Relative Performance Benchmarks: Do Boards Follow the Informativeness Principle?

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:30907599

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
Relative Performance Benchmarks: Do Boards Follow the Informativeness Principle?

Paul Ma
Jee Eun Shin
Charles C.Y. Wang
Relative Performance Benchmarks: Do Boards Follow the Informativeness Principle?

Paul Ma
University of Minnesota

Jee Eun Shin
Harvard Business School

Charles C.Y. Wang
Harvard Business School

Working Paper 17-039

Copyright © 2016, 2017 by Paul Ma, Jee Eun Shin, and Charles C.Y. Wang

Working papers are in draft form. This working paper is distributed for purposes of comment and discussion only. It may not be reproduced without permission of the copyright holder. Copies of working papers are available from the author.
Relative Performance Benchmarks: Do Boards Follow the Informativeness Principle?

Paul Ma
*University of Minnesota
Carlson School of Management

Jee Eun Shin
Harvard Business School

Charles C.Y. Wang
Harvard Business School

May 26, 2017

Abstract

Relative TSR (rTSR) is increasingly used by market participants to judge and incentivize managerial performance. We evaluate the efficacy, reasons, and implications of firms’ benchmarks in rTSR-based contracts. Although compensation consultants suggest that a primary objective of rTSR is to filter shocks unrelated to managerial performance, following the informativeness principle, we document that a significant subset of firms, who choose index-based benchmarks, do not adequately achieve this objective. Further, the index-benchmark selection is associated with governance-related frictions, and not driven by plausible alternative theories. Both structural calibration and reduced-form estimates reveal significant negative performance implications from sub-optimal peer-selection.

JEL: G30, M12, M52

Keywords: Empirical contract theory; executive compensation; relative TSR; common shock filtration; search-based peers; board of directors; corporate governance

*This paper was previously circulated under the title “Relative Performance Benchmarks: Do Boards Get it Right?”. The authors can be contacted at paulma@umn.edu, jeshin@hbs.edu, and charles.cy.wang@hbs.edu. We have benefited from advice and suggestions from Hengjie Ai, Santiago Bazdresch, Alan Benson, Brian Cadman (discussant), Gerardo Perez Cavaos, Shane Dikolli (discussant), Vyacheslav Fos (discussant), Frank Gigler, Guojin Gong, Thomas Hemmer, Sudarshan Jayaraman, George John, Chandra Kanodia, David Larcker, Eva Liang, Melissa Martin, Kevin Murphy, Jonathan Nam, Gaizka Ornazabal (discussant), Xiaoxia Peng, Rudi Shang, Matt Shaffer, John Shoven, Pervin Shroff, Martin Szydlowski, Chao Tang, Akhmed Unyarov, Felipe Varas, Martin Wu, Eric Yeung (discussant), Ivy Zhang and conference and seminar participants at FARS, Georgia State University, Harvard Business School, HKUST Accounting Symposium, SMU Accounting Symposium, UBC Winter Finance Conference, University of Florida, and the Utah Winter Accounting Conference. We give thanks to Barry Sullivan of Semler Brossy and to Terry Adamson, Jon Burg, and Daniel Kapinos of Radford (Aon Hewitt) for clarifying institutional details and for helpful feedback. We also thank Kyle Thomas and Raaj Zutshi for outstanding research assistance. Paul Ma is grateful for research support from the University of Minnesota Accounting Research Center and the Dean’s Small Research and Travel Grant. All errors remain our own.
1 Introduction

The measurement of performance is a critical element in the design of managerial incentives. In the standard principle-agent framework, the classic theoretical insight suggests that the principal—in practice, the board—should evaluate managers’ performance using performance metrics that are informative about managerial effort or talent (the “informativeness principle”) (Ross, 1973; Holmström, 1979). In particular, when a performance metric contains common noise that is beyond the CEO’s control, a measure of relative performance that filters out such noise can be desirable. Furthermore, designing incentive contracts around relative performance metrics should in theory help to elicit costly unobservable effort from risk-averse managers and improve firm performance (Holmström, 1979, 1982).

Consistent with filtering common market- or industry-wide noise, market participants have increasingly turned their attention to relative performance metrics to evaluate the performance of firms and their top managers. Over the last ten years, relative total shareholder returns (rTSR)—that is, firm’s own TSR relative to an index or group of peer firms—has become perhaps the single most widely used performance metric by which companies and their executives are judged by market participants. Since 2006 the SEC has required firms to disclose rTSR in their annual report to shareholders. The New York Stock Exchange’s Listing Company Manual (Section 303A.05) recommends that compensation committee members consider a firm’s rTSR in determining long-run executive incentives. The influential proxy advisory firm Institutional Shareholder Services (ISS) relies on an analysis of the relationship between a firm’s rTSR and its executive’s pay relative to peers to judge whether an executive’s compensation is justified by performance and to formulate its say-on-pay recommendations. Finally, as part of its implementation of the 2010 Dodd-Frank Act, the SEC recently proposed Rule No. 34-74835 requiring firms to disclose comparisons of executive compensation to that of peers in terms of rTSR in annual proxy statements.

The growing preference for rTSR as a performance metric is also evident in the trend toward linking rTSR to performance-based executive contracts. Data from ISS Incentive Labs—on approximately 1,500 of the largest firms in the stock market—suggest that the proportion of firms

\footnote{Under Regulation S-K Item 201(e), firms are obligated to publish rTSR based on an industry or line of business index, or on peer firms selected in good faith based on line of business and/or firm size (see, e.g., \url{https://www.law.cornell.edu/cfr/text/17/229.201}).}
that explicitly link executive performance contracts to relative performance metrics increased from around 20% in 2006 to nearly 50% in 2014 (see Figure 1). Moreover, among firms that engage in explicit relative performance benchmarking, an increasing proportion (from about 70% in 2006 to nearly 90% in 2014) use rTSR as a metric to which performance incentives are tied.

Based on a narrative analysis of white papers on rTSR (summarized in Table A.I) published by the leading compensation consultants, capturing approximately 90% of the market, we conclude that a primary objective of rTSR, and a reason for its rising popularity in executive compensation, is its filtering of market- or industry-level component of firm performance, which is outside of managers’ control. Put differently, rTSR is attractive to the extent it isolates the firm’s “alpha,” its performance relative to an appropriate investment benchmark (i.e., the common component of a firm’s TSR).

Despite the appeal of rTSR, a central challenge to its application resides in the selection of peers to measure and filter the common or exogenous component of performance—i.e., the extent to which it follow the informativeness principle. The quality of such a relative performance measure can be crucial through its impact on managerial effort provision, to the extent that managerial incentives are tied to such measures, either explicitly via performance-based contracts or implicitly because shareholders’, board of directors’, and the executive labor market’ assessment of the CEO’s reputation or talent depend on relative performance (Holmström, 1999; Avery, Chevalier and Schaefer, 1998; Brickley, Linck and Coles, 1999; Fee and Hadlock, 2003; Hörner and Lambert, 2016; Focke, Maug and Niessen-Ruenzi, 2017).

This paper examines the degree to which firms’ selection of peers for rTSR is consistent with the informativeness principle. We focus on the sample of firms that explicitly tie executive compensation to rTSR, for whom the quality or the informativeness of rTSR are expected to be of greater importance. For example, in addition to the increasing prevalence of rTSR-based pay, our back-of-the-envelope estimates suggest that rTSR-based incentives have an economically important and increasing impact on CEO compensation. Between 2006 and 2014, on average 73% of the relative-performance target payouts are accounted for by rTSR-based payouts; moreover, meeting

3For example, Barry Sullivan, managing director of the compensation consulting firm Semler Brossy, described relative performance measurement as “seductive in theory” at the 2014 National Association of Corporate Directors Leading Minds of Compensation Conference. But, he continued, “The challenge is in practice, do we really have a peer group that we feel good measuring? If not, do we then have to extend to a broader market index, and if we do that, are we stepping too far away from our core business or are we introducing some noise around the relative TSR construct?”
rTSR targets increases the CEO’s incentive-plan-based compensation (assuming that all other performance-based targets are met) by an average of 40%.

We examine to what extent these firms’ chosen relative performance benchmarks explain the firms’ stock returns, relative to a normative benchmark. To contextualize our empirical findings, we also frame the analysis in terms of the classic principal-agent model of Holmström and Milgrom (1987), which predicts that benchmarks will be optimally chosen to filter out the common component of performance. Drawing on this framework, we then analyze and quantify the theoretical implications of relative performance benchmarks’ inefficacy at eliminating common noise for firm performance, absent frictions in peer selection. Finally, we examine potential sources of friction and alternative theories and economic factors that could explain why certain firms’ benchmarks do not appear to adequately capture common shocks in firm performance (that is, to adhere to the informativeness principle).

We document four main findings. Our first set of analyses compares the performance of firms’ disclosed peer benchmarks, to that of a normative relative performance benchmark in terms of their ability to explain the variation in own-firm returns. We rely on search-based peers (SBPs), a set of economically-related peer firms identified by investors’ searches on the SEC’s EDGAR platform. Lee, Ma and Wang (2015) and Lee, Ma and Wang (2016) show that SBPs are superior to other state-of-the-art peer identification schemes at explaining variations in firms’ stock returns, valuation multiples, and fundamental performance characteristics.

Overall, we find that firms’ disclosed benchmarks perform significantly worse at explaining the co-movement of stock returns. This underperformance is concentrated in the set of firms that choose index-based benchmarks; firms that choose specific peers perform only modestly worse. Compared to a portfolio of top 10 SBPs, firms’ disclosed index-based benchmarks explain 14% less of the time-series variation in their monthly stock returns (i.e., time-series regression R^2); comparable underperformance is merely 2.3% for firms using specific peers. We stress that these findings are not unique to the choice of SBPs as the normative benchmark; a plausible alternative benchmark based on the firms’ chosen compensation benchmarking peers yields similar results. Together, these findings raise questions about the appropriateness of choosing indexes—effectively benchmarking to a large number of peers—in lieu of a narrower but potentially more relevant peer set (Lewellen and Metrick, 2010; Lee, Ma and Wang, 2015).
To provide more structure into the assessment of the efficacy of relative performance benchmarks, we extend the standard principal-agent framework by introducing errors from measuring the common component of performance. We show that poorer selection of benchmarks (larger measurement error variances) implies lower efficacy at filtering out common shocks and leads to poorer incentives for managers. For any set of performance benchmark, this framework enables us to structurally estimate the variance of the measurement error up to a scalar constant. Consistent with the time-series R^2 results, our estimates suggest that firms’ chosen index-based benchmarks yield measurement error variances that are at least 16% higher than SBPs, whereas specific-peer-based benchmarks exhibit measurement error variances that are at least 4.4% higher.

Our second set of findings suggests that the observed underperformance of firms’ relative performance benchmarks can induce significant performance consequences. In the context of the principal-agent framework, and in the absence of frictions from selecting a precise set of peers, our structural estimates suggest that the measurement error variances of firms’ chosen performance benchmarks imply an on-average performance penalty of 60 to 153 basis points in annual stock returns, using plausible ranges of risk aversion, via their effect on managerial effort. These magnitudes are economically significant, particularly in light of the relatively large size of the firms in our sample. Consistent with our findings in R^2s, these effects are concentrated in, and largest in, the subset of firms that use index-based benchmarks, for which we find an on-average performance penalty of 106-277 bps in annual stock returns across the range of risk aversion.

Consistent with these theoretical performance implications, our third set of findings shows that the choice of an index-based benchmark is cross-sectionally associated with lower realized firm performance, as measured by annual ROA and stock returns. Specifically, firms with index-based benchmarks perform 80 basis points lower in ROA and 320 basis points lower in returns than firms with specific peers as benchmarks. We point out that this reduced-form analysis treats firms that use specific-peer-based benchmarks as counterfactuals to firms that use index-based benchmarks; to the extent that our control variables do not fully capture differences in the underlying characteristics of these two types of firms that could be associated with firm performance, it is possible that the estimated performance differences are overstated. Overall, however, these reduced-form estimates provide empirical support for the conclusions of the structural analyses that poorer benchmark selection implies economically significant performance consequences.
Having documented the adequacy of firms’ selected relative performance benchmarks at capturing common shocks and their performance consequences, our final analyses examine the sources of economic friction or alternative theories that can explain the observed underperformance of firms’ chosen benchmarks. To provide a framework for optimal benchmarking quality, we first endogenize the board’s choice of relative performance benchmarking efficacy. The extended model predicts less efficacious benchmarking when the firm has greater idiosyncratic volatility, and when the manager or the board is of lower quality or ability (due to the lower marginal incentive effects of improving benchmarks).

Our empirical evidence does not find support for firm-level volatility or managerial quality driving benchmarking inefficacy. Instead, our evidence suggests that lower monitoring quality on the part of the board, or governance-related frictions, are associated with poorer benchmarks and the decision to choose an index-based benchmark. Moreover, we argue that the pattern of observed poor performance is not the expected outcome of plausible alternative theories—that is, theories external to our model—about how boards select peers for relative-performance metrics: for example, when 1) firms’ own actions influence peer performance (Janakiraman, Lambert and Larcker, 1992; Aggarwal and Samwick, 1999a), 2) firms have alternative production technology (Hoffmann and Pfeil, 2010; DeMarzo, Fishman, He and Wang, 2012), 3) the manager is capable of self-insuring against the common factor (Garvey and Milbourn, 2003), 4) firms tradeoff ex-ante vs ex-post efficiency due to the perception that indexes are less gameable (Godfrey and Bourchier, 2015; Walker, 2016), or 5) firms select peers on the basis of aspiration (Scharfstein and Stein, 1990; Hayes and Schaefer, 2009; Hemmer, 2015; Francis, Hasan, Mani and Ye, 2016) or implicit tournaments (Lazear and Rosen, 1981; Hvide, 2002).

This paper is the first to assess the efficacy, reasons, and implications of firms’ chosen relative performance benchmarks. It contributes new empirical evidence to the broader literature i) investigating the efficacy of performance measurement for incentive contracting (Lambert and Larcker, 1987; Kawasaki and McMillan, 1987; Murphy, 2000; Ittner and Larcker, 2002; Engel, Hayes and Wang, 2003; Aggarwal and Samwick, 2003; Gong, Li and Shin, 2011; Chaigneau, Edmans and Gottlieb, 2016a,b; Bizjak, Kalpathy, Li and Young, 2016), ii) examining the consequences of board monitoring quality (e.g., Core, Holthausen and Larcker, 1999; Bertrand and Mullainathan, 2001; Fich and Shivdasani, 2006; Morse, Nanda and Seru, 2011), and iii) estimating the magnitudes of
moral hazard in the design of CEO compensation and retention policies (Margiotta and Miller, 2000; Gayle and Miller, 2009; Taylor, 2013; Gayle, Golan and Miller, 2015; Ai, Kiku and Li, 2016; Page, 2017).

This study also adds to the growing body of work that has emerged since the 2006 mandate to disclose detailed compensation benchmarking practices. In general, our work differs in the method of analyzing, both analytically and empirically, the quality of a board’s choice of relative performance benchmark. Prior work by Gong, Li and Shin (2011) suggests that performance benchmarking peers eliminate common shocks better than randomly chosen peer benchmarks (a lower bound). The contemporaneous work of Bizjak, Kalpathy, Li and Young (2016) also examines the properties of firms’ disclosed performance benchmarks. It analyzes how CEO compensation would have changed had a different performance peer group been chosen, and documents, using simulations, that CEO compensation is not on average influenced by performance peer selection. In contrast to this body of work, we study the efficacy of common shock filtration, its performance implications, and possible explanations for benchmarking inadequacy.

The rest of the paper is organized as follows. Section 2 relates our results and empirical approach to the existing literature. Section 3 lays out our data and descriptive statistics illustrating the rise of explicit grant-based relative performance benchmarking and provides empirical evidence on the efficacy of the board’s choice of benchmarks. Section 4 maps our empirical test to the principal-agent framework in order to recover primitives that describe the efficacy of relative performance benchmarks and its performance implications. Section 5 investigates the potential sources of, and alternative theories for, the observed ineffective benchmarking. Section 6 concludes.

2 Related Literature and Background

The standard principal-agent framework aims to solve the problem of eliciting costly unobserved effort from a risk-averse agent by balancing incentives with risk sharing. Specifically, the informativeness principle in Holmström (1979) asserts that any contractible sufficient statistic informative about the agent’s effort choice should be incorporated into the compensation contract in order to improve the incentive-risk sharing trade-off.

One application of this principle is the use of relative performance evaluation, whereby the agent’s
performance is filtered to exclude common shocks to performance unrelated to the agent’s effort choice. The clear benefit of this approach is that it increases the agent’s optimal expenditure of effort and performance, as Ghosh and John (2000) and Rubin and Sheremeta (2015) have experimentally verified.

This powerful prediction has motivated scholars to seek empirical evidence of relative performance evaluation (RPE) in CEO compensation or turnover. The standard reduced-form test of the model associates measures of CEO’s compensation/turnover as the dependent variable regressed on measures of both the firm’s idiosyncratic and common component of performance (e.g., Gibbons and Murphy, 1990). The reduced-form prediction for (weak-form) RPE is a positive coefficient on the firm’s idiosyncratic performance and a negative coefficient on the measure of the shock to common performance. Intuitively, these regressions test whether CEO compensation or turnover responds to noise (the common shock) or to the agent’s effort (the idiosyncratic component of performance).

Researchers who have tested variations of the reduced-form compensation/turnover regression generally reported mixed results. An empirical challenge acknowledged in this literature is that the board’s choice of the peers used to estimate the common component of performance as well as the relative performance metric are unobservable to the econometrician. This opacity has in turn forced researchers to make strong assumptions about the peer-selection process. Traditional approaches identified peer firms using broad industry groupings, such as the 2-digit standard industry classification (SIC) scheme (Antle and Smith, 1986; Barro and Barro, 1990; Janakiraman et al., 1992; Jenter and Kanaan, 2015). More recent approaches include augmenting industry groupings by matching on size (Albuquerque, 2009); using product-market competitors, either directly identified (Lewellen, 2015) or inferred through textual analysis (Jayaraman et al., 2015); using firms whose financial statements are most comparable (Nam, 2016), and matching firms based on their life cycles

4See Warner, Watts and Wruck (1988); Gibbons and Murphy (1990); Janakiraman, Lambert and Larcker (1992); Murphy and Zimmerman (1993); Parrino (1997); Aggarwal and Sanwick (1999b); Bertrand and Mullainathan (2001); Engel, Hayes and Wang (2003); Kaplan and Minton (2012); Jenter and Kanaan (2015); Lewellen (2015); Jayaraman, Milbourn and Seo (2015); Nam (2016); Drake and Martin (2016)

5The mixed results have in turn motivated additional theoretical speculations about why boards might not filter for common shocks: e.g., product market competition and more broadly the effect of firm’s own effort on the common factor of performance or mismeasurement of the common factor (Janakiraman, Lambert and Larcker, 1992; Joh, 1999; Schmidt, 1997; Aggarwal and Sanwick, 1999a; Vrettos, 2013; Antón, Ederer, Giné and Schmalz, 2016); alternative CEO preferences (Lazear, 2000; Garvey and Milbourn, 2003; Gopalan, Milbourn and Song, 2010; Feriozzi, 2011; DeMarzo and Kaniel, 2016); alternative functional forms of the production technology (Himmelberg and Hubbard, 2000; DeMarzo, Fishman, He and Wang, 2012; Hoffmann and Pfeil, 2010); endogenizing the outside labor option (Oyer, 2004; Rajgopal, Shevlin and Zamora, 2006; De Angelis and Grinstein, 2016); or multi-tasking (Holmström and Milgrom, 1991; Feltham and Xie, 1994; Baker, 2002).
Relative Performance Benchmarks

The broad finding of this recent literature is that the presence of RPE in CEO compensation or turnover hinges on choosing the “right” set of peers.\(^6\)

Since 2006, firms have been required to disclose additional details of their executive compensation practices—including which relative performance benchmarks the board uses to determine relative performance-based incentives. Using the disclosed performance benchmarks in the first post-regulation year of data, Gong et al. (2011) re-investigates the relationship between CEO compensation and peer performance; the paper confirms that the CEO’s compensation is decreasing in the disclosed benchmarks’ performance, suggesting that peer-group selection matters. It also finds that firms’ chosen performance benchmarks exhibit greater fundamental similarity than a set of randomly chosen firms, consistent with the objective of common shock filtering. Lacking a normative benchmark, however, the paper is unable to determine how much of the common shock firms’ chosen benchmarks eliminate (e.g., relative to an upper bound) (Kleinberg, Liang and Mullainathan, 2015), nor does it assess the economic implications of the quality of relative performance benchmark selection for firm performance.

A related set of papers tests for whether a firm’s choice in tying incentives to relative performance, on the extensive margin, is consistent with its costs and benefits as predicted in Gibbons and Murphy (1990). Carter, Ittner and Zechman (2009) studies a sample of UK firms and finds that the propensity to tie incentives to relative performance—identified via explicit disclosures—is not associated with the degree of a firm’s exposure to common shocks. In contrast to these papers, both Gong et al. (2011) and Li and Wang (2016) find the opposite result: among U.S. firms, greater exposure to common risk is associated with a propensity to tie incentives to relative performance post-2006. Consistent with the thesis that contracting on relative performance is optimal only for certain firms, Dittmann, Maug and Spalt (2013) finds, in a calibration exercise, that relative performance pay via indexed options is suboptimal for the majority of U.S. firms. In contrast, our paper aims to understand how well firms that have explicitly chosen to tie performance-based incentives to relative performance adhere to the informativeness principle.\(^7\)

\(^6\)There is also a literature stream that studies whether the choice of compensation benchmarking peers is a result of managerial rent-seeking. Bizjak, Lemmon and Naveen (2008) and Faulkender and Yang (2010) find evidence of opportunistic benchmarking with compensation benchmarking peers, but Cadman and Carter (2013) does not. Note that the performance benchmarks we study differ from compensation benchmarking peers, which in concept serve to estimate the manager’s outside option. There is no role in our framework for rent-seeking in the selection of performance benchmarks because they do not affect the outside option of the manager.

\(^7\)A related literature studies studies the aggregate welfare implications of relative performance benchmarking. For
Akin to Coles, Lemmon and Meschke (2012), the principal-agent model that we estimate follows Holmström and Milgrom (1987), who show that the solution to dynamic moral hazard problems can be reduced to a series of spot linear contracts. Our estimation strategy is similar in principle to Schaefer (1998), which estimates the compensation contract’s sensitivity to performance and its relationship to firm size using non-linear least squares.\(^8\) We differ, however, in our focus on providing estimates of the measurement error in the common component of performance. Dikolli, Hofmann and Pfeiffer (2012) also model measurement error in the common performance shock, but their intent is to understand how various forms of the error structure can bias the standard tests for (implicit) RPE, which we do not perform because we focus on those firms who have disclosed their explicit relative performance incentives.

3 Data and Descriptive Evidence of Benchmarking Behavior

In this section, we provide empirical evidence for the quality of firms’ chosen relative performance benchmarks in terms of the extent to which they follow the informativeness principle and remove common performance shocks. Our analyses focus on the sample of firms that explicitly tie executive compensation to rTSR, for whom the quality or the informativeness of rTSR are expected to be of greater importance.

3.1 Data Description

Our data come from ISS Incentive Lab, which collected details on the compensation contracts and incentive-plan-based awards for named executive officers, at the individual-grant level, from firms’ proxy statements (DEF 14A). Incentive Lab covers every firm ever ranked in the top 750 in terms of market capitalization in any given year since 2004. Due to backward- and forward-filling, each year of the raw Incentive Lab data (2004-2014) encompasses the entire S&P500, most of the S&P midcap 400, and a small proportion of the S&P small-cap 600. Thus, roughly speaking, each annual cross-section encompasses the largest 1,000 firms listed in the U.S. stock market in terms of

\(^8\)Alternative formulations and estimations of principle-agent models include Himmelberg and Hubbard (2000); Edmans, Gabaix and Landier (2009); Dittmann, Maug and Spalt (2010); Ai, Kiku and Li (2016); Page (2017).
market capitalization. Our analysis focuses on the sample from 2006 onwards, when mandatory
disclosure of compensation details began and for which the coverage of firms is more comprehensive.

For each grant, ISS Incentive Lab collected information on the form of the payout (cash, stock
options, or stock units); conditions for payout (tenure [Time], fulfillment of absolute performance
criteria [Abs], relative performance criteria [Rel], or a combination of the two [Abs/Rel]); and
specific accounting- or stock-based performance metrics associated with performance-based grants.
Finally, ISS Incentive Lab collected information on the specific peer firms or indexes selected for the
purposes of awarding grants based on relative performance.

Table 1, Panel A, provides summary statistics on 34,321 CEO grants awarded by 1,547 unique
firms in the 2006-2014 period. Over this period, on average, there were 3.2 CEO grants per year.
The proportion of incentive awards paid out in cash is stable within the sample period at roughly
35% of all CEO grants; in the same time period, stock-based payouts increased from 36% to 49%
while option-based payouts declined from 29% to 15%. Notably, the proportion of CEO grants that
included a relative performance component (Abs/Rel or Rel) more than doubled, from 8% in 2006
to 17% in 2014.9

Table 1, Panel B, suggests that the number of companies that explicitly provided relative
performance incentives have more than doubled since 2006. Relative to the total number of
companies in our sample, the proportion of firms with explicit relative-performance (RP) incentives
increased from 20% in 2006 to 48% in 2014 (see the solid line in Figure 1). Moreover, Panel C
suggests that, among such firms, the use of rTSR has been increasingly prevalent: whereas 70%
of the companies that provide RP incentives used rTSR in 2006, 87% did so by 2014 (see the
dashed line in Figure 1). Jointly, the summary statistics presented in Table 1 and Figure 1 illustrate
the increasing pervasiveness of explicit RP-based incentives and the prominence of rTSR in such
incentive plans.

To further elucidate the economic magnitude of CEOs’ RP-based incentives, Table 2 provides
back-of-the-envelope estimates of the relative importance of meeting RP targets. We estimate how
much incremental incentive-plan-based compensation the CEO would earn by meeting RP-based
targets, assuming that all other incentives are earned. Column 3 estimates expected total plan-based

9This increase in the explicit use of relative performance grants is consistent with descriptive evidence from the
prior literature. For example, our summary statistics are comparable to those of Bettis, Bizjak, Coles and Young
(2014), which also uses data from ISS Incentive Lab spanning the time period 1998-2012 (e.g., see their Table 1).
compensation when all incentives are earned, including meeting all RP-based targets. Columns 4 and 5 estimate the allocated expected compensation stemming from meeting RP-based targets and from meeting rTSR-based targets respectively. Overall, RP-based incentives comprise a significant proportion of the total expected plan-based compensation, with rTSR comprising the vast majority (73% on average as reported in column 6).

Furthermore, we estimate the expected improvement in incentive-plan-based compensation from meeting RP-based and rTSR-based targets (the “Incentive Ratio” reported in columns 7 and 8). Column 7 suggests that, relative to not meeting RP-based targets, meeting them increases CEOs’ plan-based compensation by an average of 58%, assuming all other incentives are earned. Column 8 suggests that, assuming that all non-rTSR-based RP targets are met and that all other incentives are earned, meeting rTSR-based targets increases CEOs’ plan-based compensation by an average of 40%.

Our back-of-the-envelope estimates are consistent with existing and growing evidence on the importance of performance-based—and in particular RP-based—incentives for CEOs. For example, Bettis et al. (2014) shows that the RP-related components of compensation of RP-grant-issuing firms between 1998 to 2012 consistently determine more than 30% of the realized total compensation amount. Similarly, De Angelis and Grinstein (2016) shows that, for a hand-collected sample of S&P500 firms in 2007, about one-third of firms explicitly mentioned that their performance-based awards were RP-based, and firms with RP contracts attributed about half of the estimated total performance award value to RP. The paper also documents that about 75% of the performance metrics associated with RP are market measures which is a finding consistent with the notion that stock price-based measures are predominant for relative performance purposes.

Table 3 provides information on the different types of benchmarks used for measuring relative performance. The sample of RP grants is identical to Table 1, Panel B. Specifically, we consider

10 Expected compensation is calculated using values reported in the Grants of Plan-Based Awards Table by adding the dollar values of Estimated Future Payouts Under Non-Equity Incentive Plan Awards based on target performance and the Grant Date Fair Value of Stock and Option Awards reported in the proxy statements.

11 The incentive ratio in column 7 (8) is calculated as the expected plan based compensation from meeting RP-based targets, assuming that all other incentives are earned as reported in column 3, divided by the counterfactual expected compensation excluding RP-based allocations (rTSR-based allocations). For example, the RP-based incentive ratio of 1.50 in 2014 implies that on average, CEOs who achieve their RP-based targets can earn 50% more than the counterfactual in which they do not earn their RP-based threshold performance payouts. When an incentive grant involves multiple performance criteria, we equally attribute the total expected payout from meeting all targets to each metric.
four benchmark categories: the use of a specific peer set, the S&P500 index, the S&P 1500 index, and other indexes (typically industry-based). Columns 4-7 report the percentages of RP grants that use each type of benchmark in a given fiscal year. Column 8 reports the percentage of RP grants whose benchmark cannot be identified. Because each grant can be associated with multiple types of benchmarks, the sum of the values across columns 4 to 8 can exceed one. Finally, column 9 reports the average number of peer firms used by firms that select a specific peer set.

Overall, we observe that around half of all relative performance grants choose specific peers as a benchmark, and that the average number of peers is 15-18. For firms that choose an index benchmark, the most popular choice is the S&P500. In 2014, for example, 49% of RP grants to CEOs identify specific peer firms as the relative benchmark; 22% use the S&P500 or 1500 indexes, 17% use another index (e.g., narrower or industry-specific indexes), and 15% do not specify peer benchmark. The distribution of relative benchmark types remained stable over the eight year period from 2006 to 2014. Among the firms that choose an index, the distribution of index choices also remained stable; in 2014, for example, 45% chose the S&P500, 12.5% chose the S&P1500, and the remaining 42.5% chose other indexes.

3.2 Explaining Common Shocks in Stock Returns: Firms’ Chosen RP Benchmarks vs. Search-Based Peer Firms (SBPs)

Given the rising importance of rTSR as a metric for judging and incentivizing managerial performance, our paper seeks to assess the efficacy of boards’ performance measurement choices. We examine the extent to which boards’ choice of relative performance benchmarks follow the informativeness principle, as predicted by theory (Holmström, 1979; Holmström and Milgrom, 1987). In other words, how well do firms’ choice of RP benchmarks perform in filtering out the common component of stock returns?

To assess the performance of firms’ chosen RP benchmarks, we compare them to the search-based peer firms (SBPs) of Lee et al. (2015) as a normative benchmark. SBPs represent firms’ economic benchmarks as collectively perceived by investors and inferred from the co-search patterns on SEC’s Electronic Data-Gathering, Analysis, and Retrieval (EDGAR) website. The findings of Lee et al. (2015, 2016) suggest that SBPs prevail over other state-of-the-art methods for identifying economically-related firms in terms of explaining co-movement of stock returns, valuation multiples,
growth rates, R&D expenditures, leverage, and profitability ratios. Among S&P500 firms, for example, an equal-weighted portfolio of top-10 SBPs explains 63% more of the variation in base-firm monthly stock returns than a randomly selected set of 10 peers from the same 6-digit Global Industry Classification System industry. A search-traffic-weighted portfolio of top-10 SBPs, weighted by the relative intensity of co-searches between two firms (a measure of perceived similarity), explains 85% more of the variation in base-firm monthly returns. Although common shocks affecting a firm’s stock returns are unobservable, SBPs serve to provide a lower-bound estimate of the importance of such common shocks. For contrast, we also compare firms’ chosen benchmarks to the S&P500 index as a normative lower bound estimate of the common shock.

We focus on those firms that tie their CEOs’ performance-based incentives to rTSR, for whom the quality of the RP metric should be especially important. We therefore restrict attention to the subsample of firms covered by ISS Incentive Lab that issued rTSR-based grants to their CEOs (that is, the sample described in Table 1, Panel C) and that disclose the peers or indexes (market or industry-based) used in determining performance payouts. We further restrict the analysis to firms for which sufficient data exists to construct SBPs. In total, our sample consists of 356 unique firm-benchmark-type (i.e., index vs. specific peers) observations between fiscal years 2006 to 2013, representing 330 unique firms due to the presence of 26 firms that switched benchmark types during the sample period. Detailed construction of our final sample is reported in Appendix Table A.II.

To investigate the efficacy of firms’ chosen benchmarks at explaining common shocks, our first test estimates the cross-sectional average R^2 values from firm-specific time-series returns regressions of the form:

$$R_{it} = \alpha_{it} + \beta_i R_{ipt} + \epsilon_{it}$$ \hspace{1cm} (1)$$

where R_{it} is firm i’s monthly cum-dividend returns in period t and R_{ipt} is the return of a firm’s benchmark peers’ returns. For firms that select a set of specific RP peer firms, we use the median of the peer set’s returns, which reflects their most common choice of a performance target around which relative performance payouts are linearly interpolated (Reda and Tonello, 2015). For firms that select an index as the relative benchmark, we use the corresponding index returns. For the RP benchmarks disclosed in the proxy statement for a given fiscal year, we use returns from the
following fiscal year in estimating R^2s. For example, if firm i reports its fiscal year end date as December 2000, we obtain monthly stock return data for the calendar window January 2001 to December 2001 for it and for the corresponding performance peers disclosed in that proxy statement to calculate R_{ipt}.

We compare the R^2s generated by firms’ selected peer benchmark returns to those obtained from both the S&P500 index and the (search-traffic-weighted) returns of firms’ SBPs. As shown in Lee et al. (2015) and Lee et al. (2016), weighting SBPs by the relative magnitude of EDGAR co-search fractions, interpreted as a measure of similarity or relevance between firms, performs best at explaining variations in base-firm returns. To avoid look-ahead bias, we follow Lee et al. (2015) in always identifying SBPs using search traffic from the prior calendar year. Returns data are obtained from CRSP monthly files, and firms with fewer than ten months of valid monthly returns in total are excluded from the sample. To facilitate comparisons, all regressions are conducted using the same underlying set of base firms. The average number of monthly returns per firm is 37.

Table 4, Panel A, reports the cross-sectional means of the resulting time-series R^2 values. In columns 1-2, the first row shows that, across all 356 unique firm-benchmark observations, using the S&P500 as the benchmark yields an average R^2 of 32.8%. In contrast, firms’ chosen RP benchmarks produce an average R^2 of 48.3%, which is significantly higher (at the 1% level) than that produced by the S&P500 (as reported in column 4). Column 3 reports the cross-sectional mean of the time-series R^2s produced by the search-traffic-weighted portfolios of firms’ top-10 SBPs. The average R^2 value of 51.8% is significantly higher (at the 1% level) than that produced by firms’ chosen RP benchmarks (as reported in column 5). In summary, firms’ chosen peers exhibit the economically significant advantage of a 15.5% higher R^2 in comparison to the S&P500, and modest under-performance of 3.5% relative to SBPs.

In Table 4, Panel A, rows 2 and 3 examine the efficacy of firms’ selected benchmarks for the subset of firms that use specific peers (N=201) and an index (N=155) respectively. We find that the under-performance of firms’ benchmarks is concentrated among the set of firms using index-based benchmarks, among whom the average time-series R^2 is 40.0%. By comparison, the average R^2s produced by SBPs (46.4%) represent not only a statistically significant improvement but also an economically significant one (a 16% proportional improvement). However, firms that choose index-based benchmarks continue to outperform the 32.9% R^2 generated by the S&P500, though by
a smaller amount—a 21.6% proportional improvement—than do firms that choose specific peers, whose average R^2 outperform those produced by the S&P500 proportionally by 67.1%. Indeed, the benchmarks of firms that choose specific RP peers produce an average R^2 of 54.8%, which is statistically no different from the average R^2 of 56.0% generated from firms’ SBPs.

Table 4, Panel B, assesses the robustness of these findings using alternative peer performance measures: the mean and the 75th percentile of peer portfolio returns. Since these variations do not affect index returns, these robustness tests focus only on firms that use specific RP peers. As in Panel A, the mean (75th percentile) of chosen peers’ returns yields an average time-series R^2 of 54.7% (51.7%) in return regressions across the set of specific-peer-benchmarking firms. The under-performance of 4.4% relative to SBPs is statistically significant at the 1% level for the 75th percentile of specific peer performance, but not significant for the mean of the portfolio of specific peers.

In summary, we find that the performance of firms’ chosen RP benchmarks, in terms of the mean R^2s from time-series regressions, lies somewhere on the spectrum between those generated by the S&P500 at the lower bound and by SBPs at the upper bound. Specific-peer-based benchmarks chosen by firms lie on the upper end of this range; their performance in R^2s is statistically indistinguishable from those of SBPs. Index-based benchmarks chosen by firms, on the other hand, lie somewhere in the middle of the performance range, significantly outperforming the S&P500 index, on average, but underperforming SBPs. These findings are robust to alternative choices of peers. In untabulated tests, we generate nearly identical results using the peers most commonly co-covered by sell-side analysts (“ACPs” of Lee et al., 2016). We also examine the alternative of using peers selected by the board for compensation benchmarking purposes. Table A.IV shows that compensation benchmarking peers under-perform both SBPs and firms’ chosen specific RP peers, suggesting that those firms choose specific peers to better filter the common noise in TSR. On the other hand, we find that index-based firms would have been better off using their compensation benchmarking peers, which significantly outperform firms’ chosen index-based benchmarks.

These findings suggest that, among the subset of firms that tie performance-based incentives to rTSR defined using specific peers, boards appear to judiciously and carefully select peer firms whose

12 Though index-based benchmarking firms include those that use the S&P500, the outperformance stems from narrower industry indexes that are also part of the group.
performance filters out common performance shocks. For the remaining 43.5% of firms that choose an index-based benchmark, on the other hand, there appears to be significant room for improvement relative to both SBPs, ACPs, and the firms’ own compensation benchmarking peers. Another possibility is that these choices reflect alternative considerations of heterogeneous firms, a point we will return to in Section 5. The next section investigates ramifications of the underperformance in R^2 through the lens of the standard principal-agent framework.

4 Interpreting R^2 Differences

Although the differences in R^2’s reported in the previous section are suggestive, it is difficult to interpret their economic magnitudes and implications for firm performance. In this section, we interpret these R^2 results in the context of a classic principle-agent model. In this framework, we then assess the firm-performance ramifications of firms’ RP-benchmark inefficacy.

4.1 Basic Setup

Like Margiotta and Miller (2000), Milbourn (2003), Gayle and Miller (2009), and Coles, Lemmon and Meschke (2012), the starting point of our model follows Holmström and Milgrom (1987) and Gibbons and Murphy (1990). We assume a risk-neutral principal (the board) and a risk-averse agent (the CEO), and assume further that firm performance follows a factor structure consisting of (i) unobserved managerial effort $[a]$, (ii) a common shock that is beyond the manager’s control $[c \sim iid N(0, \sigma^2_c)]$, and (iii) a firm-specific idiosyncratic shock $[\epsilon \sim iid N(0, \sigma^2_\epsilon)]$:

$$p = a + c + \epsilon.$$ (2)

A testable implication of the factor structure assumption in Eqn. 2 is that the coefficient on the benchmark portfolio in Eqn. 1 equals 1. Consistent with the factor structure, in un-tabulated results, we find that the estimated slopes are approximately 1.

Under linear contracts of the form $w = \alpha + \beta[p - c]$, exponential utility, and a quadratic cost of managerial effort, the manager’s problem is given by

$$\max_a e^{-\eta(w - \frac{1}{2}a^2)} \text{ s.t. } w \geq w.$$ (3)
where w represents the manager’s reservation wage and η is the manager’s CARA risk aversion. The manager’s optimal effort choice (and expected firm performance) is given by

$$a^* = \frac{\beta}{\kappa},$$

which is the performance sensitivity of the linear contract scaled by the cost of effort parameter κ.

In this framework, the risk-neutral board’s problem is given by

$$\max_{a, \alpha, \beta} \mathbb{E}(p - w), \text{ s.t. } \mathbb{E}[-e^{-\eta[w - \frac{w - \frac{w}{2}a^2}]}] \geq u(w), \text{ and } a \in \arg\max \mathbb{E}[-e^{-\eta[w - \frac{w}{2}a^2]}],$$

and the optimal relative performance contract is given by

$$w^* = \alpha^* + \beta^*(p - c).$$

The first component of the optimal contract (α^*) is the manager’s expected compensation when the firm meets its peers’ performance, which depends on the manager’s exogenously determined outside option. The second component, $\beta^* = \frac{1}{1 + \eta\kappa\sigma^2}$, represents the pay-performance sensitivity portion of the contract.

Finally, given the optimal contract chosen by the board, the manager’s effort can be rewritten as

$$a^* = \mathbb{E}[p] = \frac{1}{\kappa + \eta\kappa^2\sigma^2}.$$

Thus, to motivate optimal effort, the principal designs a contract that rewards managers for effort by perfectly eliminating the common shocks in firm performance since they are beyond the manager’s control.

The key comparative static for our purposes is the negative effect of the variance in idiosyncratic shocks on performance through managerial effort: $\frac{\partial a^*}{\partial \sigma^2} < 0$ from Eqn. 7. The intuition is that, all else equal, higher σ^2 means that a greater proportion of the firm’s performance is unpredictable—or explained by idiosyncratic shocks—even after filtering out the common component of performance.
Thus, the manager’s compensation, driven by an inferred effort level \(p - c = a + \epsilon \), is more likely driven by factors beyond the manager’s control (i.e., noise), reducing the manager’s incentives to exert effort.

4.2 Imperfect Common Shock Filtration

We now depart from the baseline case by introducing imperfect filtering and assuming that the principal (the board) observes the common shock with error,

\[\hat{c} = c + \omega_b, \tag{8} \]

where \(\omega_b \sim_{iid} N(0, \sigma_b^2) \). Here, lower \(\sigma_b^2 \) represents the greater ability of performance peers or benchmarks to eliminate common shocks, and perfect common shock filtering reduces to the special case where \(\sigma_b^2 = 0 \).

Under this framework, again assuming linear contracts, exponential utility, and quadratic cost of effort, the manager’s optimal effort and expected equilibrium firm performance is given by

\[a^* = \mathbb{E}(p^*) = \frac{1}{\kappa + \eta \kappa^2 (\sigma^2 + \sigma_b^2)}. \tag{9} \]

Notably, poorer measurement of the common shock (higher \(\sigma_b^2 \)) reduces the equilibrium effort level and expected firm performance.

The intuition is that measurement errors introduce additional noise into the manager’s compensation, and in particular into the performance metric \((p - \hat{c})\) from which the manager’s effort level is inferred \((a + \omega_b + \epsilon)\). Thus, as in the baseline case above, the incremental volatility stemming from poorer measurement of the common shock induces the manager to choose a lower level of effort.

The \(R^2 \) results in Table 4 can be interpreted in the framework of this model, since there is a one-to-one mapping with the variance in measurement errors. In particular, the time-series return

\(^{14}\)We assume that \(\omega_b \) has mean zero which is without loss of generality in the manager’s optimization choice of effort. A non-zero mean would enter into the level of the manager’s expected compensation. Both Sinkular and Kennedy (2016) and Bennett, Bettis, Gopalan and Milbourn (2017) find that firms beat the target payout approximately half the time, which suggests that \(\omega_b \) is close to zero.

\(^{15}\)Note that this formulation produces the same analytical prediction as the original Holmström and Milgrom (1987) and Aggarwal and Samwick (1999b) framework where a second signal of firm performance (performance peers/benchmarks) exists with the two signals sharing a correlation \(\rho \). One can think of choosing better peers/benchmarks in the two models as either a decrease in \(\sigma_b^2 \) or an increase in the absolute value of \(\rho \).
For a given firm—i.e., fixing σ^2 and σ_c^2—lower σ_b^2 corresponds to higher R^2. Therefore, the results of Table 4 imply that SBPs produce lower measurement error variances in the common performance factor relative to firms’ chosen performance benchmarks.

In fact, the assessment of peer benchmarking adequacy reported in Table 4 can be recast in terms of measurement error variances—ultimately the economic object of interest in our analysis. Under the model assumptions, the following data moments—the variances in prediction errors from peer benchmarks—can identify the measurement error variances up to a scalar constant:

$$\text{Var}(p - \hat{c}_{\text{peer}}) = \sigma_{b,\text{peer}}^2 + \sigma^2.$$ \hspace{1cm} (11)

Although we cannot identify the magnitude of the measurement error variances, their differences between one set of peer benchmarks and another can be identified—a refinement over the R^2 measures, which, as shown in Eqn. 10, contain σ_c^2, but other factors as well.\footnote{Consistent with the model, the structural estimation also constrains the coefficient on c in Eqn. 2 to equal 1.} Moreover, these sample moments allow us to obtain a lower bound estimate on the proportional improvement between two benchmark candidates.\footnote{It is easily shown that $\frac{\sigma_{b,\text{firm}}^2 + \sigma^2}{\sigma_{b,\text{sbp}}^2 + \sigma^2} > 1 \Rightarrow \frac{\sigma_{b,\text{firm}}^2}{\sigma_{b,\text{sbp}}^2} > \frac{\sigma_{b,\text{firm}}^2 + \sigma^2}{\sigma_{b,\text{sbp}}^2 + \sigma^2}.$}

4.3 Structural Estimates of Measurement Error Variances and Performance Implications

Table 5, panel A, rows 1-3 present simple method of moments parameter estimates of Eqn. 11 for the S&P500 (row 1), firms’ chosen performance benchmarks (row 2), and SBPs (row 3), where p represents the monthly stock returns of the base firm. \hat{c}_{500}, \hat{c}_{sbp}, and \hat{c}_{firm} are monthly stock returns of the S&P500 index, the (traffic-weighted-average) returns of firms’ SBPs, and the median returns of firms’ chosen performance benchmarks, respectively. In column 1, the estimated $\sigma_{b,\text{firm}}^2 + \sigma^2$ across the whole sample equals 44.489, whereas $\sigma_{b,\text{sbp}}^2 + \sigma^2$ equals 40.742 for a statistically significant improvement.
significant difference (at the 1% level) of 3.747. On a relative basis, firms’ chosen performance
benchmarks produce at least 9.2% greater variance in measurement errors. Columns 2 and 3 of
the same panel recover estimates for the subset of firms that selected specific peers and indexes,
respectively. Similar to our findings in Table 4, SBPs’ out-performance of firms’ chosen performance
benchmarks is concentrated in the set of firms that choose indexes. Index-based benchmarks’
measurement error variances are at least 16.4% greater than SBPs; for firms using specific peers,
varying are at least 4.4% greater, both statistically significant at the 1% level. In summary, our
findings on the ultimate construct of interest—the performance of firms’ chosen RP benchmarks in
terms of measurement error variances—are empirically and theoretically consistent with the earlier
R^2 results of Table 4.

Given the greater measurement error variance implicit in the benchmarks chosen by firms, we
proceed to quantify the economic implications of benchmark inefficacy in terms of managerial effort
and expected firm performance, which can be estimated using the sample analogue of Eqn. 9. In
particular, given the manager’s risk aversion (η) and effort-cost parameter (κ), the impact of poorer
benchmarks on expected performance is given by

$$
\mathbb{E} \left[\left(\sigma_{slp}^2 - \sigma_{firm}^2 \right) \right] = \frac{1}{\kappa + \eta \kappa^2 (\sigma_{slp}^2 + \sigma^2)} - \frac{1}{\kappa + \eta \kappa^2 (\sigma_{firm}^2 + \sigma^2)}.
$$

(12)

This computation requires identification of the risk-aversion (η) and the effort-cost (κ) parameters;
however, with three unknowns (κ, η, $\sigma^2 + \sigma_{slp}^2$) and two equations (9 and 11), the model is
underidentified. The under-identification of the risk aversion parameter is common in estimating
these models (see, e.g., Gayle and Miller, 2015); our calibration, thus, borrows accepted ranges of
the risk aversion parameter η from the prior literature. Following Haubrich (1994), we consider the
range of η between 0.125 and 1.125. Consistent with the model, we also restrict $\kappa > 0$, since Eqn.
9 has two roots. Table 5, Panel A, row 4 reports method of moments estimates of κ, under the
assumption that $\eta = 0.625$, the midpoint of the range considered in Haubrich (1994).

The implications of SBPs’ outperformance of firms’ chosen RP benchmarks are obtained by
applying the method of moments parameter estimates and the assumed risk-aversion parameter to

18 An interesting question is whether idiosyncratic firm performance isolated through relative performance is driven
by discount rate or cash flow news. Both cases can support the effort story, depending on one’s assumptions about the
nature of the manager’s effort. In either case, Vuolteenaho (2002) shows that, at the firm level, the majority of the
variation in returns is driven by cash flow news.
Eqn. 12. Across all firms in the sample, at the midpoint of risk aversion $\eta = 0.625$, we estimate the counterfactual performance gained (lost) under SBPs (S&P500) to be 91.73 (281.83) basis points in annual returns. In other words, the on-average under-performance of firms’ selected benchmarks—in terms of explaining the common component of firm performance—implies an economically significant performance effect. These performance implications are again driven through the set of firms that select index-based benchmarks. Interestingly, we find that firms that selected specific peers would have lost 385 basis points if they had instead selected the S&P500.

In un-tabulated results, we also estimate the performance consequences (in annual returns) of counterfactually switching to SBPs using the lower ($\eta = 0.125$) and upper bound ($\eta = 1.125$) of the manager’s risk-aversion parameter. We find an effect size of 60 basis points corresponding to the lower bound and 153 basis points corresponding to the upper bound for all firms and a range of 106 to 277 for index-based benchmarking firms. Relative to our sample median annual returns, this represents an economically significant 4.6 to 11.6% proportional decline overall, and 7.9 to 20.6% for the sub-sample of index-based benchmarking firms.

The estimates in Table 5 come from a pooled sample, rather than the average of parameters across firms, in order to provide sufficient power to estimate κ. For robustness, Table 6 reports the average parameter estimates across firms from re-estimating Eqn. 11 on a firm-by-firm basis. Table 6 also estimates measurement error variances using alternative peer performance measures: the mean and 75th percentile of peers’ returns. In general, we find similar but slightly larger magnitudes in our estimate of error variance than in the pooled estimates, suggesting that pooling and averaging across firm-specific estimates yield similar conclusions.

5 Understanding the Sources of Ineffective Benchmarking

The structural estimates in the prior section suggest that, in the absence of frictions generated by selecting precise peer benchmarks, the on-average underperformance of firms’ selected RP benchmarks—particularly among firms that select index-based benchmarks—imply performance penalties that are economically large. Our hypothesis is that these economic magnitudes could, at least in part, be rationalized by certain economic frictions, to which we will turn our attention below. We begin by extending the baseline model to endogenize the board’s problem of benchmarking.
selection. We then use the model’s predictions to guide our empirical investigation of plausible economic explanations for the observed underperformance in RP benchmarks.

5.1 Comparative Statics of Benchmarking Efficacy σ^2_b

To analyze the potential sources of ineffective benchmarking more formally, we generalize the problems faced by the board and the manager introduced in Eqn. 5 and 8, which assume that the quality of the benchmarking technology available to the board (σ^2_b) is exogenously determined. We now assume instead that improving the benchmark peers’ quality, in terms of filtering out common shocks (or lowering σ^2_b), entails costly effort on the part of the board, and model the cost function to be quadratic in peer quality.\(^\text{19}\)

The board’s optimal selection of a benchmark, characterized by its measurement error variance (σ^2_b), is the solution to the utility maximization problem based on the board’s indirect utility function from substituting Eqns. 6 and 7 into Eqn. 5:

$$
\sigma^2_b^* = \arg \max_{\sigma^2_b} f(\sigma^2_b; \theta, \kappa, \sigma^2) = \arg \max_{\sigma^2_b} \frac{1}{2\kappa + 2\kappa^2\eta(\sigma^2_b + \sigma^2)} - \frac{1}{2} \theta \left(\frac{1}{\sigma^2_b} \right)^2.
$$

(13)

Thus, obtaining a precise estimate for the common component of firm performance (low σ^2_b) is more costly with θ, a cost shifter to capture differential cost of effort or monitoring among boards.

Because the objective function exhibits increasing differences in σ^2_b with respect to each of the state variables (i.e., $\frac{\partial^2 f}{\partial \sigma^2_b \partial \theta} > 0$, $\frac{\partial^2 f}{\partial \sigma^2_b \partial \kappa} > 0$, and $\frac{\partial^2 f}{\partial \eta \partial \sigma^2} > 0$), by Topkis’ Theorem (Topkis, 1978), the model yields the following three predictions. First, the level of peer precision is decreasing in the board’s cost of effort or monitoring ($\frac{\partial \sigma^2_b^*}{\partial \theta} > 0$). In other words, a board will be more likely to exert the effort to search for better benchmarks when board members are more skilled or higher-quality monitors (e.g., less distracted or less captured). Second, the level of peer precision is increasing with the CEO’s quality or ability ($\frac{\partial \sigma^2_b^*}{\partial \kappa} > 0$). Third, the level of peer precision is decreasing with the level of volatility in firm performance ($\frac{\partial \sigma^2_b^*}{\partial \sigma^2} > 0$). The intuition for the latter two predictions is that boards are more likely to exert the effort to produce better benchmarks when the marginal benefits are higher: that is, when managers are more likely to exert effort as a result of better

\(^{19}\)A more general treatment of the problem of optimal signal precision in contracting can be found in Chaigneau, Edmans and Gottlieb (2016a) and Chaigneau, Edmans and Gottlieb (2016b).
filtering, either because their cost of effort is lower or they are more talented (lower κ) or because their efforts contribute more to firm performance (lower σ^2).

Below we test these hypotheses by examining how the characteristics of the CEO, the board, and the firm may explain the observed variation in the quality of RP benchmarks.

5.2 Empirical Drivers of Benchmarking Efficacy

To test these hypotheses empirically, we first construct measures of benchmarking adequacy that assess the performance of firms’ selected RP benchmark relative to the normative range represented by the S&P500 at the lower bound and SBPs at the upper bound. The first measure of benchmarking adequacy is based on each firm’s time-series R^2, and is defined as \(\frac{R^2_{rp} - R^2_{sp500}}{R^2_{sbp} - R^2_{sp500}} \).

Intuitively this proxy measures the percentage of the performance range—represented by the difference in R^2s from SBPs and from the S&P500—that is achieved by firms’ chosen benchmarks. The higher the value in this measure, the more efficacious are a firm’s chosen benchmarks. To mitigate the effect of outliers, we winsorize this measure at the 1% level. Similarly, we define a second measure of benchmark adequacy based on the measurement-error-variance proxy, defined as \(\frac{\sigma^2_{sp500} - \sigma^2_{rp}}{\sigma^2_{sp500} - \sigma^2_{sbp}} \). The interpretation of this measure and our treatment of its outliers remain unchanged. Table A.III reports that these two variables exhibit a correlation of 0.51. Since the first measure presumes that the S&P500 and SBPs are the lower and upper bounds of R^2, our analyses using it focus on the subset for which $R^2_{sbp} - R^2_{sp500} > 0$; similarly, since the second measure presumes that the S&P500 and SBPs are the upper and lower bounds of σ^2, our analyses using it focus on the subset for which $\sigma^2_{sp500} - \sigma^2_{sbp} > 0$.

Table 7 reports the results of OLS regressions of the benchmarking adequacy measures on a set of CEO, board, and firm characteristics that measure the model’s primitives as well as an indicator for choosing index-based benchmarks. We include three proxies for CEO characteristics—Log of CEO Pay, CEO Tenure, and CEO Age—that could capture managerial talent or cost of effort; we include

20 This setup also yields the technical result that $\frac{\partial \sigma^2_{*}}{\partial \eta}$ > 0 when $\kappa\eta(\sigma^2 + \sigma^2_b) > 1$ and $\frac{\partial \sigma^2_{*}}{\partial \eta}$ < 0 when $\kappa\eta(\sigma^2 + \sigma^2_b) < 1$. That is, there is a non-linear relation in the marginal effect of the manager’s risk aversion on the quality of peers selected. All else equal, boards choose lower-quality peers when managers with a “high” degree of risk aversion become more risk averse (i.e., $\eta > \frac{1}{\kappa(\sigma^2 + \sigma^2_b)}$); conversely boards choose higher-quality peers when managers with a “low” degree of risk aversion become more risk averse (i.e., $\eta > \frac{1}{\kappa(\sigma^2 + \sigma^2_b)}$). This is the case because the marginal benefit of improving benchmark quality is non-linear in the manager’s risk aversion. We do not emphasize this comparative static since we cannot empirically observe or proxy for variations in managers’ risk aversion.
four proxies for board characteristics—% Busy Directors, Board Size, and Director Workload—that could capture board quality or cost of monitoring; and five measures of firm-level characteristics—Log Market Cap, Return Volatility, Book-to-Market, Staggered Board, and Dual-Class Shares—that could capture the relative importance of idiosyncratic shocks in firm performance and additional governance characteristics. The specifics of variable construction are detailed in Table A.III.

Under the model’s predictions, we expect positive associations between benchmark adequacy and Log of CEO Pay, CEO Tenure, and CEO Age, which can be interpreted as measures of CEO skill or ability. We expect negative associations with % Busy Directors, Director Workload, and Board Size, which can be interpreted as measures of board distractedness (in the case of busy directors and director workload) and incentives to free ride (in the case of board size), which approximate the board’s cost of effort. Similarly, we expect to see negative associations with Staggered Board and Dual-Class Shares, both director-entrenching governance mechanisms that can also increase the directors’ cost of monitoring or the extent to which the board members are captured. We also expect to see positive (negative) associations with Return Volatility and Book-to-Market (Log Market Cap), since higher (lower) values in these variables reflect greater fundamental volatility.

Table 7, columns 1-3 report the OLS results using the R^2-based measure of benchmarking adequacy. The columns vary by whether year- or industry-fixed effects are included and whether standard errors are clustered at the firm level. Since our dependent variable relies on the notion that the S&P500 index and SBPs represent the normative lower and upper bounds of performance, we restrict our analysis here to those subsets of firm-level observations for which SBPs indeed outperform S&P500 (about 80% of the sample). Interpreting the results of column 3, which includes both year- and industry-fixed effects, three types of characteristics are significantly associated (at the 10% level) with benchmarking adequacy. First, the choice of an index is associated with a significant decline (at the 1% level) in the relative performance of firms’ chosen benchmarks, consistent with the findings of Tables 4-6. Moreover, the degree of adequacy is negative and significantly associated (at the 10% level) with the percentage of busy directors on the board, consistent with the model’s prediction; it is also negative and significantly associated (at the 10% level) with CEO tenure, which is inconsistent with the model predictions. One interpretation of this result is that, instead of reflecting CEO ability or talent, CEO tenure could capture the extent of the CEO’s power on the board.
Results reported Table 7, columns 4-6, using the measurement-error-variance-based measure of benchmarking adequacy, are similar. Interpreting the results of column 6, which includes both year- and industry-fixed effects, we find that again the choice of index is negatively and significantly (at the 1% level) associated with benchmarking adequacy. Moreover, we find that the presence of dual-class shares, in which typically a small number of shareholders hold disproportionate voting rights, is negatively and significantly associated (at the 1% level) with benchmarking adequacy, consistent with the model’s predictions on the cost of board monitoring (which we expect to be higher for dual-class firms, whose board members are likely to be more thoroughly captured).

In summary, the firm characteristic that is most consistently and significantly associated with the quality of firms’ chosen RP benchmark is the choice of an index. The effects we document are not only statistically significant but also economically large: the choice of an index is associated with a decline in benchmarking efficacy of 0.54 standard deviations for the R^2 measure and 0.42 standard deviations for the measurement error variance measure.

Given this finding, we further test the model by investigating the economic determinants for selecting index-based benchmarks, an indicator of low-quality benchmarking. Table 8 reports the marginal effects from a probit regression of an indicator for having chosen an index-based benchmark on the same set of CEO, board, and firm characteristics as in Table 7.\footnote{For the tests in Tables 7–9, we obtain firm-level characteristics of the 330 unique firms for fiscal years 2006–2013. Unlike the analyses in Table 7, those in Tables 8 and 9 are not based on our benchmark efficacy measures derived from R^2 measures (in Table 4) and measurement error variance measures (in Table 5). Instead, our main variable of interest is \textit{Index}—an indicator variable equal to 1 if the firm-year involves an index-based benchmark, and 0 otherwise. Accordingly, these tests are not subject to the additional data filters that are required for our R^2 analyses in Table 4, and comprise a larger number of firm-year observations than used in Tables 4-6.}

The results of Table 8 suggest that the choice of index-based benchmarks is associated with board-level governance weaknesses. In particular, interpreting the marginal effects of column 3, we find that the likelihood of choosing an index-based benchmark is associated positively and both economically and statistically significantly (at the 5% level) with the size of the board and with directors’ workload. For example, column 3’s point estimates suggest that a one standard deviation increase in \textit{Board Size} and \textit{Director Workload} is associated with a 5.9% and 6.6% higher likelihood of choosing index-based benchmarks. Relative to a baseline likelihood of 35% for choosing index-based benchmarks, these estimates represent proportional increases of 16.9% and 18.9%.

We do not find evidence that less precision in RP benchmarks is explained by lower CEO ability
or effort. In particular, we do not find evidence of a negative and significant coefficient on \(\log \text{CEO Pay} \), \(\text{CEO Tenure} \), or \(\text{CEO Age} \). In all three specifications, in fact, we find a positive and significant coefficient on \(\log \text{CEO Pay} \). For example, column 3’s point estimates suggest that a one standard deviation increase in \(\log \text{CEO Pay} \) increases the likelihood of choosing index-based benchmarks by 9.8%, or a proportional increase of 28% relative to the baseline likelihood. One interpretation of this result is that, conditional on the controls, higher CEO pay reflects excess pay and thus an outcome of board-level governance weaknesses. If so, the observed positive and statistically and economically significant coefficient on \(\log \text{CEO Pay} \) is consistent with the model’s prediction that less precision in the choice of benchmarks could result from lower board monitoring quality.

Further, we do not find consistent evidence that lower precision in RP benchmarks is explained by higher volatility in firm performance. The coefficients on \(\text{Return Volatility} \) and \(\text{Book-to-Market} \) are not significantly positive in all three specifications. In fact, in columns 1 and 2 (with no fixed effects and with time-fixed effects), we find negative coefficients on \(\text{Book-to-Market} \) that are significant at the 10% level. Finally, we do find, in columns 1 and 2 (with no fixed effects and with time-fixed effects), negative coefficients on \(\log \text{Market Cap} \) that are significant at the 5% level. However, the significance does not survive the inclusion of industry-fixed effects in column 3.

Overall, we do not find consistent evidence that volatility in firm performance or CEO talent and skill explain the observed variation in benchmark adequacy. Instead, the evidence of Tables 7 and 8 suggest that the source of friction that may explain the observed poor performance of benchmarks is associated with corporate governance and board monitoring quality issues, echoing the findings of Bertrand and Mullainathan (2001).

5.3 Alternative Theories of Variation in Benchmarking Quality

We consider several plausible alternative theories, external to this model, that could explain the observed variation in benchmarking quality (i.e., the selection of broad indexes).

5.3.1 Firms’ Market Power

One possibility is that choosing closely-related industry peers does not appropriately capture the exogenous component of performance. Incentivizing on relative performance measures is predicated on the assumption that the firm’s actions do not affect the performance of its benchmarks; the
actions of firms operating in oligopolistic industries may impact the performance of their industry competitors and invalidating their use for common shock filtration. In fact, under such conditions, it may be optimal to reward CEOs for the common shock (Janakiraman et al., 1992; Aggarwal and Samwick, 1999a) and encourage firms to soften product market competition. Thus, one prediction of such a theory is that larger firms are more eager to eliminate market-level volatility from their performance and thus more likely to adopt broad indexes. However, our empirical results do not support such a theory. Table 8 reports no statistically significant (at the 10% level) of a positive relationship between firm size and the choice of an index-based benchmark.

5.3.2 Persistence of Common Shocks

It is also possible that perfect filtration of common shocks is not optimal under other circumstances. The dynamic agency models of Hoffmann and Pfeil (2010) and DeMarzo, Fishman, He and Wang (2012) predict that boards will imperfectly filter observable and persistent common shocks to performance. This prediction implies that the difference in efficacy between firms that use specific peers or indexes as benchmarks can be driven by greater common shock persistence in the latter group. However, in untabulated results, we do not find evidence consistent with this theory. Using SBPs to proxy for the common factor, we do not find a difference in the persistence of SBPs returns between firms that benchmark against specific peers and those that benchmark against indexes.

5.3.3 Managers’ Abilities to Self-Insure

Another alternative explanation, offered by Garvey and Milbourn (2003) is that managers with greater ability to self-insure against the common factor benefit less from better benchmarks. If so, it is possible that the selection of index-based benchmarks on the part of certain firms may reflect non-risk-sharing motivations. However, our empirical results are not consistent with these predictions. In particular, we do not find significantly positive associations (at the 10% level) between CEO Age, a common proxy for the ability to self-insure, and the choice of index-based benchmarks in Table 8; the coefficients are also weak in economic magnitudes.
5.3.4 Peer Selection for Aspiration

Another possibility is that the choice of performance peers is aspirational (Francis, Hasan, Mani and Ye, 2016; Hemmer, 2015). Under such a theory, the selection of peer benchmarks would push managers at the firm to generate performance commensurate with or superior to that of well-performing firms. However, such a theory is less likely to explain our empirical results: why it is optimal to select indexes as aspirational benchmarks or why firms that select indexes benefit more from aspiration. Such an explanation is also inconsistent with the evidence in Table A.I, which suggest that the primary objective (in the eyes of compensation consultants) of rTSR is to provide a measure of firm-specific performance or shareholder value improvement that removes the effect of common shocks, rather than as a measure that motivates performance via aspiration. Furthermore, because a firm’s stock returns combine its ex-ante discount rate with changes in the market’s expectations about the firm’s future cash flows and changes in discount rates (Campbell, 1991), they can be quite volatile relative to, for example, accounting-based performance measures. Thus, motivating an absolute level of TSR performance via peer TSR performance, which is unpredictable, seems unnatural.

5.3.5 Peer Selection for Inter-Firm Tournaments

The choice of performance peers could alternatively serve to motivate CEOs via an implicit inter-firm tournament (Hvide, 2002). However, such a selection should also, at least theoretically, still be consistent with the informativeness principle. Given the large number of firms in the index benchmarks we observe (e.g. S&P500, S&P1500, Russell 3000), it is unlikely that they are characterized by some type of “optimal tournament” involving hundreds or thousands of heterogeneous firms. In particular, Lazear and Rosen (1981) show that, absent handicaps (which we do not observe in the performance contracts), heterogeneity among firms, which should be increasing in the peer set size, decreases the effectiveness of tournaments. Furthermore, the tournament mechanism requires both agents to be aware that they are competing in the same tournament, i.e., be mutually

22 Other models such as that of Hayes and Schaefer (2009), argue that when there is asymmetric information about the match surplus between the manager and the firm and when boards care about short-run perceptions of firm value, boards may inflate the CEO’s wage as a costly signal of the match surplus (Scharfstein and Stein, 1990). This effect suggests a rationale for boards’ choice of aspirational firms as compensation benchmarking peers, but why it would apply for the selection of performance benchmarking peers is less obvious.
chosen peers of each other. However as noted in De Angelis and Grinstein (2016) and Shin (2016), a significant portion of compensation and performance peers are one-sided, i.e., not mutually designated.

5.3.6 Gameability

It is possible that index-based benchmarks may reflect ex-ante rather than ex-post efficiency concerns. For example, in our interviews, one compensation consulting firm offered the possible rationalization that “[w]ith the influence proxy advisor like ISS carry, many companies are concerned that a custom group of peers will be misconstrued by proxy advisors as cherry-picking.” The presumption is that compensation packages tied to index benchmarks are more difficult to manipulate ex-post. However, we find the argument unconvincing for several reasons. First, most performance contracts in our sample provide payouts that are linearly-interpolated from the threshold targets. Therefore, there is less incentive to manipulate the performance metric due to the absence of discontinuous payoffs.23 Supporting this view, Bennett et al. (2017) finds no evidence of asymmetry in firms’ propensity to beat or miss a relative performance target. Second, the idea of cherry picking requires either the CEO or the board to be able to forecast returns of peer firms or indexes since benchmarks are formulated ex-ante prior to the realization of performance.24

5.3.7 Additional Evidence for Common Shock Filtration

Finally, we note the following additional evidence which suggests that the selection of peers in implementing rTSR in RP-based incentives is consistent with the removal of common shocks. By comparing solutions to the contracting problem based on relative performance (where we do not perfectly observe the common shock) to that of a contract that rewards based on absolute firm performance, one can deduce that incentivizing based on relative performance is desirable when $\sigma_c^2 > \sigma_b^2$. Wu (2016) refers to this as the “boundary condition” for RPE. The intuition is that

23One compensation consultant, during our interview, suggested that such linear interpolations are the norm. We verified this by collecting a random sample of 20 contracts from our main sample (across both specific peer and index benchmarking firms), and found two standard contract forms, both of which are effectively linear in rTSR and payout in shares. 3 out of 20 of the contracts are explicitly linear in rTSR. The remaining 17 contracts are linear in the firm’s TSR as a percentile of benchmark peers’ stock-return distribution (in un-tabulated simulations, we find that linearity in the percentiles of peers’ TSR distribution also imply linearity in rTSR). We infer linearity due to firms’ proxy statement disclosures of “linear interpolation” in performance between pre-specified target levels.

24Morse et al. (2011) shows that prior to 2006 ex-post cherry-picking of performance metrics was prevalent because contracts were not disclosed ex-ante as they were post 2006.
relative performance metric \((p - \hat{c} = a + \omega_b + \epsilon)\) is preferred when it is a less noisy reflection of managerial effort or talent than the absolute performance metric \((p = a + c + \epsilon)\). Conversely, an absolute performance metric should be relied on if peer benchmarking introduces more noise into the inference of managerial effort or talent. In untabulated results, we find that on average firms with rTSR-based incentives have on average 40% lower variance (statistically significant at the 1% level) in realized relative performance \((\text{Var}(rTSR))\) than their realized absolute performance counterpart \((\text{Var}(TSR))\). This is true both for firms that choose index-based benchmarks (which exhibit 30% lower variance on average, significant at the 1% level) and for firms that choose specific peers as benchmarks (which exhibit 48% lower variance on average, and again significant at the 1% level).

We also find that, consistent with the desire to filter common shocks, among the 26 firms that switched benchmark types (from index to specific peers or vice-versa) during our sample period, 19 (or 73%) switched from index to specific peer benchmarks. Based on a binomial test, we reject the null of equal likelihood against the alternative that benchmark-type switchers are more likely to have initially chosen an index (p-value of 0.014). Moreover, consistent with our main cross-sectional results, we find in untabulated results that (index-based) benchmarks performed worse in measurement error variances relative to SBPs prior to the switch to specific peers, which perform nearly equally to SBPs after the switch. Together, these results suggest that firms’ selection of peers for implementing rTSR in RP-based incentives is consistent with removing the effect of common shocks from TSR.

5.4 Reduced-Form Performance Implications in the Cross-Section

We conclude our analysis by seeking to determine whether there are observed performance differences between firms that choose index-based benchmarks versus those that choose specific peers. Recall that Section 4 suggests an economically significant improvement in counterfactual performance as a result of improving the adequacy of RP benchmarks, particularly among firms that chose index-based benchmarks. Table 9 reports reduced-form regressions of firm performance, in terms of ROA (columns 1-3) and annual stock returns (columns 4-6), on the choice of index-based benchmarks and the set of CEO, board, and firm characteristics examined above. Consistent with our earlier calibration exercise, we find evidence in our sample that the choice of index-based benchmarks is associated with worse performance. Interpreting column 3, which includes both year-
and industry-fixed effects, the choice of index-based benchmarks is associated with an 80 basis point decline in ROA, which is statistically significant at the 5% level. Relative to our sample median ROA of 440 basis points, this is nearly a 20% proportional decline. Similarly, interpreting column 6, which includes both year- and industry-fixed effects, the choice of index-based benchmarks is associated with a 320 basis point decline in annual returns, which is statistically significant at the 5% level. Relative to the median annual return of 1,320 basis points, this represents an economically significant 24% proportional decline.25

We offer the caveat that this reduced-form analysis uses firms that employ specific-peer-based benchmarks as counterfactuals to firms that use index-based benchmarks. To the extent that our control variables do not fully capture differences in underlying characteristics that could be associated with firm performance between these two types of firms, it is possible that the estimated performance differences are overstated. Indeed, our reduced-form estimates are larger compared to the structural estimates of Table 5.

Overall, our analysis suggests that governance-related frictions best explain empirical patterns in benchmark inadequacy and the choice of index-based benchmarks. Furthermore, we find empirical (reduced-form) evidence that the choice of index-based benchmarks is associated with poorer realized firm performance in our sample, consistent with our earlier structural calibration approach.

\section{Conclusion}

Market participants have increasingly looked to relative performance metrics such as rTSR to evaluate the performance of firms and managers. This attention has coincided with a rising trend toward tying executive performance-based compensation contracts to rTSR. This paper tests the extent to which firms’ choice of rTSR measures, through peer benchmark selection, subscribes to the informativeness principle: to what extent do the chosen peers filter out the common component in TSR?

We document that firms that choose index-based benchmarks perform 14% worse in their ability to explain time-series variation in returns than a normative performance peer set. Index-based benchmarks also exhibit 16.4% greater variance in the measurement error of the common component

25In un-tabulated results, we find nearly identical results to Tables 7, 8, and 9 when we include compensation-consultant-fixed effects along with year- and industry-fixed effects.
of performance. In contrast, specific-peer-based benchmarks exhibit 4.4% greater measurement error variance. Based on estimates from a principal-agent model, these poorer benchmarks imply, in the absence of frictions, an average performance penalty in annual returns of 60 to 153 (106 to 277) basis points through their effect on the manager’s effort across all (index-based benchmarking) firms. In the cross section, index-based benchmarking firms also have lower realized annual ROA (80 bps) and stock returns (320 bps).

Although boards and compensation consultants appear to aim to filter common noise from TSR, many do so imperfectly. We find that the observed benchmarking inefficacy, driven by boards’ reliance on index-based benchmarks in lieu of specific peers, are not easily rationalized by plausible alternative economic theories. Instead, we provide evidence that board-level governance weaknesses are associated with poorer benchmarks and with the decision to choose an index-based benchmark.

Although our findings are restricted to a sample of firms that tie CEOs’ performance-based contracts to rTSR, our analysis may apply more broadly to firms to the extent that executives have rTSR-based implicit incentives. For example, to the extent that shareholders, board members, or the executive labor market evaluate managers’ competence based in part on rTSR, managers’ reputational, career, or prestige concerns could be tied to such relative-performance metrics (Holmström, 1999; Avery et al., 1998; Brickley et al., 1999; Fee and Hadlock, 2003; Hörner and Lambert, 2016; Focke et al., 2017). We believe that such implicit incentives represent a promising avenue for the literature, and look forward to future research in this area.
References

Table A.I.

Compensation Consultants’ Descriptions of the Objectives of Relative TSR

This table presents passages from prominent compensation consulting firms’ white papers about the objectives and implementation of relative total shareholder returns (rTSR) in executive performance-based incentive plans. The Market Share column draws on Equilar’s 2015 Market Share Rankings, which are based on S&P 500 board engagements (Tran et al., 2016).

<table>
<thead>
<tr>
<th>Firm</th>
<th>Market Share</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frederic Cook</td>
<td>25.8%</td>
<td>TSR, specifically relative TSR, has emerged as the metric of choice under Say-on-Pay. For shareholders, there is an elegance to TSR in that it demonstrates the return relative to alternative investments. It is also the singular definition of corporate performance used by ISS, as well as the sole performance metric required by the SEC for pay and performance disclosure under Dodd-Frank. As such, some companies view relative TSR as a means to satisfy shareholder, ISS and SEC preferences (Sues et al., 2016).</td>
</tr>
<tr>
<td>Meridian Compensation</td>
<td>13%</td>
<td>Defining performance in terms of relative ranking against peers is easier - all a committee has to do is express a philosophical preference about what portion of peers a company has to outperform in order to earn a PSU payout at some level. The market does all of the heavy lifting, taking into account the macroeconomic and other market factors affecting the business (Medland et al., 2016).</td>
</tr>
<tr>
<td>Pay Governance</td>
<td>12.8%</td>
<td>Relative TSR is a performance metric most often used in LTI performance plans. Its use as a metric has nearly doubled over the past 5 years and is now used by approximately 50% of companies spanning all sizes and industries. ...the appeal of this metric for shareholders and directors alike is its alignment with shareholder value creation and the absence of having to establish long-term performance goals (Pakela et al., 2017).</td>
</tr>
<tr>
<td>Pearl Meyer Partners</td>
<td>7.9%</td>
<td>Measuring TSR on a relative basis levels the playing field by removing overall market movements and industry cycles from the evaluation of executive performance (Swinford, 2015).</td>
</tr>
<tr>
<td>Semler Brossy</td>
<td>5.1%</td>
<td>The theory behind relative shareholder return as an incentive metric is sound: Executives earn rewards only when shareholders experience above-market returns (Sirras and Sullivan, 2012).</td>
</tr>
<tr>
<td>Tower Watson</td>
<td>5.1%</td>
<td>There are numerous theoretical and pragmatic arguments for the use of relative TSR as a long-term measure. Relative TSR is viewed as objective, transparent and easy to communicate to participants. It supports shareholder alignment and incorporates relative measurement (Patel and Edwards, 2012).</td>
</tr>
<tr>
<td>Exequity</td>
<td>4.2%</td>
<td>[rTSR] is intended to align executive wealth with the shareholder experience (Burney, 2016).</td>
</tr>
<tr>
<td>CA Partners</td>
<td>4%</td>
<td>Companies tend to use industry peer groups or indices when economic factors have a unique impact on the industry. Companies that use a broader market group, such as a general industry index like the S&P 500, believe that companies compete broadly for investor dollars (Vnuk et al., 2012).</td>
</tr>
<tr>
<td>Mercer</td>
<td>3.5%</td>
<td>In an ideal world, companies would use a peer group of like organizations that are subject to the same external influences so that share price movements genuinely reflect decisions made by management (Mercer, 2013).</td>
</tr>
<tr>
<td>Compensia</td>
<td>2.6%</td>
<td>[rTSR] provides an unambiguous link to shareholder value, with outcomes that are not driven by overachievement against low expectations (Loehmann, 2016).</td>
</tr>
<tr>
<td>Hugessen Consulting</td>
<td>NA</td>
<td>[rTSR] counterbalances the general market movement “wind-fall” problems associated with stock options. Satisfies motivation and retention objectives in both up and down markets. [rTSR] may result in a closer measure of management performance (measuring “alpha”), at least theoretically (Hugessen, 2016).</td>
</tr>
<tr>
<td>Radford (Aon Hewitt)</td>
<td>NA</td>
<td>Performance-based equity incentive plans with Relative TSR metrics offer companies a wide range of important benefits, including: Reduced forecasting requirements for long-term performance goals, especially in an uncertain macro-economic environment. Clearer links between final executive compensation payouts and shareholder value creation. Reduced use of redundant performance metrics between annual cash incentive plans and long-term equity incentive plans, improving the overall risk profile of executive compensation programs (Radford, 2016).</td>
</tr>
</tbody>
</table>
Table A.II.
Sample Selection

This table reports the selection criterion used to generate the final samples used in Tables 4, 5, and 6.

<table>
<thead>
<tr>
<th>Main Sample Selection</th>
<th>Firm-year Observations</th>
<th>Firm-year-month Observations</th>
<th>Unique Firms</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Firms in ISS Incentive Lab data that include CEO grant data between fiscal year 2004 and 2013</td>
<td>12,216</td>
<td>8,998</td>
<td>1,668</td>
</tr>
<tr>
<td>(2) Less firms without CEO grants based on an RP component</td>
<td>3,218</td>
<td>751</td>
<td></td>
</tr>
<tr>
<td>(3) Less firms whose relative benchmark cannot be identified</td>
<td>2,533</td>
<td>645</td>
<td></td>
</tr>
<tr>
<td>(4) Less firms that do not use stock price as the relevant RP performance measure</td>
<td>2,047</td>
<td>554</td>
<td></td>
</tr>
<tr>
<td>(5) Less firms without CIK-GVKEY matches</td>
<td>1,821</td>
<td>21,710</td>
<td>487</td>
</tr>
<tr>
<td>(6) Merged with monthly return data from CRSP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7) Less observations with missing SBP data</td>
<td>(635)</td>
<td>(6,654)</td>
<td>(131)</td>
</tr>
<tr>
<td>(8) Less observations before calendar year 2006</td>
<td>(50)</td>
<td>(764)</td>
<td>(4)</td>
</tr>
<tr>
<td>(9) Less observations that use both, index and specific peers, in a given fiscal year</td>
<td>(85)</td>
<td>(1,107)</td>
<td>(11)</td>
</tr>
<tr>
<td>(10) Less observations with fewer than 10 monthly returns in the time-series regressions</td>
<td>(13)</td>
<td>(77)</td>
<td>(11)</td>
</tr>
<tr>
<td>Final Sample</td>
<td>1,038</td>
<td>13,108</td>
<td>330</td>
</tr>
</tbody>
</table>
Panel A reports summary statistics on the variables used in Tables 7, 8, and 9. Panel B reports the correlation matrix of the same variables. Observations are at the annual (fiscal) firm-benchmark level. Significance levels are indicated by *, **, *** for 10%, 5%, and 1% respectively.

Variables are defined as follows: the variable names from the relevant databases are reported in brackets. Using Compustat, we define the following variables on firm characteristics: ROA is the ratio of net income to total assets [ni/at]; Log Market Cap is the log of the firm’s market capitalization ($Millions) as of the fiscal year end [mkvalt]; and Book-to-Market is the book value of common equity ($Millions) [ceq] divided by market capitalization ($Millions) [mkvalt]. Using Execucomp, we define the following variables on CEO characteristics: Log CEO Pay is the log of the CEO’s total compensation (in $Thousands) [tdc1]; Tenure is the current year minus the year in which the CEO joined the firm [becameceo]; and CEO Age is the age of the CEO [age]. Using MSCI GMI’s databases on companies and directorships, we define the following variables on board characteristics: % Busy Directors is the percentage of the firm’s directors with more than four board seats at public firms; Board Size is the number of directors on the board; and Director Workload is the number of full board meetings held over the prior fiscal year [BDMTG5] divided by the number of directors. Using the ISS Governance database, we define the following variables on a firm’s governance characteristics: Staggered Board is a variable that equals 1 if the firm holds staggered director elections and 0 if the firm has a unitary board; Dual-Class Shares is an indicator variable that equals 1 if the firm has multiple classes of voting shares and 0 if it has a single class of voting shares. Using CRSP, we define the following variables on a firm’s stock return characteristics: Annual Returns is a firm’s annual CRSP cum-dividend returns [ret] over a given fiscal year; and Return Volatility is the standard deviation of monthly cum-dividend returns for a firm over the fiscal year. Finally, Index is a dummy variable that equals 1 if the firm uses an index as its relative performance benchmark in a given fiscal year. Using search-based-peers (Lee et al., 2015), \((R_p^2 - R_{S&P500}^2)/(R_{sbp}^2 - R_{S&P500}^2)\) is defined to be the performance of the relative performance benchmark in terms of times-series \(R^2\) relative to that generated by the S&P500 index scaled by the difference in \(R^2\) generated by SBPs and the S&P500. In the context of the model, \((\sigma^2_{S&P500} - \sigma^2_p)/(\sigma^2_{S&P500} - \sigma^2_{sbp})\) is defined as the performance of the relative performance benchmark in terms of times-series measurement error \(\sigma^2\) relative to that generated by the S&P500 index scaled by the difference in \(\sigma^2\) generated by the S&P500 and SBPs.

Panel A: Distributional Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std.Dev.</th>
<th>P25</th>
<th>Median</th>
<th>P75</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROA</td>
<td>1,189</td>
<td>0.049</td>
<td>0.053</td>
<td>0.024</td>
<td>0.044</td>
<td>0.077</td>
</tr>
<tr>
<td>Annual Returns</td>
<td>1,189</td>
<td>0.143</td>
<td>0.327</td>
<td>−0.046</td>
<td>0.132</td>
<td>0.313</td>
</tr>
<tr>
<td>((R_p^2 - R_{S&P500}^2)/(R_{sbp}^2 - R_{S&P500}^2))</td>
<td>976</td>
<td>1.179</td>
<td>2.385</td>
<td>0.370</td>
<td>0.873</td>
<td>1.088</td>
</tr>
<tr>
<td>((\sigma^2_{S&P500} - \sigma^2_p)/(\sigma^2_{S&P500} - \sigma^2_{sbp}))</td>
<td>954</td>
<td>0.825</td>
<td>0.942</td>
<td>0.306</td>
<td>0.888</td>
<td>1.060</td>
</tr>
<tr>
<td>Index</td>
<td>1,189</td>
<td>0.346</td>
<td>0.476</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Log CEO Pay</td>
<td>1,189</td>
<td>8.893</td>
<td>0.678</td>
<td>8.462</td>
<td>8.874</td>
<td>9.351</td>
</tr>
<tr>
<td>CEO Tenure</td>
<td>1,189</td>
<td>5.385</td>
<td>4.605</td>
<td>2.000</td>
<td>4.000</td>
<td>7.000</td>
</tr>
<tr>
<td>CEO Age</td>
<td>1,189</td>
<td>56.453</td>
<td>5.190</td>
<td>53.000</td>
<td>57.000</td>
<td>60.000</td>
</tr>
<tr>
<td>% Busy Directors</td>
<td>1,189</td>
<td>0.022</td>
<td>0.048</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Board Size</td>
<td>1,189</td>
<td>10.611</td>
<td>2.057</td>
<td>9.000</td>
<td>11.000</td>
<td>12.000</td>
</tr>
<tr>
<td>Director Workload</td>
<td>1,189</td>
<td>0.805</td>
<td>0.349</td>
<td>0.583</td>
<td>0.727</td>
<td>0.929</td>
</tr>
<tr>
<td>Return Volatility</td>
<td>1,189</td>
<td>0.079</td>
<td>0.047</td>
<td>0.047</td>
<td>0.068</td>
<td>0.098</td>
</tr>
<tr>
<td>Book-to-Market</td>
<td>1,189</td>
<td>0.517</td>
<td>0.312</td>
<td>0.299</td>
<td>0.482</td>
<td>0.681</td>
</tr>
<tr>
<td>Staggered Board</td>
<td>1,189</td>
<td>0.349</td>
<td>0.477</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Dual-Class Shares</td>
<td>1,189</td>
<td>0.030</td>
<td>0.171</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Table A.III.
Continued

Panel B: Correlation Matrix

| | ROA | Annual Returns | (R^2_p − R^2_{p500})/(R^2_{shp} − R^2_{sp500}) | (σ^2_{p500} − σ^2_{shp})/(σ^2_{shp} − σ^2_{sp500}) | Index | Log CEO Pay | CEO Age | % Busy Directors | Board Size | Director Workload | Log Market Cap | Return Volatility | Book-to-Market | Staggered Board | Dual-Class Shares |
|-------------------------|----------|----------------|---|--|-------------|--------------|---------|-------------------|------------|------------------|----------------|------------------|----------------|-------------------|
| ROA | 1.00 | | | | | | | | | | | | | |
| Annual Returns | 0.15*** | 1.00 | | | | | | | | | | | | |
| (R^2_p − R^2_{p500})/(R^2_{shp} − R^2_{sp500}) | 0.03 | −0.00 | 1.00 | | | | | | | | | | | |
| (σ^2_{p500} − σ^2_{shp})/(σ^2_{shp} − σ^2_{sp500}) | −0.03 | 0.01 | 0.51*** | 1.00 | | | | | | | | | | |
| Index | −0.04 | −0.00 | −0.17*** | −0.24*** | 1.00 | | | | | | | | | |
| Log CEO Pay | 0.18*** | 0.06** | −0.03 | −0.14*** | 0.13*** | 1.00 | | | | | | | | |
| CEO Age | 0.07** | 0.02 | −0.05* | −0.00 | 0.07** | 0.01 | 1.00 | | | | | | | |
| % Busy Directors | 0.01 | 0.03 | −0.08** | 0.00 | 0.06** | 0.06** | −0.03 | −0.06** | | | | | | |
| Board Size | −0.01 | −0.02 | −0.01 | −0.01 | 0.07** | 0.24*** | −0.08**| 0.05* | | | | | | |
| Director Workload | −0.08*** | 0.01 | −0.02 | −0.06* | 0.08*** | 0.00 | −0.06**| −0.09*** | | | | | | |
| Log Market Cap | 0.31*** | 0.12*** | 0.00 | −0.06* | 0.04 | 0.68*** | −0.05* | 0.06* | | | | | | |
| Return Volatility | −0.26*** | −0.09*** | 0.00 | −0.09*** | −0.01 | −0.09*** | 0.04 | −0.08*** | | | | | | |
| Book-to-Market | −0.45*** | −0.30*** | 0.06* | 0.08** | −0.08*** | −0.15*** | −0.02 | 0.03 | | | | | | |
| Staggered Board | 0.03 | −0.04 | 0.05 | −0.06* | 0.01 | −0.13*** | −0.00 | 0.02 | | | | | | |
| Dual-Class Shares | 0.13*** | 0.00 | 0.12*** | −0.09*** | 0.01 | 0.11*** | −0.04 | 0.01 | | | | | | |

% Busy Directors 1.00
Board Size 0.05* 1.00
Director Workload 0.05* −0.35*** 1.00
Log Market Cap 0.06** 0.44*** −0.09*** 1.00
Return Volatility 0.02 −0.21*** 0.12*** −0.34*** 1.00
Book-to-Market −0.07*** 0.00 0.09*** −0.25*** 0.23*** 1.00
Staggered Board −0.03 −0.12*** −0.01 −0.19*** 0.08*** 0.03 1.00
Dual-Class Shares −0.02 0.09*** −0.06* 0.07** −0.03 −0.11*** −0.02 1.00
Table A.IV. Alternative Common Shock Filtration Benchmarks: Compensation Benchmarking Peers

Panel A reports the number of relative performance (RP) and compensation benchmarking (CB) peers, and the extent to which these two peer sets overlap for each fiscal year in our sample period. Columns 1 and 2 report the mean number of chosen peers in the performance benchmarking peer group and the compensation benchmarking peer group, respectively. Column 3 reports the mean number of firms in both peer groups. Columns 4 and 5 report the fraction of overlapping peers in the performance benchmarking peer group and the compensation benchmarking peer group, respectively. Panel B re-estimates Table 4 using compensation benchmarking peers as an additional normative benchmark. To facilitate comparisons, all the regressions are conducted using the same underlying set of firms. The reported N in parentheses represents the number of firm-benchmark combinations in each sample; standard errors are reported in square brackets. Significance levels are indicated by *, **, *** for 10%, 5%, and 1% respectively.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>15.43</td>
<td>21.09</td>
<td>9.10</td>
<td>0.76</td>
<td>0.61</td>
</tr>
<tr>
<td>2007</td>
<td>16.20</td>
<td>25.11</td>
<td>10.22</td>
<td>0.81</td>
<td>0.60</td>
</tr>
<tr>
<td>2008</td>
<td>17.19</td>
<td>26.23</td>
<td>10.40</td>
<td>0.79</td>
<td>0.64</td>
</tr>
<tr>
<td>2009</td>
<td>17.16</td>
<td>27.59</td>
<td>9.53</td>
<td>0.75</td>
<td>0.58</td>
</tr>
<tr>
<td>2010</td>
<td>17.56</td>
<td>26.82</td>
<td>9.63</td>
<td>0.76</td>
<td>0.60</td>
</tr>
<tr>
<td>2011</td>
<td>18.74</td>
<td>24.58</td>
<td>10.56</td>
<td>0.77</td>
<td>0.62</td>
</tr>
<tr>
<td>2012</td>
<td>17.81</td>
<td>21.22</td>
<td>9.96</td>
<td>0.75</td>
<td>0.63</td>
</tr>
<tr>
<td>2013</td>
<td>18.26</td>
<td>20.61</td>
<td>9.69</td>
<td>0.74</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Panel B: Explaining Common Component of Returns Using Compensation Benchmarking Peers

<table>
<thead>
<tr>
<th>Sample</th>
<th>S&P500</th>
<th>RP Benchmarks</th>
<th>CB Benchmarks</th>
<th>SBP</th>
<th>(2)-(3)</th>
<th>(3)-(1)</th>
<th>(4)-(3)</th>
<th>Mean Obs per Firm</th>
</tr>
</thead>
<tbody>
<tr>
<td>All (N= 322)</td>
<td>0.337***</td>
<td>0.497***</td>
<td>0.496***</td>
<td>0.525***</td>
<td>0.001</td>
<td>0.160***</td>
<td>0.029***</td>
<td>37.547***</td>
</tr>
<tr>
<td>[0.011]</td>
<td>[0.013]</td>
<td>[0.012]</td>
<td>[0.013]</td>
<td>[0.007]</td>
<td>[0.010]</td>
<td>[0.008]</td>
<td>[1.433]</td>
<td></td>
</tr>
<tr>
<td>Specific Peers (N= 190)</td>
<td>0.335***</td>
<td>0.559***</td>
<td>0.534***</td>
<td>0.568***</td>
<td>0.025***</td>
<td>0.200***</td>
<td>0.034***</td>
<td>40.837***</td>
</tr>
<tr>
<td>[0.013]</td>
<td>[0.015]</td>
<td>[0.015]</td>
<td>[0.015]</td>
<td>[0.008]</td>
<td>[0.014]</td>
<td>[0.010]</td>
<td>[1.921]</td>
<td></td>
</tr>
<tr>
<td>Index (N= 132)</td>
<td>0.340***</td>
<td>0.409***</td>
<td>0.442***</td>
<td>0.464***</td>
<td>-0.033***</td>
<td>0.102***</td>
<td>0.023*</td>
<td>32.811***</td>
</tr>
<tr>
<td>[0.018]</td>
<td>[0.020]</td>
<td>[0.020]</td>
<td>[0.021]</td>
<td>[0.011]</td>
<td>[0.015]</td>
<td>[0.013]</td>
<td>[2.079]</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Fraction of Firms Using Relative Performance Contracts 2006-2014 The solid line plots the fraction of firms in the sample that disclose awarding performance grants based on relative performance; the dotted line plots the fraction of these firms that use stock price as the metric of relative performance.
Table 1.
Summary Statistics on CEO Grants
2006-2014

Panel A reports summary statistics for compensation grants awarded to the CEO in fiscal years 2006-2014. We report the total number of unique firms, the average number of grants awarded to the CEO in each year, the average of the proportion of each award payout type (cash, option, or stock) to the total number of grants awarded to the CEO, and the average of the proportion of each performance evaluation type (absolute performance, relative performance, a mix of the two, and time-based) to the total number of grants awarded to the CEO. Panels B and C report the same summary statistics for sub-samples conditional on CEO grants with an relative performance component and a stock price-based relative performance component respectively.

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>Unique # of Firms</th>
<th>Unique # of Grants</th>
<th>Payout Type</th>
<th>Evaluation Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cash</td>
<td>Option</td>
</tr>
<tr>
<td>Panel A: All CEO Grants</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>1,278</td>
<td>2.86</td>
<td>0.35</td>
<td>0.29</td>
</tr>
<tr>
<td>2007</td>
<td>1,283</td>
<td>3.06</td>
<td>0.35</td>
<td>0.26</td>
</tr>
<tr>
<td>2008</td>
<td>1,249</td>
<td>3.06</td>
<td>0.35</td>
<td>0.25</td>
</tr>
<tr>
<td>2009</td>
<td>1,153</td>
<td>3.13</td>
<td>0.35</td>
<td>0.24</td>
</tr>
<tr>
<td>2010</td>
<td>1,165</td>
<td>3.30</td>
<td>0.34</td>
<td>0.21</td>
</tr>
<tr>
<td>2011</td>
<td>1,159</td>
<td>3.29</td>
<td>0.33</td>
<td>0.20</td>
</tr>
<tr>
<td>2012</td>
<td>1,173</td>
<td>3.31</td>
<td>0.35</td>
<td>0.18</td>
</tr>
<tr>
<td>2013</td>
<td>1,155</td>
<td>3.31</td>
<td>0.34</td>
<td>0.17</td>
</tr>
<tr>
<td>2014</td>
<td>1,108</td>
<td>3.56</td>
<td>0.35</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Panel B: CEO Grants with RP Component									
2006	257	1.22	0.35	0.02	0.62	-	0.55	0.45	-
2007	279	1.27	0.36	0.02	0.62	-	0.54	0.46	-
2008	289	1.24	0.29	0.02	0.69	-	0.52	0.48	-
2009	289	1.29	0.32	0.01	0.67	-	0.53	0.47	-
2010	343	1.24	0.28	0.01	0.72	-	0.52	0.48	-
2011	384	1.23	0.23	0.01	0.76	-	0.52	0.48	-
2012	456	1.27	0.21	0.01	0.78	-	0.56	0.44	-
2013	489	1.22	0.19	0.00	0.81	-	0.59	0.41	-
2014	530	1.28	0.17	0.00	0.82	-	0.63	0.37	-

Panel C: CEO Grants with Stock Price-Based RP Component									
2006	180	1.18	0.24	0.02	0.73	-	0.49	0.51	-
2007	206	1.18	0.27	0.01	0.72	-	0.50	0.50	-
2008	217	1.18	0.20	0.01	0.79	-	0.49	0.51	-
2009	220	1.21	0.22	0.01	0.77	-	0.48	0.52	-
2010	264	1.18	0.19	0.00	0.81	-	0.47	0.53	-
2011	312	1.17	0.16	0.00	0.83	-	0.47	0.53	-
2012	380	1.17	0.15	0.01	0.84	-	0.53	0.47	-
2013	420	1.13	0.13	0.00	0.86	-	0.57	0.43	-
2014	459	1.18	0.12	0.00	0.88	-	0.62	0.38	-
Table 2.
Importance of CEO Relative Performance Incentives

This table reports summary statistics on the relative performance incentive ratio and the relative performance stock incentive ratio of compensation grants awarded to CEOs in fiscal years 2006-2014. The RP incentive ratio measures the incremental potential incentive when the CEO meets all RP-based targets; it is calculated as (expected incentive plan based compensation if all targets are met)/(expected incentive plan based compensation if all other targets excluding RP metric-based targets are met). The RP-stock incentive ratio measures the incremental potential incentive when the CEO meets all RP-based stock price targets; it is calculated as (expected incentive plan based compensation if all targets are met)/(expected incentive plan compensation if all other targets excluding RP stock price-based targets are met). The amount of expected incentive plan based compensation is calculated using the values reported in the Grants of Plan-Based Awards Table in the proxy statement which includes both annual and long term incentive plans. Specifically, it is computed by adding the target dollar value of Estimated Future Payouts Under Non-Equity Incentive Plan Awards and Grant Date Fair Value of Stock and Option Awards (which are based on meeting the performance target). For grants that use multiple performance metrics, we calculate the weighted portion of expected compensation that corresponds to each performance metric. We assume that each performance metric is weighted equally in the calculation of the grant. Column 3 reports the average expected incentive plan based compensation. Columns 4 and 5 report the portion of column 3 attributable to RP-based metrics and RP-stock price-based metrics, respectively. Column 6 reports the average proportion of RP-based compensation attributable. Columns 7 and 8 report the accompanying incentive ratios.

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>Unique # of Firms</th>
<th>Expected Incentive-Plan-Based Compensation</th>
<th>Incentive Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total (3)</td>
<td>RP (4)</td>
</tr>
<tr>
<td>2006</td>
<td>235</td>
<td>6,640,461</td>
<td>1,768,730</td>
</tr>
<tr>
<td>2007</td>
<td>265</td>
<td>7,170,858</td>
<td>1,962,250</td>
</tr>
<tr>
<td>2008</td>
<td>277</td>
<td>7,266,247</td>
<td>2,050,361</td>
</tr>
<tr>
<td>2009</td>
<td>280</td>
<td>6,078,541</td>
<td>1,787,294</td>
</tr>
<tr>
<td>2010</td>
<td>322</td>
<td>6,707,443</td>
<td>1,898,931</td>
</tr>
<tr>
<td>2011</td>
<td>377</td>
<td>7,160,502</td>
<td>1,820,329</td>
</tr>
<tr>
<td>2012</td>
<td>446</td>
<td>7,445,771</td>
<td>2,077,538</td>
</tr>
<tr>
<td>2013</td>
<td>478</td>
<td>7,727,030</td>
<td>2,082,448</td>
</tr>
<tr>
<td>2014</td>
<td>524</td>
<td>7,950,395</td>
<td>2,005,443</td>
</tr>
</tbody>
</table>
This table summarizes the percentages of RP grants associated with different types of relative benchmarks for fiscal years 2006-2013. Columns 2 and 3 report the unique numbers of firms and grants respectively. Columns 4-8 report the percentages of RP that use each type of benchmark: specific peers, the S&P500 index, the S&P1500 index, other indexes (typically industry-based), and unspecified. Because each grant can be associated with multiple types of benchmarks, the values across columns 4-8 can exceed one. Column 9 reports the average number of peer firms chosen as benchmarks for RP grants associated with specific peers.

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>Unique # of Firms (1)</th>
<th>Unique # of Grants (2)</th>
<th>Specific Peer (4)</th>
<th>S&P500 (5)</th>
<th>S&P1500 (6)</th>
<th>Other Index (7)</th>
<th>Not Specified (8)</th>
<th># of Peers (9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>257</td>
<td>313</td>
<td>0.49</td>
<td>0.14</td>
<td>0.05</td>
<td>0.17</td>
<td>0.20</td>
<td>15.43</td>
</tr>
<tr>
<td>2007</td>
<td>279</td>
<td>355</td>
<td>0.55</td>
<td>0.16</td>
<td>0.05</td>
<td>0.14</td>
<td>0.14</td>
<td>16.20</td>
</tr>
<tr>
<td>2008</td>
<td>289</td>
<td>358</td>
<td>0.57</td>
<td>0.18</td>
<td>0.04</td>
<td>0.17</td>
<td>0.10</td>
<td>17.19</td>
</tr>
<tr>
<td>2009</td>
<td>289</td>
<td>373</td>
<td>0.55</td>
<td>0.17</td>
<td>0.05</td>
<td>0.13</td>
<td>0.15</td>
<td>17.16</td>
</tr>
<tr>
<td>2010</td>
<td>343</td>
<td>424</td>
<td>0.56</td>
<td>0.14</td>
<td>0.04</td>
<td>0.15</td>
<td>0.17</td>
<td>17.56</td>
</tr>
<tr>
<td>2011</td>
<td>384</td>
<td>471</td>
<td>0.55</td>
<td>0.15</td>
<td>0.05</td>
<td>0.15</td>
<td>0.16</td>
<td>18.74</td>
</tr>
<tr>
<td>2012</td>
<td>456</td>
<td>579</td>
<td>0.51</td>
<td>0.15</td>
<td>0.04</td>
<td>0.16</td>
<td>0.18</td>
<td>17.81</td>
</tr>
<tr>
<td>2013</td>
<td>489</td>
<td>596</td>
<td>0.49</td>
<td>0.18</td>
<td>0.05</td>
<td>0.17</td>
<td>0.15</td>
<td>18.26</td>
</tr>
</tbody>
</table>
Explaining the Common Component of Returns: Firm Benchmarks vs. S&P500 and SBPs

This table estimates and compares average R^2 values from time-series regressions of the form

$$R_t = \alpha_t + \beta_t R_{p_t} + \epsilon_t$$

using CRSP monthly returns data. In Panel A, columns 1, 2, and 3 report across-firm average R^2’s from time-series regressions, regressing base firm i’s returns on the concurrent returns of a portfolio of peers. Column 1 uses the returns of the S&P500 index; column 2 uses the median returns of firms’ chosen relative performance benchmarks; and column 3 uses the mean returns of search-based peers (Lee et al., 2015). Column 4 reports the differences between R^2 values reported in columns 2 and 1; column 5 reports the differences between columns 3 and 2. Column 6 reports the average number of observations per firm.

Results are reported for the sample of base firms whose chosen benchmarks are identifiable in the data from ISS Incentive Lab. We use return data from 2006-2013 firms for which there are at least 10 observations. The first row reports on all firms in our sample that satisfy these filters; the second row estimates the same regressions on the subset that select specific peers as benchmarks; the third row estimates the same regressions on the subset that select a stock index as a benchmark.

Panel B reproduces the results of the sub-sample for specific peers but uses two alternative measures of peer performance in lieu of the median. The first is the mean of peer performance; the second is the 75th percentile of peer performance. To facilitate comparisons, all the regressions are conducted using the same underlying set of firms. The reported N in parentheses represents the number of firms-benchmark combinations contained in each sample. Standard errors are reported in brackets and significance levels are indicated by *, **, *** for 10%, 5%, and 1% respectively.

<table>
<thead>
<tr>
<th>Sample</th>
<th>S&P500 (1)</th>
<th>RP Benchmarks (2)</th>
<th>SBP (3)</th>
<th>(2)-(1) (4)</th>
<th>(3)-(2) (5)</th>
<th>Mean Obs per Firm (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All (N= 356)</td>
<td>0.328***</td>
<td>0.483***</td>
<td>0.518***</td>
<td>0.155***</td>
<td>0.035***</td>
<td>36.820</td>
</tr>
<tr>
<td></td>
<td>[0.010]</td>
<td>[0.012]</td>
<td>[0.012]</td>
<td>[0.011]</td>
<td>[0.008]</td>
<td></td>
</tr>
<tr>
<td>Specific Peers</td>
<td>0.328***</td>
<td>0.548***</td>
<td>0.560***</td>
<td>0.220***</td>
<td>0.013</td>
<td>40.552</td>
</tr>
<tr>
<td>(N= 201)</td>
<td>[0.012]</td>
<td>[0.015]</td>
<td>[0.015]</td>
<td>[0.014]</td>
<td>[0.009]</td>
<td></td>
</tr>
<tr>
<td>Index (N= 155)</td>
<td>0.320***</td>
<td>0.400***</td>
<td>0.464***</td>
<td>0.071***</td>
<td>0.064***</td>
<td>31.981</td>
</tr>
<tr>
<td></td>
<td>[0.017]</td>
<td>[0.019]</td>
<td>[0.019]</td>
<td>[0.013]</td>
<td>[0.015]</td>
<td></td>
</tr>
<tr>
<td>Panel B: Alternative Peer Performance Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Peers$_{mean}$ (N= 201)</td>
<td>0.328***</td>
<td>0.547***</td>
<td>0.560***</td>
<td>0.219***</td>
<td>0.013</td>
<td>40.552</td>
</tr>
<tr>
<td></td>
<td>[0.012]</td>
<td>[0.015]</td>
<td>[0.015]</td>
<td>[0.014]</td>
<td>[0.009]</td>
<td></td>
</tr>
<tr>
<td>Specific Peers$_{75th}$ (N= 201)</td>
<td>0.328***</td>
<td>0.517****</td>
<td>0.560***</td>
<td>0.189***</td>
<td>0.044****</td>
<td>40.552</td>
</tr>
<tr>
<td></td>
<td>[0.012]</td>
<td>[0.015]</td>
<td>[0.015]</td>
<td>[0.014]</td>
<td>[0.010]</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.
Estimating Measurement Error Variances in Common Shock Filtration:
Firm Benchmarks vs. S&P500 and SBPs

This table reports method of moments estimates of Eqns. 9 and 11 using pooled firm-month observations. $\sigma^2_{b,firm}$ is the variance of the measurement error of the common factor using the S&P500 as the relative performance benchmark. $\sigma^2_{b,firm}$ is the variance of the measurement error of the common factor using the firm’s chosen performance peers. $\sigma^2_{b,sbp}$ is the variance of the measurement error of the common factor using the firm’s search based-peers (Lee et al., 2015). σ^2 is the variance of the firm’s idiosyncratic performance where performance is measured via CRSP monthly stock returns, and peer performance is measured at the median of the peer set’s returns. κ is the cost of effort parameter in the standard principal-agent model. The estimates are based on the assumption that the manager’s CARA risk aversion $\eta = 0.625$.

The four rows in Panel A report the individual parameter estimates of the measurement error variances. Panel B reports the differences in the measurement error variances of the firms’ chosen benchmarks relative to two normative benchmarks: the S&P500 and SBPs. Panel C reports in annualized basis points the performance implications of using the firms’ chosen benchmarks relative to the two normative benchmarks described in Eqn. 12.

Column 1 reports estimates for the entire sample using the same sampling criterion as Table 4. Column 2 reports estimates for the sub-sample in which the base firm chooses specific firms as the performance benchmark. Column 3 reports estimates for the sub-sample in which the base firm chooses an index (e.g., S&P500, S&P1500) as its performance benchmark. Standard errors are reported in brackets and calculated via the delta method where appropriate. Significance levels are indicated by *, **, *** for 10%, 5%, and 1% respectively.

<table>
<thead>
<tr>
<th></th>
<th>All Firms</th>
<th>Specific Peers</th>
<th>Index Peers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>$\sigma^2_{b,sp500} + \sigma^2$</td>
<td>60.197***</td>
<td>63.310***</td>
<td>55.080***</td>
</tr>
<tr>
<td>[1.937]</td>
<td>[2.519]</td>
<td>[3.011]</td>
<td></td>
</tr>
<tr>
<td>$\sigma^2_{b,firm} + \sigma^2$</td>
<td>44.489***</td>
<td>41.161***</td>
<td>49.962***</td>
</tr>
<tr>
<td>[1.503]</td>
<td>[1.877]</td>
<td>[2.867]</td>
<td></td>
</tr>
<tr>
<td>$\sigma^2_{b,sbp} + \sigma^2$</td>
<td>40.742***</td>
<td>39.418***</td>
<td>42.920***</td>
</tr>
<tr>
<td>[1.367]</td>
<td>[1.712]</td>
<td>[2.269]</td>
<td></td>
</tr>
<tr>
<td>κ</td>
<td>0.170***</td>
<td>0.176***</td>
<td>0.162***</td>
</tr>
<tr>
<td>[0.008]</td>
<td>[0.010]</td>
<td>[0.011]</td>
<td></td>
</tr>
<tr>
<td>Panel B: Δ Estimates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma^2_{b,firm} - \sigma^2_{b,sp500}$</td>
<td>-15.709***</td>
<td>-22.149***</td>
<td>-5.118***</td>
</tr>
<tr>
<td>[0.952]</td>
<td>[1.388]</td>
<td>[1.041]</td>
<td></td>
</tr>
<tr>
<td>$\sigma^2_{b,firm} - \sigma^2_{b,sbp}$</td>
<td>3.747***</td>
<td>1.743***</td>
<td>7.042***</td>
</tr>
<tr>
<td>[0.907]</td>
<td>[0.853]</td>
<td>[1.946]</td>
<td></td>
</tr>
<tr>
<td>Panel C: Performance Implications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$E[p(\sigma^2_{b,firm}) - p(\sigma^2_{sp500})]$</td>
<td>281.83***</td>
<td>385.73***</td>
<td>97.22***</td>
</tr>
<tr>
<td>[25.03]</td>
<td>[41.29]</td>
<td>[22.12]</td>
<td></td>
</tr>
<tr>
<td>$E[p(\sigma^2_{b,firm}) - p(\sigma^2_{sbp})]$</td>
<td>-91.73***</td>
<td>-44.41***</td>
<td>-162.62***</td>
</tr>
<tr>
<td>[22.08]</td>
<td>[21.53]</td>
<td>[44.91]</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>13,108</td>
<td>8,151</td>
<td>4,957</td>
</tr>
</tbody>
</table>
This table reports across-firm averages of method of moments estimates of Eqns. 9 and 11 using firm-month observations. $\sigma^2_{b,firm}$ is the variance of the measurement error of the common factor using the S&P500 as the relative performance benchmark. $\sigma^2_{b,firm}$ is the variance of the measurement error of the common factor using the firm’s chosen performance peers. $\sigma^2_{b,sp}$ is the variance of the measurement error of the common factor using the firm’s search based-peers (Lee et al., 2015). σ^2 is the variance of the firm’s idiosyncratic performance where performance is measured via CRSP monthly stock returns and peer performance is measured at the median of the peer set’s returns. The estimates are based on the assumption that the manager’s CARA risk aversion $\eta = 0.625$.

Panel A reports the individual parameter estimates of the measurement error variances. Panel B, reproduces the results for the specific peer sub-sample, but uses two alternative measures of peer performance in lieu of the median: the mean of peer performance and the 75th percentile of peer performance. Panel C reports the differences in the measurement error variances of the firm’s chosen benchmark relative to SBPs for each measure of peer performance (mean, median, and 75th percentile).

Column 1 reports estimates from the entire sample using the same sampling criterion as Table 4. Column 2 reports estimates for the sub-sample in which the base firm chooses specific firms as its relative performance benchmark. Column 3 reports estimates for the sub-sample in which the base firm chooses an index (e.g. S&P500, S&P1500) as its relative performance benchmark. The reported N at the bottom represents the number of firm-benchmark combinations contained in each sample. Standard errors are reported in brackets and calculated via the delta method where appropriate. Significance levels are indicated by *, **, *** for 10%, 5%, and 1% respectively.

<table>
<thead>
<tr>
<th></th>
<th>All Firms</th>
<th>Specific Peers</th>
<th>Index Peers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Panel A: Average of Firm Level Estimates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma^2_{b,sp500} + \sigma^2$</td>
<td>63.042*</td>
<td>68.567*</td>
<td>55.878*</td>
</tr>
<tr>
<td></td>
<td>[4.503]</td>
<td>[5.900]</td>
<td>[6.940]</td>
</tr>
<tr>
<td>$\sigma^2_{b,firm,median} + \sigma^2$</td>
<td>46.878*</td>
<td>43.416*</td>
<td>51.367*</td>
</tr>
<tr>
<td></td>
<td>[3.622]</td>
<td>[3.715]</td>
<td>[6.781]</td>
</tr>
<tr>
<td>$\sigma^2_{b,sp} + \sigma^2$</td>
<td>41.344*</td>
<td>41.150*</td>
<td>41.596*</td>
</tr>
<tr>
<td></td>
<td>[2.593]</td>
<td>[3.359]</td>
<td>[4.073]</td>
</tr>
<tr>
<td>Panel B: Alternative Peer Performance Measures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma^2_{b,firm,mean} + \sigma^2$</td>
<td>47.192*</td>
<td>43.973*</td>
<td>51.367*</td>
</tr>
<tr>
<td></td>
<td>[3.623]</td>
<td>[3.722]</td>
<td>[6.781]</td>
</tr>
<tr>
<td>$\sigma^2_{b,firm,p75} + \sigma^2$</td>
<td>50.187*</td>
<td>49.277*</td>
<td>51.367*</td>
</tr>
<tr>
<td></td>
<td>[3.831]</td>
<td>[4.339]</td>
<td>[6.781]</td>
</tr>
<tr>
<td>Panel C: Δ Estimates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma^2_{b,firm,median} - \sigma^2_{b,sp}$</td>
<td>5.534*</td>
<td>2.266</td>
<td>9.771</td>
</tr>
<tr>
<td></td>
<td>[2.048]</td>
<td>[1.671]</td>
<td>[4.158]</td>
</tr>
<tr>
<td>$\sigma^2_{b,firm,mean} - \sigma^2_{b,sp}$</td>
<td>5.848*</td>
<td>2.823</td>
<td>9.771</td>
</tr>
<tr>
<td></td>
<td>[1.930]</td>
<td>[1.159]</td>
<td>[4.158]</td>
</tr>
<tr>
<td>$\sigma^2_{b,firm,p75} - \sigma^2_{b,sp}$</td>
<td>8.843*</td>
<td>8.127</td>
<td>9.771</td>
</tr>
<tr>
<td></td>
<td>[2.095]</td>
<td>[1.878]</td>
<td>[4.158]</td>
</tr>
<tr>
<td>N</td>
<td>356</td>
<td>201</td>
<td>155</td>
</tr>
</tbody>
</table>
Table 7. Explaining the Adequacy of Benchmark Selection

This table reports results from OLS regressions of the adequacy of a firm’s choice of relative performance benchmark on CEO, board of directors, and firm characteristics. We consider two measures of relative performance benchmark adequacy. The first, reported in columns 1–3, is defined as the performance of the relative performance benchmark in terms of times-series R^2 relative to that generated by the S&P500 index scaled by the difference in R^2 generated by SBPs and the S&P500. Since this measure treats the S&P500 and SBPs as the lower and upper bounds of R^2, our analysis focuses on the subset for which $R^2_{\text{sbp}} - R^2_{\text{sp500}} > 0$. The second measure, reported in columns 4–6, is defined as the performance of the relative performance benchmark in terms of times-series σ^2 relative to that generated by the S&P500 index scaled by the difference in σ^2 generated by SBPs and the S&P500. Since this measure treats the S&P500 and SBPs as the upper and lower bounds of σ^2, our analysis focuses on the subset for which $\sigma^2_{\text{sp500}} - \sigma^2_{\text{sbp}} > 0$.

Observations are at the annual firm-benchmark level and all variables are defined in Table A.III. Industry-fixed effects use 2-digit Global Industry Classification Standard definitions. Standard errors are clustered at the firm level and reported below the point estimates in brackets. Significance levels are indicated by *, **, *** for 10%, 5%, and 1% respectively.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>-0.828**</td>
<td>-0.833**</td>
<td>-1.300**</td>
<td>-0.450**</td>
<td>-0.452**</td>
<td>-0.397**</td>
</tr>
<tr>
<td></td>
<td>[0.298]</td>
<td>[0.298]</td>
<td>[0.438]</td>
<td>[0.188]</td>
<td>[0.187]</td>
<td>[0.198]</td>
</tr>
<tr>
<td>CEO Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log CEO Pay</td>
<td>-0.119</td>
<td>-0.087</td>
<td>-0.187</td>
<td>-0.155**</td>
<td>-0.147**</td>
<td>-0.101</td>
</tr>
<tr>
<td></td>
<td>[0.279]</td>
<td>[0.289]</td>
<td>[0.239]</td>
<td>[0.070]</td>
<td>[0.068]</td>
<td>[0.070]</td>
</tr>
<tr>
<td>CEO Tenure</td>
<td>-0.035*</td>
<td>-0.034</td>
<td>-0.043*</td>
<td>0.001</td>
<td>0.001</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>[0.021]</td>
<td>[0.021]</td>
<td>[0.024]</td>
<td>[0.014]</td>
<td>[0.013]</td>
<td>[0.012]</td>
</tr>
<tr>
<td>CEO Age</td>
<td>0.031</td>
<td>0.031</td>
<td>0.063**</td>
<td>0.005</td>
<td>0.005</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>[0.020]</td>
<td>[0.020]</td>
<td>[0.029]</td>
<td>[0.010]</td>
<td>[0.010]</td>
<td>[0.008]</td>
</tr>
<tr>
<td>Board Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Busy Directors</td>
<td>-3.078*</td>
<td>-3.153**</td>
<td>-2.733*</td>
<td>0.562</td>
<td>0.615</td>
<td>0.438</td>
</tr>
<tr>
<td></td>
<td>[1.615]</td>
<td>[1.568]</td>
<td>[1.475]</td>
<td>[0.852]</td>
<td>[0.815]</td>
<td>[0.801]</td>
</tr>
<tr>
<td>Board Size</td>
<td>-0.044</td>
<td>-0.049</td>
<td>-0.030</td>
<td>-0.003</td>
<td>-0.004</td>
<td>-0.022</td>
</tr>
<tr>
<td></td>
<td>[0.085]</td>
<td>[0.087]</td>
<td>[0.062]</td>
<td>[0.016]</td>
<td>[0.017]</td>
<td>[0.023]</td>
</tr>
<tr>
<td>Director Workload</td>
<td>-0.074</td>
<td>-0.093</td>
<td>-0.027</td>
<td>-0.117</td>
<td>-0.116</td>
<td>-0.150</td>
</tr>
<tr>
<td></td>
<td>[0.538]</td>
<td>[0.542]</td>
<td>[0.446]</td>
<td>[0.107]</td>
<td>[0.110]</td>
<td>[0.119]</td>
</tr>
<tr>
<td>Firm Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log Market Cap</td>
<td>0.075</td>
<td>0.065</td>
<td>0.232</td>
<td>-0.024</td>
<td>-0.020</td>
<td>-0.020</td>
</tr>
<tr>
<td></td>
<td>[0.365]</td>
<td>[0.369]</td>
<td>[0.358]</td>
<td>[0.057]</td>
<td>[0.057]</td>
<td>[0.059]</td>
</tr>
<tr>
<td>Return Volatility</td>
<td>0.045</td>
<td>-0.457</td>
<td>-0.738</td>
<td>-2.117**</td>
<td>-2.369**</td>
<td>-0.415</td>
</tr>
<tr>
<td></td>
<td>[2.155]</td>
<td>[2.073]</td>
<td>[1.994]</td>
<td>[0.875]</td>
<td>[1.065]</td>
<td>[0.863]</td>
</tr>
<tr>
<td>Book-to-Market</td>
<td>0.448*</td>
<td>0.459*</td>
<td>0.520</td>
<td>0.200</td>
<td>0.198</td>
<td>0.185</td>
</tr>
<tr>
<td></td>
<td>[0.244]</td>
<td>[0.238]</td>
<td>[0.317]</td>
<td>[0.143]</td>
<td>[0.150]</td>
<td>[0.133]</td>
</tr>
<tr>
<td>Staggered Board</td>
<td>0.292</td>
<td>0.266</td>
<td>0.499</td>
<td>-0.134</td>
<td>-0.133</td>
<td>-0.074</td>
</tr>
<tr>
<td></td>
<td>[0.464]</td>
<td>[0.466]</td>
<td>[0.469]</td>
<td>[0.088]</td>
<td>[0.090]</td>
<td>[0.090]</td>
</tr>
<tr>
<td>Dual-Class Shares</td>
<td>2.040</td>
<td>2.047</td>
<td>2.026</td>
<td>-0.453</td>
<td>-0.441</td>
<td>-0.529**</td>
</tr>
<tr>
<td></td>
<td>[2.236]</td>
<td>[2.235]</td>
<td>[1.843]</td>
<td>[0.353]</td>
<td>[0.356]</td>
<td>[0.262]</td>
</tr>
<tr>
<td>Time FE</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Industry FE</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>976</td>
<td>976</td>
<td>976</td>
<td>964</td>
<td>954</td>
<td>954</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.0493</td>
<td>0.0442</td>
<td>0.1678</td>
<td>0.0873</td>
<td>0.0838</td>
<td>0.1140</td>
</tr>
</tbody>
</table>
This table reports the marginal effects, evaluated at the sample mean for continuous variables and at zero for indicator variables, from probit regressions of the firm’s choice of an index as its relative performance benchmark on CEO, board of directors, and firm characteristics. Observations are at the annual firm-benchmark level and all variables are defined in Table A.III. Industry-fixed effects use 2-digit Global Industry Classification Standard definitions. Standard errors are clustered at the firm level and reported below the point estimates in brackets. Significance levels are indicated by *, **, *** for 10%, 5%, and 1% respectively.

<table>
<thead>
<tr>
<th></th>
<th>Pr(Index) = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) (2) (3)</td>
</tr>
<tr>
<td>CEO Characteristics</td>
<td></td>
</tr>
<tr>
<td>Log CEO Pay</td>
<td>0.149***</td>
</tr>
<tr>
<td></td>
<td>[0.049]</td>
</tr>
<tr>
<td></td>
<td>0.151***</td>
</tr>
<tr>
<td></td>
<td>[0.051]</td>
</tr>
<tr>
<td></td>
<td>0.102**</td>
</tr>
<tr>
<td></td>
<td>[0.047]</td>
</tr>
<tr>
<td>CEO Tenure</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>[0.005]</td>
</tr>
<tr>
<td>CEO Age</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>[0.005]</td>
</tr>
<tr>
<td>Board Characteristics</td>
<td></td>
</tr>
<tr>
<td>% Busy Directors</td>
<td>0.374</td>
</tr>
<tr>
<td></td>
<td>[0.493]</td>
</tr>
<tr>
<td></td>
<td>0.357</td>
</tr>
<tr>
<td></td>
<td>[0.506]</td>
</tr>
<tr>
<td></td>
<td>0.604</td>
</tr>
<tr>
<td></td>
<td>[0.468]</td>
</tr>
<tr>
<td>Board Size</td>
<td>0.035**</td>
</tr>
<tr>
<td></td>
<td>[0.014]</td>
</tr>
<tr>
<td></td>
<td>0.036**</td>
</tr>
<tr>
<td></td>
<td>[0.014]</td>
</tr>
<tr>
<td></td>
<td>0.030**</td>
</tr>
<tr>
<td></td>
<td>[0.014]</td>
</tr>
<tr>
<td>Director Workload</td>
<td>0.191***</td>
</tr>
<tr>
<td></td>
<td>[0.068]</td>
</tr>
<tr>
<td></td>
<td>0.192***</td>
</tr>
<tr>
<td></td>
<td>[0.068]</td>
</tr>
<tr>
<td></td>
<td>0.190***</td>
</tr>
<tr>
<td></td>
<td>[0.073]</td>
</tr>
<tr>
<td>Firm Characteristics</td>
<td></td>
</tr>
<tr>
<td>Log Market Cap</td>
<td>-0.065**</td>
</tr>
<tr>
<td></td>
<td>[0.032]</td>
</tr>
<tr>
<td></td>
<td>-0.066**</td>
</tr>
<tr>
<td></td>
<td>[0.033]</td>
</tr>
<tr>
<td></td>
<td>-0.019</td>
</tr>
<tr>
<td></td>
<td>[0.034]</td>
</tr>
<tr>
<td>Return Volatility</td>
<td>-0.190</td>
</tr>
<tr>
<td></td>
<td>[0.470]</td>
</tr>
<tr>
<td></td>
<td>-0.172</td>
</tr>
<tr>
<td></td>
<td>[0.556]</td>
</tr>
<tr>
<td></td>
<td>0.202</td>
</tr>
<tr>
<td></td>
<td>[0.582]</td>
</tr>
<tr>
<td>Book-to-Market</td>
<td>-0.154*</td>
</tr>
<tr>
<td></td>
<td>[0.088]</td>
</tr>
<tr>
<td></td>
<td>-0.150*</td>
</tr>
<tr>
<td></td>
<td>[0.089]</td>
</tr>
<tr>
<td></td>
<td>-0.049</td>
</tr>
<tr>
<td></td>
<td>[0.093]</td>
</tr>
<tr>
<td>Staggered Board</td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td>[0.059]</td>
</tr>
<tr>
<td></td>
<td>0.045</td>
</tr>
<tr>
<td></td>
<td>[0.060]</td>
</tr>
<tr>
<td></td>
<td>0.054</td>
</tr>
<tr>
<td></td>
<td>[0.062]</td>
</tr>
<tr>
<td>Dual-Class Shares</td>
<td>-0.049</td>
</tr>
<tr>
<td></td>
<td>[0.114]</td>
</tr>
<tr>
<td></td>
<td>-0.048</td>
</tr>
<tr>
<td></td>
<td>[0.115]</td>
</tr>
<tr>
<td></td>
<td>-0.023</td>
</tr>
<tr>
<td></td>
<td>[0.117]</td>
</tr>
<tr>
<td>Time FE</td>
<td>No</td>
</tr>
<tr>
<td>Industry FE</td>
<td>No</td>
</tr>
<tr>
<td>Observations</td>
<td>1,189</td>
</tr>
<tr>
<td></td>
<td>1,189</td>
</tr>
<tr>
<td></td>
<td>1,189</td>
</tr>
<tr>
<td>Pseudo R^2</td>
<td>0.0462</td>
</tr>
<tr>
<td></td>
<td>0.0472</td>
</tr>
<tr>
<td></td>
<td>0.1780</td>
</tr>
</tbody>
</table>
Table 9. Performance Consequences of Inadequate Benchmarks

This table reports OLS regressions of firms’ ROA (columns 1-3) and annual cum-dividend returns (columns 4-6) on an indicator of having chosen an index as the relative performance benchmark along with CEO, board of directors, and firm characteristics. Observations are at the annual firm-benchmark level and all variables are defined in Table A.III. Industry-fixed effects use 2-digit Global Industry Classification Standard definitions. Standard errors are clustered at the firm level and reported below the point estimates in brackets. Significance levels are indicated by *, **, *** for 10%, 5%, and 1% respectively.

<table>
<thead>
<tr>
<th></th>
<th>ROA</th>
<th>Annual Returns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Index</td>
<td>-0.007*</td>
<td>-0.007*</td>
</tr>
<tr>
<td></td>
<td>[0.004]</td>
<td>[0.004]</td>
</tr>
<tr>
<td>CEO Characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log CEO Pay</td>
<td>-0.003</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td>[0.004]</td>
<td>[0.004]</td>
</tr>
<tr>
<td>CEO Tenure</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>[0.000]</td>
</tr>
<tr>
<td>CEO Age</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>[0.000]</td>
</tr>
<tr>
<td>Board Characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Busy Directors</td>
<td>0.001</td>
<td>-0.007</td>
</tr>
<tr>
<td></td>
<td>[0.035]</td>
<td>[0.034]</td>
</tr>
<tr>
<td>Board Size</td>
<td>-0.004***</td>
<td>-0.004***</td>
</tr>
<tr>
<td></td>
<td>[0.001]</td>
<td>[0.001]</td>
</tr>
<tr>
<td>Director Workload</td>
<td>-0.007</td>
<td>-0.008</td>
</tr>
<tr>
<td></td>
<td>[0.005]</td>
<td>[0.005]</td>
</tr>
<tr>
<td>Firm Characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log Market Cap</td>
<td>0.011***</td>
<td>0.011***</td>
</tr>
<tr>
<td></td>
<td>[0.003]</td>
<td>[0.003]</td>
</tr>
<tr>
<td>Return Volatility</td>
<td>-0.124**</td>
<td>-0.130**</td>
</tr>
<tr>
<td></td>
<td>[0.049]</td>
<td>[0.051]</td>
</tr>
<tr>
<td>Book-to-Market</td>
<td>-0.061***</td>
<td>-0.061***</td>
</tr>
<tr>
<td></td>
<td>[0.008]</td>
<td>[0.008]</td>
</tr>
<tr>
<td>Staggered Board</td>
<td>0.007*</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>[0.004]</td>
<td>[0.004]</td>
</tr>
<tr>
<td>Dual-Class Shares</td>
<td>0.024***</td>
<td>0.023**</td>
</tr>
<tr>
<td></td>
<td>[0.009]</td>
<td>[0.010]</td>
</tr>
<tr>
<td>Time FE</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Industry FE</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Observations</td>
<td>1,189</td>
<td>1,189</td>
</tr>
<tr>
<td>Adj R²</td>
<td>0.2884</td>
<td>0.2979</td>
</tr>
</tbody>
</table>