The Unsolvability of the Gödel Class with Identity

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>http://dx.doi.org/10.2307/2274274</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:3153304</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
THE UNSOLVABILITY OF THE GÖDEL CLASS WITH IDENTITY

WARREN D. GOLDFARB

The Gödel class with identity (GCI) is the class of closed, prenex quantificational formulas whose prefixes have the form $\forall \exists \cdots \exists$ and whose matrices contain arbitrary predicate letters and the identity sign "="., but do not contain function signs or individual constants. The $\forall \exists \cdots \exists$ class without identity was shown solvable over fifty years ago ([4], [12], [17]); slightly later, that class was shown to possess the stronger property of finite controllability ([5], [18]). (A class of formulas is solvable iff it is decidable for satisfiability; it is finitely controllable iff every satisfiable formula in it has a finite model.) At the end of [5], Gödel claims that the finite controllability of the GCI can be shown "by the same method" as he employed to show this for the class without identity. This claim has been questioned for nearly twenty years; in §1 below we give a brief history of investigations into it. The major result of this paper shows Gödel to have been mistaken: the GCI is unsolvable. §2 contains the basic construction, which yields a satisfiable formula in the GCI that lacks finite models. This formula may easily be exploited to encode undecidable problems into the GCI.

The minimal Gödel class with identity (MGCI) is the class of GCI formulas that contain one existential quantifier, i.e., the $\forall \exists$ class with identity. In §3 the basic construction is elaborated to obtain the unsolvability of the MGCI. This settles the decision problem for all prefix classes of quantification theory with identity, given the following older results: the $\forall \exists \forall \cdots \forall$ class is unsolvable, even without identity [11]; the $\exists \cdots \forall \cdots \forall$ class and the $\exists \cdots \forall \exists \cdots \exists$ class with identity are solvable ([16], [1]). Thus a prefix class is unsolvable iff it allows at least two universal quantifiers, at least one of which governs an existential quantifier. This dividing line differs from that in pure quantification theory, that is, quantification theory without identity. For here the $\exists \cdots \forall \exists \cdots \exists$ class is solvable (this is an easy consequence of the solvability of the $\forall \exists \cdots \exists$ class), so that the minimal unsolvable classes are $\forall \forall \forall$ [19] and $\forall \forall \forall$.

A class C of formulas is said to be conservative iff there is an effective mapping ϕ from the class of all quantificational formulas to C such that, for every F, F is satisfiable iff $\phi(F)$ is satisfiable, and F is finitely satisfiable iff $\phi(F)$ is finitely satisfiable. If C is conservative then the decision problem for C has maximum degree of unsolvability; moreover, C is also undecidable for finite satisfiability, and the class of formulas in C that have finite models is recursively inseparable from the class of
formulas in C that are unsatisfiable [21]. In §4 the basic construction is further refined to show that the MGCI is conservative. Thus for quantification theory with identity, as for pure quantification theory, every unsolvable prefix class is conservative.

In §5 it is shown that the reduction of §4 can in fact be carried out with MGCI formulas whose nonlogical vocabulary contains, aside from monadic predicate letters, only one dyadic predicate letter. Thus the class of such formulas is conservative. This result, together with two easy consequences of it, settles the decision problem for all classes of formulas specified by prefix and similarity type. Details are given in §6.

§1. Background. Gödel's claim regarding the GCI seems to have been entirely ignored for over thirty years. Through the 1950s, there is no mention of the GCI or of the claim in the literature. In the early 1960s, Burton Dreben began to investigate the claim, and could not see how to prove it; Stål Aanderaa, at that time a student of Dreben's, devised several examples that exhibited prima facie difficulties in extending Gödel's method for the class without identity to the GCI. Dreben wrote to Gödel on May 24, 1966, asking for substantiation of the claim and presenting Aanderaa's examples. In a letter of July 19, 1966, Gödel replied that he could not recall the details, but he did remember the extension of his method as involving "no difficulty". Throughout the late 1960s, Dreben urged that the decision problem for the GCI be deemed open; by the early 1970s this view became widely accepted.

Also by the early 1970s, the nature of the difficulty with the GCI had been located. Let F be a formula in the GCI, and let \mathfrak{A} be any model for F. A distinguished element of level 1 is an element of \mathfrak{A} that is the sole exemplar of some property expressible using the predicate letters of F. For example, if F implies $\forall x \forall y (Zx \land Zy \rightarrow x = y) \land \exists w Zw$, where Z is a monadic predicate letter, then every model for F contains a unique element of which Z is true; this element is a distinguished element of level 1. For $k \geq 1$, a distinguished element of level $k + 1$ is an element of \mathfrak{A} not among the distinguished elements of levels $\leq k$ that is the sole element bearing some particular relation (expressible using the predicate letters of F) to the distinguished elements of levels $\leq k$. Each of the known finite controllability proofs for the Gödel class without identity, including Gödel's own, can be adapted to yield the following:

If F has a model \mathfrak{A} that, for some k, contains no distinguished elements of level k, then F has a finite model.

This was shown, independently, by Dreben and Goldfarb, by Gurevich, and by Schütte in the early 1970s. A proof can be found in [3, p. 253]. Throughout the 1970s, many researchers sought to show the GCI finitely controllable by providing a bound on the levels of distinguished elements that a GCI formula could require. However, in 1979 the author showed that no primitive recursive function provides such a bound and, consequently, there is no primitive recursive decision procedure for the GCI, or even for the MGCI [6]. This made it clear that far more than Gödel's method would have to be used for the GCI, if it were to have a positive solution. Even so, many of those concerned with the class—including the author—were
inclined to believe that it would turn out to be finitely controllable. In particular, the technique of [6] for obtaining GCI formulas that demand distinguished elements of large levels k cannot be extended to yield a GCI formula that demand distinguished elements of every level. Moreover, hopes for a positive solution were nourished when, in 1980, Gurevich, Shelah, and the author showed a subclass of the MGCI to be finitely controllable by a method that does not yield a primitive recursive decision procedure [7].

A brief look at the problems encountered in generating distinguished elements may help explain this misguided optimism, as well as aid in the understanding of the construction of §2. Imagine that we have shown that in any model \mathfrak{U} for a GCI formula F there are distinguished elements of certain levels—let us call them $0, 1, \ldots, k$—and we wish to insure the existence of a unique element that bears a relation S to k. This element will then be a distinguished element of the next higher level. It is trivial to obtain the existence of at least one element that bears S to k. Uniqueness would follow if F could be made to imply $\forall x \forall y \forall z (Sxy \land Szy \rightarrow x = z)$; but since this requires three universal quantifiers, it outstrips the means allowed in GCI formulas. In a sense, the problem is to find a way of using existential quantifiers to capture a sufficient amount of the power of a third universal quantifier.

Now F can be made to imply

(i) $\forall x \forall y [x \neq y \rightarrow \exists z (Sxz \land \neg Szy)]$.

If we also have

(ii) if an element bears S to k then it bears S to nothing else,

then uniqueness is forthcoming. For suppose a bears S to k and $b \neq a$. If in (i) x and y take the values a and b, then by (ii) the existential variable z must take the value k, and we obtain $\neg Sbk$. Thus only a bears S to k. Now (ii) would follow if F could be made to imply $\forall x \forall y \exists z (Sxy \land Sxz \rightarrow y = z)$, but again this requires three universal quantifiers. In [6], (ii) is obtained by having F imply something of the form $\forall x \forall y (Sxy \rightarrow \exists z (\cdots))$ such that, if x and y take values a and c, where a bears S to c and also bears S to k, then the existential variable z must take a value among $0, \ldots, k - 1$; and this in turn can be used to force c to be identical with k. However, such a strategy works only up to a point: for sufficiently large k, the existential variable cannot be required to take a value among the earlier distinguished elements. This limitation lent some plausibility to the belief that the GCI is finitely controllable.

The construction of §2 rests on a somewhat different strategy. To obtain (ii), F is made to imply a formula $\forall x \forall y (Sxy \rightarrow \exists z (\cdots))$ in which the existential variable does not take as value a distinguished element of lower level. In fact, in some models its value need not be distinguished at all. However, its value can be required to bear certain relations to distinguished elements of lower levels, and this turns out to be enough. Further explanation at this point would be uninformative; let us now turn to the construction itself.

§2. The basic construction. The bulk of this section is devoted to the construction of a GCI formula F that is satisfiable but has no finite models. As we shall see, once F is at hand it will be a simple matter to encode an undecidable problem into the GCI. The formula F contains the monadic predicate letter Z and the dyadic letters S, P_1, P_2, Q, N, R_1, and R_2. F is designed so that, in every model \mathfrak{U} for F, there will be a
unique element 0 of which Z is true, a unique element 1 that bears S to 0, a unique element 2 that bears S to 1, and so on ad infinitum. Thus Z acts as the predicate “is zero”, and S as the successor relation. The other letters are used to insure the existence of such 0, 1, 2, ..., and are meant to act as follows. Elements of \(\mathcal{U} \) can be taken to represent pairs of integers. Suppose \(b \) represents \(\langle p, q \rangle \); then \(P_1 \) holds between \(b \) and the element \(p, P_2 \) between \(b \) and \(q, Q \) between \(b \) and \(q + 1, N \) between \(b \) and an element that represents \(\langle p + 1, q \rangle, R_1 \) between \(b \) and any element that represents \(\langle q + 1, r \rangle \) for some \(r \), and \(R_2 \) between \(b \) and any element that represents \(\langle r, q + 1 \rangle \) for some \(r \).

Let \(F \) be a prenex form of \(\forall x \forall y \exists z_0 H \), where \(H \) is the conjunction of the following eleven clauses:

1. \(Zx \land Zy \rightarrow x = y, \)
2. \(Zz_0 \land \neg S z_0 x \land \bigwedge_{\delta = 1, 2} (P_\delta x z_0 \land P_\delta x y \rightarrow y = z_0), \)
3. \(\exists z S z x, \)
4. \(\neg Zx \land x \neq y \rightarrow \exists z (S x z \land \neg S y z), \)
5. \(\exists z [N x z \land (Q x y \rightarrow Q y z) \land (R_1 x y \rightarrow R_1 y z) \land (R_2 x y \rightarrow R_2 y z)], \)
6. \(N x y \rightarrow \exists z (P_2 x z \land P_2 y z), \)
7. \(N x y \rightarrow \exists w \exists u (P_1 x w \land S w u \land P_1 y u), \)
8. \(S x y \rightarrow \exists z (Q x z \land P_2 y z \land P_1 z z_0), \)
9. \(Q x y \rightarrow \exists z (P_1 x z \land S y z \land P_2 z z_0), \)
10. \(\bigwedge_{\delta = 1, 2} [P_\delta x y \land \neg Zy \rightarrow \exists z \exists w (R_\delta x z \land P_2 z w \land P_1 z z_0 \land S y w)], \)
11. \(\bigwedge_{\delta = 1, 2} [R_\delta x y \rightarrow \exists z \exists w (P_1 x z \land S w z \land (P_2 y w \rightarrow P_2 x z))]. \)

Lemma 1. \(F \) is satisfiable.

Proof. Let \(\pi: \mathbb{N}^2 \rightarrow \mathbb{N} \) be a bijective pairing function. Interpret the predicate letters of \(F \) over \(\mathbb{N} \) as indicated two paragraphs back, where 0, 1, 2, ... are identified with 0, 1, 2, ... and an integer \(k \) is taken to represent \(\langle p, q \rangle \) iff \(k = \pi(p, q) \). These interpretations yield a model for \(F \) with universe \(\mathbb{N} \). □

Lemma 2. \(F \) has no finite models.

Proof. Let \(\mathcal{U} \) be any model for \(F \). We shall find distinct elements \(0, 1, 2, \ldots \) of \(\mathcal{U} \) such that, for each integer \(p \),

(A) for all \(c \) in \(\mathcal{U} \), \(Z c \) iff \(c = 0 \);
(B) for all \(c \) in \(\mathcal{U} \), \(S p c \) iff \(p > 0 \) and \(c = p - 1 \);
(C) for all \(c \) in \(\mathcal{U} \), if \(p > 0 \) and \(S c p - 1 \) then \(c = p \); and
(D) for \(\delta = 1, 2 \) and all \(c, b \) in \(\mathcal{U} \), if \(P_\delta c p \) and \(P_\delta c b \) then \(b = p \).

(An expression like “\(P_\delta c b \)” is short for “\(\forall \mathcal{U} \, P_\delta c b \)”)

By clauses (1) and (2) of \(F \), there is a unique 0 in \(\mathcal{U} \) such that \(Z 0 \). Since the variable \(z_0 \) of \(F \) must always take 0 as its value, clause (2) of \(F \) yields (B)–(D) for \(p = 0 \).

As induction hypothesis, suppose \(0, \ldots, k \) are distinct elements of \(\mathcal{U} \) obeying (A)–(D) for each \(p \leq k \).

Sublemma 1. Let \(c, d \in \mathcal{U} \) and suppose \(N c d \). For each \(p \leq k \), if \(P_1 c p - 1 \) then \(P_1 d p \), and if \(P_2 d p \) then \(P_1 c p \).

Proof. Since \(N c d \), by clause (7) there exist \(a \) and \(b \) in \(\mathcal{U} \) with \(P_1 a c \land S b a \land P_1 d b \). If \(P_1 c p - 1 \), where \(p \leq k \), then \(a = p - 1 \) by (D), whence \(b = p \) by (C). Hence \(P_1 d p \). Also, by clause (6), there exists \(e \) in \(\mathcal{U} \) such that \(P_2 c e \land P_2 d e \). If \(P_2 d p \), where \(p \leq k \), then by (D) \(e = p \), so that \(P_2 c p \). □

Sublemma 2. Let \(a, b \in \mathcal{U} \) and suppose \(S a k \) and \(S b a \). Then \(b = k \).
PROOF. Since $S a b$, by clause (8) there exists c_0 in \mathcal{U} with $Q_{c_0}a \land P_{c_0}b \land P_1c_00$. Iterated use of clause (5) yields the existence of c_1, \ldots, c_k in \mathcal{U} such that $N_{c_i}c_{i+1}$ for each $i, 0 \leq i < k$, and $Q_{c_i}a$ for each $i, 0 \leq i < k$. Since P_1c_00, iterated application of Sublemma 1 yields P_1c_kk. By clause (9), there exists d in \mathcal{U} with $P_1c_kd \land (S a d \rightarrow P_2c_kd)$. By (D), $d = k$. Since $S a k$, P_2c_0k. Iterated application of Sublemma 1 yields P_2c_0k. But P_2c_0b; by (D), $b = k$. □

SUBLEMMa 3. There is a unique a in \mathcal{U} such that $S a k$.

PROOF. By clause (3) there is at least one a in \mathcal{U} with $S a k$. By (A) and (B), $\neg Z a$. Let $b \in \mathcal{U}$, $b \neq a$. By clause (4) there exists c in \mathcal{U} with $S a c \land \neg S b c$. By Sublemma 2, $c = k$. Thus $\neg S b k$. □

Now let $k + 1$ be the unique a such that $S a k$. By (B), $k + 1$ is distinct from 0, 1, ..., k.

SUBLEMMa 4. Let $\delta = 1$ or 2, and let $c, b \in \mathcal{U}$. Suppose $P_{\delta}c k + 1$ and $P_{\delta}c b$. Then $b = k + 1$.

PROOF. By (A) and (D), $\neg Z b$. Hence by clause (10) there exist c_0, d in \mathcal{U} such that $R_{\delta}c_0c \land P_{\delta}c_0d \land P_1c_00 \land S b d$. Iterated use of clause (5) yields the existence of c_1, \ldots, c_k in \mathcal{U} such that $N_{c_i}c_{i+1}$ for each $i, 0 \leq i < k$, and $R_{\delta}c_i c$ for each $i, 0 \leq i < k$. Since P_1c_00, by Sublemma 1 we may infer P_1c_kk. By clause (11) there exist e, e' in \mathcal{U} such that $P_1c_e \land S e e' \land (P_{\delta}c e' \rightarrow P_2c_k e)$. By (D), $e = k$. Thus $e' = k + 1$, so that $P_{\delta}c e'$. Hence P_2c_kk. By Sublemma 1, P_2c_0k. But P_2c_0d; hence, by (D), $d = k$. Thus $S b k$, so $b = k + 1$. □

Sublemmas 2–4 show that (A)–(D) hold for all $p \leq k + 1$. Thus, by induction, there is an infinite sequence of distinct elements of \mathcal{U}. □

To obtain unsolvability, we exploit the fact that every model for F contains an ω-sequence of elements on which S acts as the successor relation.

THEOREM 1. The Gödel class with identity is unsolvable.

PROOF. Let $J = \forall x \exists y \forall y \exists u (S u x \land K(x, u, y))$ be any $\forall \exists \forall$-formula of pure quantification theory; there is no loss of generality in supposing that the predicate letters of J are distinct from those of F. We construct a formula in the GCI that is satisfiable just in case J is satisfiable. Since the $\forall \exists \forall$ class of pure quantification theory is unsolvable, this yields the theorem.

Herbrand's theorem implies that J is satisfiable iff there is an interpretation of its predicate letters over \mathbb{N} such that $K(p, p + 1, q)$ is true for all integers p and q. Now let J' be a prenex equivalent of $F \land \forall x \forall y \exists u (S u x \land K(x, u, y))$ that is in the GCI. If J is satisfiable, then a model for J' can be obtained by adjoining, to the model for F given in the proof of Lemma 1 above, interpretations of the predicate letters of J over \mathbb{N} such that $K(p, p + 1, q)$ is true for all p and q. Conversely, if J' has a model \mathcal{U}, then, since J' implies F, there are distinct elements $0, 1, 2, \ldots$ of \mathcal{U} that obey (A)–(D) for each integer p. And then, for all integers p and q, $K(p, p + 1, q)$ is true in \mathcal{U}. Thus the restriction of \mathcal{U} to $\{0, 1, 2, \ldots\}$ is a model for J. □

§3. Minimal Gödel class with identity. The construction of §1 may be refined so as to use only one existential quantifier. As before, every model for the formula we construct will contain elements $0, 1, 2, \ldots$ such that 0 is the unique element of which Z is true and, for each k, $k + 1$ is the unique element that bears S to k. Additional monadic predicate letters B_1, B_2 and dyadic predicate letters L_1, L_2 will be used: $B_{\delta}c$ is to hold iff $P_{\delta}c 0$ holds, and $L_{\delta}c p$ is to hold iff $P_{\delta}c p + 1$ holds, $\delta = 1, 2$. These new
predicate letters enable us to eliminate the nested existential quantifiers used in §2.

Moreover, the elements 0, 1, 2, ... are now going to be distinct from the elements that represent pairs. A new monadic predicate letter \(I \) will be true of the former elements and false of the latter. The last new predicate letter used is monadic \(D \), true of an element only if it represents a pair \(\langle p, p \rangle \).

Let \(G = \forall x \forall y \exists z H \), where \(H \) is the conjunction of the following seventeen clauses:

1. \(Zx \wedge Zy \rightarrow x = y \),
2. \(Zx \rightarrow Ix \wedge \bigwedge_{\delta=1,2} (B_\delta y \equiv P_\delta y x) \),
3. \(\bigwedge_{\delta=1,2} (B_\delta x \wedge P_\delta x y \rightarrow Zy) \),
4. \((Sxy \rightarrow \neg Zx \wedge Ix \wedge Iy) \wedge (L_1 xy \rightarrow \neg Ix \wedge \neg B_1 x) \),
5. \(Dx \rightarrow (P_1 x y \equiv P_2 x y) \),
6. \(x = y \wedge \neg Zx \rightarrow \neg Zz \),
7. \((Zx \wedge Iy \rightarrow Szy) \wedge (Zx \wedge \neg Iy \rightarrow P_1 yz) \),
8. \(Ix \wedge \neg Zx \wedge Iy \wedge \neg Sxy \wedge x \neq y \rightarrow Sxz \wedge \neg Syz \),
9. \(\bigwedge_{\delta=1,2} (P_\delta x y \rightarrow \neg Zx \rightarrow Sxz \wedge L_\delta y z) \),
10. \(N x y \rightarrow P_2 x z \wedge P_2 y z \),
11. \(N y x \rightarrow P_1 y z \wedge L_1 x z \),
12. \(Sxy \rightarrow Q x z \wedge P_2 z y \wedge B_1 z \),
13. \(Q x y \wedge \neg Dx \rightarrow N x z \wedge Q z y \),
14. \(Q y x \rightarrow P_1 y z \wedge (S x z \rightarrow P_2 y z) \),
15. \(\bigwedge_{\delta=1,2} (L_\delta x y \rightarrow R_\delta x z \wedge P_2 z y \wedge B_1 z) \),
16. \(\bigwedge_{\delta=1,2} (R_\delta x y \wedge \neg Dx \rightarrow N x z \wedge R_\delta y z) \),
17. \(\bigwedge_{\delta=1,2} (R_\delta x y \rightarrow P_1 y z \wedge (L_\delta x z \rightarrow P_2 y z)) \).

Lemma 1. \(G \) is satisfiable.

Proof. Let the universe be \(\mathbb{N} \cup \mathbb{N}^2 \), and let \(\pi_1 \) and \(\pi_2 \) be the projection mappings on \(\mathbb{N}^2 \). Interpret the predicate letters of \(G \) over the universe so that, for \(\delta = 1, 2 \) and all \(a, b \) in the universe:

- \(Za \iff a = 0 \), \(Ia \iff a \in \mathbb{N} \), \(B_\delta a \iff a \in \mathbb{N}^2 \) and \(\pi_\delta a = 0 \); \(Da \iff a \in \mathbb{N}^2 \) and \(\pi_\delta a = 0 \); \(Sab \iff a, b \in \mathbb{N} \) and \(a = b + 1 \); \(P_\delta ab \iff a \in \mathbb{N}^2 \) and \(\pi_\delta a = b \); \(L_\delta ab \iff a \in \mathbb{N}^2 \) and \(\pi_\delta a = b + 1 \); \(Qab \iff b \in \mathbb{N}, b > 0, \) and \(a = \langle p, b - 1 \rangle \) for some \(p \leq b - 1 \); \(Nab \iff a = \langle p, q \rangle \) and \(b = \langle p + 1, q \rangle \) for some integers \(p \) and \(q \); \(R_1 ab \iff a = \langle p, q \rangle \) and \(b = \langle q + 1, s \rangle \) for some integers \(p, q, s \) with \(p \leq q \); and \(R_2 ab \iff a = \langle p, q \rangle \) and \(b = \langle s, q + 1 \rangle \) for some integers \(p, q, s \) with \(p \leq q \). These interpretations yield a model for \(G \). Indeed, define a two-place function \(\varphi \) on the universe thus:

\[
\varphi(a, b) = \begin{cases}
0 & \text{if } a = b \neq 0, \\
b + 1 & \text{if } a = 0 \text{ and } b \in \mathbb{N}, \\
a - 1 & \text{if } a, b \in \mathbb{N}, a \neq 0, a \neq b, a \neq b + 1, \\
a - 1 & \text{if } a \neq 0 \text{ and either } P_1 ba \text{ or } P_2 ba, \\
\pi_2 a & \text{if } Nab, \\
\pi_1 b & \text{if } Nab, Qba, R_1 ba, \text{ or } R_2 ba, \text{ or if } a = 0 \text{ and } b \in \mathbb{N}^2, \\
\langle 0, b \rangle & \text{if } Sab \text{ or } L_1 ab \text{ or } L_2 ab, \\
\langle \pi_1 a + 1, \pi_2 a \rangle & \text{if } \neg Da \text{ and either } Qab, R_1 ab, \text{ or } R_2 ab, \\
\text{arbitrary} & \text{otherwise}.
\end{cases}
\]
It is a routine matter to check that this is a proper definition (that is, its clauses do not conflict) and that φ is a Skolem function for the existential variable of G (that is, $H[a, b, \varphi(a, b)]$ is true for all a and b in the universe under the interpretations of the predicate letters given above). □

Lemma 2. G has no finite models.

Proof. Let \mathfrak{U} be any model for G. By clauses (1) and (6) of G, there is a unique element 0 of \mathfrak{U} such that $Z0$. By clauses (2) and (4), 10 and $\neg S0c$ for each c in \mathfrak{U}. For $\delta = 1, 2$ and any c, b in \mathfrak{U}, clauses (2) and (3) yield $(B_0c \equiv P_0c0) \land (B_0c \land P_0cb \rightarrow Zb)$; hence if P_0c0 and P_0cb then $b = 0$.

Now suppose $0, \ldots, k$ are distinct elements of \mathfrak{U} such that, for each $p \leq k$,

- (A) for all c in \mathfrak{U}, Zc iff $c = 0$;
- (B) for all c in \mathfrak{U}, Spc iff $p > 0$ and $c = p - 1$;
- (C) for all c in \mathfrak{U}, if $p > 0$ and $Scp - 1$ then $c = p$;
- (D) for $\delta = 1, 2$ and all c, b in \mathfrak{U}, if $P_\delta cp$ and $P_\delta cb$ then $b = p$; and
- (E) for all c in \mathfrak{U}, if $p > 0$ and $L_1cp - 1$ then P_1cp.

Sublemma 1. Let $c, d \in \mathfrak{U}$ and suppose Ncb. For each $p \leq k$, if $P_1cp - 1$ then P_1dp, and if P_2dp then P_2cp.

Proof. Since Ncd, by clause (11) there exists b in \mathfrak{U} such that $P_1cb \land L_1db$. If $P_1cp - 1$, where $p \leq k$, then $b = p - 1$ by (D), so that P_1dp by (E). By clause (10) there exists e in \mathfrak{U} such that $P_2ce \land P_2de$. If P_2dp, where $p \leq k$, then $e = p$ by (D), so that P_2cp. □

Sublemma 2. Let $a, b \in \mathfrak{U}$ and suppose Sak and Sab. Then $b = k$.

Proof. Since Sab, by clause (12) there exists c_0 in \mathfrak{U} with $Qc_0a \land P_2c_0b \land B_1c_0$. By clause (2), P_1c_00. Iterated use of clause (13) yields the existence of c_1, \ldots, c_j such that $Nc_i c_{i+1}$ for each i, $0 \leq i < j$, and $Qc_i a$ for each i, $0 \leq i < j$, and either $j = k$ or else $j < k$ and Dc_j. In the latter case we have $P_1cj j$ by iterated use of Sublemma 1; by clause (5), then, $P_2cj j$, so that P_2c_0j by Sublemma 1. But P_2c_0b; by (D), then, $b = j$, whence $a = j + 1$ by (C), and this is impossible. Hence $j = k$. Then, by Sublemma 1, P_1ckk. Since Qc_ka, by clause (14) there exists d in \mathfrak{U} such that $P_1ckd \land (Sad \rightarrow P_2ckd)$. By (D), $d = k$. Since Sak by hypothesis, P_2ckk. By Sublemma 1, P_2c_0k. Since P_2c_0b, by (D) $b = k$. □

Sublemma 3. There is a unique a in \mathfrak{U} such that Sak.

Proof. By clause (7) there is at least one a in \mathfrak{U} with Sak. Now suppose $a \neq b$, Sak, and Sbk. By Sublemma 2 and (B), $\neg Sab$. By clause (4), $\neg Za \land Ra \land Ib$. Hence, by clause (8), there exists c in \mathfrak{U} such that $Sac \land \neg Sbc$. By Sublemma 2, $c = k$. Thus $\neg Sbk$, contrary to hypothesis. □

Now let $k + 1$ be the unique a such that Sak. By (B), $k + 1$ is distinct from $0, 1, \ldots, k$.

Sublemma 4. Let $\delta = 1$ or 2, and let $c, b \in \mathfrak{U}$. Suppose $L_\delta ck$ and $L_\delta cb$. Then $b = k$.

Proof. Since $L_\delta cb$, by clause (15) there exists c_0 in \mathfrak{U} with $R_\delta c_0c \land P_2c_0b \land B_1c_0$. By clause (2), P_1c_00. Iterated use of clause (16) yields the existence of c_1, \ldots, c_j such that $Nc_i c_{i+1}$ for $0 \leq i < j$, $R_\delta c_i c$ for $0 \leq i < j$, and either $j = k$ or else $j < k$ and Dc_j. By reasoning as in the proof of Sublemma 2, we may infer that the latter case is impossible; hence $j = k$. By Sublemma 1, P_1ckk. Since $R_\delta c_k c$, by clause (17) there exists d in \mathfrak{U} such that $P_1ck d \land (L_\delta cd \rightarrow P_2ckd)$. By (D), $d = k$. Since $L_\delta ck$ by hypothesis, P_2ckk. By Sublemma 1, P_2c_0k. Since P_2c_0b, by (D) $b = k$. □
Sublemma 5. Let $\delta = 1$ or 2, and let $c, b \in \mathfrak{A}$. Suppose $P_\delta c k + 1$ and $P_\delta c b$. Then $b = k + 1$.

Proof. Since $\neg Z k + 1$, by clause (2) $\neg B_\delta c$, so that $\neg Z b$. Two uses of clause (9) yield the existence of d and e in \mathfrak{A} with $S k + 1 d \wedge L_\delta c d$ and $S b e \wedge L_\delta c e$. By Sublemma 2, $d = k$; by Sublemma 4, then, $e = k$. Since $S b k$, $b = k + 1$. \[\Box\]

Sublemma 6. Let $c \in \mathfrak{A}$ and suppose $L_1 c k$. Then $P_1 c k + 1$.

Proof. By clause (4), $\neg I c \wedge \neg B_1 c$. By clause (7) there exists b in \mathfrak{A} such that $P_1 c b$; by clause (2), $\neg Z b$. Hence, by clause (9) there exists d in \mathfrak{A} such that $S b d \wedge Q_1 c d$. By Sublemma 4, $d = k$. Hence $b = k + 1$, so that $P_1 c k + 1$. \[\Box\]

Sublemmas 2–6 show that the induction hypotheses (A)–(E) hold for each $p \leq k + 1$. By induction, then, there is an infinite sequence of distinct elements of \mathfrak{A}. \[\Box\]

Theorem 2. The minimal Gödel class with identity is unsolvable.

Proof. Let $J = \forall x \exists u \forall y K(x, u, y)$ be a formula in the $\forall \exists \forall$-class of pure quantification theory, whose predicate letters are distinct from those in G. Let J' be obtained from G by conjoining the following two additional clauses to the matrix:

(18) $I x \wedge \neg Z x \wedge I y \wedge \neg S x y \wedge x \neq y \rightarrow K(z, x, y)$,
(19) $S y x \rightarrow K(x, y, y) \wedge K(x, y, x)$.

It suffices to show that J' is satisfiable iff J is satisfiable.

Suppose J is satisfiable. To the interpretations of the predicate letters of G over the universe $\mathbb{N} \cup \mathbb{N}^2$ given in the proof of Lemma 1, adjoin interpretations of the predicate letters of J over \mathbb{N} that make $K(p, p + 1, q)$ true for all p and q. Since, for all a and b in the universe, $S a b$ is true iff $a, b \in \mathbb{N}$ and $a = b + 1$, (19) is true for all values of x and y. If the antecedent of (18) is true for values a and b of x and y, then $a, b \in \mathbb{N}$, $a > 0$, and, by clause (8), z takes the value $a - 1$. Hence the consequent of (18) is true. Thus we have obtained a model for J.

Suppose J' is satisfiable; let \mathfrak{A} be a model for it. Since J' implies G, there are elements $0, 1, 2, \ldots$ of \mathfrak{A} that obey (A)–(E) for every integer p. By (B) and clause (4), $I p$ for each p. Now for all integers p and q such that $q \neq p$ and $q \neq p + 1$, the antecedent of (18) holds when x has value $p + 1$ and y has value q; by clause (8), in this case z has to take the value p. Hence $K(p, p + 1, q)$ is true in \mathfrak{A}. Moreover, when x has value p and y has value $p + 1$, then the antecedent of (19) holds, so that $K(p, p + 1, p + 1)$ and $K(p, p + 1, p)$ are true in \mathfrak{A}. Thus $K(p, p + 1, q)$ is true in \mathfrak{A} for all integers p and q. We may conclude that the restriction of \mathfrak{A} to $\{0, 1, 2, \ldots\}$ is a model for J. \[\Box\]

§4. Conservativeness. Although the reduction just given of the $\forall \exists \forall$-class to the MGCI does not preserve finite satisfiability, it can be amended so as to do so. In fact, given an $\forall \exists \forall$-formula J, we may alter the construction of §3 thus: we introduce a monadic predicate letter W, along with new clauses that allow W to be true of an element n iff J has a model with universe $\{0, \ldots, n\}$; and we replace the clause $Z x \wedge I y \rightarrow S z y$ of the formulas of §3 by $Z x \wedge I y \wedge \neg W y \rightarrow S z y$. Thus, if W holds of an element then that element need not have a successor. This will permit the MGCI formula to have a finite model.

In this section, however, we give a more intricate proof of conservativeness, so as to facilitate a further reduction—carried out in §5—to the class of MGCI formulas that contain only one dyadic predicate letter. The MGCI formulas we use in this
proof all contain the same ten dyadic letters, whose intended interpretations are fixed. Nine of these letters were used in §3, namely, \(S, P_1, P_2, L_1, L_2, N, Q, R_1, \) and \(R_2 \). A new dyadic letter \(M \) is meant to hold between two elements of a model only if the first represents a pair \(\langle p, q \rangle \) and the second a pair \(\langle r, p \rangle \) for some \(p, q, \) and \(r \). Another difference between the formulas below and those of §3 is this: the intended models for the formulas below contain three different elements that represent each pair \(\langle p, q \rangle \); these elements will be identified with triples \(\langle p, q, i \rangle \) for \(i = 0, 1, 2 \). A monadic letter \(E \) will be true of such a triple iff \(i = 0 \). We also use monadic letters \(Z, I, D, B_1, B_2 \) as in §3, and a monadic letter \(W \) with the role indicated above. Moreover, for every dyadic predicate letter \(\Phi \) of the \(\forall \exists \forall \)-formula being reduced, we use two monadic letters \(A_\Phi \) and \(A_\Phi^* \); given a model \(\mathfrak{B} \) for that formula, if \(c \) represents a pair \(\langle p, q \rangle \), then \(A_\Phi \) is to be true of \(c \) iff \(\mathfrak{B} \models \Phi pq \) and \(A_\Phi^* \) is to be true of \(c \) iff \(\mathfrak{B} \models \Phi qp \).

Theorem 3. The minimal Gödel class with identity is conservative.

Proof. Let \(J = \forall x \exists y \forall z K(x, u, y) \) be an \(\forall \exists \forall \)-formula of pure quantification theory all of whose atomic subformulas have one of the forms \(\Phi xy, \Phi yx, \Phi uy, \Phi yu \), where \(\Phi \) is a dyadic predicate letter. The class of such formulas is conservative [22]. Hence it suffices to find an MGCI formula \(G_J \) that is satisfiable iff \(J \) is satisfiable, and that has a finite model iff \(J \) has a finite model.

Let \(L \) be the set of predicate letters of \(J \), and let \(K^*(v, w) \) be obtained from \(K \) by replacing atomic subformulas \(\Phi xy, \Phi yx, \Phi uy, \Phi yu \) by \(A_\Phi v, A_\Phi^* v, A_\Phi w \) and \(A_\Phi^* w \), respectively. Let \(H_J \) be

\[
(Nxy \rightarrow K^*(x, y)) \land (Mxy \land Myx \rightarrow \bigwedge_{\Phi \in L} (A_\Phi x \equiv A_\Phi^* y)).
\]

Let \(H' \) be like the matrix of the formula \(G \) of §3, but for the following changes: clause (7) is replaced by the conjunction of

(7a) \(Zx \land Iy \land \neg Wy \rightarrow Sy \),

(7b) \(Zx \land Wy \rightarrow P_2 zx \land P_2 zy \land Ez \),

(7c) \(Zx \land \neg Iy \rightarrow Nyz \);

and two new clauses are conjoined:

(18) \(Ex \land Ey \land \neg Nxy \land \neg Nyz \rightarrow P_1 xz \land (P_2 yz \rightarrow Mxy) \);

(19) \((Nxy \rightarrow (Ex \equiv Ey)) \land (Wx \rightarrow \neg Zx) \land (Qxy \rightarrow Ex) \land (Ex \rightarrow \neg Ix) \).

Finally, let \(G_J \) be \(\forall x \forall y \exists z(H' \land H_J) \).

Lemma 1. If \(J \) has a model then so does \(G_J \).

Proof. Let \(\mathcal{V} = \mathbb{N} \times \mathbb{N} \times \{0, 1, 2\} \), and let the universe be \(\mathbb{N} \cup \mathcal{V} \). Let \(\pi_1, \pi_2, \) and \(\pi_3 \) be the projection letters on \(\mathcal{V} \). Interpret the predicate letters of \(H' \) so that, for \(\delta = 1, 2 \) and all \(a \) and \(b \) in the universe, \(Za \) iff \(a = 0 \); \(La \) iff \(a \in \mathbb{N} \); \(B_\delta a \) iff \(a \in V \) and \(\pi_\delta a = 0 \); \(Da \) iff \(a \in V \) and \(\pi_\delta a = \pi_\delta a; \) \(Ea \) iff \(a \in V \) and \(\pi_3 a = 0 \); \(Sab \) iff \(a, b \in \mathbb{N} \) and \(a = b + 1 \); \(P_ab \) iff \(a \in V \) and \(\pi_3 a = b \); \(L_ab \) iff \(a \in V \) and \(\pi_3 a = b + 1 \); \(Qab \) iff \(b \in \mathbb{N} \), \(b > 0 \), and \(a = \langle p, b - 1, 0 \rangle \) for some \(p \leq b - 1 \); \(N_a \) iff \(a = \langle p, q, i \rangle \) and \(b = \langle p + 1, q, j \rangle \) for some integers \(p, q, \) and \(i \); \(R_1 ab \) iff \(a = \langle p, q, i \rangle \) and \(b = \langle q + 1, s, j \rangle \) for some integers \(p, q, s \) with \(p \leq q \) and some \(i \) and \(j \) with \(i \equiv j + 1 \) (mod \(3 \)); \(R_2 ab \) iff \(a = \langle p, q, i \rangle \) and \(b = \langle s, q + 1, j \rangle \) for some integers \(p, q, s \) with \(p \leq q \) and some \(i \) and \(j \) with \(i \equiv j + 1 \) (mod \(3 \)); and \(Mab \) iff \(a = \langle p, q, 0 \rangle \) and
$b = \langle s, p, 0 \rangle$ for some integers p, q, and s. Moreover, interpret W to be true of no element.

These interpretations provide a model for $\forall x\forall y\exists z H'$. Indeed, a Skolem function φ for the existential variable z may be defined thus:

$$
\varphi(a, b) = \begin{cases}
0 & \text{if } a = b \neq 0, \\
 b + 1 & \text{if } a = 0 \text{ and } b \in \mathbb{N}, \\
\langle \pi_1 b + 1, \pi_2 b, \pi_3 b \rangle & \text{if } a = 0 \text{ and } b \in V, \\
 a - 1 & \text{if } a, b \in \mathbb{N}, a \neq 0, a \neq b, a \neq b + 1, \\
 a - 1 & \text{if } a \neq 0 \text{ and either } P_1 ba \text{ or } P_2 ba, \\
\pi_2 a & \text{if } Nba, \\
\pi_1 a & \text{if } Nba, Qba, R_1 ba, R_2 ba, \text{ or } Ea \land Eb \land \\
\neg Nba, & \text{if } a = 0 \text{ and } b \in \mathbb{V}, \\
\langle 0, b, 0 \rangle & \text{if } L_1 ab \text{ or } L_2 ab, \text{ where } i \equiv \pi_3 a + 1 \pmod{3}, \\
\langle \pi_1 a + 1, \pi_2 a, \pi_3 a \rangle & \text{if } \neg Da \text{ and either } Qab, R_1 ab, \text{ or } R_2 ab, \\
\text{arbitrary} & \text{otherwise.}
\end{cases}
$$

Now suppose J is satisfiable. Then it has a model \mathfrak{B} with universe \mathbb{N} such that $\mathfrak{B} \models K(p, p + 1, q)$ for all integers p and q. Say that an element $a \in V$ represents $\langle p, q \rangle$ iff $\pi_1 a = p$ and $\pi_2 a = q$. For each $\Phi \in \mathcal{L}$, interpret the predicate letters A_Φ and A'_Φ so that if a represents $\langle p, q \rangle$, then $A_\Phi a$ iff $\mathfrak{B} \models \Phi pq$ and $A'_\Phi a$ iff $\mathfrak{B} \models \Phi qp$. We show that these interpretations provide a model for $\forall x\forall y H'$. Suppose Nab. Then, for some p and q, a represents $\langle p, q \rangle$ and b represents $\langle p + 1, q \rangle$. Hence $A_\Phi a$ iff $\mathfrak{B} \models \Phi pq$, $A'_\Phi b$ iff $\mathfrak{B} \models \Phi p + 1 q$, and $A'_\Phi b$ iff $\mathfrak{B} \models \Phi q + 1$. Thus $K^*(a, b)$ is true. Now suppose $Mab \land Mba$. Then, for some p and q, a represents $\langle p, q \rangle$ and b represents $\langle q, p \rangle$. Hence $A_\Phi a$ iff $A'_\Phi b$ for each $\Phi \in \mathcal{L}$.

Since g_j is equivalent to $\forall x\forall y H' \land \forall x\forall y H_j$, the interpretations we have given provide a model for G_j with universe $\mathbb{N} \cup V$. \(\square \)

Lemma 2. If J has a finite model then so does G_j.

Proof. If J has a finite model then for some $n > 0$ it has a model \mathfrak{B} with universe $\{0, \ldots, n\}$ such that $\mathfrak{B} \models K(p, p + 1, q)$ whenever $p + 1, q \leq n$ and $\mathfrak{B} \models K(n, 0, q)$ whenever $q < n$. (This elementary fact about $\forall x\forall y$ formulas is proved, for instance, in [3, p. 130].) We construct a model for G_j with universe $\{0, \ldots, n\} \cup \{0, \ldots, n\} \times \{0, \ldots, n\} \times \{0, 1, 2\}$. Let the interpretations of all the predicate letters of H' except N and W be the restrictions to this universe of the interpretations given in the proof of Lemma 1; let Wa iff $a = n$; and let Nab iff either Nab is true under the interpretation of Lemma 1 or else $a = \langle n, q, i \rangle$ and $b = \langle 0, q, i \rangle$ for some q and i. Then $\forall x\forall y \exists z H'$ is true; indeed, the Skolem function given in the proof of Lemma 1 needs only to be restricted to arguments from the finite universe and altered at two points, namely, $\varphi(a, b) = \langle 0, b, 0 \rangle$ if $a = 0$ and $b = n$, and $\varphi(a, b) = \langle 0, \pi_3 b, \pi_3 b \rangle$ if $a = 0, b$ is a triple, and $\pi_1 b = n$.

Now define interpretations of the letters A_Φ and A'_Φ from the model \mathfrak{B} as in the proof of Lemma 1. The verification that these interpretations provide a model for $\forall x\forall y H_j$ proceeds as before, except that now we may have Nab when a represents...
\(<n,q>\) and \(b\) represents \(<0,q>\). But since \(\mathcal{B} \models K(n,0,q)\), it follows as before that \(K^*(a,b)\) is true. Thus we have defined a model for \(G_j\) whose universe is finite. □

Let (A)–(E) be the five conditions given in the proof of Lemma 3, §3.

Lemma 3. Let \(\mathcal{U}\) be any model for \(G_j\). Then either (I) \(\mathcal{U}\) contains distinct elements \(0,1,2,\ldots\) such that (A)–(E) hold for each integer \(p\), and also \(\neg W_p\) for each \(p\); or

(II) for some \(n > 0\), \(\mathcal{U}\) contains distinct elements \(0,1,\ldots,n\) such that (A)–(E) hold for each \(p \leq n\), \(\neg W_p\) for each \(p < n\), and \(W_n\).

Proof. By clauses (1) and (6) there is a unique element \(0\) of \(\mathcal{U}\) such that \(Z_0\). Conditions (A)–(E) for \(p = 0\) follow as in §3. Note that \(\neg W_0\), by clause (19). Now suppose \(0,\ldots,k\) are distinct elements of \(\mathcal{U}\) such that (A)–(E) hold for each \(p < k\) and \(\neg W_p\) for each \(p < k\). It suffices to show that if \(\neg W_k\) then there exists an element \(k + 1\) of \(\mathcal{U}\), distinct from \(0,1,\ldots,k\), such that (A)–(E) hold for \(p = k + 1\).

Sublemmas 1 and 2 as in §3 can be proved as they were there. (The alteration in clause (I1) made in this section does not affect the proof, since \(\neg W_p\) for each \(p < k\).) Moreover, on the assumption that \(\neg W_k\), by clause (7a) there exists \(a\) in \(\mathcal{U}\) with \(S^a\).

An argument as in §3 then establishes that there is a unique \(a\) in \(\mathcal{U}\) with \(S^a\); let \(k + 1\) be that \(a\). Sublemmas 4–6, which complete the proof that (A)–(E) hold for \(p = k + 1\), are also shown as before, with one extra step in the proof of Sublemma 6 necessitated by the alteration in clause (7). We must show that if \(\neg I_c\) then there exists \(b\) in \(\mathcal{U}\) with \(P_{1}cb\). But by clause (7c), if \(\neg I_c\) then there exists \(d\) in \(\mathcal{U}\) with \(N_{cd}\). By clause (11), then, there exists \(b\) in \(\mathcal{U}\) with \(P_{1}cb\).

Lemma 4. If \(G_j\) has a model then so does \(G\); if \(G_j\) has a finite model then so does \(G\).

Proof. Let \(\mathcal{U}\) be a model for \(G_j\), with \(\mathcal{U}\) finite if \(G_j\) has a finite model. If (I) of Lemma 3 holds, let \(\varsigma = \omega\); if (II) holds let \(\varsigma = n + 1\). Since (II) must hold if \(\mathcal{U}\) is finite, it suffices to construct a model \(\mathcal{B}\) for \(J\) with universe \(\{p \mid p < \varsigma\}\). Indeed, for \(p,q < \varsigma\) let \(\Gamma(p,q) = \{b \in \mathcal{U} \mid P_1bp \land P_2bq \land E_b\}\), and for each \(\Phi \in L\) let \(\mathcal{B} \models \Phi pq\) iff there exists \(c \in \Gamma(p,q)\) such that \(A_{\Phi c}\). We shall show that \(\mathcal{B} \models J\).

Sublemma 7. Let \(p,q < \varsigma\) and \(b,c \in \mathcal{U}\).

(a) Suppose \(Nbc\) and \(b \in \Gamma(p,q)\). If \(p + 1 < \varsigma\) then \(c \in \Gamma(p + 1,q)\); if \(p + 1 = \varsigma\) then \(c \in \Gamma(0,q)\).

(b) \(\Gamma(p,q)\) is nonempty.

(c) If \(b \in \Gamma(p,q)\) then, for each \(\Phi \in L\), \(\mathcal{B} \models \Phi pq\) iff \(A_{\Phi b}\).

(d) If \(b \in \Gamma(p,q)\) then, for each \(\Phi \in L\), \(\mathcal{B} \models \Phi pq\) iff \(A_{\Phi b}\).

Proof. (a) By (19), \(E_b \equiv Ec\); hence \(Ec\). By clause (10) there exists \(d\) in \(\mathcal{U}\) with \(P_2bd \land P_2cd\). By (D), \(d = q\); hence \(P_2cq\). If \(p + 1 < \varsigma\), then Sublemma 1 yields \(P_1c + 1\). If \(p + 1 = \varsigma\), then \(p = n\) so that \(W_p\). By clause (11) there exists \(d\) in \(\mathcal{U}\) with \(P_2bd \land (We \to B_1c)\). By (D), \(d = p\); hence \(B_1c\). By clause (2), \(P_{1}c0\).

(b) We show first that \(\Gamma(0,q)\) is nonempty. If \(q + 1 < \varsigma\), then \(\exists q\) for \(e = q + 1\). By clause (12) there exists \(d\) in \(\mathcal{U}\) with \(Qde \land P_2d)q \land B_1d\). By clauses (2) and (19), \(P_2d)q \land Ed\); hence \(d \in \Gamma(0,q)\). If \(q + 1 = \varsigma\), then \(W_q\); by clause (7b) there exists \(d\) in \(\mathcal{U}\) with \(P_2d0 \land P_2d)q \land Ed\); hence \(d \in \Gamma(0,q)\). Now suppose \(\Gamma(r,q)\) is nonempty and \(r + 1 < \varsigma\). Let \(b \in \Gamma(r,q)\). Since \(Eb\), by clause (19) \(\neg I_b\); by clause (7c) there exists \(c\) in \(\mathcal{U}\) with \(Nbc\); by part (a), \(c \in \Gamma(r + 1,q)\). Thus \(\Gamma(r + 1,q)\) is nonempty.

(c) Suppose first that \(b \in \Gamma(p,q)\) and \(c \in \Gamma(q,p)\); we show that \(Mbc \land Mcb\). Suppose that \(Nbc\). By part (a) and condition (D), \(q = p\) and either \(p + 1 < \varsigma\) and \(q = p + 1\), or else \(p + 1 = \varsigma\) and \(q = 0\). The former case is, obviously, impossible; in 1247
the latter case we have \(p = n = 0 \), which is also impossible. Thus \(\neg Nbc \). Similarly, \(\neg Ncb \). By clause (18), then, there exists \(d \in \mathfrak{U} \) with \(P_1bd \land (P_2cd \rightarrow Mbc) \). By (D), \(d = p \); hence \(Mbc \). Symmetric reasoning shows that \(Mcb \).

Now, by definition of \(\mathfrak{B} \) there exists \(c \in \Gamma(q, p) \) with \(\mathfrak{B} \models \Phi qp \iff A_{qc} \). By what was just shown, \(Mcb \land Mbc \). Thus \(\forall x \forall y H_f \implies A_{qc} \equiv A_{qd} \). Hence \(\mathfrak{B} \models \Phi qp \iff A_{qd} \).

(d) If \(A_{\phi b} \) then \(\mathfrak{B} \models \Phi pq \) by definition. Suppose \(\mathfrak{B} \models \Phi pq \), and let \(d \) be any member of \(\Gamma(q, p) \). By part (c), \(A_{\phi d} \). Moreover, as in (c), \(Mbd \land Mdb \). Thus \(\forall x \forall y H_f \implies A_{\phi b} \equiv A_{\phi d} \). Hence \(\mathfrak{B} \models \Phi qp \iff A_{\phi d} \).

Sublemma 8. Let \(p, q < \alpha \). Then \(\mathfrak{B} \models K(p, p + 1, q) \) whenever \(p + 1 < \alpha \), and \(\mathfrak{B} \models K(p, 0, q) \) if \(p + 1 = \alpha \).

Proof. Let \(b \in \Gamma(p, q) \). Since \(Eb \), by clause (19) \(\neg lb \). By clause (7c) there exists \(c \in \mathfrak{U} \) with \(Nbc \). Thus \(\forall x \forall y H_f \implies K^*(b, c) \). Let \(r = p + 1 \) if \(p + 1 < \alpha \); let \(r = 0 \) if \(p + 1 = \alpha \). By Sublemma 7(a), \(c \in \Gamma(r, q) \). By Sublemma 7(c) and (d), \(\mathfrak{B} \models \Phi pq \iff A_{\phi b} \), \(\mathfrak{B} \models \Phi pq \iff A_{qc} \), and \(\mathfrak{B} \models \Phi qr \iff A_{qd} \). By the construction of \(K^*(b, c) \), it follows that \(\mathfrak{B} \models K(p, r, q) \).

Sublemma 8 shows that \(\mathfrak{B} \) is a model for \(J \).

§5. One dyadic letter. In this section we show how to reduce the formulas \(G_J \) constructed in §4 to MGCI formulas that contain only one dyadic predicate letter \(R \). For this, we use new monadic letters \(C_i \) for \(i = 0, 1, 2 \), and \(C_i^j \) for \(i = 0, 1, 2 \) and \(j = 1, 2, 3 \). In the intended model, \(C_i \) holds of integers \(p \) such that \(p \equiv i \) (mod 3), and \(C_i^j \) holds of triples \(b \) such that \(\pi_j b \equiv i \) (mod 3). Let \(\sigma 0 = 1, \sigma 1 = 2, \) and \(\sigma 2 = 0 \). For each dyadic letter \(\Psi \) of \(G_J \), we define a formula \(\Psi^*(v, w) \) that contains just \(R \) and the new monadic letters. (In these definitions, the conjunctions \(\land \) are for \(i = 0, 1, 2 \).) Let

\[
\begin{align*}
S^*(v, w) & \text{ be } Rwv \land Iv \land Iw, \\
P_1^*(v, w) & \text{ be } Rwv \land (C_1v \equiv C_1^1w), \\
P_2^*(v, w) & \text{ be } Rwv \land (C_1v \equiv C_1^2w), \\
L_1^*(v, w) & \text{ be } Rwv \land (C_1v \equiv C_1^3w), \\
L_2^*(v, w) & \text{ be } Rwv \land (C_1v \equiv C_1^4w), \\
Q^*(v, w) & \text{ be } Rwv \land (C_1v \equiv C_1^5w), \\
R_1^*(v, w) & \text{ be } Rwv \land (C_1^2v \equiv C_2^1w), \\
R_2^*(v, w) & \text{ be } Rwv \land (C_1^3v \equiv C_2w), \\
N^*(v, w) & \text{ be } Rwv \land Rwv \land \land [(C_1^3v \equiv C_1^3w) \land (C_1^2v \equiv C_1^2w) \land (C_1^1v \equiv C_1^1w)], \\
M^*(v, w) & \text{ be } Rwv \land C_1^3v \land C_1^3w \land \neg N^*(v, w) \land \neg N^*(w, v).
\end{align*}
\]

Now let \(G_1^J \) be obtained from \(G_J \) by replacing, for every dyadic predicate letter \(\Psi \) and all variables \(v \) and \(w \), each atomic subformula \(\Psi vw \) by the formula \(\Psi^*(v, w) \). Since \(G_1^J \) comes from \(G_J \) by replacement of predicate letters, if it has a model then so does \(G_J \), so that \(J \) has a model; and if it has a finite model then so does \(G_J \), so that \(J \) has a finite model. Thus we need only show that if \(J \) has a model then so does \(G_1^J \), and if \(J \) has a finite model then so does \(G_1^J \).

Suppose \(J \) has a model. Then it has a model \(\mathfrak{B} \) with universe \(N \) such that \(\mathfrak{B} \models K(p, p + 1, q) \) for all integers \(p \) and \(q \). Let the universe be \(N \cup V \), where \(V = N \times N \times \{0, 1, 2\} \). Interpret the predicate letters of \(G_J \) (including the dyadic
letters that do not occur in \(G^*_j \) as in the proof of Lemma 1, §4; interpret the new monadic letters \(C_i \) and \(C'_j \) as indicated at the start of this section, and interpret \(R \) so that, for all \(a \) and \(b \) in the universe, \(R_{ab} \) iff

\[
(S) \quad S_{ab} \lor P_{1ab} \lor P_{2ab} \lor L_{1ab} \lor L_{2ab} \lor Q_{ab} \\
\lor N_{ab} \lor N_{ba} \lor R_{1ab} \lor R_{2ab} \lor M_{ab}.
\]

It is easily checked that, for every dyadic letter \(\Psi \) of \(G_j \) except \(M \), and all \(a \) and \(b \) in the universe, \(\Psi^*(a, b) \) is true iff \(\Psi_{ab} \) is true. Moreover, \(M^*(a, b) \) is true iff \(M_{ab} \land \neg N_{ab} \land \neg N_{ba} \) is true. Now if the interpretations of Lemma 1, §4, are altered so that \(M_{ab} \) now holds iff \(M_{ab} \land \neg N_{ab} \land \neg N_{ba} \) holds under the original interpretations, then the result is still a model for \(G_j \), since \(\neg N_{xy} \land \neg N_{yx} \) occurs in the antecedent of clause (18). It follows that the interpretation of \(R \) just given, along with the interpretations of the monadic letters, provides a model for \(G^*_j \) with universe \(N \cup V \).

Now suppose \(J \) has a finite model. Then it has a model \(\mathcal{B} \) with universe \(\{0, \ldots, n\} \) such that \(\mathcal{B} \models K(p, p + 1, q) \) whenever \(p + 1, q \leq n \) and \(\mathcal{B} \models K(n, 0, q) \) whenever \(q \leq n \). Without loss of generality we may assume that \(n + 1 \equiv 0 \pmod{3} \). For if \(n + 1 \not\equiv 0 \pmod{3} \) then we can expand \(\mathcal{B} \) to a suitable model with universe \(\{0, \ldots, 3n + 2\} \) by making \(p \) indiscernible from \(q \) whenever \(p \equiv q \pmod{n + 1} \).

We now show that \(G^*_j \) has a model with universe \(\{0, \ldots, n\} \cup \{(0, \ldots, n) \times \{0, 1, 2\}\} \). Interpret the predicate letters of \(G_j \) over this universe as in Lemma 2, §4, interpret the monadic letters \(C_i \) and \(C'_j \) as indicated above, and interpret \(R \) so that \(R_{ab} \) holds iff (§) of the proof immediately above holds. It follows that, for every dyadic predicate letter \(\Psi \) of \(G_j \) save \(M \) and all elements \(a \) and \(b \) of the universe, \(\Psi^*(a, b) \) is true iff \(\Psi_{ab} \) is true; and, moreover, \(M^*(a, b) \) is true iff \(M_{ab} \land \neg N_{ab} \land \neg N_{ba} \). From this and Lemma 2, §4, we may conclude that these interpretations provide a finite model for \(G^*_j \).

Thus \(J \) has a model iff \(G^*_j \) has a model, and \(J \) has a finite model iff \(G^*_j \) has a finite model. This yields

Theorem 4. The class of formulas in the minimal Gödel class with identity whose nonlogical vocabulary contains, aside from monadic predicate letters, just one dyadic predicate letter is conservative. \(\Box \)

§6. Prefix-similarity classes. A prefix-similarity class is a class of prenex quantificational formulas specified by form of quantifier prefix and number and degree of predicate letters.\(^1\) If \(\Pi \) denotes a prefix form and \(p \) and \(q \) are integers, then \(\Pi(p, q) \) is the class of formulas with identity whose prefixes have form \(\Pi \) and which contain at most \(p \) monadic predicate letters, \(q \) dyadic predicate letters, and no \(k \)-adic predicate letters for \(k \geq 3 \); and \(\Pi(\infty, q) \) is the union of the classes \(\Pi(p, q) \). Note that, for any \(\Pi \), the class \(\Pi(\infty, 0) \) is subsumed by monadic quantification theory with identity, and hence is solvable. Moreover, if \(\Pi \) is bounded (that is, contains at most \(r \) quantifiers for some \(r \)), then for all integers \(p \) and \(q \) the class \(\Pi(p, q) \) contains only

\(^1\) For quantification theory extended by the inclusion of function symbols, the specification of prefix-similarity classes also includes the number and degree of such symbols. See [9] for an exhaustive list of solvable and unsolvable prefix-similarity classes that allow at least one function symbol.
Theorem 4 of §5 states that the class $\forall \exists (\infty, 1)$ is conservative. Now the class $\forall \exists (\infty, 1)$ is also conservative [10]. From the positive results for prefix classes of quantification theory with identity given at the beginning of this paper, and from the remarks of the preceding paragraph, it follows that these two are minimal unsolvable prefix-classes with bounded prefix form.

Now in pure quantification theory, the minimal undecidable prefix-similarity classes with bounded prefix form are $\forall \forall \exists (\infty, 1)$ and $\forall \exists (\infty, 1)$, and both of these are conservative ([20] and [10]). Thus the dividing line between solvable and unsolvable prefix-similarity classes differs, tracking the difference in the dividing line between solvable and unsolvable prefix classes noted at the beginning of this paper.

For pure quantification theory, the minimal unsolvable prefix-similarity classes with unbounded prefix form are the following: $\forall \forall \forall (\infty, 1)$ [14]; $\forall \forall \exists \forall (0, 1)$ [2]; $\forall \exists \forall \forall (0, 1)$ [15]; $\exists \forall \exists \forall (0, 1)$ [20]; $\exists \forall \exists \forall \forall (0, 1)$ [20]; $\forall \forall \exists \exists \forall (0, 1)$ [13]; and $\forall \forall \exists \exists (0, 1)$ [8]. Moreover, each of these classes is conservative. For quantification theory with identity, the last three classes can be collapsed into two; for, as we now show, it follows from Theorem 4 that the classes $\exists \forall \exists (0, 1)$ and $\forall \exists \exists (0, 1)$ are conservative. Thus our results settle the decision problem for all prefix-similarity classes of quantification theory with identity.

Theorem 5. The class $\exists \forall \forall (0, 1)$ is conservative.

Proof. Let $F = \forall x \forall y \exists z H$ be any formula in the class $\forall \forall \exists (\infty, 1)$; let R be the dyadic predicate letter of F, and let P_1, \ldots, P_m be the monadic letters of F. For any variable v let $D(v)$ be the formula $\bigwedge_{1 \leq i \leq m} v \neq w_i$, and let $K = [D(z) \land (D(x) \land D(y) \rightarrow H')]$, where H' is obtained from H by replacing each atomic subformula Piv with $Rvwi$. Finally, let $G = \exists w_1 \cdots \exists w_m \forall x \forall y \exists z K$. Thus $G \in \exists \forall \exists (0, 1)$.

Suppose F has a model \mathfrak{A} with universe U. Let e_1, \ldots, e_m be distinct objects not in U. Let \mathfrak{B} be the structure with universe $U \cup \{e_1, \ldots, e_m\}$ such that, for all a and b in this universe, $\mathfrak{B} \models Rab$ iff either $a, b \in U$ and $\mathfrak{A} \models Rab$ or else $a \in U, b = e_i, and $ $\mathfrak{A} \models P_i a$. Clearly $\mathfrak{B} \models \forall x \forall y \exists z K[e_1, \ldots, e_m]$, hence \mathfrak{B} is a model for G.

Now suppose G has a model \mathfrak{B} with universe V. Let e_1, \ldots, e_m be elements of V such that $\mathfrak{B} \models \forall x \forall y \exists z K[e_1, \ldots, e_m]$, and let $U = V - \{e_1, \ldots, e_m\}$. Since $\forall x \forall y \exists z K$ implies $\exists z D(z)$, U is nonempty. Let \mathfrak{A} have universe U and, for a and b in U, let $\mathfrak{A} \models Rab$ iff $\mathfrak{B} \models Rab$, and let $\mathfrak{A} \models P_i a$ iff $\mathfrak{B} \models Rae_i$. Then $\mathfrak{A} \models F$.

Thus F has a model iff G has a model, and F has a finite model iff G has a finite model. □

Theorem 6. The class $\forall \forall \exists \exists (0, 1)$ is conservative.

Proof. Let F be a formula in $\forall \forall \exists (\infty, 1)$ whose sole dyadic letter is R. Let F' be obtained from F by replacing each atomic subformula Ruv by $Ruv \lor (u = w \land Pvu)$, where P is a new monadic letter. Then F and $\forall x(\neg Rxx) \land F'$ are satisfiable over the same universes. For if $\forall x(\neg Rxx) \land F'$ is satisfiable over U then, since F' comes from F by replacement of a predicate letter, F is satisfiable over U. Conversely, any model for F can be transformed into one for $\forall x(\neg Rxx) \land F'$ by interpreting P as true of any element a such that $\mathfrak{A} \models Ra$ and reinterpreting R so that Rab is true iff $\mathfrak{A} \models Rab$ and $a \neq b$.

Finally, many different formulas, up to alphabetic variants and truth-functionally equivalent matrices; hence $\Pi(p, q)$ is solvable.
Suppose that \(F' = \forall x \forall y \exists z H \), and let \(P_1, \ldots, P_m \) be the monadic predicate letters of \(F' \). Let \(D(v) \) be
\[
A_1 < i < m \quad v = \lambda w_i,
\]
let \(H' \) be obtained from \(H \) by replacing each atomic subformula \(P_i v \) with \(R v w_i \), and let \(K \) be the conjunction of the following clauses:
\[(1) D(z), \]
\[(2) R w_1 w, \]
\[(3) \quad \lambda_i < i < m \quad \lambda [R w_i w_i'] + 1 \quad \lambda (R w_i x \land R w_i y \rightarrow x = y)], \]
\[(4) D(x) \land D(y) \rightarrow H'. \]
Finally, let \(G = \forall x \forall y \exists z \exists w_1 \cdots \exists w_m K \). Thus \(G \in \forall \exists \cdots \exists (0,1) \).

Suppose that \(\forall x (\neg R xx) \land F' \) has a model \(\mathfrak{M} \) with universe \(U \). Let \(e_1, \ldots, e_m \) be distinct objects not in \(U \). Let \(\mathfrak{N} \) have universe \(U \cup \{e_1, \ldots, e_m\} \), and, for all \(a \) and \(b \) in this universe, let \(\mathfrak{N} \models R a b \) iff either \(a, b \in U \) and \(\mathfrak{M} \models R a b \), or \(a = b = e_1 \), or \(a = e_i \) and \(b = e_{i+1} \) for some \(i \), \(1 \leq i < m \), or \(a \in U, b = e_i \), and \(\mathfrak{M} \models P_i a \). Note that since \(\mathfrak{N} \models \forall x (\neg R xx) \), \(\mathfrak{N} \models R a a \) iff \(a = e_1 \); also, for \(1 < i < m \), \(\mathfrak{N} \models R e_i a \) iff \(a = e_{i+1} \). It follows quickly that \(\mathfrak{N} \models K[e_1, \ldots, e_m] \), so that \(\mathfrak{N} \) is a model for \(G \).

Now suppose that \(\mathfrak{B} \) is a model for \(G \) with universe \(V \). By (2) there is a unique \(e_1 \in V \) with \(\mathfrak{B} \models R e_1 e_1 \); by (3) there are a unique \(e_2 \in V \) with \(\mathfrak{B} \models R e_1 e_2 \), a unique \(e_3 \in V \) with \(\mathfrak{B} \models R e_2 e_3 \), and a unique \(e_m \in V \) with \(\mathfrak{B} \models R e_{m-1} e_m \). Moreover, the existential variables \(w_1, \ldots, w_m \) must always take values \(e_1, \ldots, e_m \); that is, \(\mathfrak{B} \models \forall x \forall y \exists z K[e_1, \ldots, e_m] \). Let \(U = V - \{e_1, \ldots, e_m\} \). By clause (1), \(V \) is nonempty. Let \(\mathfrak{A} \) have universe \(U \), and for all \(a, b \in U \) let \(\mathfrak{A} \models R a b \) iff \(\mathfrak{B} \models R a b \) and \(\mathfrak{A} \models P_i a \) iff \(\mathfrak{B} \models R a e_i \). Then \(\mathfrak{A} \models \forall x (\neg R xx) \), since \(e_1 \notin V \); and, by clause (4) of \(G \), \(\mathfrak{A} \models F' \).

Thus \(F \) has a model iff \(G \) has a model, and \(F \) has a finite model iff \(G \) has a finite model.

Acknowledgments. I am grateful to George Boolos and Robert Solovay for pointing out an oversight in the first version of the proof of §3, and to Burton Dreben for his encouragement and support over many years of my investigations into the Gödel class with identity.

REFERENCES

