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ORIGINAL ARTICLE

Loss of BRCA1 or BRCA2 markedly increases the rate of
base substitution mutagenesis and has distinct effects on
genomic deletions
J Zámborszky1, B Szikriszt1, JZ Gervai1, O Pipek2, Á Póti1, M Krzystanek3, D Ribli2, JM Szalai-Gindl2, I Csabai2, Z Szallasi3,4,5,6,
C Swanton7,8, AL Richardson9 and D Szüts1

Loss-of-function mutations in the BRCA1 and BRCA2 genes increase the risk of cancer. Owing to their function in homologous
recombination repair, much research has focused on the unstable genomic phenotype of BRCA1/2 mutant cells manifest mainly
as large-scale rearrangements. We used whole-genome sequencing of multiple isogenic chicken DT40 cell clones to precisely
determine the consequences of BRCA1/2 loss on all types of genomic mutagenesis. Spontaneous base substitution mutation rates
increased sevenfold upon the disruption of either BRCA1 or BRCA2, and the arising mutation spectra showed strong and specific
correlation with a mutation signature associated with BRCA1/2 mutant tumours. To model endogenous alkylating damage, we
determined the mutation spectrum caused by methyl methanesulfonate (MMS), and showed that MMS also induces more base
substitution mutations in BRCA1/2-deficient cells. Spontaneously arising and MMS-induced insertion/deletion mutations and large
rearrangements were also more common in BRCA1/2 mutant cells compared with the wild-type control. A difference in the short
deletion phenotypes of BRCA1 and BRCA2 suggested distinct roles for the two proteins in the processing of DNA lesions, as BRCA2
mutants contained more short deletions, with a wider size distribution, which frequently showed microhomology near the
breakpoints resembling repair by non-homologous end joining. An increased and prolonged gamma-H2AX signal in MMS-treated
BRCA1/2 cells suggested an aberrant processing of stalled replication forks as the cause of increased mutagenesis. The high rate of
base substitution mutagenesis demonstrated by our experiments is likely to significantly contribute to the oncogenic effect of the
inactivation of BRCA1 or BRCA2.

Oncogene (2017) 36, 746–755; doi:10.1038/onc.2016.243; published online 25 July 2016

INTRODUCTION
An unstable genome is a hallmark of cancer.1 Genomic instability
in cancer may be caused by the failure of a number of DNA repair
and DNA damage tolerance pathways including homologous
recombination (HR). The BRCA1 and BRCA2 proteins both have
critical roles in HR,2 and mutation carriers in the encoding genes
are burdened with an elevated risk of breast and ovarian cancer.3,4

BRCA1 promotes DNA end resection at double-strand breaks
(DSBs), shifting the balance toward repair by HR rather than non-
homologous end joining (NHEJ). The large mediator protein
BRCA2 assists the loading of the essential HR factor RAD51 onto
RPA-coated single-stranded DNA.5 BRCA1 also appears to have an
indirect function in RAD51 loading, promoting the recruitment of
BRCA2 through their mutual interactions with PALB2.6 BRCA1- or
BRCA2-deficient tumours display characteristic genomic features
bearing evidence of large-scale genome instability: a high level of
loss-of-heterozygosity, telomeric allelic imbalance and large-scale
state transitions.7–9 These properties are being developed as a
predictive clinical diagnostic test.10 It is an important question

whether BRCA1/2 mutant cells also acquire excess point muta-
tions, which could contribute to the tumorigenic effect of BRCA1/2
loss. A BRCA1/2 defect-specific point mutation spectrum that
shows a broad range of mutation types has been inferred from
unsupervised pattern-finding in cancer genomes.11 To obtain
direct causative evidence for the mutagenic effect of BRCA1/2 loss-
of-function, including accurate measurements of the mutation
load, experiments in isogenic BRCA1/2 mutant and non-mutant
cell lines or transgenic animals are necessary.
In this study we investigate genomic mutations arising in two

different contexts: under normal cell culture or under conditions
designed to accelerate one class of endogenous mutagenic
processes with methyl methanesulfonate (MMS) treatments.
During normal cell growth genomic DNA is subjected to a range
of damaging influences; most importantly endogenous reactive
oxygen species, endogenous alkylating agents and the sponta-
neous deamination or hydrolysis of DNA bases.12,13 MMS is a
methylating agent that models a major class of endogenous
DNA damage primarily via generating N7-methylguanine and
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N3-methyladenine in similar proportions to the most common
endogenous methylating agent S-adenosylmethionine.14,15 MMS
does not induce DSBs directly.16 Instead, the collapse of
replication forks at single-strand breaks generated by base
excision repair at MMS lesions may lead to DSBs.17 A similar
mechanism may give rise to DSBs in untreated cells, explaining
the essential function of RAD51 following DNA replication.18

Incorrect repair of DSBs is expected to result in short deletions
and structural rearrangements, as observed in BRCA1/2-deficient
cells, but it is not known whether BRCA1 or BRCA2 influences the
generation of base substitution mutations by various DNA
adducts. Through the genome sequence analysis of mock-
treated and MMS-treated chicken DT40 cell clones we show that
BRCA1 or BRCA2 deficiency strongly and indistinguishably
increases the level of spontaneously arising base changes with a
mutation spectrum very similar to that observed in BRCA1/2-
deficient cancer, and also increases mutagenesis induced by high
doses of mutagens. The number of insertion/deletion (indel)
mutations and rearrangements is also higher in HR mutants, with
important differences between BRCA1 and BRCA2, suggesting that
point mutations and indels are generated by different mechan-
isms in HR-deficient cells.

RESULTS
Loss of BRCA1 or BRCA2 increases the spontaneous mutation rate
We set out to determine the quantity and map the profile of
spontaneous mutations arising in wild-type (WT) and BRCA1 or
BRCA2 mutant cells. We used a chicken DT40 cell line carrying a
homozygous BRCA1 mutation that deletes exons 6-8, removing
the RING domain and eliminating the downstream transcript;19

and a BRCA2 mutant cell line in which one allele is missing the
entire coding sequence, whereas the other allele is missing exons
1–2.20 A reduced recruitment of RAD51 to sites of damage and
hypersensitivity to the PARP inhibitor olaparib confirms the
BRCA1/2 loss-of-function.20,21 Cultures were grown from single
cell clones for ~ 100 cell divisions, when single cell clones were
isolated again from the bulk culture. Whole-genome sequences
were obtained from the starting clones as well as the clones
isolated after mock treatment (for the experimental layout see
Supplementary Figure S1).
To extract mutation information, we employed the IsoMut

method that performs a simultanous comparison of many samples
for efficient noise filtering, whereas achieving a detection rate of
~ 90% at 20–30× coverage.22 We tuned IsoMut to detect
maximum five false-positive single-nucleotide variations (SNVs)
per starting clone (Table 1).
In the WT mock-treated samples we found 72 ± 5 (s.d.) SNVs, of

which C4T changes were most common, followed by C4A
(Figures 1a and b). When SNVs are viewed in the context of the
neighbouring bases and their frequencies are normalized to the
frequency of occurrence of each triplet in the genome, the most
commonly mutated triplets were NCG (Figure 2), and NCG4NTG
mutations occurred with a 11 × increased likelihood compared
with the mean mutation rate. This demonstrates that the cultured
cell line used in this study faithfully reproduces the main
spontaneous mutagenic process observed in vertebrate genomes,
namely C4T changes owing to the deamination of 5-methyl-
cytosine at CpG sites.23

In contrast to the low number of mutations arising in WT cells,
we found a seven- to eightfold higher level of newly generated
SNVs in the mock-treated homozygous BRCA1−/− and BRCA2−/−

samples (Table 1; Po0.001, unpaired t-test). This elevation of the
point mutation rate was due to a massive increase of all six types
of base substitutions, with no major shift in their proportions
(Figure 1b). The frequency of NCG4NTG mutations did not
significantly increase (Figure 2a), whereas there was an increase in

all other types of triplet mutations. Our data show that loss of
BRCA1 or BRCA2 function strongly and uniformly increases the
spontaneous genomic base substitution mutation rate. The
mutations appeared unclustered, with fewer than 5% of SNVs
within 100 bp of the previous SNV both in WT and BRCA1/2
mutant samples (Figure 2c), indicating that most mutations arose
as independent events.
In the light of reports on BRCA1 and BRCA2 haploinsufficiency

phenotypes in replication stress and DNA repair24–27 we
also assayed the spontaneous mutation rate in BRCA1+/− and
BRCA2+/− heterozygous cell lines. In both of these, the number of
SNVs generated by mock treatment was almost identical to that in
the WT (Figure 1a, Table 1). Thus, we observed no haploinsuffi-
ciency in the identified function of the BRCA1/2 genes that
protects against somatic base substitution mutations in
unstressed normal growth conditions.

Treatment with an alkylating agent accelerates the mutagenic
process
In contrast to spontaneous mutations attributable to a range of
DNA lesions and cellular processes, treatment with defined DNA-
damaging agents should produce a specific set of DNA lesions and
elicit a specific mutation pattern. To understand the role of
BRCA1/2 defects in increased base substitution mutagenesis, we
treated the experimental cell lines with the methylating agent
MMS, selecting a concentration (20 ppm, 236 μM) which kills ~ 50%
of the cell population (Figure 3a). As BRCA1- and BRCA2-deficient
cells are hypersensitive to MMS, lower survival was seen with the
homozygous knockout cell lines (36% and 22%, respectively;

Table 1. Number of SNV and short insertion/deletion mutations in the
sequenced samples

Treatment n SNV
mean± s.d.

Insertion
mean± s.d.

Deletion
mean± s.d.

WT
Starting clone 1 4 0 0
Mock 3 72± 5 4.7± 1.5 1.7± 0.6
MMS 3 1489± 620 5.5± 2.5 6.0± 2.1

BRCA1+/−

Starting clone 1 5 0 0
Mock 2 63± 14 4.0± 1.3 2.5± 1.5
MMS 3 1582± 840 3.0± 1.7 9.3± 3.5

BRCA1−/−

Starting clone 1 1 1 0
Mock 3 562± 75 8.0± 1.0 12.7± 1.2
MMS 3 2414± 201 7.3± 2.1 24.7± 6.5

BRCA2+/−

Starting clone 1 2 0 1
Mock 3 79± 13 2.7± 1.2 2.0± 2.0
MMS 2 1629± 88 3.5± 2.1 9.0± 4.2

BRCA2−/−

Starting clone 1 2 0 0
Mock 3 511± 21 10.3± 3.1 33.0± 5.0
MMS 3 2986± 324 11.7± 4.2 40.3± 2.1

PCNAK164R

Starting clone 1 1 0 0
Mock 1 43 5 7
MMS 1 2286 3 6

Abbreviations: MMS, methyl methanesulfonate; SNV, single-nucleotide
variation; WT, wild type. Independent mutations in starting clones
represent false positives of the mutation detection.
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Figures 3b and c). A bulk cell population was subjected to four
weekly rounds of treatment with MMS, with the same overall
timing as the mock treatments (Supplementary Figure S1). MMS
sensitivity measurements of starting clones and post-treatment
clones indicated that the treatment regimen did not result in the
selection of cells that developed resistance (Figures 3a-c).
Treatment of WT DT40 cells with MMS accurately revealed, for

the first time, the spectrum of mutations induced by this DNA-
damaging agent. The total number of SNVs increased over 20-fold
(Figures 1a and c, Table 1), and all six base substitution categories
were more frequent than after mock treatment, with T4A and
C4A mutations the most common (Figure 1d). The abundance of
T4A mutations, which were most abundant in triplets containing
further pyrimidines (Figure 2b, Supplementary Figures S2–S5)
suggests that the major mutagenic effect of MMS is the
consequence of adenine methylation.
The number of base substitution mutations in MMS-treated

BRCA1−/− and BRCA2−/− homozygous mutants (Table 1) was
greater than in the WT (Figure 1c, Table 1), though this difference
was only significant for BRCA2 (P= 0.070 and P= 0.021, respec-
tively). Again, we observed no increased mutagenesis in the
BRCA1+/− and BRCA2+/− heterozygous cell lines (Figure 1c,
Table 1). The difference between WT and BRCA1/2 knockout
mutants after MMS treatment is 2–3 times greater than after mock
treatment, therefore even after subtraction of spontaneous
mutations, MMS induces more SNVs in BRCA1/2 mutant cells than
in the WT. Interestingly, the spectrum of SNVs in the MMS-treated
WT and BRCA1/2 mutant samples is nearly identical (Figures 1d
and 2b). This suggests that the disruption of BRCA1 or BRCA2 does

not affect the actual mutagenic process, rather influencing
how frequently it is employed.
A major mutagenic cellular process in proliferating cells is

translesion DNA synthesis (TLS).28 TLS is performed by specialized
translesion polymerases, several of which can be recruited to DNA
via binding to the monoubiquitylated form of the essential
replication protein proliferating cell nuclear antigen (PCNA).29 TLS
can also take place in the absence of PCNA monoubiquitylation
via the recruitment of TLS polymerases by REV1,30 though with an
altered mutagenic profile.31,32

We tested the contribution of TLS to MMS-induced mutagenesis
using the PCNAK164R cell line in which PCNA ubiquitylation is not
possible.33 In this cell line the number of spontaneous mutations
was not significantly greater than in the WT (Figure 1b). However,
the sequencing of a cell clone after MMS treatment revealed an
important change in the mutation spectrum compared with the
WT and the BRCA mutants, showing a selective increase in A4T
mutations, and a reduction of several other mutation classes
(Figures 1d and 2b). This result suggests that the MMS-induced
mutations in the WT, and the identical MMS mutation spectrum in
the BRCA1 and BRCA2 mutants is indeed shaped by the process
of TLS.

The analysis of short insertions and deletions reveals differences
between BRCA1- and BRCA2-associated mutagenesis
BRCA mutations have been associated with the increased
appearance of indels in tumour genomes.34 We used the
IsoMut mutation detection method to identify short indels up
to 50 bp.22 In WT mock-treated samples we found 4.7 ± 1.5 (s.d.)
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spontaneously arising insertions and 1.7 ± 0.6 deletions per
genome (Table 1, Figures 4a and b). In contrast, genomes
of BRCA1−/− mock-treated samples contained 8.0 ± 1.0 short
insertions and 12.7 ± 1.2 deletions, a significant increase in each
mutation category (P= 0.034 and Po0.001, respectively) and
altogether a fourfold increase in indels compared with the WT.
BRCA2−/− mock-treated samples contained eight times more
indels than the WT, with a significant increase in both the number
of insertions (10.3 ± 3.1, P= 0.045) and deletions (40.3 ± 2.1,
Po0.001). There was no significant difference between the
numbers of spontaneous short indels in the WT sample and the
BRCA1+/− and BRCA2+/− heterozygotes (Figures 4a and b).
MMS treatment further increased the number of deletions in all
investigated cell lines, while it had no significant effect on
insertion mutations (Figures 4a and b).
To better understand the processes generating insertions and

deletions, we examined the length distribution and sequence

context of indels. In the WT and the BRCA1/2 heterozygous lines
most indels were one-base long. In contrast, we found a distinct
length pattern in each BRCA mutant cell line. In BRCA1−/− cells,
1 bp and over 10 bp long deletions were most common, whereas
in BRCA2−/− there was a significantly different, broader distribu-
tion of various indel lengths (Figure 4d, P= 0.037, Kolmogorov–
Smirnov test). MMS treatment typically doubled the number
of deletions, but maintained the difference between BRCA1−/−-
and BRCA2−/−-specific indel length distributions (P= 0.010,
Kolmogorov–Smirnov test), suggesting that similar processes
cause indels at spontaneous or MMS-derived DNA lesions. There
were significantly more deletions in BRCA2−/− samples than in
BRCA1−/− samples (P= 0.002 and P= 0.017 in mock- and MMS-
treated samples, respectively, Figure 2b). We classified deletions
according to their sequence context. In general, there was an
increase in all categories in the BRCA1/2 mutants compared with
the WT, but the distribution of the deletions between the three
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applied categories was also significantly different (P= 0.024 and
P= 0.026 for mock-treated and MMS-treated samples, respectively,
Fisher’s exact test). Most notable was the increase (fivefold in
mock-treated and threefold in MMS-treated samples) in BRCA2−/−

mutants in deletions displaying evidence of microhomology, that
is, partial repetition of 1–5 bases at the end of these deletions
(Figure 3c). Such short microhomologies at deletions are likely
evidence of DNA double-strand break repair by NHEJ, particularly
its microhomology-mediated variety.35 Taken together, the
greater increase in deletion numbers, the broader range of
deletion length and the higher proportion of microhomology-
derived deletions suggest that certain DNA lesions in the absence
of BRCA2 are frequently repaired by NHEJ, whereas in the absence
of BRCA1 these lesions may have alternative modes of repair. A
search for larger indels, duplications and translocations revealed a
significant increase in both spontaneous and MMS-induced larger
scale genomic rearrangements in BRCA2−/− cells (Figure 3e), again
supporting the view that failure of error-free HR in the absence of
BRCA2 results in the increased use of error-prone NHEJ or other
repair mechanisms.

The BRCA1/2 spontaneous mutation spectrum is present in
tumour genome sequences
A specific SNV spectrum, termed a mutagenic signature, has been
associated with BRCA1/2 gene defects in tumour samples.11 When
we compared all 30 currently documented tumour mutation
signatures with the mean observed spontaneous mutation pattern

of each cell line, it was apparent that the mutation pattern in the
BRCA1−/− and BRCA2−/− cell line samples showed strongest
correlation with the BRCA1/2 tumour associated ‘signature 3’
(Figure 5a) and with each other (Figure 5b). Other samples, such as
the PCNAK164R spontaneous mutation pattern, did not correlate
with this tumour signature. This correlation was even more
apparent when we subtracted from all other data sets the WT
triplet mutation frequencies, which may represent common
mutational processes operating in each cell line (Figure 5c). The
SNVs induced in mock-treated WT cells could be expected to
correlate with the aging-specific signature 1, which is dominated
by CG4TG mutations at methylated CpGs.11 The correlation
observed here is fairly weak, as CG4TG changes are over-
represented in human cancer samples to a far greater extent than
in the experimental DT40 samples, where the WT, BRCA1+/− and
BRCA2+/− samples all showed 11-fold overrepresentation
(Figure 5d). The single PCNAK164R sample had a greater proportion
of CG4TG mutations owing to a reduction of other mutation
types (Figures 2a and 5d), and indeed showed a better correlation
with signature 1 (Figure 5a). SNV spectra from MMS-treated
samples did not generally show good correlation with cancer
mutation signatures apart from varied correlation with the broad-
spectrum signature 8 with unknown aetiology (Figure 5a), but the
MMS spectra correlated strongly with each other (Figure 5b). In
conclusion, the mutation spectra measured in our controlled
genetic model are in good agreement with correlative observa-
tional data obtained from BRCA1/2-defective human tumours.
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Prolonged DNA damage signalling in BRCA1 and BRCA2-defective
cells
To better understand the potential mechanisms underlying the
strong and near-identical mutagenic phenotypes of BRCA1 and
BRCA2, we asked if the mutant cell lines showed a higher level of
markers of DNA damage. Phosphorylation of histone H2AX on
serine 139 is one of the early markers of both double-strand
breaks36 and replication fork stalling, such as that induced by
thymidine arrest37,38 and is required for the recruitment of various
repair factors including BRCA1.39 We found a low level of
phosphorylated H2AX (γ-H2AX) in untreated cells (Figure 6a) with
a significant increase in BRCA1−/− versus WT cells (P= 0.049, paired
t-test). This difference was even more pronounced immediately
after DNA-damaging treatment with MMS for 1 h (P= 0.015). After
a 5 h recovery period, the γ-H2AX signal increased further in the
WT and BRCA1−/− cells (Figure 6a). We saw a similar overall pattern
of γ-H2AX levels in untreated and MMS-treated BRCA2−/− cells,
though here the differences to the WT were not significant
(Figure 6b). The increased γ-H2AX levels following MMS treatment
correlated with the appearance of a very large number
of subnuclear γ-H2AX foci (Figure 6c), which were present in a
proportion of cells consistent with the marking of stalled
replication forks by γ-H2AX in S phase. The sustained and slightly
increased γ-H2AX signal suggests a failure or delay of processing
of stalled forks in BRCA1−/− and BRCA2−/− mutant cells.

DISCUSSION
In this study, we used isogenic cell lines as a model system to
carefully test the mutagenic effect of BRCA1 or BRCA2 inactivation.
In addition to finding an increased number of indels, we found a
substantial increase in the number of spontaneously arising base
substitutions that resembled a mutation signature associated with
BRCA1 and BRCA2 mutant cancers. Our data support a role for the
loss of BRCA1/2 gene function in oncogenesis through increasing
the rate of base substitution mutagenesis.
Several studies on BRCA1 and BRCA2 mutant tumour samples

have focused on genomic scars derived from inaccurate break
repair.7–9 Although BRCA1/2 defect-associated SNV patterns have
also been documented, cancer genomes give limited information
on mutation rates. One reason for this is the lack of isogenic
controls, as non-BRCA1/2 mutant tumour samples have a range of
different somatic mutations, and may even have affected BRCA1/2
expression. In addition, a cancer genome is a snapshot of the
genome of a cancer cell that started clonal expansion to give
rise to the sampled part of the tumour, and the number of cell

divisions and length of time between the BRCA1/2 loss and the
beginning of this expansion is impossible to tell. So whereas
a higher median of SNV numbers has indeed been observed in
BRCA1/2-defective breast cancer samples,34 the mutation rates are
not known. In contrast, in a controlled system of simultaneously
cultured isogenic WT and mutant cell clones we detected a
massively higher spontaneous mutation rate in BRCA1 or BRCA2
mutant DT40 cells. Despite the ease of gene inactivation by
homologous gene targeting, the similarity of HR rates in DT40 and
cultured human cell lines has been demonstrated by, for example,
similar sister chromatid exchange rates per chromosome,40,41

and DT40 mutants have been used extensively for studying the
genetics of HR.42 The similarity of the mutation patterns to
signature 3 associated with BRCA1/2 mutant cancers confirms the
validity of the cell line model, and suggests that these cancers also
have a higher mutation rate.
What could be the cause of the elevated mutation rate of BRCA1

and BRCA2 mutant cells? Note that although the SNV patterns in
the BRCA1 and BRCA2 mutant cell lines were identical, there were
both qualitative and quantitative differences in the arising indels,
suggesting that SNVs and indels arise via different mechanisms.
Deletions may mainly arise at collapsed replication forks, and the
BRCA2 deletion phenotype fully agrees with NHEJ acting on
double-strand breaks unrepaired by HR. The milder BRCA1
deletion phenotype suggests a decision point between the action
of BRCA1 and BRCA2 in the process of fork collapse such that in
the absence of BRCA2 mutagenic NHEJ is unavoidable, whereas
in the absence of BRCA1 alternative DNA bypass mechanisms
can still operate.
A likely source of SNVs and one-base indels is inaccurate DNA

replication by translesion DNA polymerases. We obtained some
evidence for this by observing a change in both the spontaneous
and MMS-induced mutation spectrum in PCNAK164R mutant cells,
in which TLS is reduced and its mutagenic profile is altered.31,32

This is not conclusive evidence, and the connection between
BRCA1/2 defects and TLS will need further investigation. Never-
theless, the identical MMS-induced SNV spectra suggest that the
same error-prone TLS process is employed more frequently in
BRCA1/2 mutants than in WT cells. The increased use of TLS could
be explained by the dependence of an error-free alternative
bypass mechanism on BRCA1/2. This cannot be HR on a broken
fork, as TLS cannot act after the damaged strand is cleaved.
Template switch to the undamaged sister chromatid without fork
collapse is a long-studied error-free third alternative bypass
mechanism,43 with several possible variants that require RAD51
and other HR factors.44 Our best model, therefore, implicates the
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BRCA1 and BRCA2 proteins in template switching; in the absence
of BRCA1/2 more frequent TLS would lead to the increased SNV
rate. Both BRCA1 and BRCA2 have been shown to contribute to
replication fork stabilisation independent of double-strand break
repair45,46 and this stabilisation through RAD51 loading could
promote template switching, a scenario supported by the
requirement for BRCA1 in promoting postreplicative gap repair
and suppressing TLS at ultraviolet-induced lesions.47

Alternative explanations for increased mutagenesis in BRCA1/2
cells may also be proposed by analogy to how Pol32-dependent
error-prone DNA synthesis has been observed in the repair of
broken forks by break-induced replication in Saccharomyces
cerevisiae.48 However, the high number of γ-H2AX foci in MMS-
treated cells are unlikely to primarily arise at distinct broken
forks. Further, a mutagenic process operating only in BRCA1/2 cells
should alter the observed mutation spectra, which was not the
case; and error-prone replication might be expected to produce
several mutations within one event, but we did not observe a
clustering of mutations.
The effect of BRCA1 and BRCA2 on carcinogenesis has mainly

been considered in terms of the mutator hypothesis,49 with the
inactivation of the genes destabilising the genome and leading to
further gene mutations. Our discovery of high SNV mutation rates
in BRCA1/2 mutant cells lends further evidence to this theory.
This also predicts that BRCA1/2 mutations should be early
‘founder’ mutations in cancer, which is supported by a few BRCA1
cases in multiregion tumour sequencing.50,51 The relative con-
tribution of the increased SNV rates and the indel/rearrangement
phenotype to the mutator function remains unknown. Consider-
ing that the SNV mutagenesis phenotypes of the two knockouts
were identical, whereas there were several differences in the indel
phenotypes, we propose that high base substitution rates are
important to those clinical features of BRCA1 or BRCA2 mutant
tumours that are similar, such as age of onset, tissue of origin. We
found no significant difference between SNV or indel mutagenesis
rates in wild-type versus BRCA1+/− or BRCA2+/− heterozygous
cells, and detected too few large-scale rearrangements to draw
conclusions. In contrast, impaired HR,27 defective suppression of
replication fork collapse25 and an increase in chromosomal
abnormalities24 have been observed in BRCA1+/− human mam-
mary epithelial cells. Thus carcinogenesis in BRCA1/2 germline
mutation carriers may take place in two hypothetical steps: the
documented haploinsufficiency accelerates the inactivation of
the second BRCA1/2 allele via large-scale rearrangements, and the
high SNV mutagenesis rate in the arising BRCA1/2 homozygote
leads to faster mutation of further cancer genes.
The various related and distinct functions of BRCA1 and BRCA2

have made it difficult to pinpoint the function of these gene
products responsible for the closely related cancer phenotypes
caused by their gene defects. Much research has focused on
the connected roles of BRCA1 and BRCA2 in HR, suggesting that
impaired HR in their absence leads to genome instability that
accelerates tumour development. Our results have demonstrated
an important additional aspect of the loss of BRCA1/2. The
sevenfold elevated rate of base substitution mutations in both
BRCA1 and BRCA2 mutant cells indicates a significant cause of
genome instability. Considering the identical SNV phenotypes but
distinct indel phenotypes of BRCA1 and BRCA2 mutant cell lines, a
high SNV mutation rate may also be an important cause of the
oncogenic effect of the loss of BRCA1 or BRCA2 function.

MATERIALS AND METHODS
Cell culture and drug treatments
The following DT40 cell lines were used: wild-type Clone18,52 BRCA1−/−

and BRCA1+/− mutants,19 BRCA2−/− and BRCA2+/− (originally termed
BRCA2-/con1),20 PCNAK164R/K164R (referred to in the text as PCNAK164R).33

All gene mutations were authenticated using the whole-genome sequence

data. Cells were grown at 37 °C under 5% CO2 in Roswell Park Memorial
Institute-1640 medium supplemented with 7% fetal bovine serum and
3% chicken serum. MMS (Sigma-Aldrich, St Louis, MO, USA) or mock
treatments were performed on one million cells for 1 h. Single cell clones
were isolated and expanded to two million cells prior to genomic DNA
preparation using the Gentra Puregene Cell Kit (Qiagen, Hilden, Germany).
MMS sensitivity was measured by counting surviving cell colonies after
plating treated cells in medium containing 1% methylcellulose.

Western blotting and immunofluorescence
Whole-cell extracts were fractionated by sodium dodecyl sulphate–
olyacrylamide gel eletrophoresis, transferred to polyvinylidene difluoride
membranes and incubated with primary antibodies against γH2AX
(Millipore, Merck, Darmstadt, Germany, 05-636, 1:4000) or alpha-tubulin
(Sigma-Aldrich T6199, 1:2000); followed by secondary anti-mouse (Sigma-
Aldrich A9044, 1:20000) or anti-rabbit (Sigma-Aldrich A0545, 1:20000)
antibodies. Blots were developed with the ECL system and imaged with a
Chemidoc MP instrument (Bio-Rad Laboratories, Hercules, CA, USA). Band
intensities were normalized to alpha-tubulin detected on the same
membrane. Before the averaging of measurements, the sum of signals
on each membrane was normalized to one.
For immunofluorescence analysis, cells were pelleted onto poly-L-lysine-

coated coverslips and fixed with 4% paraformaldehyde. After blocking with
0.1% Tween 20 and 0.02% sodium dodecyl sulphate in phosphate-buffered
saline, the samples were sequentially incubated with anti-γH2AX antibody
(Millipore 05-636, 1:1000) and Alexa Fluor 488 anti-mouse secondary
antibody (Thermo Fisher Scientific, Waltham, MA, USA, A-11029, 1:1000) for
1 h each at 37 °C followed by Hoechst 33342 (Thermo Fisher Scientific
H3570, 1:10000) at room temperature for 10 min. The fluorescent signal
was detected with a Zeiss LSM 710 confocal microscope.

Whole-genome sequencing, mutation calling and data analysis
Library preparation used the TruSeq DNA Nano Library Preparation Kit
(Illumina, San Diego, CA, USA) or the NEBNext Ultra DNA Library Prep Kit
for Illumina (New England Biolabs, Ipswich, MA, USA). Sequencing was
done on Illumina HiSeq 2500 (2 × 150 bp paired end (PE) format, three
samples), Illumina HiSeq 2500 v4 (2 × 125 bp PE, 21 samples) and Illumina
HiSeq X Ten instruments (2 × 150 bp PE, six samples). Library preparation
and DNA sequencing was done at the Research Technology Support
Facility of Michigan State University, USA, and at Novogene, Beijing, China.
We chose to sequence three samples per treatment to be able to detect
sample variance. All data sets from successfully sequenced samples were
used for subsequent analysis.
The reads were aligned to the chicken (Gallus gallus) reference

sequence Galgal4.73 as described.53 Duplicate reads were removed using
samblaster.54 The aligned reads were realigned with GATK
IndelRealigner.55

Independently arising SNVs and short indels were identified using the
IsoMut method developed for multiple isogenic samples.22 In brief, after
applying a base quality filter of 30, data from all samples were compared at
each genomic position, and filtered using optimized parameters
of minimum mutated allele frequency (0.2), minimum coverage of the
mutated sample (5) and minimum reference allele frequency of all the
other samples (0.93), and also filtered using a probability-based quality
score calculated from the mutated sample and one other sample with the
lowest reference allele frequency (Supplementary file S6, Supplementary
table S1). The IsoMut code is available for unrestricted download.56

Structural variations were detected using the CREST algorithm.57

Ninety-six-triplet signatures11 were generated after pooling samples of
the same genotype and treatment. DT40 triplet signatures were adjusted
with the ratio of each triplet occurrence in the human and chicken
genome and compared with the 30 human cancer triplet signatures58

using Pearson correlation coefficient. Two-sided t-tests were used for
statistical comparisons of mutation numbers with no adjustments for
multiple comparisons, Fisher’s exact test was used to compare categorized
mutations, and the non-parametric Kolmogorov–Smirnov test was used to
compare the size distribution of deletions.
Raw sequence data has been deposited with the European Nucleotide

Archive under study accession number ERP015181.
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