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TECHNICAL NOTES Open Access

Real-time phase-contrast flow
cardiovascular magnetic resonance with
low-rank modeling and parallel imaging
Aiqi Sun1, Bo Zhao2,3, Yunduo Li1, Qiong He1, Rui Li1* and Chun Yuan1,4

Abstract

Background: Conventional phase-contrast cardiovascular magnetic resonance (PC-CMR) employs cine-based
acquisitions to assess blood flow condition, in which electro-cardiogram (ECG) gating and respiration control
are generally required. This often results in lower acquisition efficiency, and limited utility in the presence of
cardiovascular pathology (e.g., cardiac arrhythmia). Real-time PC-CMR, without ECG gating and respiration control,
is a promising alternative that could overcome limitations of the conventional approach. But real-time PC-CMR
involves image reconstruction from highly undersampled (k, t)-space data, which is very challenging. In this
study, we present a novel model-based imaging method to enable high-resolution real-time PC-CMR with
sparse sampling.

Methods: The proposed method captures spatiotemporal correlation among flow-compensated and flow-encoded
image sequences with a novel low-rank model. The image reconstruction problem is then formulated as a low-rank
matrix recovery problem. With proper temporal subspace modeling, it results in a convex optimization formulation.
We further integrate this formulation with the SENSE-based parallel imaging model to handle multichannel
acquisitions. The performance of the proposed method was systematically evaluated in 2D real-time PC-CMR with
flow phantom experiments and in vivo experiments (with healthy subjects). Additionally, we performed a feasibility
study of the proposed method on patients with cardiac arrhythmia.

Results: The proposed method achieves a spatial resolution of 1.8 mm and a temporal resolution of 18 ms for
2D real-time PC-CMR with one directional flow encoding. For the flow phantom experiments, both regular and
irregular flow patterns were accurately captured. For the in vivo experiments with healthy subjects, flow dynamics
obtained from the proposed method correlated well with those from the cine-based acquisitions. For the
experiments with the arrhythmic patients, the proposed method demonstrated excellent capability of resolving
the beat-by-beat flow variations, which cannot be obtained from the conventional cine-based method.

Conclusion: The proposed method enables high-resolution real-time PC-CMR at 2D without ECG gating and
respiration control. It accurately resolves beat-by-beat flow variations, which holds great promise for studying
patients with irregular heartbeats.

Keywords: Cardiovascular imaging, Phase-contrast CMR, Cine, Real-time flow imaging, Model-based reconstruction,
Low-rank modeling, Parallel imaging
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Background
Over the past few decades, phase-contrast cardiovascular
magnetic resonance (PC-CMR) has been developed into a
powerful tool for quantification and visualization of blood
flow dynamics in the heart and large vessels [1–5]. It has
advanced the understanding and diagnosis of various
cardiovascular diseases, such as atherosclerosis [6], aneu-
rysms [7], and arteriovenous malformation [8]. Conven-
tional PC-CMR [9, 10] employs electro-cardiogram (ECG)
synchronized cine acquisitions with respiration control to
acquire data from multiple cardiac cycles, from which
averaged velocity maps are obtained. Although this
approach has been widely used in biomedical research and
clinical practice, it suffers from a number of well-known
limitations. For example, it often requires periodic or quasi-
periodic cardiac motion to ensure efficient data acquisition;
rejection of data caused by irregular cardiac motion often
leads to prolonged acquisition time. Additionally, due to its
underlying assumption, this approach only obtains averaged
flow information over multiple cardiac cycles, failing to
resolve beat-by-beat flow variations associated with irregu-
lar cardiac motion (e.g., cardiac arrhythmia). Capturing
physiological and/or pathological flow variabilities has long
been an important goal of PC-CMR research [11–14].
Real-time PC-CMR [15, 16] without ECG gating and

respiration control is a promising direction to address
these limitations; however, it requires a much higher
imaging speed, posing significant challenges for both
data acquisition and image reconstruction. A number
of techniques have been developed to advance real-time
PC-CMR. For example, advanced acquisition methods,
such as echo-planar [17, 18], radial [19, 20], and spiral
[21–24] acquisition schemes, have been employed for
real-time PC-CMR. In addition, real-time PC-CMR also
benefits from accelerated data acquisitions. For example,
with the emergence of parallel imaging, sensitivity encod-
ing (SENSE) [25] and generalized autocalibrating partially
parallel acquisitions (GRAPPA) [26] have been applied to
real-time PC-CMR [27–32]. More recently, model-based
reconstruction methods [33, 34] using regularized nonlin-
ear inversion [35] have been developed, achieving 2D real-
time flow imaging with a spatial resolution of 1.5 mm and
a temporal resolution of 25.6 ms by jointly reconstructing
a proton density map, a phase map, and a set of coil
sensitivities.
In this work, we present a new model-based method

for real-time PC-CMR with sparse sampling. It is based
on the integration of a novel low-rank model with paral-
lel imaging. With temporal subspace modeling, the pro-
posed method yields a convex optimization problem,
thereby enabling efficient computation. The proposed
method achieves real-time PC-CMR without ECG gating
and respiration control, and well resolves the beat-by-
beat flow variations that cannot be obtained from the

conventional cine method. Compared with state-of-the-
art real-time PC-CMR techniques, it provides higher
temporal resolution. The effectiveness of the proposed
method has been systematically evaluated in 2D real-
time PC-CMR using both phantom experiments and in
vivo experiments. A preliminary account of this work
was presented in [36, 37].

Theory
Ignoring flow during readout time, the imaging equation
for real-time PC-CMR can be modeled as follows:

dv;iðk; tÞ ¼
Z

SiðrÞρvðr; tÞe−j2πk⋅rdrþ ηv;iðk; tÞ; ð1Þ

where ρv(r, t) denotes the dynamic image associated with
either the flow-compensated (i. e., v = 1) or flow-encoded
image sequence (i. e., v = 2,⋯,Nv), Si(r) the sensitivity map
for the i th receiver coil (i = 1, 2,⋯,Nc), and dv,i(k, t) and
ηv,i(k, t) respectively the (k, t)-space measured data and
measurement noise. Here, the goal is to reconstruct ρv(r, t)
from the undersampled data {dv,i(k, t)}, and then calcu-

late the velocity maps as Vðr; tÞ ¼ Δϕðr;tÞ
π ⋅VENC, where

Δϕ(r, t) = ∠ ρv(r, t) − ∠ ρ1(r, t) denotes the phase differ-
ence between the flow-encoded and flow-compensated
image sequences, and VENC the pre-specified encoding
velocity. Since in real-time PC-CMR, there is no data
sharing with ECG gating, (k, t)-space data is often
highly undersampled. Direct inversion of {dv,i(k, t)} can
incur significant aliasing artifacts and lead to inaccurate
velocity measurements.
Here we introduce a low-rank model-based recon-

struction method with parallel imaging to address the
problem. For convenience, we consider a discrete
image model, in which each flow image sequence can
be represented as a spatiotemporal Casorati matrix
[38], i.e.,

Cv ¼
ρv r1; t1ð Þ ⋯ ρv r1; tMð Þ

⋮ ⋱ ⋮
ρv rN ; t1ð Þ ⋯ ρv rN ; tMð Þ

2
4

3
5∈ℂN�M: ð2Þ

Similar to cardiac imaging applications [39–41], each
Cv admits a low-rank approximation due to strong
spatiotemporal correlation of time-series images.
Moreover, due to the nature of flow encoding, there
is also strong spatial and temporal correlation among
different flow image sequences. To exploit such cor-
relation, the following joint Casorati matrix is
introduced:

C ¼ ½C1;⋯;CNv �; ð3Þ
on which we enforce the low-rank structure, i.e.,
rank(C) ≤ L. There are a number of ways of imposing
low-rank constraints [38, 40, 42, 43]. Here, we use an
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explicit rank constraint via matrix factorization, i.e., C =
UV, where U ∈ℂN × L and V ∈ℂL ×M. In this low-rank rep-
resentation, the columns of U and rows of V respectively
span the spatial subspace and temporal subspace of C.
Next, we formulate the low-rank constrained recon-

struction problem. First, note that with matrix-vector
notation, Eq. (1) can be written as:

di ¼ ΩðFsSiCÞ þ ni; ð4Þ
where di denotes the measured data, Ω the sparse sam-
pling operator, Fs the spatial Fourier transform matrix, and
Si and ni respectively the sensitivity map and measurement
noise. Imposing the low-rank constraint, the image recon-
struction problem can be formulated as

Û; V̂
� � ¼ arg min

U;Vf g

XNc

i¼1

di−Ω FsSi UVð Þ½ �k k22: ð5Þ

This problem is a non-convex optimization problem,
for which a number of algorithms can be applied
(e.g., [44, 45]).
The image reconstruction problem can be further

simplified. Extending the early work in cardiac imaging
[38, 40, 41, 46], we can pre-estimate the temporal sub-
space V by acquiring training data with a specialized
data acquisition scheme. Specifically, as shown in Fig. 1,
we design an interleaved sampling pattern, in which
both training data and imaging data are collected. Here,
the training data are sampled from the central k-space,

while the imaging data are acquired from the remaining
(k, t)-space region with a random sampling scheme.
With this sampling scheme, the two sets of data pro-
vide the complementary information for the low-rank
model: the training data have high temporal resolution,
while the imaging data have high spatial resolution.
From the training data, we estimate the temporal sub-
space using the principal component analysis [38, 47].
With the imaging data, we estimate the spatial subspace
U. To match the timing between the two sets of data, a
proper temporal interpolation is performed, which in-
terpolates the training data into those at the same time
instants as the imaging data. Note that with such a
scheme, the temporal resolution for the proposed
method is 2 ×Nv × TR. Moreover, note that the coil
sensitivities Si can be estimated from temporal averaged
(k, t)-space data from the flow-compensated image
sequence.
With V̂ , we can determine U by solving the following

convex optimization problem:

Û ¼ arg min
U∈ℂN�L

XNc

i¼1

di−Ω FsSi UV̂
� �� ��� ��2

2: ð6Þ

Due to the temporal subspace estimation, the low-rank
matrix recovery problem has been reduced to a simple
least-squares problem. By solving Û, the joint Casorati
matrix can be reconstructed as Ĉ ¼ ÛV̂ , from which we
can obtain each flow image sequence and estimate the

Fig. 1 The proposed (k, t)-space sampling scheme. Here the temporal training data are acquired from the central k-space, while the imaging data
are acquired from the outer k-space. The same sampling pattern is applied for the flow-compensated and flow-encoded data sets. Temporal
interpolation is performed to ensure the training data are at the time instants as the imaging data. Note that with this sampling scheme, the
(nominal) temporal resolution is 2 × Nv × TR
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flow velocities. A diagram summarizing the proposed
method is shown in Fig. 2.

Methods
We performed both phantom and in vivo studies to
evaluate the performance of the proposed method for
2D real-time PC-CMR. The experiments were conducted
on a 3.0 T whole body MR scanner (Achieva, Philips
Medical System, Best, The Netherlands), equipped with a
32-channel cardiovascular coil. A gradient-echo (GRE)
based pulse sequence was adapted to implement the
proposed real-time acquisition scheme as shown in Fig. 1.
Here neither ECG gating nor respiration control was used
to aid data acquisition. Additionally, we performed con-
ventional cine PC-CMR using a vendor-provided GRE-
based pulse sequence, in which retrospective ECG gating
was used.
First, flow phantom experiments were performed to

evaluate the capability of the proposed method in re-
solving various flow dynamics. Specifically, a 15-mm-
diameter plastic tube simulating large vessel in the aorta
was filled with blood-mimicking fluid [48], and plugged
into a container (filled with water and positioned in the
magnetic isocenter along the z-direction). The tube was
further connected with a computer-programmable
pump (CompuFlow 5000 MR, Toronto, Canada) [49],
with which we can set up different flow waveforms for

the phantom experiments. Here, the two flow waveforms
were used: flow waveform (I), as shown in Fig. 3a, repeat-
ing at a 2 s period within which a 1 s bell-shape flow is
followed by a 1 s constant flow; and flow waveform (II), as
shown in Fig. 3d, repeating at a 4 s period within which
two different 1 s bell-shape flows are separated by a con-
stant flow. To obtain flow measurements, we performed a
one-directional velocity encoding along the foot-head
(FH) direction for both cine and real-time experiments.
For cine flow imaging, we assumed that the heart beat
period is 2 s for ECG gating. Under this assumption, the
waveform (I) represents a periodic flow, whereas the wave-
form (II) represents aperiodic flow. For both cine and real-
time flow experiments, we used the following imaging pa-
rameters: field of view (FOV) = 220 mm × 120 mm, matrix
size = 182 × 100, spatial resolution = 1.20 mm × 1.20 mm,
slice thickness = 5 mm, repetition time (TR) = 5.0 ms, echo
time (TE) = 3.0 ms, flip angle = 10°, and VENC= 100 cm/s.
Notice that the temporal resolution for the real-time
acquisition is 4 × TR = 20 ms, while, for the cine acqui-
sition, the temporal resolution is 56 ms (with 36 cardiac
phases). The total acquisition time was around 42 s for
both experiments.
Second, in vivo experiments were performed to evaluate

the proposed method. Ten healthy volunteers (7 males,
age: 22–29 years, median: 25 years), who had no symptoms
of cardiovascular diseases, were recruited. In addition, we

Fig. 2 The data processing pipeline for the proposed real-time PC-CMR method. This pipeline consists of three major components: data acquisition,
image reconstruction, and post processing
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Fig. 3 (See legend on next page.)
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performed a feasibility study of applying the proposed
method for arrhythmia detection, and recruited two pa-
tients (2 males, age: 23-year old and 72-year old). This
study was approved by the Institutional Review Board
at Tsinghua University, and all the subjects gave written
informed consent. Both the cine and real-time flow ex-
periments were performed on the planes perpendicular
to the ascending aorta (AAo) and descending aorta
(DAo) during free breathing, and with one directional
velocity encoding along the FH direction. For the cine
acquisition, the retrospective ECG gating was set ac-
cording to an estimate of each subject’s heartbeat
period, and three averages were performed to mitigate
respiratory motion artifacts. For both the cine and real-
time imaging experiments, the following imaging parame-
ters were used: FOV = 240 mm× 225 mm, matrix size =
132 × 124, spatial resolution = 1.80 mm × 1.80 mm, slice
thickness = 5 mm, TR/TE = 4.5/2.8 ms, flip angle = 10°,
and VENC = 200 cm/s. For the real-time flow imaging,
the temporal resolution is 4 × TR = 18 ms, whereas for the
cine imaging, the temporal resolution is around 36 ms
(with 28 cardiac phases). The total acquisition time was
around 94 s for both experiments.
For cine flow imaging, the flow-compensated and

flow-encoded images were simply reconstructed from
the fully-sampled data. For the proposed real-time flow
imaging, we followed the procedure illustrated in Fig. 2.
Specifically, we first performed the temporal interpolation
and estimated the temporal subspace V from the training
data. We then estimated the coil sensitivity maps Si from
the temporally averaged (k, t)-space measurements. We
further determined the spatial subspace U by solving Eq.
(6), followed by forming the time-series images for flow-
compensated and flow-encoded images. To improve the
computational efficiency, proper coil compression (e.g.,
[50]) can be adopted. After image reconstruction, phase
correction [51] was performed to correct the phase offsets
caused by eddy currents. The velocity maps were then ex-
tracted for quantitative flow analysis.
We analyzed the results of the phantom and in vivo

experiments. For the phantom experiments, the flow
waveforms obtained from the cine and real-time flow
imaging methods were analyzed for both periodic and
aperiodic flow patterns. For the in vivo experiments with
healthy subjects, we evaluated the degree of agreement
between the flow measurements from the cine method

and those from the proposed method. Specifically, we
performed a Bland-Altman analysis, as well as a paired
Student’s t-test, on the peak velocities and stroke vol-
umes obtained from the two methods. Here the peak
velocity is defined as the maximum velocity within one
cardiac cycle, and the stroke volume is the integral of
the flow velocity over one cardiac cycle within the ascend-
ing aorta. For the experiments with arrhythmic patients,
we evaluated the flow variabilities captured by the pro-
posed method with reference to an external ECG record-
ing of cardiac motion.
To evaluate the effectiveness of imposing a low-rank

constraint on the joint Casorati matrix C ¼ C1 C2½ � ,
we performed a comparison with an alternative formula-
tion, in which the low-rank constraint is enforced for
each individual flow image sequence. The signal-to-noise
(SNR) and velocity-to-noise (VNR) were calculated for
the magnitude images and velocity maps, respectively.
Here SNR was calculated as a ratio between the mean
signal intensity over a region of interest (ROI) and the
standard deviation of the background, whereas VNR was
calculated as a ratio between the mean velocity for the
same ROI and the standard deviation for a region in the
stationary tissue [52].

Results
Representative results are shown to illustrate the per-
formance of the proposed method. Figure 3 shows the
flow waveforms for the phantom experiments obtained
from the conventional cine method and the proposed
real-time imaging method. Here the input flow wave-
forms for the pump were also shown. As can be seen,
for the flow waveform (I) (i.e., periodic flow), both the
cine and real-time imaging methods can capture the
flow dynamics. In particular, the peak flows obtained
from the two methods were accurate. However, for the
flow waveform (II) (i.e., aperiodic flow), only the pro-
posed method resolves the significant flow variations.
The conventional cine method, which integrates data
into a single cardiac cycle, fails to reconstruct the aperi-
odic flow dynamics (e.g., erroneous peak flows).
Figure 4 shows the in vivo results for two healthy

subjects. Here, we show the reconstructed magnitude
images and velocity maps corresponding to a systolic
cardiac phase and a diastolic cardiac phase. As can be
seen, the proposed method provides at least comparable

(See figure on previous page.)
Fig. 3 Reconstructed flow waveforms for the phantom experiment. a Pre-designed flow waveform (I) and reconstructed flow waveforms from
the cine imaging method (b) and the proposed real-time imaging method (c). d Pre-designed flow waveform (II) and reconstructed flow waveforms
from the cine imaging method (e) and the proposed real-time imaging method (f). Note that we manually repeated the cine flow waveforms in (b)
and (e) with the gray color, which should facilitate the comparison with the proposed real-time imaging method. Here the flow waveforms from both
the cine method and the real-time imaging method exhibit some discrepancy with the input waveform for the programmable pump during the
periods of constant flow. This may be caused by the reflected bell-shape flow after it hits the wall of the tube
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reconstruction quality to the cine method. Although both
methods can resolve the vessel structure, the real-time
imaging method is more motion-robust than the cine
method. To better illustrate the proposed method, a re-
construction video for one healthy subject was included
(see Additional file 1).
In addition, we analyzed the mean flow velocities asso-

ciated with two ROIs in AAo and DAo. Figure 5a and b
respectively show the velocity waveforms over 10 con-
secutive cardiac cycles for a healthy subject. Clearly, the
proposed method well resolves beat-by-beat variations.
We further evaluated how the velocity waveforms from
the real-time imaging are related to those from the
conventional cine method. We averaged the velocity
waveforms over 30 consecutive cardiac cycles from the
proposed method into one velocity waveform associated
with a synthetic cardiac cycle, and then compared it with
that from the cine method. From Fig. 5c and d, it is
evident that the averaged velocity waveforms for AAo
and DAo correlate well with those from the conven-
tional cine method. In particular, both methods yield
very similar peak velocities for the AAo and DAo.

We also performed a statistical analysis of the results
from the two methods for all ten healthy subjects.
Figure 6a and b respectively show the Bland-Altman
plots of peak velocities and stroke volumes that compare
the two methods. As can be seen, the results from the
proposed method are in excellent agreement with those
from the conventional cine method. In addition, we per-
formed the paired Student’s t-test analysis on the two
methods, and the correlation coefficients for peak veloci-
ties and stroke volumes are 0.94 (P < 0.0001) and 0.90
(P = 0.0002), respectively. This further confirms strong
correlation between the two methods.
Figure 7 shows the reconstruction results for the 23-

year-old patient (with mild cardiac arrhythmia). As ex-
pected, the proposed method is able to reconstruct
flow variations over different cardiac cycles. In particu-
lar, as shown in Fig. 7b, the proposed method nicely
captures a sudden flow velocity drop occurring in an
arrhythmic period. Note that this type of flow dynam-
ics cannot be obtained from the conventional cine
method. Further, it is worth noting that the flow vel-
ocity variations correlate well with the ECG signal

Fig. 4 Comparisons of real-time flow imaging with cine flow imaging for two healthy subjects. The magnitude images and velocity maps respectively
from conventional cine method and the proposed real-time flow imaging method are shown
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recorded during the acquisition. Besides, we show three
snapshot images from the proposed method. Clearly, the
velocity maps confirm the dramatic flow variations within
the arrhythmic period.
Figure 8 shows the reconstruction results for the 72-

year-old patient (with severe cardiac arrhythmia). The vel-
ocity waveforms associated with the AAo and DAo from
the proposed method are shown in Fig. 8a. Again, the pro-
posed method well captures irregular flow variations,
which are more significant than the ones from the previ-
ous patient. Moreover, we show the reconstructed magni-
tude images and velocity maps in Fig. 8b, and include the
corresponding reconstruction video in Additional file 2.
Figure 9 compares the magnitude images and velocity

maps from the proposed method using the joint low-rank
constraint with that using the separate low-rank recon-
struction. Here the two methods reconstructed the same
data set (i.e., a 40 s real-time PC-CMR acquisition), and
used the same rank value L = 20. As can be seen, the pro-
posed method reconstructs the spatial images and velocity
maps with improved quality over the alternative formula-
tion. This illustrates the benefits of imposing the low-rank
constraint on the joint Casorati matrix.

Discussion
In this work, we introduced a new real-time flow imaging
method and systematically demonstrated its effectiveness

with both flow phantom experiments and in vivo experi-
ments. Here, it is worth reiterating the key characteris-
tics of the proposed method. First, the proposed
method can be used as a viable alternative to the con-
ventional cine flow imaging method in that it provides
comparable (if not superior) image quality and flow in-
formation for healthy subjects. Second, the proposed
method is able to resolve beat-by-beat physiological
and/or pathological flow variations, which cannot be
obtained from the conventional cine method based on
ECG gating and respiration control. Such information
is often clinically important (e.g., for assessing cardiac
arrhythmia).
As with other model-based methods, the proposed

method involves model selection (i.e., selection of the
rank L). Generally, the selection of L needs to balance
the model representational power, the number of mea-
surements (i.e., acquisition time), and signal-to-noise
ratio [40]. In this work, we manually selected L to trade
off the above factors, and it consistently yielded good
reconstruction performance, although it is worthwhile to
investigate other principled model selection methods
(e.g., [53, 54]) in future research.
The proposed formulation results in a convex

optimization problem, which enables efficient computa-
tion. For example, the runtime for reconstructing an in
vivo dataset (from 94 s real-time acquisition) takes

Fig. 5 Reconstructed velocity waveforms from the proposed method for a healthy subject. The velocity waveforms associated with the ascending
aorta (AAo) and descending aorta (DAo) over 10 cardiac cycles are shown in (a) and (b). The averaged flow velocities over 30 consecutive cardiac
cycles from the proposed real-time flow imaging method are compared with the ones from the cine method for both AAo (c) and DAo (d). Here,
the averaging is performed as follows. We first segment the reconstructed velocity waveforms from the proposed method into sub-waveforms,
each of which corresponds to a single cardiac cycle. Second, we average these sub-waveforms to obtain a synthetic flow waveform for one
cardiac cycle. If a heartbeat period is different from the one in the cine method, temporal interpolation is performed
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around 10 min on a workstation with 64 GB RAM and
3.47 GHz CPU. The computational efficiency may be
further improved by an implementation on graphical
processing units. Such an investigation is beyond the
scope of this paper, but is worthwhile to explore for
future research.
In addition to rank constraint, sparsity constraint can

also be incorporated to accelerate PC-CMR. It has been
demonstrated in [40, 43, 55] that joint low-rank and
sparsity constrained reconstruction leads to improved
performance for dynamic MRI. Along this line, we can
extend the proposed real-time flow imaging method by

exploiting our early work [56] in cine flow imaging, al-
though such an extension will come with additional
computational cost.

Fig. 6 Bland-Altman analysis. Bland-Altman analysis of peak velocities
(a) and stroke volumes (b) comparing the proposed real-time imaging
method with the conventional cine method. The peak velocities and
stroke volumes from real-time imaging are the mean values over
30 consecutive cardiac cycles. In the above plots, the central solid
horizontal line indicates the mean of the differences in the
measurements from two methods, while the outer dotted
horizontal lines indicate the lower/upper limits of agreement

Fig. 7 Real-time PC-CMR for the 23-year-old arrhythmic patient. a: The
ECG recordings and the velocity waveforms of AAo and DAo. b: The
magnitude images and velocity maps for the three representative time
frames within an arrhythmic period. As can be seen, the proposed
method nicely captures a dramatic change of flow velocities occurring
during an arrhythmia period. Note that this type of flow dynamics
cannot be obtained from the conventional cine method
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The flow-compensated and flow-encoded images share
similar magnitude but different phase differences. We
can extend the proposed method to exploit such informa-
tion and impose a stronger constraint in the model-based
reconstruction. However, the resulting formulation can in-
volve a joint reconstruction of magnitude and phase im-
ages, which generally leads to a non-convex optimization
problem. To solve such a problem, specialized algorithms
and proper initialization are often needed. In contrast, the
proposed method here employs a low-rank model to ex-
ploit the spatiotemporal correlation between flow images,
which leads to a simple convex problem formulation and
efficient computation. Given that the two models may
have different trade-offs, comprehensively evaluating their
advantages and drawbacks is a very interesting open prob-
lem to be explored in future work.
In this work, we demonstrate the performance of the

proposed method for 2D real-time flow imaging, in
which through-plane flow was imaged. Considering the
complex flow patterns and blood vessel geometry, it is
highly desirable to perform 3D real-time flow imaging.

However, 3D real-time flow imaging generally involves
a more challenging trade-off between spatial resolution,
temporal resolution, and imaging time, and a significantly
more challenging computational problem. We are in-
vestigating an extension of the proposed method to 3D
real-time flow imaging, and the results will be reported
in future work.
This paper is focused on the development of a novel

real-time flow imaging technique, which should serve as a
foundation for our subsequent clinical studies. Given that
the proposed method well resolves beat-by-beat flow vari-
ations, it can provide more information on hemodynamics
for patients with significant irregular heartbeats. In the
future work, we plan to conduct systematic study of the
proposed method for various potential clinical applica-
tions (e.g., atrial fibrillation, premature atrial contraction
or congenital heart disease).
It is also worthwhile to remark on the potential limi-

tations of the proposed method. First, note that the
aforementioned spatial and temporal resolution both
refer to nominal resolution. For a linear shift-invariant

Fig. 8 Real-time PC-CMR for the 72-year-old arrhythmic patient. a: The velocity waveforms associated with the AAo and DAo over 12 consecutive
cardiac cycles from the proposed method. b: Reconstructed magnitude images and velocity maps corresponding to a systolic cardiac frame and
a diastolic cardiac frame
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reconstruction method (e.g., conventional Fourier re-
construction), the resolution can be characterized
through the point spread function. However, for a non-
linear reconstruction method (e.g., sparsity [57] or low-
rank constrained reconstruction [38, 40]), rigorously
characterizing the resolution has been a long-standing
open problem. In this work, we turn to reporting the
nominal spatial and temporal resolution, although it is
worthwhile to perform an in-depth study of resolution
characterization for these advanced image reconstruc-
tion methods in future research.
Second, it is useful to create gold standard data sets for

studying real-time flow imaging. Due to the undersam-
pling nature of real-time imaging experiments, it is often
difficult to generate an ideal reference for systematic
quantitative evaluation. For example, in the phantom ex-
periments, the input flow waveforms for the pump deviate
from the flow measurements during the constant flow due
to the phantom response to the flow/pressure in the tub-
ing system. In the future, we hope to build a more ad-
vanced flow imaging phantom, in which better reference
data sets can be generated.

Conclusions
A new model-based method was introduced for high-
resolution real-time PC-CMR without ECG gating and

respiration control. It integrates the novel low-rank
model with parallel imaging, which enables high-quality
image reconstruction from highly undersampled (k, t)-
space data for real-time PC-CMR. The effectiveness
and utilities of the proposed method have been demon-
strated for 2D real-time PC-CMR with both phantom
experiments and in vivo experiments. We expect that
the proposed method will enhance the practical utility
of real-time PC-CMR for various clinical applications.

Additional files

Additional file 1: Real-time PC-CMR of a healthy subject. This video in-
cludes the reconstructed magnitude images and velocity maps by the
proposed method for a healthy subject. (GIF 3557 kb)

Additional file 2: Real-time PC-CMR of an arrhythmic patient. This video
includes the reconstructed magnitude images and velocity maps by the
proposed method for an arrhythmic patient. (GIF 4693 kb)
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AAo: Ascending aorta; DAo: Descending aorta; ECG: Electro-cardiogram;
FOV: Field of view; GRAPPA: Generalized autocalibrating partially parallel
acquisitions; PC-CMR: Phase-contrast cardiovascular magnetic resonance;
SENSE: Sensitivity encoding; TE: Echo time; TR: Repetition time;
VENC: Encoding velocity

Fig. 9 Comparisons of joint low-rank reconstruction with separate reconstruction. The magnitude images and velocity maps from the proposed
joint reconstruction method are compared with the results from the separate method. The results were reconstructed by the two methods using
the same data set (i.e., a 40 s PC-CMR acquisition) acquired from a healthy subject. Both the methods applied the same rank value (i.e., L = 20).
The corresponding reconstruction signal-to-noise ratio (SNR) for the magnitude image and velocity-to-noise ratio (VNR) for the velocity map are
shown under each image
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