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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 49, Number 4, Dec. 1984 

THE UNSOLVABILITY OF THE GODEL CLASS WITH IDENTITY 

WARREN D. GOLDFARB 

The Go5del class with identity (GCI) is the class of closed, prenex quantificational 
formulas whose prefixes have the form VV3. 3 and whose matrices contain 
arbitrary predicate letters and the identity sign "= ", but do not contain function 
signs or individual constants. The VV3 3 class without identity was shown 
solvable over fifty years ago ([4], [12], [17]); slightly later, that class was shown to 
possess the stronger property of finite controllability ([5], [18]). (A class of formulas 
is solvable iff it is decidable for satisfiability; it is finitely controllable if every 
satisfiable formula in it has a finite model.) At the end of [5], Gddel claims that the 
finite controllability of the GCI can be shown "by the same method" as he employed 
to show this for the class without identity. This claim has been questioned for nearly 
twenty years; in ?1 below we give a brief history of investigations into it. The major 
result of this paper shows Gddel to have been mistaken: the GCI is unsolvable. ?2 
contains the basic construction, which yields a satisfiable formula in the GCI that 
lacks finite models. This formula may easily be exploited to encode undecidable 
problems into the GCI. 

The minimal Godel class with identity (MGCI) is the class of GCI formulas that 
contain one existential quantifier, i.e., the VV3 class with identity. In ?3 the basic 
construction is elaborated to obtain the unsolvability of the MGCI. This settles the 
decision problem for all prefix classes of quantification theory with identity, given 
the following older results: the V]V class is unsolvable, even without identity [11]; 
the 3 ]* 3V V class and the 3 ... 3V] 3 class with identity are solvable ([16], [1]). 
Thus a prefix class is unsolvable iff it allows at least two universal quantifiers, at least 
one of which governs an existential quantifier. This dividing line differs from that in 
pure quantification theory, that is, quantification theory without identity. For here 
the 3 . 3VV3 .]3 class is solvable (this is an easy consequence of the solvability of 
the VV3 3 class), so that the minimal unsolvable classes are VVV3 [19] and V3V. 

A class C of formulas is said to be conservative iff there is an effective mapping p 
from the class of all quantificational formulas to C such that, for every F, F is 
satisfiable iff p(F) is satisfiable, and F is finitely satisfiable iff (p(F) is finitely 
satisfiable. If C is conservative then the decision problem for C has maximum degree 
of unsolvability; moreover, C is also undecidable for finite satisfiability, and the class 
of formulas in C that have finite models is recursively inseparable from the class of 
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formulas in C that are unsatisfiable [21]. In ?4 the basic construction is further 
refined to show that the MGCI is conservative. Thus for quantification theory with 
identity, as for pure quantification theory, every unsolvable prefix class is 
conservative. 

In ?5 it is shown that the reduction of ?4 can in fact be carried out with MGCI 
formulas whose nonlogical vocabulary contains, aside from monadic predicate 
letters, only one dyadic predicate letter. Thus the class of such formulas is 
conservative. This result, together with two easy consequences of it, settles the 
decision problem for all classes of formulas specified by prefix and similarity type. 
Details are given in ?6. 

?1. Background. Gddel's claim regarding the GCI seems to have been entirely 
ignored for over thirty years. Through the 1950s, there is no mention of the GCI or 
of the claim in the literature. In the early 1960s, Burton Dreben began to investigate 
the claim, and could not see how to prove it; Stail Aanderaa, at that time a student of 
Dreben's, devised several examples that exhibited prima facie difficulties in 
extending Gddel's method for the class without identity to the GCI. Dreben wrote to 
Gbdel on May 24, 1966, asking for substantiation of the claim and presenting 
Aanderaa's examples. In a letter of July 19, 1966, Gddel replied that he could not 
recall the details, but he did remember the extension of his method as involving "no 
difficulty". Throughout the late 1960s, Dreben urged that the decision problem for 
the GCI be deemed open; by the early 1970s this view became widely accepted. 

Also by the early 1970s, the nature of the difficulty with the GCI had been lo- 
cated. Let F be a formula in the GC1, and let W be any model for F. A distinguished 
element of level 1 is an element of W that is the sole exemplar of some property 
expressible using the predicate letters of F. For example, if F implies 
VXVy(ZX A Zy -+ X = y) A 3wZw, where Z is a monadic predicate letter, then every 
model for F contains a unique element of which Z is true; this element is a 
distinguished element of level 1. For k ? 1, a distinguished element of level k + 1 is an 
element of W not among the distinguished elements of levels < k that is the sole 
element bearing some particular relation (expressible using the predicate letters of 
F) to the distinguished elements of levels < k. Each of the known finite 
controllability proofs for the Gddel class without identity, including Gddel's own, 
can be adapted to yield the following: 

If F has a model VI that, for some k, contains no distinguished elements of 
level k, then F has a finite model. 

This was shown, independently, by Dreben and Goldfarb, by Gurevich, and by 
Schiitte in the early 1970s. A proof can be found in [3, p. 253]. Throughout the 
1970s, many researchers sought to show the GCI finitely controllable by providing a 
bound on the levels of distinguished elements that a GCI formula could require. 
However, in 1979 the author showed that no primitive recursive function provides 
such a bound and, consequently, there is no primitive recursive decision procedure 
for the GCI, or even for the MGCI [6]. This made it clear that far more than Gddel's 
method would have to be used for the GCI, if it were to have a positive solution. 
Even so, many of those concerned with the class including the author-were 
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inclined to believe that it would turn out to be finitely controllable. In particular, the 
technique of [6] for obtaining GCI formulas that demand distinguished elements of 
large levels k cannot be extended to yield a GCI formula that demand distinguished 
elements of every level. Moreover, hopes for a positive solution were nourished 
when, in 1980, Gurevich, Shelah, and the author showed a subclass of the MGCI to 
be finitely controllable by a method that does not yield a primitive recursive decision 
procedure [7]. 

A brief look at the problems encountered in generating distinguished elements 
may help explain this misguided optimism, as well as aid in the understanding of the 
construction of ?2. Imagine that we have shown that in any model W for a GCI 
formula F there are distinguished elements of certain levels let us call them 0, 
L,...,k and we wish to insure the existence of a unique element that bears a 
relation S to k. This element will then be a distinguished element of the next higher 
level. It is trivial to obtain the existence of at least one element that bears S to k. 
Uniqueness would follow if F could be made to imply VxVyVz(Sxy A Szy -+ X = Z); 

but since this requires three universal quantifiers, it outstrips the means allowed in 
GCI formulas. In a sense, the problem is to find a way of using existential quantifiers 
to capture a sufficient amount of the power of a third universal quantifier. 

Now F can be made to imply 

(i) VxVy[x # y -+ 3z(Sxz A 
- 

SyZ)]. 

If we also have 

(ii) if an element bears S to k then it bears S to nothing else, 

then uniqueness is forthcoming. For suppose a bears S to k and b =# a. If in (i) x and y 
take the values a and b, then by (ii) the existential variable z must take the value k, 
and we obtain m Sbk. Thus only a bears S to k. Now (ii) would follow if F could be 
made to imply VxVyVz(Sxy A Sxz -+ y = z), but again this requires three universal 
quantifiers. In [6], (ii) is obtained by having F imply something of the form 
VxVy(Sxy -+ 3z( . )] such that, if x and y take values a and c, where a bears S to c and 
also bears S to k, then the existential variable z must take a value among 0,.. ., k - 1; 
and this in turn can be used to force c to be identical with k. However, such a strategy 
works only up to a point: for sufficiently large k, the existential variable cannot be 
required to take a value among the earlier distinguished elements. This limitation 
lent some plausibility to the belief that the GCI is finitely controllable. 

The construction of ?2 rests on a somewhat different strategy. To obtain (ii), F is 
made to imply a formula VxVy(Sxy -+ 3z( .)] in which the existential variable does 
not take as value a distinguished element of lower level. In fact, in some models its 
value need not be distinguished at all. However, its value can be required to bear 
certain relations to distinguished elements of lower levels, and this turns out to be 
enough. Further explanation at this point would be uninformative; let us now turn 
to the construction itself. 

?2. The basic construction. The bulk of this section is devoted to the construction 
of a GCI formula F that is satisfiable but has no finite models. As we shall see, once F 
is at hand it will be a simple matter to encode an undecidable problem into the GCI. 
The formula F contains the monadic predicate letter Z and the dyadic letters S, P1, 
P2, Q, N, R1, and R2. F is designed so that, in every model W for F, there will be a 
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unique element 0 of which Z is true, a unique element 1 that bears S to 0, a unique 
element 2 that bears S to 1, and so on ad infinitum. Thus Z acts as the predicate "is 
zero", and S as the successor relation. The other letters are used to insure the 
existence of such 0, 1, 2,..., and are meant to act as follows. Elements of W can be 
taken to represent pairs of integers. Suppose b represents < p, q>; then P1 holds 
between b and the element p, P2 between b and q, Q between b and q + 1, N between b 
and an element that represents < p + 1, q>, R1 between b and any element that 
represents <q + 1, r> for some r, and R2 between b and any element that represents 
<r, q + 1> for some r. 

Let F be a prenex form of VxVy3zoH, where H is the conjunction of the following 
eleven clauses: 

(1) Zx A Zy -+ X = y, 

(2) ZzO A m SZOX A Aa= 1,2 (P5xzO A P5xy -+ y = Zo) 
(3) 3zSzx, 
(4) -iZx A X = y -+ 3z(Sxz A m Syz), 

(5) 3z[Nxz A (Qxy -+ Qzy) A (Rlxy -+ R1zy) A (R2XY -+ R2ZY)], 
(6) Nxy 3z(P2xz A P2yZ), 

(7) Nxy 3w3u(P1xw A Suw A PIyu), 
(8) Sxy 3z(Qzx A P2Zy A PIZZO), 
(9) Qxy 3z(P1xz A (Syz -+ P2XZ)), 

(10) Aa=1,2 [P5XY A iZy- 3z3w(Rbzx A P2ZW A PIZZO A Syw)], 

(11) Ab=1,2 [Raxy -+ 3z3w(P1xz A Swz A (P5yw -+ P2XZ))]. 
LEMMA 1. F is satisfiable. 
PROOF. Let 7r: N2--+ N be a bijective pairing function. Interpret the predicate 

letters of F over N as indicated two paragraphs back, where 0, 1, 2,... are identi- 
fied with 0, 1, 2,... and an integer k is taken to represent <p, q> iff k = 7(p, q). 
These interpretations yield a model for F with universe N. D 

LEMMA 2. F has no finite models. 
PROOF. Let W be any model for F. We shall find distinct elements 0, , 2,... of W 

such that, for each integer p, 
(A) for all c in W, Zc iff c = 0; 
(B) for all c in W, Spc iff p > 0 and c = p - 1; 
(C) for all c in W, if p > 0 and Scp - 1 then c = p; and 
(D) for ( = 1, 2 and all c, b in W, if Pcp and Pcb then b = p. 
(An expression like "Pacb" is short for "W I= Pcb".) 
By clauses (1) and (2) of F, there is a unique 0 in W such that ZO. Since the variable 

zo of F must always take 0 as its value, clause (2) of F yields (B)-(D) for p = 0. 
As induction hypothesis, suppose 0,..., k are distinct elements of W obeying 

(A)-(D) for each p < k. 
SUBLEMMA 1. Let c, d e WI and suppose Ncd. For each p < k, if PIcp - 1 then 

P1dp, and if P2dp then P~cp. 
PROOF. Since Ncd, by clause (7) there exist a and b in W with P. ca A Sba A P1 db. If 

PIcp - 1, where p < k, then a = p - 1 by (D), whence b = p by (C). Hence P1dp. Also, 
by clause (6), there exists e in W such that P2ce A P2de. If P2dp, where p < k, then by 
(D) e = p, so that P2cp. D 

SUBLEMMA 2. Let a, b e WI and suppose Sak and Sab. Then b = k. 
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PROOF. Since Sab, by clause (8) there exists co in f with Qcoa A P2cob A P1CO0. 
Iterated use of clause (5) yields the existence of c1, . Ck in % such that Ncici + 1 for 
each i, 0 < i < k, and Qcia for each i, 0 < i < k. Since P1coO, iterated application of 
Sublemma 1 yields P lckk. By clause (9), there exists d in f with 
Plckd A (Sad -+ P2Ckd). By (D), d = k. Since Sak, P2ckk. Iterated application of 
Sublemma 1 yields P2cok. But P2cob; by (D), b = k. D 

SUBLEMMA 3. There is a unique a in % such that Sak. 
PROOF. By clause (3) there is at least one a in % with Sak. By (A) and (B), m Za. Let 

b E %f, b =# a. By clause (4) there exists c in % with Sac A 7 Sbc. By Sublemma 2, 
c = k. Thus -7 Sbk. D 

Now let k + 1 be the unique a such that Sak. By (B), k + 1 is distinct from 0, 
1, . .. I k. 

SUBLEMMA 4. Let 6 = 1 or 2, and let c, b E %. Suppose Peck + 1 and P~cb. Then 
b = k + 1. 

PROOF. By (A) and (D), - Zb. Hence by clause (10) there exist co, d in % such that 
R~coc A P2cod A P1CO0 A Sbd. Iterated use of clause (5) yields the existence of 
c1, . . ., Ck in % such that Ncici + 1 for each i, 0 < i < k, and R~cic for each i, 0 < i < k. 
Since P1 co 0, by Sublemma 1 we may infer P1ckk. By clause (11) there exist e, e' in % 
such that Plcke A Se'e A (Pace' -+ P2cke). By (D), e = k. Thus e' = k + 1, so that 
Pace'. Hence P2Ckk. By Sublemma 1, P2cok. But P2cod; hence, by (D), d = k. Thus 
Sbksob=k+ 1. D 

Sublemmas 2-4 show that (A)-(D) hold for all p < k + 1. Thus, by induction, 
there is an infinite sequence of distinct elements of %. I 

To obtain unsolvability, we exploit the fact that every model for F contains an w)- 
sequence of elements on which S acts as the successor relation. 

THEOREM 1. The Godel class with identity is unsolvable. 
PROOF. Let J = Vx3uVyK(x, u, y) be any V3V-formula of pure quantification 

theory; there is no loss of generality in supposing that the predicate letters of J are 
distinct from those of F. We construct a formula in the GCI that is satisfiable just in 
case J is satisfiable. Since the V3V class of pure quantification theory is unsolvable, 
this yields the theorem. 

Herbrand's theorem implies that J is satisfiable iff there is an interpretation of its 
predicate letters over N such that K(p, p + 1, q) is true for all integers p and q. Now 
let J' be a prenex equivalent of F A VxVy3u(Sux A K(x, u, y)) that is in the GCI. If J 
is satisfiable, then a model for J' can be obtained by adjoining, to the model for F 
given in the proof of Lemma 1 above, interpretations of the predicate letters of J 
over N such that K(p, p + 1, q) is true for all p and q. Conversely, if J' has a model f, 
then, since J' implies F, there are distinct elements 0, 1, 2,... of % that obey (A)-(D) 
for each integer p. And then, for all integers p and q, K(p, p + 1, q) is true in %. Thus 
the restriction of % to {0, 1, 2,... } is a model for J. Z 

?3. Minimal Godel class with identity. The construction of ?1 may be refined so as 
to use only one existential quantifier. As before, every model for the formula we 
construct will contain elements 0, 1, 2,... such that 0 is the unique element of which 
Z is true and, for each k, k + 1 is the unique element that bears S to k. Additional 
monadic predicate letters B1, B2 and dyadic predicate letters L1, L2 will be used: B~c 
is to hold iff P~cO holds, and L~cp is to hold iff P~cp + 1 holds, 6 = 1, 2. These new 
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predicate letters enable us to eliminate the nested existential quantifiers used in 
?2. 

Moreover, the elements 0, 1, 2,... are now going to be distinct from the elements 
that represent pairs. A new monadic predicate letter I will be true of the former 
elements and false of the latter. The last new predicate letter used is monadic D, true 
of an element only if it represents a pair <p, p>. 

Let G = VxVy3zH, where H is the conjunction of the following seventeen clauses: 
(1) Zx A Zy-+ X = y, 

(2) Zx -+ Ix A Ai= 1,2 (BAy PYx), 
(3) Ab=1,2 (Bbx A PbXy - Zy), 
(4) (Sxy --+ Zx A Ix A Iy) A (L1xy - Ix A 7 B1x), 

(5) Dx -+ (Pxy =P2xy), 
(6) x = y A 7 ZX -+ ZZ, 

(7) (Zx A Iy -Szy) A (Zx A 7 Iy - P1 yz), 

(8) Ix A 7 Zx A Iy A 7 Sxy A X = y -+ Sxz A 7 Syz, 

(9) Ab 1,2 (Pbyx A 7 ZX -+ SXZ A Lbyz), 
(10) Nxy P2XZ A P2yZ, 

(1 1) Nyx P1 yz A L1xz, 

(12) Sxy Qzx A P2Zy A B1z, 

(13) Qxy A 7 Dx -+ Nxz A Qzy, 
(14) Qyx -+ PIyz A (SXZ -+ P2yZ), 

(15)A=1,2(Lbxy -+ RbZX A P2Zy A B1z) 

(16) = 1, 2 (Rbxy A -7 Dx - Nxz A Rbzy), 
(17) A = 1,2 (Rbyx -+ P1 yz A (Lbxz -+ P2yz)). 
LEMMA 1. G is satisfiable. 
PROOF. Let the universe be N u N2, and let 7r, and 7t2 be the projection mappings 

on N2. Interpret the predicate letters of G over the universe so that, for 5 = 1, 2 and 
all a, b in the universe: Za iff a = 0, Ia iff a e N; B~a iff a e N2 and 7rba = 0; Da iff 
a e N2 and 7tla = 7r2a; Sab iff a, b e N and a = b + 1; P~ab iff a e N2 and 71ba = b; 
Lbab iff a N2 and nba = b + 1; Qab iff be N, b > 0, and a = <p,b - 1> for some 
p < b-1; Nab iff a = <p, q> and b = <p + 1, q> for some integers p and q; R1ab iff 
a = <p,q> and b = <q + 1,s> for some integers p,q,s with p < q; and R2ab iff 
a = < p, q> and b = <s, q + 1> for some integers p, q, s with p < q. These interpre- 
tations yield a model for G. Indeed, define a two-place function (p on the universe 
thus: 

0 if a=b=O, 

b + 1 if a=Oandbe-N, 

a-1 if a,be N, a =0 O,a =A b,a =A b + 1, 

a - 1 if a =# 0 and either Plba or P2ba, 

p(a, b) = 72a if Nab, 

7r1b if Nba, Qba, R1ba, or R2ba, or if a = 0 and b e N2, 

<0, b> if Sab or Llab or L2ab, 

<Kr1a + 1, 72a> if - Da and either Qab, R1ab, or R2ab, 

arbitrary otherwise. 
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It is a routine matter to check that this is a proper definition (that is, its clauses do not 
conflict) and that y is a Skolem function for the existential variable of G (that is, 
H[a, b, (p(a, b)] is true for all a and b in the universe under the interpretations of the 
predicate letters given above). R 

LEMMA 2. G has no finite models. 
PROOF. Let 91 be any model for G. By clauses (1) and (6) of G, there is a unique 

element 0 of T such that ZO. By clauses (2) and (4), IO and m SOc for each c in A. For 
6 = 1, 2 and any c, b in 91, clauses (2) and (3) yield (Bc -PcO) A (Bc A Pcb -+ Zb); 
hence if PacO and Pbcb then b = 0. 

Now suppose O,.. ., k are distinct elements of f such that, for each p < k, 
(A) for all c in , Zc iff c = 0; 
(B) for all c in A, Spc iff p > 0 and c = p - 1; 
(C) for all c in A, if p > 0 and Scp - 1 then c =p; 
(D) for 6 = 1, 2 and all c, b in A, if Pcp and Pcb then b = p; and 
(E) for all c in A, if p > 0 and L1cp - 1 then Picp. 
SUBLEMMA 1. Let c, d e WI and suppose Ncb. For each p < k, if PIcp - 1 then P1dp, 

and if P2dp then P2cp. 
PROOF. Since Ncd, by clause (11) there exists b in % such that P1cb A Lldb. If 

P1cp - 1, where p < k, then b = p -1 by (D), so that P1dp by (E). By clause (10) there 
exists e in % such that P2ce A P2de. If P2dp, where p < k, then e = p by (D), so that 
P2cp. LI 

SUBLEMMA 2. Let a, b e St and suppose Sak and Sab. Then b = k. 
PROOF. Since Sab, by clause (12) there exists co in % with Qcoa A P2cob A B co. By 

clause (2), P1coO. Iterated use of clause (13) yields the existence of c , . . , cj such that 
Ncici + 1 for each i, 0 < i < j, and Qcia for each i, 0 < i < j, and either j = k or else 
j < k and Dcj. In the latter case we have P1cjj by iterated use of Sublemma 1; by 
clause (5), then, P2cjj, so that P2coj by Sublemma 1. But P2cob; by (D), then, b =j, 
whence a = j + 1 by (C), and this is impossible. Hence ] = k. Then, by Sublemma 1, 
PIckk. Since Qcka, by clause (14) there exists d in % such that Plckd A (Sad -* P2ckd). 
By (D), d = k. Since Sak by hypothesis, P2ckk. By Sublemma 1, P2cok. Since P2cob, 
by (D) b =k D 

SUBLEMMA 3. There is a unique a in % such that Sak. 
PROOF. By clause (7) there is at least one a in % with Sak. Now suppose a # b, Sak, 

and Sbk. By Sublemma 2 and (B), m Sab. By clause (4), m Za A Ia A Ib. Hence, by 
clause (8), there exists c in % such that Sac A 7 Sbc. By Sublemma 2, c = k. Thus 
m Sbk, contrary to hypothesis. LI 

Now let k + I be the unique a such that Sak. By (B), k + 1 is distinct from 
O,1,...,k. 

SUBLEMMA 4. Let 5 = 1 or 2, and let c, b E St. Suppose Lack and Lbcb. Then b = k. 
PROOF. Since L~cb, by clause (15) there exists co in % with Rbcoc A P2cob A B1co. 

By clause (2), P1coO. Iterated use of clause (16) yields the existence of c1,. . ., c; such 
that Ncici+ 1 for 0 < i < j, Rbcic for 0 < i < j, and either = k or else < k and Dci. 
By reasoning as in the proof of Sublemma 2, we may infer that the latter case is 
impossible; hence j = k. By Sublemma 1, P1ckk. Since RbCkC, by clause (17) there 
exists d in 9I such that PlCkd A (Lbcd - P2Ckd). By (D), d = k. Since Lack by 
hypothesis, P2ckk. By Sublemma 1, P2cok. Since P2cob, by (D) b = k. LI 
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SUBLEMMA 5. Let 6 = 1 or 2, and let c, b E St. Suppose Pbck + 1 and P~cb. Then 
b = k + 1. 

PROOF. Since m Zk + 1, by clause (2) m B~c, so that m Zb. Two uses of clause (9) 
yield the existence of d and e in W with Sk + ld A Lacd and Sbe A Lace. By 
Sublemma 2, d = k; by Sublemma 4, then, e = k. Since Sbk, b = k + 1. D 

SUBLEMMA 6. Let c E 9t and suppose Llck. Then Plck + 1. 
PROOF. By clause (4), m Ic A - B1 C. By clause (7) there exists b in W such that 

P1 cb; by clause (2), - Zb. Hence, by clause (9) there exists d in W such that 
Sbd A Q1cd. By Sublemma 4, d = k. Hence b = k + 1, so that Plck + 1. D 

Sublemmas 2-6 show that the induction hypotheses (A)-(E) hold for each 

p < k + 1. By induction, then, there is an infinite sequence of distinct elements of 

THEOREM 2. The minimal G5del class with identity is unsolvable. 
PROOF. Let J = Vx~uVyK(x,u,y) be a formula in the V]V-class of pure quan- 

tification theory, whose predicate letters are distinct from those in G. Let J' be 
obtained from G by conjoining the following two additional clauses to the matrix: 

(18)Ix A -IZx A Ay A -ISXY A X #y-K(z,x,y), 

(19) Syx -+ K(x, y, y) A K(x, y, x). 
It suffices to show that J' is satisfiable iff J is satisfiable. 

Suppose J is satisfiable. To the interpretations of the predicate letters of G over 
the universe N u N2 given in the proof of Lemma 1, adjoin interpretations of the 
predicate letters of J over N that make K(p, p + 1, q) true for all p and q. Since, for all 
a and b in the universe, Sab is true iff a, b E N and a = b + 1, (19) is true for all values 
of x and y. If the antecedent of (18) is true for values a and b of x and y, then a, b E N, 
a > 0, and, by clause (8), z takes the value a - 1. Hence the consequent of (18) is true. 
Thus we have obtained a model for J'. 

Suppose J' is satisfiable; let W be a model for it. Since J' implies G, there are 
elements 0, 1, 2, ... of W that obey (A)-(E) for every integer p. By (B) and clause (4), Ip 
for each p. Now for all integers p and q such that q #A p and q #A p + 1, the antecedent 

of (18) holds when x has value p + 1 and y has value q; by clause (8), in this case z has 
to take the value p. Hence K(p, p + 1, q) is true in W. Moreover, when x has value p 
and y has value p + 1, then the antecedent of (19) holds, so that K(p,p + 1,p + 1) 
and K(p, p + 1, p) are true in W. Thus K(p, p + 1, q) is true in W for all integers p and 
q. We may conclude that the restriction of W to {0, 1, 2,... } is a model for J. D 

?4. Conservativeness. Although the reduction just given of the V]V-class to the 
MGCI does not preserve finite satisfiability, it can be amended so as to do so. In fact, 
given an V]V-formula J, we may alter the construction of ?3 thus: we introduce a 
monadic predicate letter W, along with new clauses that allow W to be true of an 
element n iff J has a model with universe {O,..., n}; and we replace the clause 
Zx A Iy -+ Szy of the formulas of ?3 by Zx A Iy A - 

Wy -+ Szy. Thus, if W holds 

of an element then that element need not have a successor. This will permit the 
MGCI formula to have a finite model. 

In this section, however, we give a more intricate proof of conservativeness, so as 
to facilitate a further reduction-carried out in ?5-to the class of MGCI formulas 
that contain only one dyadic predicate letter. The MGCI formulas we use in this 
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proof all contain the same ten dyadic letters, whose intended interpretations are 
fixed. Nine of these letters were used in ?3, namely, S, P1, P2, L1, L2, N, Q, R1, and R2 . 
A new dyadic letter M is meant to hold between two elements of a model only if the 
first represents a pair < p, q> and the second a pair <r, p> for some p, q, and r. 
Another difference between the formulas below and those of ?3 is this: the intended 
models for the formulas below contain three different elements that represent each 
pair <p, q>; these elements will be identified with triples < p, q, i> for i = 0, 1, 2. A 
monadic letter E will be true of such a triple iff i = 0. We also use monadic letters Z, 
I, D, B1, B2 as in ?3, and a monadic letter W with the role indicated above. Moreover, 
for every dyadic predicate letter ' of the V3V-formula being reduced, we use two 
monadic letters As and A*; given a model 9 for that formula, if c represents a pair 
< p, q>, then As is to be true of c iff 93 # Ipq and A* is to be true of c iff 93 1= Oqp. 

THEOREM 3. The minimal G5del class with identity is conservative. 
PROOF. Let J = Vx~uVyK(x, u, y) be an V]V-formula of pure quantification 

theory all of whose atomic subformulas have one of the forms Oxy, 'yx, 'uy, Oyu, 
where ' is a dyadic predicate letter. The class of such formulas is conservative [22]. 
Hence it suffices to find an MGCI formula GJ that is satisfiable iff J is satisfiable, and 
that has a finite model iff J has a finite model. 

Let L be the set of predicate letters of J, and let K*(v, w) be obtained from K by 
replacing atomic subformulas Oxy, 'Pyx, Ouy and Oyu by Aqv, A v, Aow and A w, 
respectively. Let HJ be 

(Nxy -+ K*(x, y)) A (MXY A MYX A (Ao x =A y)). 
0eL 

Let H' be like the matrix of the formula G of ?3, but for the following changes: clause 
(7) is replaced by the conjunction of 

(7a) Zx A Iy A -I WY -SZY, 
(7b) Zx A WY -P1ZX A P2Zy A Ez, 
(7c) Zx A Iy -+ Nyz; 

clause (11) is replaced by 
(1 1) Nyx -P1YZ A (n Wz -L1yZ) A (Wz - B1x); 

and two new clauses are conjoined: 
(18) EX A EY A iNXY A iNyx -P1XZ A (P2YZ -* MXY); 
(19) (Nxy -* (Ex -Ey)) A (WX -+ 

- ZX) A (Qxy -+ Ex) A (Ex -+ - Ix). 
Finally, let GJ be VxVy~z(H' A HJ). 
LEMMA 1. If J has a model then so does GJ. 
PROOF. Let V = N x N x {0, 1, 2}, and let the universe be N u V. Let 7r1, 7r2, 

and 7t3 be the projection functions on V. Interpret the predicate letters of H' so that, 
for 6 = 1, 2 and all a and b in the universe, Za iff a = 0; Ia iff a e N; Bba iff a e V and 

7,5a = 0; Da iff ae V and i1a = i2a; Ea iff ae V and 7r3a = 0; Sab iff a,beN and 
a = b + 1; Pbab iff a e Vanditba = b; Lbab iff a e V anditaa = b + 1; Qab iff b e N, 
b > 0, and a = <p,b-1,0> for some p < b-1; Nab iff a = <p,q,i> and 
b = <p + 1,q,i> for some integers p, q, and i; R1ab iff a = <p,q,i> and 
b = <q + 1,s,j> for some integers p,q,s with p < q and some i and j with 
i =-j + 1 (mod 3); R2ab iff a = <p,q,i> and b = <s,q + 1,j> for some integers p,q,s 
with p < q and some i and j with i -j + 1 (mod 3); and Mab iff a = <p, q, 0> and 
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b = <s,p,O> for some integers p, q, and s. Moreover, interpret W to be true of no 
element. 

These interpretations provide a model for VxVy3zH'. Indeed, a Skolem function qp 
for the existential variable z may be defined thus: 

0 if a=b O, 
b + 1 if a =0 and beN, 

<Krrb + 1,2b,it3b> if a = O and b E V, 
a-i if a,b eN, a O. a Oa b, a A b + 1, 

a-1 if a + 0 and either P ba or P2ba, 

qpa b) = 12a if Nab, 
7t1a if Nba, Qba, Rba, R2ba, or Ea A Eb A 

m Nab A 7 Nba, 

<O,b,0> if Sab, 
<0,b,i> if Llab or L2ab, where i _ 3a + 1 (mod 3), 

<Tr1a + 1,it2a,it3a> if -iDa and either Qab, Rab, or R2ab, 

arbitrary otherwise. 

Now suppose J is satisfiable. Then it has a model 93 with universe N such that 
93 = K(p, p + 1, q) for all integers p and q. Say that an element a E V represents 
<p, q> iff ila = p and it2a = q. For each ' e L, interpret the predicate letters A,, and 
A, so that if a represents <p, q>, then A,,a iff 93 I 'pq and A*a iff Q3 1= 'qp. We 
show that these interpretations provide a model for VxVyHj. Suppose Nab. Then, for 
some p and q, a represents <p, q> and b represents <p + 1, q>. Hence A,,a iff 
Q3 O <pq, Aaa iff 93 - 'qp, A0b iff 93 - Pp + 1 q, and Apb iff 93 k 1q p + 1. Thus 
K*(a, b) is true. Now suppose Mab A Mba. Then, for some p and q, a represents 
<p, q> and b represents <q, p>. Hence Aa iff A<b for each ( e L. 

Since G. is equivalent to VxVy~zH' A VxVyHj the interpretations we have given 
provide a model for G. with universe N u V D 

LEMMA 2. If J has a finite model then so does GJ. 
PROOF. If J has a finite model then for some n > 0 it has a model 3 with universe 

{O,...,n} such that 9k= K(p,p + 1,q) whenever p + 1,q < n and !k= K(n,O,q) 
whenever q < n. (This elementary fact about V]V formulas is proved, for instance, in 
[3, p. 130].) We construct a model for GJ with universe {o,..., n} U {O,... ,n} x 
{O,... ,n} x {0,1,2}. Let the interpretations of all the predicate letters of H' 
except N and W be the restrictions to this universe of the interpretations given in the 
proof of Lemma 1; let Wa iff a = n; and let Nab iff either Nab is true under the 
interpretation of Lemma 1 or else a = <n, q, i> and b = <0, q, i> for some q and i. 
Then VxVy~zH' is true; indeed, the Skolem function given in the proof of Lemma 1 
needs only to be restricted to arguments from the finite universe and altered at two 
points, namely, (p(a, b) = <0, b, 0> if a = 0 and b = n, and (p(a, b) = <0, 7m2b, 73b> if 
a = 0, b is a triple, and 7t1b = n. 

Now define interpretations of the letters A, and A from the model 9 as in the 
proof of Lemma 1. The verification that these interpretations provide a model for 
VxVyHj proceeds as before, except that now we may have Nab when a represents 
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<n, q> and b represents <0, q>. But since 9 # K(n, 0, q), it follows as before that 
K*(a, b) is true. Thus we have defined a model for Gj whose universe is finite. D 

Let (A)-(E) be the five conditions given in the proof of Lemma 3, ?3. 
LEMMA 3. Let St be any model for Gj. Then either (I) W contains distinct elements 

0,1, 2, ... such that (A)-(E) hold for each integer p, and also m Wp for each p; or 
(II) for some n > 0, St contains distinct elements 0, 1,... , n such that (A)-(E) hold 

for each p < n, m Wp for each p < n, and Wn. 
PROOF. By clauses (1) and (6) there is a unique element 0 of W such that ZO. 

Conditions (A)-(E) for p = 0 follow as in ?3. Note that m WO, by clause (19). Now 
suppose 0, . . , k are distinct elements of W such that (A)-(E) hold for each p < k and 
m Wp for each p < k. It suffices to show that if m Wk then there exists an element 
k + 1 of W, distinct from 0,1,.. .,k, such that (A)-(E) hold for p = k + 1. 

Sublemmas 1 and 2 as in ?3 can be proved as they were there. (The alteration in 
clause (11) made in this section does not affect the proof, since m Wp for each p < k.) 
Moreover, on the assumption that m Wk, by clause (7a) there exists a in 91 with Sak. 
An argument as in ?3 then establishes that there is a unique a in 91 with Sak; let k + 1 
be that a. Sublemmas 4-6, which complete the proof that (A)-(E) hold for 
p = k + 1, are also shown as before, with one extra step in the proof of Sublemma 6 
necessitated by the alteration in clause (7). We must show that if m Ic then there 
exists b in 91 with P1 cb. But by clause (7c), if m Ic then there exists d in 91 with Ncd. By 
clause (11), then, there exists b in 91 with P1cb. 

LEMMA 4. If Gj has a model then so does G; if Gj has a finite model then so does G. 
PROOF. Let 91 be a model for GJ, with 91 finite if GJ has a finite model. If (I) of 

Lemma 3 holds, let oc = wo; if (II) holds let oc = n + 1. Since (II) must hold if W is finite, 
it suffices to construct a model 9 for J with universe { p I p < oc}. Indeed, for p, q < oc 
let T(p, q) = {b e W I P1bp A P2bq A Eb}, and for each ' e L let 3 t Ppq iff there 
exists c e T(p, q) such that Aqc. We shall show that 93 1= J. 

SUBLEMMA 7. Let p, q < o and b, c e W. 
(a) Suppose Nbc and b T F(p, q). If p + 1 < oc then c T F(p + 1, q); if p + 1 = 

then c e T(o, q). 
(b) T(p, q) is nonempty. 
(c) If b e T(p, q) then, for each ' e L, 3 # Oqp iff Azb. 
(d) If b e T(p, q) then, for each ' e L, 9 # Ppq iff Aob. 
PROOF. (a) By (19), Eb _ Ec; hence Ec. By clause (10) there exists d in W with 

P2bd A P2cd. By (D), d = q; hence P2cq. If p + 1 < oc, then Sublemma 1 yields 
P1cp + 1. If p + 1 = oc, then p = n so that Wp. By clause (11) there exists d in W with 

Pjbd A (We -+ B1c). By (D), d = p; hence B1c. By clause (2), P1cO. 
(b) We show first that T(o, q) is nonempty. If q + 1 < oc, then Seq for e = q + 1. By 

clause (12) there exists d in W with Qde A P2dq A B1d. By clauses (2) and (19), 
P1dO A Ed; hence d e T(o, q). If q + 1 = o, then Wq; by clause (7b) there exists d in W 

with P1dO A P2dq A Ed; hence d e T(o, q). Now suppose F(r, q) is nonempty and 
r + 1 < cx. Let b e T(r, q). Since Eb, by clause (19) - Ib; by clause (7c) there exists c 
in W with Nbc; by part (a), c e F(r + 1, q). Thus F(r + 1, q) is nonempty. 

(c) Suppose first that b e T(p, q) and c e F(q, p); we show that Mbc A Mcb. 
Suppose that Nbc. By part (a) and condition (D), q = p and either p + 1 < cx and 
q = p + 1, or else p + 1 = cx and q = 0. The former case is, obviously, impossible; in 
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the latter case we have p = n = 0, which is also impossible. Thus m Nbc. Similarly, 
m Ncb. By clause (18), then, there exists d in 1 with Plbd A (P2cd -+ Mbc). By (D), 
d = p; hence Mbc. Symmetric reasoning shows that Mcb. 

Now, by definition of 93 there exists c e F(q, p) with 93 F 'qp iff A,,c. By what was 
just shown, Mcb A Mbc. Thus VxVyHj implies Aac = Azb. Hence 93 I= 'qp iff Aab. 

(d) If A0b then 93 # Ppq by definition. Suppose 9 #= Ppq, and let d be any 
member of F(q, p). By part (c), Ad. Moreover, as in (c), Mbd A Mdb. Thus VxVyHj 
implies A,,b =Apd. Hence Apb. D 

SUBLEMMA 8. Let p, q < a. Then 9 k K(p, p + 1, q) whenever p + 1 < a, and 
93 K(p,0,q)ifp+ 1 =a. 

PROOF. Let b E F(p, q). Since Eb, by clause (19) m lb. By clause (7c) there exists c in 
1 with Nbc. Thus VxVyHj implies K*(b, c). Let r = p + 1 if p + 1 < oc; let r = 0 if 

p + 1 = oc. By Sublemma 7(a), c e F(r, q). By Sublemma 7(c) and (d), 9 t 'pq iff 
A,pb, 9 # lqp iff Azb, 9 k 'rq iff Aoc, and 9 I 'qr iff Apc. By the construction of 
K*(b, c), it follows that 93 F K(p, r, q). D 

Sublemma 8 shows that 9 is a model for J. Ii 

?5. One dyadic letter. In this section we show how to reduce the formulas G. 
constructed in ?4 to MGCI formulas that contain only one dyadic predicate letter R. 
For this, we use new monadic letters Ci for i = 0, 1, 2, and CJ for i = 0, 1, 2 and 
j = 1, 2, 3. In the intended model, Ci holds of integers p such that p -i (mod 3), and 
CJ holds of triples b such that 1rjb _ i (mod 3). Let 0= 1,A 1 = 2, and a2 = 0. For 
each dyadic letter P of GJ, we define a formula IP*(v, w) that contains just R and the 
new monadic letters. (In these definitions, the conjunctions A are for i = 0, 1, 2.) Let 

S*(v, w) be RVW A IV A IW, 

Pl*(v,w) be RVW A A (Civ c 
P*(v,w) be RWV A A(Civ Cw) 
L*(v, w) be RVW A A (Civ = ciw 
L*(v, w) be RWV A A (Civ=C2iW) 
Q*(v,w) be RWVAA(CAGiv C7w), 
R*(vw) be RVW A A(caiv-0i 
R*(v,w) be RWV A A (Caiv cN3 
N*(v,w) be RVW A RWV A A[(cv_ C3W) A (CV_ CiW) A (CVC'iW)], 

M*(v,w) be Rvw A C3V A C3W A 1 N*(v,W) A - N*(w,v). 

Now let G* be obtained from GJ by replacing, for every dyadic predicate letter P 
and all variables v and w, each atomic subformula WPvw by the formula WP*(v, w). 
Since G* comes from GJ by replacement of predicate letters, if it has a model then so 
does GJ, so that J has a model; and if it has a finite model then so does GJ, so that J 
has a finite model. Thus we need only show that if J has a model then so does G*, 
and if J has a finite model then so does G*. 

Suppose J has a model. Then it has a model 9 with universe N such that 
9 t K(p, p + 1, q) for all integers p and q. Let the universe be N u V, where 
V N x N x {0, 1, 2}. Interpret the predicate letters of GJ (including the dyadic 
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letters that do not occur in G*) as in the proof of Lemma 1, ?4; interpret the new 
monadic letters C' and CJ as indicated at the start of this section, and interpret R so 
that, for all a and b in the universe, Rab iff 

(4) Sab v Plab v P2ba v Lab v L2ba v Qba 
v Nab v Nba v Rlab v R2ba v Mab. 

It is easily checked that, for every dyadic letter IF of Gj except M, and all a and b in 
the universe, P*(a,b) is true iff Pab is true. Moreover, M*(a,b) is true iff 
Mab A m Nab A -i Nba is true. Now if the interpretations of Lemma 1, ?4, are 
altered so that Mab now holds if Mab A m Nab A m Nba held under the original 
interpretations, then the result is still a model for Gj, since m Nxy A m Nyx occurs 
in the antecedent of clause (18). It follows that the interpretation of R just given, 
along with the interpretations of the monadic letters, provides a model for G* with 
universe N u V. 

Now suppose J has a finite model. Then it has a model 9 with universe {O,. .. ., n} 
such that 93 S K(p,p + 1,q) whenever p + 1,q < n and 9 I= K(n,O,q) whenever 
q < n. Without loss of generality we may assume that n + 1= 0 (mod 3). For if 
n + 1 # 0 (mod 3) then we can expand 9 to a suitable model with universe 
{0,..., 3n + 2} by making p indiscernible from q whenever p _ q (mod n + 1). 
We now show that GJ has a model with universe {O,..., n} u ({O,..., n} x 
{O ... , n} x {O, 1, 2}). Interpret the predicate letters of Gj over this universe as in 
Lemma 2, ?4, interpret the monadic letters Ci and CJ as indicated above, and 
interpret R so that Rab holds if (:) of the proof immediately above holds. It follows 
that, for every dyadic predicate letter IF of GJ save M and all elements a and b of 
the universe, IF*(a, b) is true iff TPab is true; and, moreover, M*(a, b) is true iff 
Mab A 

- Nab A -i Nba. From this and Lemma 2, ?4, we may conclude that these 
interpretations provide a finite model for GJ. 

Thus J has a model if GJ has a model, and J has a finite model iff GJ has a finite 
model. This yields 

THEOREM 4. The class of formulas in the minimal Godel class with identity whose 
nonlogical vocabulary contains, aside from monadic predicate letters, just one dyadic 
predicate letter is conservative. 3l 

?6. Prefix-similarity classes. A prefix-similarity class is a class of prenex 
quantificational formulas specified by form of quantifier prefix and number and 
degree of predicate letters.' If H denotes a prefix form and p and q are integers, then 
H(p, q) is the class of formulas with identity whose prefixes have form H and which 
contain at most p monadic predicate letters, q dyadic predicate letters, and no k-adic 
predicate letters for k 2 3; and H(oo, q) is the union of the classes H(p, q). Note that, 
for any H, the class H(oo, 0) is subsumed by monadic quantification theory with 
identity, and hence is solvable. Moreover, if H is bounded (that is, contains at most r 
quantifiers for some r), then for all integers p and q the class H(p, q) contains only 

' For quantification theory extended by the inclusion of function symbols, the specification of prefix- 
similarity classes also includes the number and degree of such symbols. See [9] for an exhaustive list of 
solvable and unsolvable prefix-similarity classes that allow at least one function symbol. 
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finitely many different formulas, up to alphabetic variants and truth-functionally 
equivalent matrices; hence H(p, q) is solvable. 

Theorem 4 of ?5 states that the class VV3(oo, 1) is conservative. Now the class 
V3V(oc, 1) is also conservative [10]. From the positive results for prefix classes of 
quantification theory with identity given at the beginning of this paper, and from the 
remarks of the preceding paragraph, it follows that these two are minimal 
unsolvable prefix-classes with bounded prefix form. 

Now in pure quantification theory, the minimal undecidable prefix-similarity 
classes with bounded prefix form are VVV3(oo, 1) and V3V(ox, 1), and both of these 
are conservative ([20] and [10]). Thus the dividing line between solvable and 
unsolvable prefix-similarity classes differs, tracking the difference in the dividing line 
between solvable and unsolvable prefix classes noted at the beginning of this paper. 

For pure quantification theory, the minimal unsolvable prefix-similarity classes 
with unbounded prefix form are the following: V... V3(0,1) [14]; V3V .. V(0, 1) [2]; 
V3 ... 3V(0, 1) [15]; 3 ... 3V3V(0, 1) [20]; 3 ... 3VWV3(0, 1) [20]; VVV3 ... 3(0, 1) [13]; 
and V3V3 ... 3(0,1) [8]. Moreover, each of these classes is conservative. For 
quantification theory with identity, the last three classes can be collapsed into two; 
for, as we now show, it follows from Theorem 4 that the classes 3... 3VV3(0, 1) and 
VV3 *.. 3(0, 1) are conservative. Thus our results settle the decision problem for all 
prefix-similarity classes of quantification theory with identity. 

THEOREM 5. The class 3 ... 3VV3(0, 1) is conservative. 
PROOF. Let F = VxVy3zH be any formula in the class VV3(oo, 1); let R be 

the dyadic predicate letter of F, and let P1,... Pm be the monadic letters of F. 
For any variable v let D(v) be the formula A?<i<Mv # wt, and let K = 

[D(z) A (D(x) A D(y) -+ H')], where H' is obtained from H by replacing each atomic 
subformula Piv with Rvwi. Finally, let G = 3w1 ... 3wmVxVy3zK. Thus G E 
3 -- 3VV3(0, 1). 

Suppose F has a model 9 with universe U. Let e1,.. , em be distinct objects not in 
U. Let 9 be the structure with universe U u {e1,. . , em} such that, for all a and b in 
this universe, 93 k Rab iff either a, b e U and 91 k Rab or else a e U, b = ei, and 
91k FPia. Clearly 9 3 VxVy3zK[ei,.. ., em]; hence 93 is a model for G. 

Now suppose G has a model 9 with universe V. Let e1, . . ., em be elements of V 
such that 93k VxVy3zK[el,...,em], and let U = V - {e,,...,em}. Since VxVy3zK 
implies 3zD(z), U is nonempty. Let 9 have universe U and, for a and b in U, let 
9 k= Rab iff 93 k Rab, and let 9 k= Pia iff 93 k Raei. Then 9 k= F. 

Thus F has a model iff G has a model, and F has a finite model iff G has a finite 
model. EL 

THEOREM 6. The class VV3 * 3(0, 1) is conservative. 
PROOF. Let F be a formula in VV3(oo, 1) whose sole dyadic letter is R. Let F' be 

obtained from F by replacing each atomic subformula Rvw by Rvw v (v = w A Pv), 
where P is a new monadic letter. Then F and Vx(-i Rxx) A F' are satisfiable over the 
same universes. For if Vx(i Rxx) A F' is satisfiable over U then, since F' comes 
from F by replacement of a predicate letter, F is satisfiable over U. Conversely, any 
model for F can be transformed into one for Vx(-i Rxx) A F' by interpreting P as 
true of any element a such that 9 k Raa and reinterpreting R so that Rab is true iff 
91 k Rab and a # b. 
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Suppose that F' = VxVy3zH, and let P1,. . ., Pm be the monadic predicate letters of 
F'. Let D(v) be A1 < i <m v =A wi, let H' be obtained from H by replacing each atomic 
subformula Piv with Rvwi, and let K be the conjunction of the following clauses: 

(1) D(z), 
(2) Rw1w, A (Rxx A Ryy -* x = y), 
(3) A, <i<m m [Rwiwi+ I A (Rwix A Rwiy -+x = y)], 
(4) D(x) A D(y) -H'. 
Finally, let G be VxVy3z3w, ... 3wmK. Thus G E VV3 ](0, 1). 
Suppose that Vx(i Rxx) A F' has a model 91 with universe U. Let el,... ,em be 

distinct objects not in U. Let 9 have universe U u {e, .. ., em}, and, for all a and b in 
this universe, let 3 I= Rab iff either a, b E U and 91 F Rab, or a = b = e1, or a = e 
andb=ei+1 forsomei, 1 < i<m,orae U,b =ei,and 91Pi=a.Notethatsince 
W S Vx(-iRxx), 93 t Raa iff a = e1; also, for 1 < i < m, 93 h Reia iff a = ei+1. It 
follows quickly that 93 = K[el,...,em], so that 9 is a model for G. 

Now suppose that 9 is a model for G with universe V. By (2) there is a unique 
e, E V with 93 I Ree1; by (3) there are a unique e2 e V with 3 I= Ree2, a unique 
e3 e V with 0 k Re2 e3, ..., and a unique e. e V with93 I= Rem - 1 em. Moreover, the 
existential variables w1,.. ., w. must always take values e1, .. ., em; that is, 

K8 VxVy3zK[el,... ,e.]. Let U = V - e,,..., em}. By clause (1), V is nonempty. 
Let 1 have universe U, and for all a, b e U let 91 = Rab iff 93 k Rab and 9 I= Pia iff 
K5 F Raei. Then 91 F Vx(i Rxx), since el 0 V; and, by clause (4) of G, W I= F'. 

Thus F has a model iff G has a model, and F has a finite model if G has a finite 
model. O 
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