The 2016 Chrome architecture contains a directory called 
“third_party/WebKit” which is a recently (2015) merged set of 

Table 2. Descriptive statistics for 2016 Google Chrome metrics. 
2016 / n = 

16,268 Max Min Mean Median St.dev 

VULN 1 0 0.02 0 0.13 

SLOC 69,702 0 196.18 79 854.61 

MCCABE 868 0 9.13 5 20.13 

COMMR 39 0 0.33 0.17 0.88 

CHURN 634,536 1 883.40 249 5,734 

DFI 9,381 1 6.09 2 76.97 

DFO 355 1 15.69 12 16.05 

IndFI 49,570 1 22,996 23 24,705 

IndFO 29,949 1 27,227 29,314 7,554 

CYCLIC 1 0 0.44 0 0.50 

 

Table 3. CVE and Chrome file data leading to our analysis set of files. 
 CVEs Bugs Vuln. files Total files 

Total contained in 
tracker 1,063 1,070 Not known Not appl. 

C- & h-files fixed by 
Google commits 390 407 965 Not appl. 

Found for March 
2016 architecture 288 294 621 63,847 

Subtract: 

h-files 9 9 223 32,418 

third_party/WebKit 94 95 108 3,015 

Missing data 0 0 0 12,146 

Final: 

Analysis sample 185 190 290 16,268 

 



files from another vendor (Apple). From an architectural 
coupling perspective this directory, and its recent bulk merge, 
creates a situation where most of the directory is not a part of 
the overall architectural structure. It has its own special 
structure that is not representative of the rest of the system. To 
avoid mixing systems with different histories and structure, we 
excluded this directory as well. Ninety-four CVEs were 
associated with this directory. Finally, one of our key variables, 
code churn (CHURN), had missing data for many of the C-
files. Dropping these files did not reduce the CVE count, but 
did reduce the number of files by 12,146 to 16,268.  

In summary, our final dataset contains 185 unique CVEs 
associated with 190 vulnerability bugs fixed in patches of 290 
C-files, and the total C-file set to compare with is 16,268. The 
numbers for this data cleanse are detailed in Table 3. 

V. CHROME METRICS AND VULNERABLE FILES 
In this section we explore the relationship between software 

component metrics and different architecture coupling metrics 
in vulnerability-associated files of the Google Chrome 
architecture from 2016.  

A. Findings 
 Table 4 presents a correlation matrix for the variables we 

study. As indicated, we have taken the natural logarithm of 
each variable except the binary variable CYCLIC. From the 
table, we can see that CHURN is highly correlated with source 
lines of code (SLOC), cyclomatic complexity (MCCABE), and 
direct fan-out (DFO). That is, files that are associated with 
many changes in general (excluding vulnerability bug changes) 
also have more source lines of code, higher cyclomatic 

complexity, and a higher number of direct fan-out 
dependencies. Further, we see that all of our software metrics, 
including the different types of coupling, are significantly 
correlated with vulnerability bug files (VULN). Namely, files 
that have been changed a lot, that have a low comment ratio, 
many source lines of code, high cyclomatic complexity, and 
high coupling are all associated with vulnerability bugs.  

We find that almost 70% of the vulnerable files can be 
located in the Cyclic group, compared to non-cyclically 
coupled files which only account for slightly less than 30% of 
the vulnerabilities (cf. Fig. 3). For the non-vulnerable files the 
relation is the opposite, but not as strong.   

Unfortunately, due to the high correlation between 
variables we can’t include them all in the same regression 
model. For the metrics code churn, source lines of code, 
cyclomatic complexity, and direct fan-out we basically need to 

Table 4. Correlation table for vulnerability bugs and complexity metrics in the 2016 Google Chrome software architecture. 

 

VULN SLOC MCCABE COMMR CHURN DFI DFO IndFI IndFO CYCLIC DFIxC DFOxC DFIxNoC DFOxNoC 

VULN 1 

            
  

SLOC .135* 1 

 	 	         
  

MCCABE .110* .804* 1 

	 	         
  

COMMR -.021* -.299* -.199* 1 

	         
  

CHURN .180* .801* .675* -.103* 1 

        
  

DFI .084* .203* .128* -.062* .195* 1 

       
  

DFO .140* .707* .622* -.248* .656* .136* 1 

      
  

IndFI .063* .144* .114* -.022* .134* .603* .149* 1 

     
  

IndFO .026* .384* .400* -.226* .277* .043* .577* .048* 1 

    
  

CYCLIC .066* .202* .188* -.085* .183* .508* .245* .929* .243* 1 

   
  

DFIxC .088* .218* .177* -.073* .219* .816* .203* .718* .188* .774* 1 

  
  

DFOxC .115* .338* .296* -.109* .333* .480* .437* .859* .225* .925* .725* 1 

 
  

DFIxNoC -0.014 -.042* -.094* .023* -.059* .222* -.125* -.248* -.248* -.494* -.382* -.457* 1   

DFOxNoC -.022* .155* .138* -.065* .123* -.415* .263* -.813* .181* -.813* -.629* -.753* .399** 1 

* Correlation is significant at the 0.01 level, bold numbers indicate high correlation problematic for regression model 

 

 
Fig. 3. Vulnerability associated files in the Cyclic and Non-cyclic groups. 

 



choose one to include in the regression. Code churn has been 
proven before to be a good predictor (see e.g. Shin et al., 2011) 
and it also has the highest correlation with our VULN variable. 
Therefore, we chose to include CHURN in our regression 
models and not the others.  

Model 1 in our regression contains three traditional 
software metrics used in defect and vulnerability prediction; 
code churn, comment ratio, and direct fan-in. This is a good 
starting model since these all have been used successfully 
before. As can be seen in Table 5 all three variables significantly 
contribute to our model. Since we want to explore coupling 
further, Model 2 tests whether indirect fan-in (IndFI) and 
indirect fan-out (IndFO) add any explanatory power over DFI. 
Model 3 looks at cyclic coupling (CYCLIC) instead of IndFI 
and IndFO. So far, we can see that the indirect coupling 
metrics perform better together with code churn and 
commenting ratio compared to direct and cyclic coupling. This 
is not surprising since it is a more coarse grained metric that 
includes more information than both cyclic and direct coupling. 

In Model 4 and 5 we test if direct fan-in and fan-out within 
the main cyclic group and outside this group adds any 
explanatory power. Again, due to the correlation among the 
measures, we have to divide our direct coupling measures from 
each other. DFI within the cyclic files (DFIxCyc) is tested in 
Model 4 and DFO within the cyclic files (DFOxCyc) in Model 
5. Our best model seems to be the one including code churn, 
comment ratio, direct fan-out within the cyclic group 
(DFOxCyc) together with direct fan-in within the non-cyclic 
group (DFIxNoCyc), that is Model 5. Meaning that files that 
are cyclically coupled together in a large co-dependent network 
with a high degree of direct fan-out coupling and files that are 
not in this large cyclic group but have a high degree of direct 
fan-in coupling (the group in Fig. 2 called Shared), and with 

many changes in the past and a low commenting ratio – are 
more likely to contain vulnerabilities. 

Our, in general, rather low R-squares are based on the fact 
that we have 16,268 files and only 289 vulnerable files (it is 
basically like looking for a needle in a haystack). The R-
squares in our regression models show rather small differences, 
so it is difficult to conclude the impact of indirect and cyclic 
coupling. However, the indication is that these perform better 
than direct coupling on its own. 

B. Use of different sets of data available 
As mentioned in the data section our dataset only represents 

a subset of the files in the 2016 March release of Google 
Chrome. We have run all analyses on the different subsets (cf. 
Table 3) as a robustness check, there are some variance but the 
main story looks similar.  

One could argue that vulnerabilities from e.g. 2010 can’t be 
analyzed based on an architecture from 2016. As a robustness 
check we have also looked at the 2010 architecture (the first 
stable release of Chrome). We also divided our vulnerability 
data in two equally large sets and looking at the older half of 
vulnerabilities for the 2010 architecture, and the younger half 
of vulnerabilities for the 2016 architecture.  

The correlations and regressions with the 2010 and 2016 
architecture and all vulnerability bugs, as well as the division 
of bugs between 2010 and 2016 look fairly similar. We did 
lose some power when dividing the bug dataset between the 
architectures, this had us chose the architecture associated with 
most vulnerabilities, that is the 2016 architecture and all 
vulnerability related bugs.  

Table 5. Binary logistic regression for vulnerability bug files in 2016 Chrome architecture 
VULN Model 1 Model 2 Model 3 Model 4 Model 5 

COMMR -1.003** -.880* -.878* -.993** -.714* 

CHURN .861*** .874*** .876*** .859*** .805*** 

DFI .215*** 
    

IndFI 
 

.063*** 
   

IndFO 
 

.004 
   

CYCLIC 
  

.568*** 
  

DFIxC 
   

.216*** 
 

DFOxC 
    

.286*** 

DFIxNoC 
   

.137 .381** 

 
Constant -9.683*** -9.999*** -9.869*** -9.647*** -9.710*** 

Chi-square 531.038*** 538.206*** 534.718*** 531.613*** 553.748*** 

Cox&Snell R2 0.032 0.033 0.032 0.032 0.033 

Nagelkerke R2 0.197 0.199 0.198 0.197 0.205 

n=16,268; * p<0.05, ** p<0.01, and ***p<0.001 

 
 



If we compare Table 2 (2016 Chrome stats.) and Table 6 
(2010 Chrome stats.) we can see that some of the software 
metrics have changed, e.g. the comment ratio and direct fan-in 
and fan-out. Although the maximum values have significant 
increases, the differences when considering the means or 
medians are not that large. For cyclomatic complexity and code 
churn the means actually went down between 2010 and 2016. 
The main differences can be seen in the coupling measures for 
indirect fan-in and fan-out, where the means increased from 
3,000-4,000 to 23,000-27,000. This is related to the 
considerable increase in size of the main cyclic group of 
dependent files, the “Core” in 2010 contained 4,049 files and 
in 2016 it had grown to 24,258 files. 

Regarding the visualization of the architecture seen in Fig. 4 
one can conclude that the 2010 and 2016 architectures look 
very similar in terms of coupling. For both architectures we 
have a large “Core” (that is, a large cyclic group where 
everyone depends on one another). In 2010 the Core was 33% 
of the architecture and in 2016 38%, thus even though this 
group of files grew considerably in number, it grew in 
proportion to the rest of the codebase. Both architectures also 
have large Control groups (files with high indirect fan-out and 
low indirect fan-in), and small groups of Shared files (files 
with high indirect fan-in and low indirect fan-out), Peripheral 
files (low indirect coupling), and Singletons (no coupling). 
This architectural similarity we interpret as an indication that 
our coupling measures are comparable with vulnerabilities for 
either architecture as long as the file associated with the 
vulnerability bug is present in the architecture.  

VI. DISCUSSION AND FUTURE WORK 

A. Our study 
Our work is the first study to use the Google Chromium 

project to explore the relationship between software metrics 
and vulnerabilities. As such it adds evidence to the total body 
of knowledge on this topic, which is still fairly unexplored 
(especially in comparison with the relationship between 
software metrics and generic defects).  

 The main weakness in our study we believe is that, 
because of their high level of collinearity, the different 
coupling measures have essentially equal predictive power in 
our regressions. The component-level metrics—source lines of 
code, code churn, cyclomatic complexity—are also highly 
correlated with each other and with direct fan-out. For this 
reason, we are unable (in this codebase) to tease apart the 
separate contribution of conceptually distinct, but empirically 
indistinguishable, types of complexity on vulnerability.  
Hopefully, we (or others) can explore these questions further 
using other software architectures in order to better understand 
the linkages between complexity, coupling and vulnerabilities.  

We are not alone in having difficulty determining the 
relationship between software metrics and vulnerabilities. As 
reported in the section on related work, other studies also 
report weak power or non-statistically significant variables e.g. 
[1][2]. Prediction models report either too many false positives 
or low precision. Thus this seems to be a generally difficult 
area to research.  

Statistical problems, like collinearity, make it difficult to 
identify the causal mechanisms linking complexity and 
coupling with vulnerabilities. However, most studies are able 
to report valid correlations. Thus a growing body of collective 
evidence shows that variables like size, complexity, code 
churn, and coupling are associated with and thus likely to 
increase the incidence of vulnerabilities. The correlations 
reported in Table 4 and the regressions in Table 5 indicate a 
significant relation between vulnerable files, traditional 
software metrics and coupling measures, hence add to this 
mounting body of evidence. However, future work is needed.  

B. Other studies 
Many studies present vulnerability prediction models with 

a large set of variables. However, very few describe the details 
of the variables included. What variables do actually contribute 

Table 6. Descriptive statistics for complexity metrics in Google Chrome 
2010. 

2010 / n = 
6,333 Max Min Mean Median St.dev 

VULN 1 0 0.02 0 0.15 

SLOC 72,847 0 300.72 121 1,554.97 

MCCABE 700 0 10.75 5 25.15 

COMMR 163 0 0.44 0.23 2.24 

CHURN 213,099 10 2,096.52 846 6,248.25 

DFI 2,281 1 6.03 2 36.19 

DFO 189 1 14.23 11 13.33 

IndFI 8,649 1 3,204.69 9 4,146.90 

IndFO 5,125 1 4,349.66 4,916 1,589.18 

CYCLIC 1 0 0.36 0 0.48 

 
 

Fig. 4. Google Chrome 2010 software architecture showing a large cyclic 
cluster (here called the core) and other similar features as the 2016 version. 

 



to the prediction model and which do not? This is especially 
interesting for architecture coupling and component 
complexity, since some of the papers we have studied report 
these as good predictors e.g. [3] while other say it shows weak 
or no relation to vulnerabilities e.g. [1][2]. In general it would 
have been interesting to get this information from all studies, in 
e.g. the form of a correlation table or detailed prediction 
models.  

C. Future work 
As indicated, our findings on the relationship between of 

software metrics and vulnerabilities are mixed. Thus, future 
work is very much needed. First, we believe doing more 
studies in general on this topic is necessary. So far, there are 
few studies and thus few software systems have been 
investigated. For generalizability, more work is needed, 
including not only open source projects but also commercial 
software. Secondly, we have not found any studies that 
compare general defects and vulnerabilities using the same 
data set. We would like to be able to say what the main 
differences between a vulnerability bug and regular bug are in 
terms of complexity, size, code churn, commenting, and 
coupling. This could help us build more accurate prediction 
models.  

VII. CONCLUSIONS 
Managing software vulnerabilities has become one of the 

top issues in today’s society. Previous research on software 
defects, and to some extent vulnerabilities, showed that 
component level metrics (e.g. complexity and code churn) and 
architecture measures (e.g. coupling) can be good predictors of 
where problems are likely to occur. In this study we studied the 
Google Chromium project and found that all our metrics, both 
component and architecture level, are highly correlated with 
files that have been patched in order to fix vulnerability 
classified bugs. We also set out to test whether different 
software architecture coupling measures were correlated with a 
higher incidence of vulnerabilities. In our tests we found it 
difficult to conclusively distinguish between our different 
measures of coupling, but the indication is that indirect 
coupling performs better than direct coupling, and the best 
model is a combination of cyclic coupling and direct coupling. 
We strongly believe that the indications in our study together 
with other related research show that software metrics of 
different kinds can be very helpful in locating vulnerabilities, 
but that more work is needed. 
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