
Exploring the Relationship between Architecture
Coupling and Software Vulnerabilities: A Google
Chrome Case

Citation
Lagerstrom, Robert, Carliss Y. Baldwin, Alan MacCormack, Dan Sturtevant, and Lee Doolan.
"Exploring the Relationship between Architecture Coupling and Software Vulnerabilities: A
Google Chrome Case." Harvard Business School Working Paper, No. 17-078, February 2017.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:30838136

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:30838136
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Exploring%20the%20Relationship%20between%20Architecture%20Coupling%20and%20Software%20Vulnerabilities:%20A%20Google%20Chrome%20Case&community=1/3345929&collection=1/3345930&owningCollection1/3345930&harvardAuthors=e3e7812b1f4eb964d04a03796b91dfff&department
https://dash.harvard.edu/pages/accessibility

Exploring the Relationship between
Architecture Coupling and Software
Vulnerabilities: A Google Chrome Case

Robert Lagerström
Alan MacCormack
Lee Doolan

Carliss Baldwin
Dan Sturtevant

Working Paper 17-078

Working Paper 17-078

Copyright © 2017 by Robert Lagerström, Carliss Baldwin, Alan MacCormack, Dan Sturtevant and Lee Doolan

Working papers are in draft form. This working paper is distributed for purposes of comment and discussion only. It may
not be reproduced without permission of the copyright holder. Copies of working papers are available from the author.

Exploring the Relationship between
Architecture Coupling and Software
Vulnerabilities: A Google Chrome Case

Robert Lagerström
KTH Royal Institute of Technology

Alan MacCormack
Harvard Business School

Lee Doolan
Silverthread Inc.

Carliss Baldwin
Harvard Business School

Dan Sturtevant
Silverthread Inc.

Exploring the relationship between architecture
coupling and software vulnerabilities

A Google Chrome case

Robert Lagerström1,2
1KTH Royal Institute of

Technology
Stockholm, Sweden

Carliss Baldwin2 & Alan
MacCormack2

2Harvard Business School
Boston, USA

Dan Sturtevant3 & Lee Doolan3
3Silverthread Inc.

Boston, USA

Abstract—Employing software metrics, such as size and
complexity, for predicting defects has been given a lot of
attention over the years and proven very useful. However, the
few studies looking at software architecture and vulnerabilities
are limited in scope and findings. We explore the relationship
between software vulnerabilities and component metrics (like
code churn and cyclomatic complexity), as well as architecture
coupling metrics (direct, indirect, and cyclic coupling). Our case
is based on the Google Chromium project, an open source
project that has not been studied for this topic yet. Our findings
show a strong relationship between vulnerabilities and both
component level metrics and architecture coupling metrics.
Unfortunately, the effects of different types of coupling are
somewhat hard to distinguish.

Keywords—software, architecture, complexity, coupling,
vulnerabilities

I. INTRODUCTION
Cyber security incidents and software vulnerabilities cause

big problems with increasing societal impact. Both individual
home users and large corporations face similar problems with
exploited software vulnerabilities leading to loss in
confidentiality, integrity, and availability, and at the end of the
day - time and money. Many seem to agree that software
architecture complexity is a key issue when it comes to
software vulnerabilities. Quoting a well-cited blog post by
Bruce Schneier1 “The worst enemy of security is complexity”.
The basic argument is that poorly designed and maintained
software systems tend to embed highly complex code and
architectures, which in turn increase the likely occurrence of
vulnerabilities waiting to be exploited. However, few studies
have explored the relationship of complexity to vulnerabilities
and the findings to this point are inconclusive [1][2] and far
from generalizable.

Some existing studies of software vulnerabilities include
direct coupling as a predictive variable, e.g. [3][4][5].
However, to our knowledge, other coupling measures such as
indirect coupling and cyclic coupling have not been tested in
relation to vulnerabilities. These measures have been shown to
affect other software performance outcomes such as defects

1

 www.schneier.com/essays/archives/1999/11/a_plea_for_simplicit.html

e.g. [6], productivity e.g. [7], and maintenance cost e.g. [8].
Our theory is that this is also the case for software
vulnerabilities.

In this paper, we measure (and visualize) the Google
Chrome software architecture and explore the correlation
between software vulnerabilities and component-level metrics
and different architecture coupling measures. Our component
metrics include: code churn, source lines of code, cyclomatic
complexity, and comment ratio. Our coupling measures fall
into three categories: direct coupling (fan-in & fan-out),
indirect coupling (fan-in & fan-out), and cyclic coupling.
Studying 16,268 C-files of the March 2016 Chrome release and
linking them to 290 files that were changed in order to fix 185
vulnerabilities, we found that both component metrics and the
different coupling measures are significantly correlated with
vulnerabilities. However, due to limitations of the sample,
when testing a set of regression models, we could not untangle
the impact of the different coupling measures.

Our main contribution in this paper is to add new findings
to the work on software metrics and vulnerabilities, bringing
the field closer to generalizable and conclusive results. To this
end, we focus on the Chromium project, which has not been
studied from the perspective of vulnerabilities. Our correlations
are both strong and significant. They indicate that architectural
coupling measures might be used in addition to component-
level metrics to improve vulnerability prediction models.
although this needs additional exploration.

The rest of this paper is organized as follows: Section II
presents related work in three areas; software metrics and
defects, software metrics and vulnerabilities, and impact of
architectural coupling on different performance measures. In
Section III we describe our measures of complexity and
coupling. The Chromium project is described in Section IV,
followed by our analysis of Chrome and software
vulnerabilities in Section V. Our study and potential future
work are discussed in Section VI. Section VII concludes the
paper.

II. RELATED WORK
For purposes of exposition, we have divided related work

in three categories: studies relating software metrics and

defects; studies relating software metrics and vulnerabilities;
and studies relating architecture coupling measures to different
performance outcomes.

A. Software Metrics and Defects
Numerous studies have looked at the relationship between

software metrics and defects. We discuss those that use
measures most closely related to the ones we test. For the
interested reader [9] and [10] present comprehensive literature
studies on this topic.

In [11] Kitchenham et al. found that the number of files
used by a given file, a coupling measure we label “direct fan
out,” is associated with defects, although source lines of code,
a code measure, was a stronger indicator. A similar study by
Basili et al. [12] found the opposite: that coupling measures
were better able to predict faults traditional code metrics, such
as lines of code. In [11], Nagappan and Ball showed that code
churn, a relative measure of change in a file, is an early
indicator of defect density. Schröter et al. looked at usage
dependencies, a form of coupling between components and
showed that these are good predictors of defects [14].
Zimmermann and Nagappan studied network measures of
coupling, such as density and centrality, for defect prediction
and found that these perform better than other complexity
metrics [15]. Steff and Russo then showed that dependency
changes are strong defect indicators [16].

From these and other studies, it appears that both coupling
measures and component-level metrics have proven successful
in defect prediction. Since vulnerabilities are a special class of
defects, our working hypothesis is that the coupling measures
and code metrics should also predict vulnerabilities.

B. Software Metrics and Vulnerabilities
While much attention has been paid to defects, less work

has been done to examine the relationship between coupling
measures and code metrics and vulnerabilities. However,
elevated concerns about cyber security have brought more
attention to this topic.

Neuhaus et al. studied the Mozilla project and found
correlation between vulnerabilities and include statements [17].
In [18], the same authors used Red Hat to investigate the
correlation between package dependencies and vulnerabilities.
Zimmermann et al. also found weak correlation between a set
of software metrics and vulnerabilities [19]. Nguyen and Tran
used dependency graphs to look at vulnerabilities in the
Mozilla Firefox Javascript Engine [20]. Shin et al. investigated
the same codebase, but focused on complexity metrics [3].
Moshtari et al. [5] replicated and extended this work by
including a more complete set of vulnerabilities and looking at
more software applications, including Eclipse, Apache Tomcat,
Firefox, Linux Kernel, and OpenSCADA. They concluded that
their software (complexity) metrics are good predictors of
vulnerabilities. Chowdhury and Zulkernine [21] investigated

the relation between complexity, coupling, cohesion, and
vulnerabilities in Mozilla Firefox. They were able to predict a
majority of the files associated with vulnerabilities with
tolerable false positive rates. Hovsepyan et al. [22] looked at
design churn as a predictor of vulnerabilities in ten Android
applications and found a statistically significant relationship
between design churn and vulnerabilities in some but not all
applications.

Morrison et al. [2] did not find any significant relation
between complexity and vulnerabilities in their study of
Microsoft products. They suggested that a set of security-
specific metrics might be needed in vulnerability prediction
models. Shin and Williams [1] similarly found the relationship
between software complexity and vulnerabilities to be weak,
and also recommended that new complexity metrics be
developed for understanding security related defects.

The studies on software vulnerabilities and various metrics
provide a mixed picture of the relationship. Most find some
correlation or predictability, but some don’t and the overall
findings are weak. Most agree that there is a need to continue
exploring this topic. We note that studies to date have not
looked at architectural measures in conjunction with code-level
complexity metrics. In most cases, coupling is omitted as a
predictive variable: when included it is limited to direct
coupling.

C. Coupling metrics for outcome prediction
In [23] MacCormack et al. used indirect coupling and

cyclic coupling to measure modularity and show that modular
organizations produce modular software products, verifying the
so-called mirroring hypothesis. Akaikine [8] and Sturtevant [7]
also studied indirect and cyclic coupling in two separate cases.
They found significant differences in defect density, defect
resolution time, and developer productivity as a function of
coupling measures.

Baldwin et al. present empirical work using 1,286 software
releases from 17 different software applications showing that
most of the software systems contain one large cyclic group of
interdependent files (high cyclic coupling / high levels of
indirect coupling), calling it the Core [24]. Heiser et al. [25]
studied cyclic coupling and indirect coupling (using the
suggested method in [24]) for organizational transformation
planning in a development organization. In [26], they used the
same methodology to develop a strategy to prioritize software
feature production.

MacCormack and Sturtevant looked at the impact of
coupling (indirect and cyclic) on software defect related
activity [6]. Lagerström et al. used cyclic and indirect coupling
in a biopharmaceutical case to visualize and measure
modularity in an enterprise architecture [27]. In subsequent
work, the same authors showed that it was more costly to
change software applications with many cyclic dependencies
than those with few or no cyclic dependencies [28][29].

In summary, software metrics have been successful in
studies predicting the location of general defects. Work on
vulnerabilities, however, is not as extensive or as conclusive,
although there have been promising findings. Moreover,
coupling measures have not been widely used in vulnerability
studies, although they known to be correlated with other
performance measures including defects. In this paper, we aim
to explore software metrics including architecture coupling
measures in relation to software vulnerabilities by studying the
Google Chrome codebase.

III. MEASURING SOFTWARE COMPONENT AND ARCHITECTURE
COUPLING METRICS

As noted in the previous section software metrics have
been used as predictors of behavior in many studies. We focus
on the most common and widely used component metrics, as
well as a set of architectural coupling measures.

A. Software component metrics
The most common and also the simplest software metrics is

measuring source lines of code (SLOC), basically counting the
number of lines in a software file not including comments. This
is a measure of size and has been shown to predict defects, cost
and complexity e.g. [30][31].

In 1976 McCabe proposed the cyclomatic complexity
(MCCABE) measure [32]. It is now one of the most common
complexity metrics used in software studies [9]. Basically, the
McCabe metric counts the number alternative execution paths
that can be followed as a program executes. Alternative paths
through a procedure result from conditional branching
statements (if statement, switch/case statement, while loops, et
cetera). McCabe scores may be calculated for procedures
(called functions in C or C++) or class methods. We calcuate
cyclomatic complexity for all functions and methods within a
C-file, and then use the maximum figure observed within that
file. In prior work, McCabe scores have been predictive of
higher defect rates and lower productivity.

The comment ratio (COMMR) is a measure of how well
commented the source code is. It is a comments-to-code ratio
rather than a pure count of number of comment lines. This
measure is also frequently used when analyzing software, e.g.
[33]. However, there is no theoretical prediction as to
correlation of comments to complexity or defects (i.e. complex
or defective code may generate many comments or few
comments).

Code churn (CHURN) measures the activity within each
file in terms of number of lines of code being added, modified,
or deleted. This metric is also frequently used in software
studies, especially for defect prediction e.g. [13]. Recently it
has proved predictive in some vulnerability studies e.g. [3].

B. Architecture coupling measures
Files in a software can be coupled in different ways:

directly, indirectly, or cyclically.

Fig. 1.1 represents the base case, in which the files are not
coupled to any other files. In Fig. 1.2, file A is directly
coupled with files B and C, i.e. B and C depend on A, but A

does not depend on B and C. Thus A has a direct fan-in (DFI)
of two and a direct fan-out (DFO) of zero. Modular systems
theory predicts that files with higher levels of direct coupling
are more defect prone, given the difficulty assessing the
potential impact of changing the coupled files on the dependent
files [34]. Hence we predict that coupled files would be more
likely to contain vulnerabilities than a similar file with no
coupling (e.g., as indicated in Fig. 1.1). Support for such a
relationship is found in empirical studies of software, in which
the components are source files or classes, and dependencies
denote use relationships between them [3].

Fig. 1.3 depicts a more complex set of relationships
between software files. File A is directly coupled to B and is
indirectly coupled to files C and D (through B). That is, A has
an indirect fan-in (IndFI) of three and an indirect fan-out
(IndFO) of zero. In this architecture, changes may propagate
between files that are not directly connected, via a “chain” of
dependencies. While indirect coupling relationships are likely
to be weaker than direct coupling relationships, the former are
not as visible to a software developer, hence may be
overlooked and more likely to produce unintended system
behaviors. Measures of indirect coupling have been shown to
predict both the number of defects and the ease (or difficulty)
with which a software system can be adapted [6][35].

Fig. 1.4 illustrates a third pattern of coupling between files,
called cyclic coupling (CYCLIC) [36][37]. In this architecture,
A is coupled with C, C is coupled with B, and B is coupled
with A. These files form a cyclic group – a group of files that
are mutually interdependent. In contrast to Fig. 1.3, there is no
ordering of these files, such that one can be changed (or
developed) before the others. Rather, files in cyclic groups
must often be changed concurrently, to ensure that they
continue to work together effectively. When cyclic groups are
large, this presents a significant challenge, increasing the
likelihood of defects [36], and possibly vulnerabilities. We

Fig. 1. Different coupling relationships between software files.

measure cyclic coupling as whether a file belongs to the largest
cyclic group in the architecture or not, as explained in [24].

The patterns described above represent related, but
conceptually distinct, patterns of coupling that exist between
files. We note however, that measures of these different types
are likely to be correlated. Specifically, files with high levels of
direct coupling are, all else being equal, more likely to have
high levels of indirect coupling. And files with high levels of
indirect coupling are, all else being equal, more likely to be
members of cyclic groups. It will be important to be sensitive
to these issues in our empirical tests.

Table 1 presents the different types of metrics we use. It
differentiates between component level metrics (source lines of
code, cyclomatic complexity, commenting ratio, and code
churn) and the architectural coupling measures, (direct
coupling, indirect coupling, and cyclic coupling).

IV. THE CHROMIUM PROJECT
The Google Chromium project2 is an open source web-

browser project from which the Chrome browser gets its source
code. It is mainly written in C++ and is available for multiple
platforms such as Linux, OS X 10.9 and later, Windows 7 and
later, and iOS. The earliest version was released late 2008,

2 https://www.chromium.org

Fig. 2. A visualization of the Google Chrome 2016 software architecture showing all direct dependencies and sorted by different coupling categories.
This figure shows the full set of files associated with Chrome, thus a larger number of files than what is used in our analysis. The Silverthread analysis
tool produced the figure, see [6] for more information. The coupling categories shown in the figure are based on the number of indirect fan-in and fan-
outs, where; the “Shared” group contains files that have high fan-in and low fan-out, “Core” is the largest cyclic group with both high fan-in and fan-out,
“Peripheral” files have low indirect coupling, the “Control” group has low fan-in and high fan-out, and the “Singletons” have no coupling at all.

Table 1. Component-level and architecture coupling metrics used in this
study.

Component-level metrics Architecture coupling metrics

Source Lines of Code (SLOC) Direct Coupling (DFI & DFO)

Cyclomatic Complexity
(MCCABE)

Indirect Coupling (IndFI & IndFO)

Commenting Ratio (COMMR) Cyclic Coupling (CYCLIC)

Code Churn (CHURN)

while the first stable non-beta version (5.0.306.0) was released
in early 2010. Our main focus in this study is the March 31st
2016 version called 50.0.2661.57.

A. Chrome metrics and coupling
We have measured the Chrome software architecture in

terms of traditional software metrics; source lines of code
(SLOC), cyclomatic complexity (MCCABE), commenting ratio
(COMMR), and the amount of activity (CHURN) spent in each
file to fix “regular” defects (not vulnerabilities). We also
calculated the different coupling measures; direct (DFI &
DFO), indirect (IndFI & IndFO), and cyclic (CYCLIC). All
metrics and the architecture visualization (Fig. 2) were derived
using a commercial analysis tool from Silverthread3 and each
metric is explained in section III. All variables are measured as
positive integers, except COMMR which is a positive rational
number and CYCLIC which is a binary (1/0) number.

The binary cyclic coupling metric indicates whether a file
belongs to the largest cluster of cyclically dependent files (1) or
not (0). The largest cyclic group is labeled the Core in Fig. 2: it
contains 44% of the files in the codebase. The next largest
cyclic group is much smaller containing only 118 files. How
this cluster is derived is explained in detail in [24]. In Table 2 all
metrics are presented with their real numbers. Due to the nature
of our data all variables (except the binary CYCLIC variable)
are converted to their natural logarithms (LN) in calculating
correlations (Table 4) and in our regression models (Table 5).

Our dependent variable (VULN, 1/0) has a value of one if
the file in question was changed to fix a defect classified as a
vulnerability, and zero otherwise.

In an attempt to untangle the coupling measures relation to
vulnerabilities we have also used direct coupling within the
main cyclic group (DFIxC & DFOxC) and outside of this
group (DFIxNoC & DFOxNoC).

B. Chrome vulnerabilities
We collected the Google Chrome related vulnerabilities

using the bug Tracker system4 used by the developers in the
Chromium project. In Tracker, bugs classified as
vulnerabilities are registered with both their external CVE5 ID
and the internally used bug ID. (CVE, which stands for
Common Vulnerabilities and Exposures, is a published list of
security vulnerabilities that provides unique IDs for publicly
known security issues. Some CVEs are associated with
multiple internally defined bugs.)

We then used the internal bug IDs to track the files in the
Chrome architecture that were changed in order to fix each
vulnerability-classified bug. We did this by extracting the
commits that specified fixing a vulnerability bug that was
tagged with the internal bug ID.

3 https://silverthreadinc.com

4 http://bugs.chromium.org/p/chromium/issues/
5 https://cve.mitre.org/

As noted in [38] many CVEs are associated with external
projects, thus not identifiable using the Chrome commits.
Nguyen and Massacci claim that two thirds of the Chrome
vulnerabilities are unverifiable due to this issue, which seems
to be in line with our findings. We found 1,063 unique CVEs
(on April 14th, 2016) associated with 1,070 bugs in the Chrome
bug Tracker. Going through the commits gave us 407 bugs
associated with 390 CVEs, which were fixed by patching 965
C- & header-files.

The architecture displayed in Fig. 2 contains the complete
Google Chrome architecture as of March 31st, 2016, including
both C-files and header files. These in turn were associated
with 288 CVEs corresponding to 294 internal vulnerability
bugs fixed by modifying 621 files. At this point, we excluded
the header-files since these come hand in hand with the C-files
and are thus associated with the same bugs and CVEs. In doing
so we found only nine non-redundant CVEs and vulnerability
bugs, and decreased the total number of files for analysis by
32,418 files.

The 2016 Chrome architecture contains a directory called
“third_party/WebKit” which is a recently (2015) merged set of

Table 2. Descriptive statistics for 2016 Google Chrome metrics.
2016 / n =

16,268 Max Min Mean Median St.dev

VULN 1 0 0.02 0 0.13

SLOC 69,702 0 196.18 79 854.61

MCCABE 868 0 9.13 5 20.13

COMMR 39 0 0.33 0.17 0.88

CHURN 634,536 1 883.40 249 5,734

DFI 9,381 1 6.09 2 76.97

DFO 355 1 15.69 12 16.05

IndFI 49,570 1 22,996 23 24,705

IndFO 29,949 1 27,227 29,314 7,554

CYCLIC 1 0 0.44 0 0.50

Table 3. CVE and Chrome file data leading to our analysis set of files.
 CVEs Bugs Vuln. files Total files

Total contained in
tracker 1,063 1,070 Not known Not appl.

C- & h-files fixed by
Google commits 390 407 965 Not appl.

Found for March
2016 architecture 288 294 621 63,847

Subtract:

h-files 9 9 223 32,418

third_party/WebKit 94 95 108 3,015

Missing data 0 0 0 12,146

Final:

Analysis sample 185 190 290 16,268

files from another vendor (Apple). From an architectural
coupling perspective this directory, and its recent bulk merge,
creates a situation where most of the directory is not a part of
the overall architectural structure. It has its own special
structure that is not representative of the rest of the system. To
avoid mixing systems with different histories and structure, we
excluded this directory as well. Ninety-four CVEs were
associated with this directory. Finally, one of our key variables,
code churn (CHURN), had missing data for many of the C-
files. Dropping these files did not reduce the CVE count, but
did reduce the number of files by 12,146 to 16,268.

In summary, our final dataset contains 185 unique CVEs
associated with 190 vulnerability bugs fixed in patches of 290
C-files, and the total C-file set to compare with is 16,268. The
numbers for this data cleanse are detailed in Table 3.

V. CHROME METRICS AND VULNERABLE FILES
In this section we explore the relationship between software

component metrics and different architecture coupling metrics
in vulnerability-associated files of the Google Chrome
architecture from 2016.

A. Findings
 Table 4 presents a correlation matrix for the variables we

study. As indicated, we have taken the natural logarithm of
each variable except the binary variable CYCLIC. From the
table, we can see that CHURN is highly correlated with source
lines of code (SLOC), cyclomatic complexity (MCCABE), and
direct fan-out (DFO). That is, files that are associated with
many changes in general (excluding vulnerability bug changes)
also have more source lines of code, higher cyclomatic

complexity, and a higher number of direct fan-out
dependencies. Further, we see that all of our software metrics,
including the different types of coupling, are significantly
correlated with vulnerability bug files (VULN). Namely, files
that have been changed a lot, that have a low comment ratio,
many source lines of code, high cyclomatic complexity, and
high coupling are all associated with vulnerability bugs.

We find that almost 70% of the vulnerable files can be
located in the Cyclic group, compared to non-cyclically
coupled files which only account for slightly less than 30% of
the vulnerabilities (cf. Fig. 3). For the non-vulnerable files the
relation is the opposite, but not as strong.

Unfortunately, due to the high correlation between
variables we can’t include them all in the same regression
model. For the metrics code churn, source lines of code,
cyclomatic complexity, and direct fan-out we basically need to

Table 4. Correlation table for vulnerability bugs and complexity metrics in the 2016 Google Chrome software architecture.

VULN SLOC MCCABE COMMR CHURN DFI DFO IndFI IndFO CYCLIC DFIxC DFOxC DFIxNoC DFOxNoC

VULN 1

SLOC .135* 1

 	 	

MCCABE .110* .804* 1

	 	

COMMR -.021* -.299* -.199* 1

	

CHURN .180* .801* .675* -.103* 1

DFI .084* .203* .128* -.062* .195* 1

DFO .140* .707* .622* -.248* .656* .136* 1

IndFI .063* .144* .114* -.022* .134* .603* .149* 1

IndFO .026* .384* .400* -.226* .277* .043* .577* .048* 1

CYCLIC .066* .202* .188* -.085* .183* .508* .245* .929* .243* 1

DFIxC .088* .218* .177* -.073* .219* .816* .203* .718* .188* .774* 1

DFOxC .115* .338* .296* -.109* .333* .480* .437* .859* .225* .925* .725* 1

DFIxNoC -0.014 -.042* -.094* .023* -.059* .222* -.125* -.248* -.248* -.494* -.382* -.457* 1

DFOxNoC -.022* .155* .138* -.065* .123* -.415* .263* -.813* .181* -.813* -.629* -.753* .399** 1

* Correlation is significant at the 0.01 level, bold numbers indicate high correlation problematic for regression model

Fig. 3. Vulnerability associated files in the Cyclic and Non-cyclic groups.

choose one to include in the regression. Code churn has been
proven before to be a good predictor (see e.g. Shin et al., 2011)
and it also has the highest correlation with our VULN variable.
Therefore, we chose to include CHURN in our regression
models and not the others.

Model 1 in our regression contains three traditional
software metrics used in defect and vulnerability prediction;
code churn, comment ratio, and direct fan-in. This is a good
starting model since these all have been used successfully
before. As can be seen in Table 5 all three variables significantly
contribute to our model. Since we want to explore coupling
further, Model 2 tests whether indirect fan-in (IndFI) and
indirect fan-out (IndFO) add any explanatory power over DFI.
Model 3 looks at cyclic coupling (CYCLIC) instead of IndFI
and IndFO. So far, we can see that the indirect coupling
metrics perform better together with code churn and
commenting ratio compared to direct and cyclic coupling. This
is not surprising since it is a more coarse grained metric that
includes more information than both cyclic and direct coupling.

In Model 4 and 5 we test if direct fan-in and fan-out within
the main cyclic group and outside this group adds any
explanatory power. Again, due to the correlation among the
measures, we have to divide our direct coupling measures from
each other. DFI within the cyclic files (DFIxCyc) is tested in
Model 4 and DFO within the cyclic files (DFOxCyc) in Model
5. Our best model seems to be the one including code churn,
comment ratio, direct fan-out within the cyclic group
(DFOxCyc) together with direct fan-in within the non-cyclic
group (DFIxNoCyc), that is Model 5. Meaning that files that
are cyclically coupled together in a large co-dependent network
with a high degree of direct fan-out coupling and files that are
not in this large cyclic group but have a high degree of direct
fan-in coupling (the group in Fig. 2 called Shared), and with

many changes in the past and a low commenting ratio – are
more likely to contain vulnerabilities.

Our, in general, rather low R-squares are based on the fact
that we have 16,268 files and only 289 vulnerable files (it is
basically like looking for a needle in a haystack). The R-
squares in our regression models show rather small differences,
so it is difficult to conclude the impact of indirect and cyclic
coupling. However, the indication is that these perform better
than direct coupling on its own.

B. Use of different sets of data available
As mentioned in the data section our dataset only represents

a subset of the files in the 2016 March release of Google
Chrome. We have run all analyses on the different subsets (cf.
Table 3) as a robustness check, there are some variance but the
main story looks similar.

One could argue that vulnerabilities from e.g. 2010 can’t be
analyzed based on an architecture from 2016. As a robustness
check we have also looked at the 2010 architecture (the first
stable release of Chrome). We also divided our vulnerability
data in two equally large sets and looking at the older half of
vulnerabilities for the 2010 architecture, and the younger half
of vulnerabilities for the 2016 architecture.

The correlations and regressions with the 2010 and 2016
architecture and all vulnerability bugs, as well as the division
of bugs between 2010 and 2016 look fairly similar. We did
lose some power when dividing the bug dataset between the
architectures, this had us chose the architecture associated with
most vulnerabilities, that is the 2016 architecture and all
vulnerability related bugs.

Table 5. Binary logistic regression for vulnerability bug files in 2016 Chrome architecture
VULN Model 1 Model 2 Model 3 Model 4 Model 5

COMMR -1.003** -.880* -.878* -.993** -.714*

CHURN .861*** .874*** .876*** .859*** .805***

DFI .215***

IndFI

.063***

IndFO

.004

CYCLIC

.568***

DFIxC

.216***

DFOxC

.286***

DFIxNoC

.137 .381**

Constant -9.683*** -9.999*** -9.869*** -9.647*** -9.710***

Chi-square 531.038*** 538.206*** 534.718*** 531.613*** 553.748***

Cox&Snell R2 0.032 0.033 0.032 0.032 0.033

Nagelkerke R2 0.197 0.199 0.198 0.197 0.205

n=16,268; * p<0.05, ** p<0.01, and ***p<0.001

If we compare Table 2 (2016 Chrome stats.) and Table 6
(2010 Chrome stats.) we can see that some of the software
metrics have changed, e.g. the comment ratio and direct fan-in
and fan-out. Although the maximum values have significant
increases, the differences when considering the means or
medians are not that large. For cyclomatic complexity and code
churn the means actually went down between 2010 and 2016.
The main differences can be seen in the coupling measures for
indirect fan-in and fan-out, where the means increased from
3,000-4,000 to 23,000-27,000. This is related to the
considerable increase in size of the main cyclic group of
dependent files, the “Core” in 2010 contained 4,049 files and
in 2016 it had grown to 24,258 files.

Regarding the visualization of the architecture seen in Fig. 4
one can conclude that the 2010 and 2016 architectures look
very similar in terms of coupling. For both architectures we
have a large “Core” (that is, a large cyclic group where
everyone depends on one another). In 2010 the Core was 33%
of the architecture and in 2016 38%, thus even though this
group of files grew considerably in number, it grew in
proportion to the rest of the codebase. Both architectures also
have large Control groups (files with high indirect fan-out and
low indirect fan-in), and small groups of Shared files (files
with high indirect fan-in and low indirect fan-out), Peripheral
files (low indirect coupling), and Singletons (no coupling).
This architectural similarity we interpret as an indication that
our coupling measures are comparable with vulnerabilities for
either architecture as long as the file associated with the
vulnerability bug is present in the architecture.

VI. DISCUSSION AND FUTURE WORK

A. Our study
Our work is the first study to use the Google Chromium

project to explore the relationship between software metrics
and vulnerabilities. As such it adds evidence to the total body
of knowledge on this topic, which is still fairly unexplored
(especially in comparison with the relationship between
software metrics and generic defects).

 The main weakness in our study we believe is that,
because of their high level of collinearity, the different
coupling measures have essentially equal predictive power in
our regressions. The component-level metrics—source lines of
code, code churn, cyclomatic complexity—are also highly
correlated with each other and with direct fan-out. For this
reason, we are unable (in this codebase) to tease apart the
separate contribution of conceptually distinct, but empirically
indistinguishable, types of complexity on vulnerability.
Hopefully, we (or others) can explore these questions further
using other software architectures in order to better understand
the linkages between complexity, coupling and vulnerabilities.

We are not alone in having difficulty determining the
relationship between software metrics and vulnerabilities. As
reported in the section on related work, other studies also
report weak power or non-statistically significant variables e.g.
[1][2]. Prediction models report either too many false positives
or low precision. Thus this seems to be a generally difficult
area to research.

Statistical problems, like collinearity, make it difficult to
identify the causal mechanisms linking complexity and
coupling with vulnerabilities. However, most studies are able
to report valid correlations. Thus a growing body of collective
evidence shows that variables like size, complexity, code
churn, and coupling are associated with and thus likely to
increase the incidence of vulnerabilities. The correlations
reported in Table 4 and the regressions in Table 5 indicate a
significant relation between vulnerable files, traditional
software metrics and coupling measures, hence add to this
mounting body of evidence. However, future work is needed.

B. Other studies
Many studies present vulnerability prediction models with

a large set of variables. However, very few describe the details
of the variables included. What variables do actually contribute

Table 6. Descriptive statistics for complexity metrics in Google Chrome
2010.

2010 / n =
6,333 Max Min Mean Median St.dev

VULN 1 0 0.02 0 0.15

SLOC 72,847 0 300.72 121 1,554.97

MCCABE 700 0 10.75 5 25.15

COMMR 163 0 0.44 0.23 2.24

CHURN 213,099 10 2,096.52 846 6,248.25

DFI 2,281 1 6.03 2 36.19

DFO 189 1 14.23 11 13.33

IndFI 8,649 1 3,204.69 9 4,146.90

IndFO 5,125 1 4,349.66 4,916 1,589.18

CYCLIC 1 0 0.36 0 0.48

Fig. 4. Google Chrome 2010 software architecture showing a large cyclic
cluster (here called the core) and other similar features as the 2016 version.

to the prediction model and which do not? This is especially
interesting for architecture coupling and component
complexity, since some of the papers we have studied report
these as good predictors e.g. [3] while other say it shows weak
or no relation to vulnerabilities e.g. [1][2]. In general it would
have been interesting to get this information from all studies, in
e.g. the form of a correlation table or detailed prediction
models.

C. Future work
As indicated, our findings on the relationship between of

software metrics and vulnerabilities are mixed. Thus, future
work is very much needed. First, we believe doing more
studies in general on this topic is necessary. So far, there are
few studies and thus few software systems have been
investigated. For generalizability, more work is needed,
including not only open source projects but also commercial
software. Secondly, we have not found any studies that
compare general defects and vulnerabilities using the same
data set. We would like to be able to say what the main
differences between a vulnerability bug and regular bug are in
terms of complexity, size, code churn, commenting, and
coupling. This could help us build more accurate prediction
models.

VII. CONCLUSIONS
Managing software vulnerabilities has become one of the

top issues in today’s society. Previous research on software
defects, and to some extent vulnerabilities, showed that
component level metrics (e.g. complexity and code churn) and
architecture measures (e.g. coupling) can be good predictors of
where problems are likely to occur. In this study we studied the
Google Chromium project and found that all our metrics, both
component and architecture level, are highly correlated with
files that have been patched in order to fix vulnerability
classified bugs. We also set out to test whether different
software architecture coupling measures were correlated with a
higher incidence of vulnerabilities. In our tests we found it
difficult to conclusively distinguish between our different
measures of coupling, but the indication is that indirect
coupling performs better than direct coupling, and the best
model is a combination of cyclic coupling and direct coupling.
We strongly believe that the indications in our study together
with other related research show that software metrics of
different kinds can be very helpful in locating vulnerabilities,
but that more work is needed.

REFERENCES
[1] Y. Shin and L. Williams, “Is complexity really the enemy of software

security?,” in Proceedings of the 4th ACM workshop on Quality of
protection, pp. 47-50, 2008.

[2] P. Morrison, K. Herzig, B. Murphy, and L. Williams, “Challenges with
applying vulnerability prediction models,” in Proceedings of the 2015
Symposium and Bootcamp on the Science of Security, p. 4, 2015.

[3] Y. Shin, A. Meneely, L. Williams, and J.A. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as indicators of
software vulnerabilities,” IEEE Transactions on Software Engineering,
vol. 37(6), pp. 772–787, 2011.

[4] J. Walden, J. Stuckman, and R. Scandariato, “Predicting vulnerable
components: Software metrics vs text mining,” In IEEE 25th

International Symposium on Software Reliability Engineering, pp. 23-
33, 2014.

[5] S. Moshtari, A. Sami, and M. Azimi, “Using complexity metrics to
improve software security,” Computer Fraud & Security, vol. 5, pp.8-17,
2013.

[6] A. MacCormack and D. Sturtevant, “Technical debt and system
architecture: the impact of coupling on defect-related activity,” Journal
of Systems and Software, Online-first, 2016.

[7] D.J. Sturtevant, “System design and the cost of architectural
complexity,” Doctoral dissertation, Massachusetts Institute of
Technology (MIT), 2013.

[8] A. Akaikine, “The Impact of Software Design Structure on Product
Maintenance Costs and Measurement of Economic Benefits of Product
Design,” Master Thesis, Massachusetts Institute of Technology (MIT),
2010.

[9] C. Catal, and B. Diri, “A systematic review of software fault prediction
studies,” Expert Systems with Applications, vol. 36(4), pp. 7346–7354,
2009.

[10] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A
systematic literature review on fault prediction performance in software
engineering,” IEEE Transactions on Software Engineering, vol. 38, pp.
1276-1304, 2012.

[11] B. Kitchenham, L. Pickard, and S. Linkman, “An evaluation of some
design metrics,” Software Engineering Journal, vol. 5(1), pp. 50–58,
1990.

[12] V.R. Basili, L.C. Briand, and W.L. Melo, “A validation of object-
oriented design metrics as quality indicators,” IEEE Transactions on
Software Engineering, vol. 22, pp. 751-761, 1990.

[13] N. Nagappan and T. Ball, “Use of relative code churn measures to
predict system defect density,” in Proceedings of the 27th International
Conference on Software Engineering (ICSE), pp. 284-292, 2005.

[14] A. Schröter, T. Zimmermann, and A. Zeller, “Predicting component
failures at design time,” in Proceedings of the ACM/IEEE International
Symposium on Empirical Software Engineering, pp. 18–27, 2006.

[15] T. Zimmermann and N. Nagappan, “Predicting defects using network
analysis on dependency graphs,” in Proceedings of the 30th International
Conference on Software Engineering (ICSE), pp. 531-540, 2008.

[16] M. Steff and B. Russo, “Measuring architectural change for defect
estimation and localization,” in Proc. of the International Symposium on
Empirical Software Engineering and Measurement, pp. 225–234, 2011.

[17] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting
vulnerable software components,” in, ACM Conference on Computer
and Communications Security (CCS), pp. 529-540, 2007.

[18] S. Neuhaus and T. Zimmermann, “The beauty and the beast:
vulnerabilities in red hat’s packages,” in Proceedings of the Annual
technical conference on USENIX, pp. 30–30, 2009.

[19] T. Zimmermann, N. Nagappan, and L. Williams, “Searching for a
needle in a haystack: Predicting security vulnerabilities for windows
vista,” in Proc. of the International Conference on Software Testing,
Verification & Validation, pp. 421–428, 2010.

[20] V.H. Nguyen and L.M. Tran, “Predicting vulnerable software
components with dependency graphs,” in Proceedings of the 6th
International Workshop on Security Measurements and Metrics, pp. 3:1–
3:8, 2010.

[21] I. Chowdhury and M. Zulkernine, “Using complexity, coupling, and
cohesion metrics as early indicators of vulnerabilities,” Journal System
Architecture vol. 57(3), pp. 294–313 2011.

[22] A. Hovsepyan, R. Scandariato, M. Steff, and W. Joosen, “Design churn
as predictor of vulnerabilities?,” International Journal of Secure
Software Engineering, 2014.

[23] A. MacCormack, C. Baldwin, and J. Rusnak, “Exploring the duality
between product and organizational architectures: A test of the
"mirroring" hypothesis,” Research Policy, vol. 41, no. 8, pp. 1309-1324,
2012.

[24] C. A. Baldwin, A. MacCormack, and J. Rusnak, “Hidden structure:
Using network methods to map system architecture,” Research Policy,
vol. 43, no. 8, pp. 1381-1397, 2014.

[25] F. Heiser, R. Lagerström, and M. Addibpour, “Revealing hidden
structures in organizational transformation: A case study,” in Proc. of
the Trends in Enterprise Architecture Research (TEAR) workshop,
Springer, 2015.

[26] R. Lagerström, M. Addibpour, and F. Heiser, “Product feature
prioritization using the hidden structure method: a practical case at
Ericsson,” in Proc. of the Portland International Center for Management
of Engineering and Technology (PICMET) conference, IEEE, Sept.
2016.

[27] R. Lagerström, C. Baldwin, A. MacCormack, and D. Dreyfus,
“Visualizing and measuring enterprise architecture: an exploratory
biopharma case,” in IFIP Working Conference on The Practice of
Enterprise Modeling, pp. 9-23, Springer, 2013.

[28] R. Lagerström, C. Baldwin, A. MacCormack, and D. Dreyfus,
“Visualizing and measuring software portfolio architecture: a flexibility
analysis,” in Proc. of the 16th International DSM Conference, 2014.

[29] A. MacCormack, R. Lagerström, D. Dreyfus, and C. Baldwin, “Building
the agile enterprise: IT architecture, modularity and the cost of IT
change,” Harvard Business School Working Paper, No. 15-060, 2015,
(revised August 2016).

[30] A.J. Albrecht and J.E. Gaffney, “Software function, source lines of code,
and development effort prediction: a software science validation,” IEEE
transactions on software engineering, vol. 6, pp.639-648, 1983.

[31] S.H. Kan, “Metrics and models in software quality engineering,”
Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA,
2002.

[32] T.J. McCabe, “A complexity measure,” IEEE Transactions on Software
Engineering, pp. 308-320, 1976.

[33] K.K. Aggarwal, Y. Singh, P. Chandra, and M. Puri, “Sensitivity analysis
of fuzzy and neural network models,” ACM SIGSOFT Software
Engineering Notes, vol. 30(4), pp.1-4, 2005.

[34] H.A. Simon, “The architecture of complexity,” in Proceedings of the
American Philosophical Society, vol. 106, pp. 467-482, 1962.

[35] A. MacCormack, “The architecture of complex systems: do Core-
Periphery structures dominate?,” Academy of Management Best Paper
Proceedings, 2010.

[36] M. Sosa, J. Mihm, and T. Browning, “Linking cyclicality and product
quality,” Manufacturing & Service Operations Management, vol. 15(3),
pp. 473–491, 2013.

[37] D.E. Whitney (Chair) and the ESD Architecture Committee, “The
influence of architecture in engineering systems,” Engineering Systems
Monograph, MIT Working Paper, 2004.

[38] V.H. Nguyen and F. Massacci, “The (un) reliability of NVD vulnerable
versions data: an empirical experiment on google chrome
vulnerabilities,” in Proceedings of the 8th ACM SIGSAC symposium on
Information, computer and communications security, pp. 493-498,
ACM, 2013.

