Repeatability and Transparency in Ecological Research

Citation

Published Version
http://esapubs.org/esapubs/journals/ecology.htm

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:3123279

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Repeatability and transparency in ecological research

Aaron M. Ellison¹

Harvard University, Harvard Forest, 324 North Main Street, Petersham, MA 01366 USA

INTRODUCTION

A fundamental tenet of science is that results must be reproducible by other scientists before they are accepted as factual. However, because ecological phenomena are context-dependent, and because that context changes through time and space, it is virtually impossible to reproduce precisely or quantitatively any single experimental or observational field study in ecology. Yet many ecological studies can be repeated. In particular, ecological synthesis – the assembly of derived datasets and their subsequent analysis, re-analysis, and meta-analysis – should be easy to repeat and reproduce. Such syntheses also demonstrate qualitative and quantitative consistency among many ecological studies (Gurevitch et al. 1992, Warwick and Clarke 1993, Jonsen et al. 2003, Walker et al. 2006, Cardinale et al. 2006, Marczak et al. 2007, Vander Zanden and Fetzer 2007) and provide strong support for general ecological theories.

It should come as no surprise that meta-analysis by Mittelbach et al. (2001) of the effect of productivity on species richness has led to the development of a cottage industry focused on empirical testing of this relationship (post-2001 examples abound in Appendix A of Whittaker 2009). But it is much more surprising that continual re-analyses of the same datasets (Whittaker and Heegaard 2003, Gillman and Wright 2006, Pärtil et al. 2007) have yielded such disparate results that Whittaker (2009) has suggested abandoning the effort to obtain consistent results from the available data. He goes even further, suggesting that ecology may not yet be ready for

¹ E-mail: aellison@fas.harvard.edu
meta-analysis and data synthesis. For two reasons, I respectfully suggest that Whittaker’s critique is misplaced. First, of all the studies critiqued by Whittaker (2009), only Mittelbach et al. (2001) actually conducted a formal meta-analysis. The others, as pointed out by Whittaker (2009: ms. p. 4, line 7) undertook extensive primary analyses but the authors did not conduct formal meta-analyses (Gurevitch and Hedges 1999). Second, and more importantly, if ecological synthesis is transparent – data, models, and analytical tools are available freely to the research community – then it should yield consistent, repeatable results. We may then disagree on the interpretation of the resulting synthesis, but at least we will be able to agree on the reproducibility of the results themselves.

REQUIREMENTS FOR REPEATABLE ECOLOGICAL SYNTHESIS

In a nutshell, ecological synthesis proceeds by assembling available datasets into a common, derived dataset and then applying one or more (statistical) models to this derived dataset to test the prediction of a hypothesis of interest (Ellison et al. 2006). Repeatability and reproducibility of ecological synthesis requires full disclosure not only of hypotheses and predictions, but also of the raw data, methods used to produce derived datasets, choices made as to which data or datasets were included in, and which were excluded from, the derived datasets, and tools and techniques used to analyze the derived datasets. Of all the papers under discussion by Whittaker (2009), Mittelbach et al.’s (2001) paper comes closest to achieving such transparency, although neither the raw data nor the derived dataset they analyzed are publicly available.

But achieving this level of disclosure and transparency is difficult. First and foremost, researchers must be committed to transparent production of ecological knowledge. We may be
blissfully unaware of our own intellectual biases, but there are no excuses for not making data, methods, and tools freely available in a timely fashion. Yet despite mandates from funding agencies and research networks that data be made available publicly (Arzberger et al. 2004), raw data are not easily accessed. Research teams can spend many weeks searching data archives only to find summary statistical tables, lists of means, or concise graphs. Contacting individual investigators may yield raw data in digital form or in yellowing notebooks, or it may yield nothing at all. Fortunately, archives of ecological data are growing (examples include ESA’s data registry, Ecological Archives, the data repository of the National Center for Ecological Analysis and Synthesis [NCEAS], the data archive of the Long Term Ecological Research Network, and Oak Ridge’s Distributed Active Archive Center among many others), but archiving ecological data is not yet a requirement for publication in any journal. Ecologists also have developed standard methods for describing ecological datasets with descriptive metadata (Michener et al. 1997, Jones et al. 2006, Madin et al. 2008) that make it easier to interpret and hence re-use them. Software tools such as Morpho that help investigators create descriptive metadata also are maturing.

But it is not enough simply to find a dataset and understand its origin and structure. Once datasets are obtained, it is usually necessary to transform the data into common units and scales (e.g., species/ha or kg/ha). Interpolated values may need to be substituted for missing data, and methods of interpolation will vary among investigators (Ellison et al. 2006). Finally, and usually after still further manipulations and making decisions as to which data to include or exclude (cf.
Whittaker and Heegard 2003 and Appendix A of Whittaker 2009), a derived dataset is ready for
analysis.

Each step – e.g., digitization, rescaling, interpolation, inclusion or exclusion – requires
individual judgment and provides an opportunity to introduce bias or error. If subsequent
synthesis is to be repeatable, users must have confidence in the reliability of the derived dataset.
Thus it is imperative that researchers document clearly each of the steps used to produce derived
datasets. This process metadata – the documentation of the processes used to produce a dataset –
provides one way to assess the reliability of a derived dataset (Osterweil et al. 2005, Ellison et al.
2006). Storage of the original datasets and the processes applied to create the derived dataset
provides the mechanism to reproduce it.

Such audit trails that include archived datasets and tools allow can allow future users to
determine effects of changing particular processes on the structure and subsequent analysis of the
derived dataset (Ellison et al. 2006). For example, Mittelbach et al. (2001) classified the
relationship between species richness and productivity in one of five categories (unimodal
humped or U-shaped, monotonic positive or negative, or no relationship) whereas Laanisto et al.
(2008) classified this same relationship simply as unimodal or not. Whittaker and Heegard
(2003) and Whittaker (2009) excluded data that Mittelbach et al. (2001) included. Gillman and
Wright (2006) used some of the regression results reported by Mittelbach et al. (2001) but also
reanalyzed some of the original datasets using different software and without specifying which
data were reanalyzed. Clearly results will differ if the same data are classified differently; if
different subsets of data are analyzed, or if individual datasets are treated differently. Importantly,
we can assess these differences by running new analyses on available datasets. The resulting
differences in approach to and analysis of the data may reflect differences in questions on the
part of the investigators, honest disagreements regarding the “best” available evidence \textit{(sensu Slavin 1995)}, or strongly held opinions regarding the most appropriate statistical analysis \textit{(e.g., ordinary least-squares regression versus general linear models with a variety of error distributions and link functions)}. However, these differences and disagreements do not in and of themselves invalidate the activity of ecological synthesis.

It is equally important to document and whenever possible archive the statistical tools and models used for analysis and synthesis \textit{(Thornton \textit{et al.} 2005)}; such an archival record should be a requirement for publication of any meta-analysis or data synthesis. The various authors critiqued by Whittaker \textit{(2009)} all used different statistical tools \textit{(Table 1)}, and it would be impossible to repeat precisely any of the author’s analyses.

Documentation and archiving of analytical processes, including those processes used to create derived datasets and the statistical tools and models applied to them, is difficult, and software tools for such documentation and archiving are rudimentary. It may seem wasteful to archive software, but numerical precision of arithmetic operations changes with new integrated circuit chips and different operating systems, functions work differently in different versions of software, and implementation of even “standard” statistical routines differ among software packages \textit{(a widely unappreciated example of relevance to ecologists is the different sums-of-squares reported by SAS, S-Plus, and R for analysis of variance and other linear models \textit{(Venables 1998)}). Finally, there are no standards for process metadata \textit{(Osterweil \textit{et al.} 2005, Ellison \textit{et al.} 2006)} and no easy way to archive model code used by, or specific versions of, commercial software packages. While open-source software tools such as R \textit{(R Development Core Team 2007)} is an attractive (and affordable) alternative, they evolve even more rapidly than their commercial counterparts, and regular changes in functionality of familiar routines are not
uncommon (implementation of the cor function for calculation of Pearson’s correlation coefficient in early versions of R is a notorious example). But without archiving software, tools, and associated process metadata, it is unlikely that we will be able to accurately reproduce any ecological synthesis.

MOVING FORWARD

More and more ecologists are following federal guidelines (Office of Management and Budget Circular A-110)\(^8\) and making their data freely available within a short time of collection and publication. Cultural impediments to data sharing among ecologists are disappearing as more and more ecologists recognize not only that sharing of data benefits the entire scientific enterprise (Baldwin and Duke 2005) but also results in successful collaborations and subsequent publications such as those facilitated by NCEAS.\(^9\) Rapid development of data archiving and sharing tools has been facilitated by funding initiatives focused on development of software for production of descriptive metadata and distributed access to permanently and stably archived data.\(^10\) There is increasing recognition that similar efforts must be undertaken to document analytical tools and processes and to archive the software tools themselves (Thornton et al. 2005, Ellison et al. 2006). Software tools in development for creating process metadata, including documentation of dataset provenance and storage of analytical tools applied to derived datasets, include Kepler (Ludäscher et al. 2006) and the Analytic Web (Osterweil et al. 2009). Ecologists should work with these software development teams, and others like them, to learn how better

\(^8\) [http://www.whitehouse.gov/omb/circulars/a110/a110.html]; for analysis and agency-specific implementation of this regulation, see [http://thecre.com/access/index.html]

\(^9\) [http://nceas.ucsb.edu/products]

documentation and archiving of scientific processes and work-flows can advance our science and to provide challenging tests of these evolving systems (Boose et al. 2007).

Rather than abandon data synthesis and meta-analysis as Whittaker (2009) suggests, ecologists should embrace these activities as the very essence of our science. With appropriate attention to documentation of data and analytical processes and a commitment to unbiased inquiry and full transparency of analytic activities, data synthesis and meta-analysis will become the most repeatable and reproducible activities that ecologists undertake. The results of such syntheses and meta-analyses will be the grist for the mill of ecological forecasting, perhaps the most important endeavor of 21st century ecology (Clark et al. 2001).

ACKNOWLEDGEMENTS

I thank Don Strong for inviting this commentary on Robert Whittaker’s thought-provoking article. Gary Mittelbach discussed availability of the original species richness-productivity dataset and Tom Mitchell-Olds answered questions about the availability of his Pascal software written in 1987. Brad Cardinale provided helpful comments on early versions of the manuscript. Work on this manuscript was supported by the Analytic Web project (NSF grant CCR-0205575) and by the Harvard Forest Long Term Ecological Research Program (NSF grant DEB 06-20443).

LITERATURE CITED

Table 1. Analytical methods used in the syntheses of the species richness-productivity relationship.

<table>
<thead>
<tr>
<th>Author</th>
<th>Analytical method(s) used</th>
<th>Analytical tool(s) used</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waide et al. (1999)</td>
<td>Linear and quadratic regressions</td>
<td>None specified</td>
<td>Not repeatable</td>
</tr>
<tr>
<td>Mittelbach et al. (2001)</td>
<td>Ordinary least-squares regression</td>
<td>SYSTAT 8.0</td>
<td>Possibly repeatable; current available version is 12.0</td>
</tr>
<tr>
<td></td>
<td>Poisson regression</td>
<td>NAG Statistical Add-in for Excel</td>
<td>Not repeatable; software discontinued</td>
</tr>
<tr>
<td></td>
<td>“Mitchell-Olds & Shaw test”</td>
<td>None specified</td>
<td>Not repeatable; software unavailable (but algorithm available). Which of three tests proposed by Mitchell-Olds and Shaw was also not specified.</td>
</tr>
<tr>
<td></td>
<td>Chi-square Exact test</td>
<td>StatXact</td>
<td>Possibly repeatable; no version given.</td>
</tr>
<tr>
<td></td>
<td>Meta-analysis using mixed-effects model</td>
<td>MetaWin 2.0</td>
<td>Repeatable; commercial software version still available</td>
</tr>
<tr>
<td>Authors</td>
<td>Methodology</td>
<td>Software</td>
<td>Repeatability</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------------------------</td>
<td>----------</td>
<td>---------------</td>
</tr>
<tr>
<td>Whittaker and Heergard</td>
<td>Poisson regression</td>
<td>Not specified</td>
<td>Not repeatable</td>
</tr>
<tr>
<td>(2003)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gillman and Wright</td>
<td>Ordinary least-squares regression on</td>
<td>Software not specified; datasets re-analyzed not specified</td>
<td>Not repeatable</td>
</tr>
<tr>
<td>Pärtel et al. (2007)</td>
<td>Multinomial logit regression</td>
<td>Statistica 6.1</td>
<td>Possibly repeatable; current release is 8.0</td>
</tr>
<tr>
<td>Laanisto et al. (2008)</td>
<td>Fisher exact tests</td>
<td>Not specified</td>
<td>Possibly repeatable using available algorithms</td>
</tr>
<tr>
<td></td>
<td>General linear model</td>
<td>Statistica 6.1</td>
<td>Possibly repeatable; current release is 8.0</td>
</tr>
</tbody>
</table>