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Evaluation of the contribution of the
transmembrane region to the ectodomain
conformation of the human
immunodeficiency virus (HIV-1) envelope
glycoprotein
Hanh T. Nguyen1, Navid Madani1, Haitao Ding2, Emerald Elder1, Amy Princiotto1, Christopher Gu1, Patrice Darby1,
James Alin1, Alon Herschhorn1, John C. Kappes2,3, Youdong Mao1 and Joseph G. Sodroski1,4*

Abstract

Background: The human immunodeficiency virus (HIV-1) envelope glycoprotein (Env), a Type 1 transmembrane
protein, assembles into a trimeric spike complex that mediates virus entry into host cells. The high potential energy
of the metastable, unliganded Env trimer is maintained by multiple non-covalent contacts among the gp120
exterior and gp41 transmembrane Env subunits. Structural studies suggest that the gp41 transmembrane region
forms a left-handed coiled coil that contributes to the Env trimer interprotomer contacts. Here we evaluate the
contribution of the gp41 transmembrane region to the folding and stability of Env trimers.

Methods: Multiple polar/charged amino acid residues, which hypothetically disrupt the stop-transfer signal, were
introduced in the proposed lipid-interactive face of the transmembrane coiled coil, allowing release of soluble
cleavage-negative Envs containing the modified transmembrane region (TMmod). We also examined effects of
cleavage, the cytoplasmic tail and a C-terminal fibritin trimerization (FT) motif on oligomerization, antigenicity and
functionality of soluble and membrane-bound Envs.

Results: The introduction of polar/charged amino acids into the transmembrane region resulted in the secretion of
soluble Envs from the cell. However, these TMmod Envs primarily formed dimers. By contrast, control cleavage-negative
sgp140 Envs lacking the transmembrane region formed soluble trimers, dimers and monomers. TMmod and sgp140
trimers were stabilized by the addition of a C-terminal FT sequence, but still exhibited carbohydrate and antigenic
signatures of a flexible ectodomain structure. On the other hand, detergent-solubilized cleaved and uncleaved Envs
isolated from the membranes of expressing cells exhibited "tighter” ectodomain structures, based on carbohydrate
modifications. These trimers were found to be unstable in detergent solutions, but could be stabilized by the addition
of a C-terminal FT moiety. The C-terminal FT domain decreased Env cleavage and syncytium-forming ability by
approximately three-fold; alteration of the FT trimerization interface restored Env cleavage and syncytium formation to
near-wild-type levels.
(Continued on next page)
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Conclusion: The modified transmembrane region was not conducive to trimerization of soluble Envs. However, for
HIV-1 Env ectodomains that are minimally modified, membrane-anchored Envs exhibit the most native structures and
can be stabilized by appropriately positioned FT domains.

Keywords: HIV-1 Env, gp41, Transmembrane region, Stabilize, Ectodomain, Fibritin –Trimer

Background
Human immunodeficiency virus (HIV-1) entry into cells
is mediated by the envelope glycoprotein (Env) spike on
the viral membrane [1]. The trimeric Env complex is a
Type 1 membrane protein composed of three gp120 ex-
terior Env and three gp41 transmembrane Env subunits
[1–3]. Synthesized in the rough endoplasmic reticulum,
the ~850-residue Env precursor is cotranslationally modi-
fied by high-mannose N-linked glycans, is anchored in the
membrane by a transmembrane region, and trimerizes
[4–8]. Env is then transported to the Golgi apparatus,
where accessible high-mannose glycans are processed to
complex carbohydrates [8–10]. The glycosylated gp160
Env precursor is then cleaved into the mature gp120 and
gp41 Envs in the Golgi compartment, just prior to Env
transport to the surface of the infected cell and incorpor-
ation into virions [10, 11]. The unliganded Env spike on
the HIV-1 membrane exists in a high-potential-energy
state (State 1) [12–14]. Binding of gp120 to the initial tar-
get cell receptor, CD4, induces conformational changes in
the metastable Env complex that lead to lower-energy
intermediate states (States 2 and 3) along the entry path-
way [13–16]. Env-CD4 binding allows gp120 to bind the
coreceptor, either CCR5 or CXCR4 [17–24], and induces
the pre-hairpin intermediate (State 3), in which three
gp41 helices (the heptad repeat 1 (HR1) regions) form
an extended coiled coil near the trimer axis [25–28].
The hydrophobic “fusion peptide” at the gp41 amino
terminus is directed towards the target cell membrane
as a result. The binding of gp120 to the coreceptor leads
to the conversion of the pre-hairpin intermediate to an
energetically stable six-helix bundle. Because of the inter-
action of the gp41 fusion peptide with the target cell
membrane and the anchorage of the gp41 transmembrane
region in the viral membrane, six-helix bundle formation
approximates and fuses these membranes [29–33]. Thus,
transitions from the high potential energy state of the
unliganded Env trimer drive fusion between the viral and
cell membranes.
HIV-1 Env ectodomains have been produced as soluble

glycoproteins for structural studies and for use as immu-
nogens [34–43]. The lability of these soluble oligomers
suggests that the interprotomer contacts are weak, and
has led to various efforts to produce more stable Env
trimers. These include: 1) the addition of heterologous
trimerization motifs at the C-termini of uncleaved Env

ectodomains [41, 44–47]; 2) the introduction of the
I559P change in gp41, mutation of residues 501 and
605 to cysteine to form an SOS disulfide bond linking
the gp120 and gp41 subunits of cleaved Env, and trun-
cation of the gp41 ectodomain at residue 664 (the
SOSIP.664 modifications) [48–57]; and 3) the addition
of flexible linkers at the gp120-gp41 cleavage site of sol-
uble gp140 SOSIP.664 trimers [58, 59]. In all of these
cases, the gp41 transmembrane region has been deleted
to produce soluble Env constructs. In a recent cryo-
electron microscopy (cryo-EM) structure of a membrane
HIV-1 Env complexed with a neutralizing antibody Fab
fragment, the membrane-proximal and transmembrane
regions were disordered and not resolved [60]. However, a
cryo-EM study of an unliganded, uncleaved membrane
HIV-1 Env (Env(−)Δ712) solubilized in detergent sug-
gested that the transmembrane helices form a left-handed
trimeric coiled coil [61, 62]. The transmembrane region of
immunodeficiency viruses is longer (~22 amino acid resi-
dues) than that of other retroviruses, and contains a basic
residue, Arg 696, near the middle of the membrane-
spanning region [63–65]. A recent NMR structure of the
HIV-1 gp41 transmembrane peptide in detergent-lipid
bicelles confirmed the potential of this region to form a
left-handed coiled coil, with a central kink near the basic
arginine residue at position 696 [66]. Near the C-terminus
of the transmembrane region, a hydrophilic core composed
of polar and charged residues stabilized the structure.
A number of observations suggest that the gp41 trans-

membrane region and membrane-proximal external region
(MPER) make important contributions to the structure of
the HIV-1 Env ectodomain [12, 66–78]. Changes in the
HIV-1 transmembrane region have been shown to de-
crease the efficiency of virus entry and cell-cell fusion, even
when the Env mutants were efficiently expressed and in-
corporated into virions [67–70]. In one such mutant, the
arginine residue at position 696 was converted to a hydro-
phobic residue, completely eliminating Env function [70].
In addition, significant changes in the hydrophilic core of
the transmembrane region can alter HIV-1 sensitivity to
neutralization by antibodies [66]. Similarly, changes in the
gp41 MPER have been shown to influence HIV-1 suscepti-
bility to antibody or small-molecule inhibition [71–78]. For
example, alteration of the well-conserved hydrophobic
MPER residue, Trp 680, resulted in a significant increase in
the sensitivity of HIV-1 to neutralizing antibodies and
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small-molecule CD4-mimetic compounds [74]. Appar-
ently, the membrane-interactive regions of gp41 help to
maintain the native unliganded state (State 1) of the
HIV-1 Env trimer.
The above findings suggest that HIV-1 Env constructs

with missing, disordered or aberrant transmembrane re-
gions or MPERs might sample ectodomain conformations
other than the native unliganded state. Here we evaluate
different strategies for including the gp41 transmembrane
region in HIV-1 Env constructs, paying particular atten-
tion to the effects of such manipulation on Env trimer's
stability, glycosylation and antigenicity.

Methods
Envelope glycoprotein constructs
All of the glycoproteins used in this study were derived
from the HIV-1JR-FL Env with a truncation (Δ712) of the
cytoplasmic tail, unless otherwise noted [61, 62]. HIV-1
env cDNA was codon-optimized and subcloned into the
pcDNA3.1(−) expression plasmid (Invitrogen) using 5’
Xba I and 3’ Afl II sites. Env cleavage was abolished by
the R508S + R511S changes. All Env amino acid residues
are numbered by alignment with the prototypic HXBc2
sequence, according to current convention [79]. Each of
the TMmod1-17 glycoproteins has six changes in the
gp41 transmembrane region involving residues I688,
L692, L695, V698, L702 and V705. The TMmod18 glyco-
protein is altered at residues I686, V693, L697 and T700.
The soluble sgp140(−) glycoprotein was produced from
an expressor plasmid in which the sequence encoding
the transmembrane region of HIV-1JR-FL Env(−)Δ712
was deleted. TMmod10v2 is identical to the TMmod10
glycoprotein except for three additional changes: M687D,
L697A and F699A. TMmod10v3 is identical to
TMmod10v2 except that the residues at the e and g po-
sitions (L692, L697 and F699) are wild-type in sequence.
All primers for mutagenesis were designed using the on-
line Agilent Technologies Quikchange Primer Design pro-
gram. These mutations were introduced by site-directed
mutagenesis PCR using Pfu Ultra II polymerase (Agilent
Technologies), following the manufacturer’s protocol. For
some constructs, the E168K +N188A changes in the
gp120 V2 region were also added to allow HIV-1JR-FL Env
recognition by the PG9 and PG16 antibodies.
In the TMmod10modCS Env mutant, the R508EKR cleav-

age site in TMmod10 was replaced by a flexible linker
(GGS)4. The linker was inserted using overlap extension
PCR. The insert was cloned from two fragments: the 5’
fragment starts before the Bsr GI site and covers the new
linker: RDNWRSELYKYKVVKIEPLGVAPTKAKRRVVQ
GGSGGSGGSGGSAVGIGAV. The 3’ fragment encodes
the part of the linker beginning at A512 and ends after the
Afl II insertion site. The longer overlapped fragment was
cloned using appropriate primers, and the insert was

digested and cloned into the env expressor plasmid using
the Bsr GI and Afl II sites.
To introduce the fibritin (FT) trimerization motif [80],

a short (GGSG)2 linker followed by the fibritin sequence
(GYIPEAPRDGQAYVRKDGEWVLLSTFL) was added to
the C-termini of the soluble envelope constructs (sgp140
and TMmod10) and the membrane-anchored envelope
constructs (Env(−)Δ712 and Env(+)Δ712). To disrupt
trimerization of the fibritin domain, the Y469A and
R471A changes (fibritin E protein numbering) were in-
troduced into the Env(+)Δ712 construct to produce
Env(+)Δ712 FTmut. TMmod1-18 and sgp140(−) Envs were
tagged with His6. TMmod10 EKNA, TMmod10 (+) EKNA,
TMmod10 modCS EKNA and TMmod10 EKNA Envs with
different cytoplasmic tails are Strep-tagged. TMmod10v2
Env was not tagged and was compared to the untagged
TMmod10 Env. All Envs used in the fibritin experiments
(Figs. 4 and 5) are His6 tagged.

Cell lines
293T cells (ATCC) were grown in Dulbecco’s modified
Eagle’s medium supplemented with 10% fetal bovine serum
(FBS) and 100 μg/ml of penicillin-streptomycin (Life Tech-
nologies). Cf2Th cells (ATCC) stably expressing human
CD4 and CCR5 were grown in the same medium addition-
ally supplemented with 0.4 mg/ml of G418 and 0.2 mg/ml
of hygromycin (Life Technologies).

Expression and oligomerization of soluble envelope
glycoproteins
293T cells were transiently transfected with plasmids ex-
pressing soluble Envs using polyethylenimine following
a standard protocol. Forty-eight to seventy-two hours
post-transfection, cellular supernatants and lysates
were collected, clarified and analyzed by reducing
SDS-PAGE. To test for protein oligomerization, super-
natants were analyzed by Blue Native PAGE following
ThermoFisher’s protocol. Working dilutions for West-
ern blotting were 1:2,000 goat anti-gp120 polyclonal
antibody (ThermoFisher), 1:2,000 4E10 anti-gp41
antibody (Polymun Scientific, NIH AIDS Reagent Pro-
gram), 1:10,000 mouse anti-β- actin (Abcam), 1:3,000
HRP-conjugated goat anti-human IgG (SantaCruz),
1:3,000 HRP-conjugated rabbit anti-goat IgG (Ther-
moFisher), and 1:10,000 HRP-conjugated goat anti-
mouse IgG (ThermoScientific).

Deglycosylation of Env glycoproteins
Supernatants containing soluble glycoproteins or enve-
lope proteins purified from cell membranes were dena-
tured and treated with PNGase F or Endo Hf enzymes
(New England BioLabs) for 1 ½ hours following the manu-
facturer’s protocol. The deglycosylated glycoproteins were
then subjected to reducing SDS-PAGE as described. For
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glycoprotein treated with kifunensine (R&D Systems),
transfected cells transiently expressing Envs were continu-
ously incubated in 50 mM kifunensine before cellular su-
pernatants were collected, clarified and deglycosylated as
described.

Immunoprecipitation of soluble glycoproteins
For immunoprecipitation, 100 μL of cellular superna-
tants containing soluble glycoproteins was incubated
with 25 μl Protein A-agarose beads (Sigma Aldrich) that
had been hydrated and resuspended to 100 μg/ μl con-
centration in IP buffer (20 mM Tris–HCl (pH 8.0),
300 mM NaCl supplemented with 0.1% NP-40). HIV-1
broadly neutralizing antibodies (2G12, VRC01, PG9,
PG16) and weakly neutralizing antibodies (19b, 17b) at
10 μg/ml were added and samples were incubated for
2 h at room temperature. The 17b antibody was also incu-
bated with Envs in presence of soluble CD4 at 20 μg/ml.
Beads were washed three times with IP buffer/NP-40 and
once in IP buffer. Beads were then resuspended in 35 μL
total volume of IP buffer supplemented with 1X NuPAGE
LDS Sample Buffer and 100 mM dithiothreitol (DTT).
Samples were boiled and supernatants were analyzed by
SDS-PAGE and blotted with goat anti-gp120 polyclonal
antibody and HRP-conjugated rabbit anti-goat IgG.

Immunoprecipitation of cell-surface Envs
293T cells were transfected with plasmids expressing the
HIV-1JR-FL Env(−)Δ712, Env(−)Δ712 FT, Env(+)Δ712
and Env(+)Δ712 FT glycoproteins, using polyethylenimine.
Seventy-two hours after transfection, cells were washed
and resuspended in PBS/ 5% FBS. Cells were incubated
with 10 μg/ml antibodies for one hour at room
temperature and then washed once in PBS. Cells were
then lysed and the lysates were incubated overnight at
4 °C with Protein A-Sepharose beads prepared as de-
scribed above. The precipitates were washed with IP
buffer and analyzed by Western blotting, as described
above.

Assessing proteolytic cleavage of cell-surface Envs
293T cells in 6-well plates were transfected with plas-
mids expressing the HIV-1 Env(+)Δ712, Env(+)Δ712 FT
and Env(+)Δ712 FTmut glycoproteins, at 0.5 μg DNA per
well, using Effectene (Qiagen) according to the manufac-
turer’s protocol. Approximately 40 h after transfection,
cell-surface Env glycoproteins were biotinylated using
the Cell Surface Protein Isolation Kit (Thermo Scien-
tific), according to the manufacturer’s protocol. Briefly,
cells were washed twice in ice-cold PBS, scraped, resus-
pended in biotin solution, and incubated at 4 °C for
30 min. Cells were then washed and lysed. Clarified lysates
were incubated with NeutrAvidin beads for one hour at
room temperature. Beads were washed, resuspended in IP

buffer supplemented with 1X NuPAGE LDS Sample Buf-
fer and 100 mM DTT, and boiled for 10 min (100 °C).
The denatured glycoproteins were then treated with
PNGase F as described above. The digested glycoproteins
were Western blotted with the 4E10 antibody.

Alpha-complementation assay
Cf2Th-CD4/CCR5 cells plated in 96-well plates were
transfected with the ω-gal-expressing plasmid using
Effectene reagent (Qiagen). 293T cells plated in 6-well
plates were transfected with plasmids expressing α-gal
and Env at a 1:1 ratio using the Effectene reagent (2 μg
total DNA/well). Seventy-two hours after transfection,
the 293T cells were briefly trypsinized, washed and
added to the ω-gal-expressing Cf2Th-CD4/CCR5 cells
(one well of 293T cells is sufficient for 12 wells of
Cf2Th-CD4/CCR5 cells). Cells were incubated at 37 °C/
5% CO2 for 6 h before they were washed and lysed in
30 μL/well Galacto-Star lysis buffer (Applied Biosci-
ences). Galacto-Star substrate (diluted 1:50 in 100 μL/
well Galacto-Star buffer diluent) was then added, and
plates were incubated at room temperature for 1 h before
signal was measured in an EG&G Berthold LB 96 V mi-
croplate luminometer at 1-s intervals.

Flow cytometry
Seventy-two hours after transfection, 293T cells were
washed, briefly trypsinized and resuspended in PBS/5%
FBS buffer. Cells were incubated with 10 μg/mL 2G12 or
VRC01 antibody for 30 min at room temperature. Cells
were then washed once using the same buffer before incu-
bating with allophycocyanin (APC)-conjugated anti-
human IgG (Jackson ImmunoResearch Laboratories) at
an 1:100 dilution for 15 min at room temperature. Cells
were washed, resuspended in PBS/FBS buffer and ana-
lyzed by a BD FACS Canto instrument. Geometric means
of the APC signal were used for analysis.

Purification of membrane Env proteins
293T cells were transfected with plasmids encoding
Env(−)Δ712, Env(−)Δ712 FT, Env(+)Δ712 and Env(+)Δ712
FT glycoproteins. Forty-eight to seventy-two hours later,
cells were washed, trypsinized briefly and pelleted at 4 °C.
All subsequent steps were performed at 4 °C. Pellets were
resuspended in five volumes of homogenization buffer
(250 mM sucrose, 10 mM Tris–HCl (pH 7.4), 1 mM
EDTA, 1X protease inhibitor) and homogenized in a glass
Dounce homogenizer with 100 strokes. Homogenates were
centrifuged at 1000 × g for 10 min. Supernatants were col-
lected and centrifuged at 10,000 × g for 10 min. Superna-
tants were again collected and centrifuged in a fixed-angle
rotor at 100,000 × g for 30 min. Supernatants were aspi-
rated and the pellets were resuspended in resuspension
buffer (20 mM Tris–HCl (pH 7.4), 300 mM NaCl,
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100 mM (NH4)2SO4, 0.02% sodium azide, 1X protease
inhibitor) and homogenized in a small Dounce homogenizer
on ice with 100 strokes. Samples were centrifuged at
100,000 × g for 45 min. Supernatants were aspirated and the
pellets were resuspended in solubilization buffer (100 mM
(NH4)2SO4, 20 mM Tris–HCl (pH 7.5), 150 mM NaCl, 1%
Cymal-5, 1X protease inhibitor). The membranes containing
Env glycoproteins were lysed by incubation at 4 °C for
30 min on a rocking platform and immediately used for Blue
Native PAGE. For Blue Native PAGE analysis, samples were
mixed with 0.25% G-250 and 1X NativePAGE Sample Buf-
fer (ThermoFisher), and gels were run following the manu-
facturer’s protocol for samples with detergents. Samples
stored at 4°C were used for deglycosylation studies.

Generation, purification and infection of pseudotyped
viruses
To produce lentiviral virions pseudotyped with Env glyco-
proteins, 293T cells were co-transfected with the Env-
expressing plasmid, the pCMV HIV-1 Gag-Pol packaging
construct and the firefly-luciferase-expressing plasmid (at
a 1:1:3 weight ratio) following a standard calcium phos-
phate transfection protocol. Seventy hours after transfec-
tion, supernatants containing virions were collected and
filtered through 0.45-μm membranes.
To purify and concentrate the pseudotyped virions,

3 mL of the filtered supernatants were layered on 500 μL
of a 20% sucrose solution (20 g UltraPure sucrose,
100 mM NaCl, 20 mM HEPES (pH 7.4) and 1 mM EDTA
in 100 mL total volume [81]) and centrifuged at 100,000 x
g for 1 h at 4 °C. Supernatants were aspirated and pellets
were resuspended in 35 μL denaturing buffer (PBS, 1X
LDS, 100 mM DTT). Samples were boiled, analyzed by
SDS-PAGE, and Western blotted with goat anti-gp120
antibody as described.
To determine the efficiency of infection, filtered cellular

supernatants containing virions were added to suspended
Cf2Th-CD4/CCR5 cells. The mixture was incubated at
37 °C/5% CO2 for 48 h before the cells were lysed in 1X
passive lysis buffer (Promega) at 80 μL/well for 24-well
plates, freeze-thawed once and cell lysates transferred to
black-white 96-well plates. Luciferase activity was then
quantified by a luminometer after the addition of 100 μl of
luciferin buffer (15 mM MgSO4, 15 mM KPO4 (pH 7.8),
1 mM ATP, and 1 mM DTT) and 50 μl of 1 mM firefly
d-luciferin, potassium salt (Gold Biotechnology). Signals
were measured at 20-s intervals by a luminometer.

Results
Soluble HIV-1 Envs with modified transmembrane regions
The HIV-1 gp41 transmembrane region forms a left-
handed coiled coil in the cryo-EM structure of the
HIV-1JR-FL Env(−)Δ712 trimer and in the NMR struc-
ture of a transmembrane region peptide in a detergent-

lipid bicelle [62, 66] (Fig. 1a). These structural models
predict that six hydrophobic residues are located on the
faces of the helical coiled coil that interact with the
lipid membrane: Ile 688, Leu 692, Leu 695, Val 698, Leu
702 and Val 705. We hypothesized that alteration of
these residues could eliminate the membrane anchorage
of the HIV-1JR-FL Env(−)Δ712 glycoprotein while poten-
tially preserving the interprotomer interactions that help
maintain trimer conformation. When these residues in the
HIV-1JR-FL Env(−)Δ712 glycoprotein were individually al-
tered to alanine, the resulting glycoproteins were effi-
ciently expressed in cells and, like the unmodified
Env(−)Δ712 glycoprotein, were completely cell-associated
(data not shown). Thus, replacement of these individual
non-polar aliphatic residues by alanine did not disrupt the
membrane anchorage of the Env(−)Δ712 glycoprotein.
Next, combinations of charged amino acids and glutam-

ine and alanine residues were introduced into all six helical
positions predicted to interact with the lipid bilayer (Fig. 1b).
Three of the mutants, TMmod2, TMmod4 and TMmod17,
were inefficiently expressed and secreted (Fig. 2a). The
remaining 13 mutants were secreted into the supernatants
of expressing cells (Fig. 2a). Thus, the introduction of at
least two charged residues into the transmembrane region
appeared to be required for efficient expression and/or se-
cretion of the Env(−)Δ712 glycoprotein.
We also designed a mutant, TMmod10v2, in which all

of the hydrophobic residues at the b, c, e, f and g positions
of the predicted transmembrane helices were altered
(Fig. 1c). In the TMmod10v3 mutants, the hydrophobic res-
idues at the b, c and f positions of the transmembrane
helices were altered (Fig. 1d). The TMmod10v2 and
TMmod10v3 Envs were secreted into the medium of ex-
pressing cells (Fig. 2b and data not shown). As a control,
four charged amino acid residues were introduced into
the Env(−)Δ712 transmembrane region, one into a residue
predicted to interact with the lipid bilayer and three lo-
cated in the interior of the coiled coil (TMmod18 in Fig. 1b
and e). The TMmod18 mutant was inefficiently expressed
and did not appear to be secreted from cells (Fig. 2a).
Thus, the introduction of multiple charged and polar
residues on the helical faces of the transmembrane
coiled coil that are predicted to interact with the lipid
bilayer resulted in secretion of the Env(−)Δ712 glyco-
proteins into cell supernatants. These results are con-
sistent with a model in which the surface of the
transmembrane helix facing away from the potential
trimer interface acts as a stop-transfer signal as Env is
inserted into the membrane of the ER.

Oligomerization state of the TMmod Env(−)Δ712
glycoproteins
To determine if the secreted TMmod Env(−)Δ712 gly-
coproteins oligomerize, the glycoproteins in the
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supernatants of expressing cells were analyzed on Blue
Native gels. To evaluate the contribution of the trans-
membrane region to Env oligomerization, HIV-1JR-FL
sgp140(−) was included for comparison. The sgp140(−)
glycoprotein is identical in sequence to the wild-type
Env(−)Δ712 glycoprotein but is truncated at residue 684
and therefore lacks a transmembrane region. The secreted
sgp140(−) glycoprotein formed trimers, dimers and mono-
mers, which migrated on Blue Native gels more slowly
than expected, as previously reported [48–52, 82, 83].

The secreted TMmod Env(−)Δ712 glycoprotein mutants
all exhibited similar overall patterns of migration on
Blue Native gels (Figs. 2b, 3a and data not shown). Sur-
prisingly, the TMmod mutants, including TMmod10v2 and
TMmod10v3, migrated as dimers (Figs. 2b, 3a and data
not shown). Apparently, some alterations of the gp41
transmembrane region significantly affect the ability of the
secreted Envs to form trimers. Given the similarity of the
phenotypes of the TMmod Env(−)Δ712 mutants, we se-
lected TMmod10 for additional studies.

a

c

d

b

e

Fig. 1 Location of changes in the transmembrane region of HIV-1JR-FL Envs. a The projection of the helical coiled coil in the HIV-1 Env transmembrane
region, based on the NMR structure of a peptide embedded in bicelles [29], is shown. Six hydrophobic residues (I688, L692, L695, V698, L702 and V705)
highlighted in red are predicted to be located on the lipid-interacting surface of the membrane-spanning coiled coil. b In the TMmod1-17 constructs,
the six hydrophobic residues on the putative lipid-interacting surface in a were changed to combinations of alanine, glutamine or charged amino acid
residues. c The TMmod10v2 construct is a TMmod10 variant with three additional changes (M687D, L697A and F699A) introduced to modify all of the
predicted external positions b, c, e, f, g on the helical coiled coil. d The TMmod10v3 construct is identical to TMmod10v2 except that the residues in the
e and g positions of the coiled coil (L692, L697 and F699) are wild-type in sequence. e The TMmod18 glycoprotein control contains four changes in
the transmembrane region, three of which (I686E, V693K and T700E) are predicted to be located in the interior of the coiled coil (at the
a position of the heptad repeat sequence)
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Glycosylation of the TMmod10 glycoprotein
The wild-type HIV-1 Env is cotranslationally modified
by a heavy coat of high-mannose carbohydrate chains [4,
8–10, 84]. After folding and trimerization, a small subset
of surface-exposed glycans are converted in the Golgi
apparatus to complex glycans [9, 10]. Envs with native

compact structures typically are rich in high-mannose
carbohydrates [8, 9, 55] and thus, are sensitive to degly-
cosylation by Endoglycosidase H. To evaluate glycosyla-
tion, the sgp140(−) and TMmod10 glycoproteins were
treated with PNGase F, which removes all N-linked car-
bohydrates, and Endoglycosidase Hf (Endo Hf), which

Fig. 2 Characterization of TMmod mutant Envs. a Cellular lysates and supernatants from 293T cells that were mock-transfected or transfected with
TMmod Env DNAs were Western blotted. Western blots shown in this figure used goat anti-gp120 antibody or a mouse anti-β-actin control. The
TMmod Envs with at least two new charged residues in the transmembrane region were secreted. The control TMmod18 Env was inefficiently
expressed and not secreted. The sgp140(−) Env lacks the transmembrane region. b The secreted Envs were analyzed by Blue Native PAGE. The
sgp140(−) glycoprotein migrated as a heterogeneous mixture of monomers, dimers and trimers. The representative TMmod10 protein migrated
predominantly as a dimer. The TMmod10v2 glycoprotein was also largely dimeric. Note that HIV-1 Envs migrate more slowly than expected in Blue
Native gels. c Transfected cell supernatants containing sgp140(−) and TMmod10 Envs were either mock-treated or treated with PNGase F (which
removes all N-linked glycans) or Endo Hf (which removes only high-mannose glycans). The Western blot shows that both sgp140(−) and TMmod10
Envs resist Endo Hf treatment, which indicates that they contain mostly complex carbohydrates. d Transfected cells expressing the E168K + N188A
(EKNA) variant of TMmod10, which allows HIV-1JR-FL Envs to be recognized by the PG9 and PG16 neutralizing antibodies [96–99], were incubated
with 50 mM kifunensine (a mannosidase I inhibitor). Cell supernatants were collected, deglycosylated with PNGase F or Endo Hf, and Western
blotted. Addition of kifunensine converted TMmod10 glycosylation from mostly complex glycans to high-mannose glycans. e, f Cell supernatants
containing the indicated soluble glycoproteins were precipitated with the indicated antibodies, and the precipitates were Western blotted with
goat anti-gp120 antibody. The three soluble Envs exhibit a similar pattern of antigenicity. One-fourth volume of the supernatant used for
immunoprecipitation was analyzed in the input lane. Data are representative of those obtained in at least two independent experiments
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removes only high-mannose carbohydrates. Both sgp140(−)
and TMmod10 were resistant to Endo Hf digestion, indicat-
ing that they are extensively modified by complex carbohy-
drates (Fig. 2c). As a control, cells producing the TMmod10
glycoprotein were treated with kifunensine, a mannosidase
I inhibitor [85]; the TMmod10 glycoprotein produced in
kifunensine-treated cells was, as expected, efficiently
deglycosylated by Endo Hf (Fig. 2d). Apparently, both
the sgp140(−) and TMmod10 glycoproteins allow efficient
access to glycosyltransferases in the Golgi apparatus that
convert high-mannose carbohydrates to complex sugars.

Antigenicity of the TMmod10 and TMmod10v2 mutants
The recognition of the sgp140(−), TMmod10 and
TMmod10v2 glycoproteins by a panel of monoclonal
antibodies was evaluated (Fig. 2e and f). The antigenicity
of the three Env glycoproteins was similar. The 2G12
and VRC01 broadly neutralizing antibodies, which recognize
a glycan-dependent epitope on the gp120 outer domain [86]
and the CD4-binding site [87], respectively, precipitated the
TMmod Env(−)Δ712 mutants efficiently. These secreted Envs
were also recognized by 19b, a weakly neutralizing antibody
against the gp120 V3 region [88], and 902090, a poorly neu-
tralizing antibody against a linear V2 epitope [89]. The 17b
antibody, which recognizes a CD4-induced (CD4i) epitope
that overlaps the CCR5/CXCR4-binding site on gp120,
weakly precipitated the soluble Envs; the efficiency of 17b
recognition was increased in the presence of sCD4, as ex-
pected [90]. These results indicate that some epitopes for
weakly neutralizing antibodies are accessible on the TMmod

Env(−)Δ712 glycoproteins.

Inclusion of gp41 cytoplasmic tail sequences in the TMmod

Env mutants
Sequences in the Env cytoplasmic tail have been suggested
to influence the folding and/or conformation of the HIV-1
Env ectodomain [91–95]. We asked whether the addition
of cytoplasmic tail sequences to the TMmod10 Env would
affect the properties of the glycoprotein. Full-length,
cleavage-negative HIV-1JR-FL Env and Δ808 versions of
TMmod10 were not secreted; a TMmod10 Env(−)Δ753
glycoprotein was secreted and, like the Δ712 glycoprotein,
was mostly dimeric (Fig. 3a).
The PG9 and PG16 antibodies recognize quaternary

epitopes in the gp120 trimer association domain [96–99].
Because the HIV-1JR-FL Env is not recognized by these
antibodies, we introduced the E168K +N188A (EKNA)
changes into the TMmod10 Env(−)Δ712 and Env(−)Δ753
glycoproteins to restore the PG9 and PG16 epitopes. The
TMmod EKNA Env(−)Δ712 and Env(−)Δ753 glycoproteins
were precipitated inefficiently by the PG9 and PG16 anti-
bodies, less efficiently than by the VRC01, 2G12 or
PGT121 antibodies (Fig. 3b). These results are consistent
with the TMmod EKNA Env(−)Δ712 and Env(−)Δ753

glycoproteins exhibiting a more open, less compact Env
structure than the native Env.

Modifications of the gp120-gp41 cleavage site
The proteolytic cleavage of gp120 and gp41 can influ-
ence the antigenicity of HIV-1 Env [76, 100–107]. We
produced a version of TMmod10 EKNA called
TMmod10(+) EKNA with a wild-type sequence at the
gp120-gp41 cleavage site. Flexible linkers inserted at the
gp120-gp41 cleavage site of sgp140 SOSIP.664 glycopro-
teins can mimic the effects of proteolytic cleavage on
Env antigenicity [58, 59]. Therefore, we also produced a
TMmod10 EKNA variant with a flexible linker at the
gp120-gp41 cleavage site (TMmod10modCS EKNA). The
migration of the secreted TMmod10 EKNA, TMmod10(+)
EKNA and TMmod10modCS EKNA glycoproteins on
Blue Native gels was similar, although the TMmod10(+)
EKNA glycoprotein exhibited less distinct forms, pos-
sibly indicating greater heterogeneity (Fig. 3c). The anti-
genic profiles of these three glycoproteins were also
similar (Fig. 3d). Thus, the modifications of the gp120-
gp41 cleavage site had little effect on the oligomerization
properties of the TMmod10 EKNA Env.

Addition of C-terminal trimerization motifs to TMmod Envs
The addition of C-terminal trimerization motifs from
GCN4 or fibritin have been used to increase the homo-
geneity of soluble HIV-1 Env trimers [35, 44–47, 108].
As previously shown [44–47], the addition of a fibritin
trimerization domain to the sgp140(−) glycoprotein re-
sulted in efficiently secreted trimers (Fig. 4a). The TMmod10
FT glycoprotein with the fibritin motif was secreted ineffi-
ciently, but migrated on Blue Native gels in a manner con-
sistent with a trimer. The TMmod10 FT glycoprotein was
resistant to Endo Hf, indicating that it is heavily modified
by complex carbohydrates (Fig. 4b). Despite the greater
relative homogeneity of the sgp140(−) FT and TMmod10 FT
trimers, the antigenic profile of the EKNA variants of these
glycoproteins was very similar to that of the sgp140(−) and
TMmod10 Envs (Fig. 4c). Thus, all of the soluble Envs stud-
ied herein exhibit ectodomain conformations that are less
compact than that of the native membrane Env.

Stabilization of membrane Envs
Membrane-anchored HIV-1 Envs represent native, func-
tional Env forms, but are not as efficiently expressed or
as conveniently purified as soluble Envs. Moreover, after
detergent solubilization of Env from membranes, Env
trimers typically exhibit instability [109–111]. We inves-
tigated the value of adding a C-terminal fibritin trimeri-
zation domain to the HIV-1JR-FL Env(+)Δ712 and
Env(−)Δ712 glycoproteins. These membrane-anchored,
cytoplasmic tail-deleted Envs are identical, except that
the gp120-gp41 cleavage site is altered in the latter
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construct. The Env(+)Δ712 and Env(−)Δ712 glycopro-
teins and their counterparts with C-terminal fibritin tri-
merization domains were expressed transiently in 293T
cells. Membranes were prepared from the cells and the
membrane Envs were solubilized in detergents. The de-
tergent solutions were immediately analyzed on Blue
Native gels, and the Envs were detected by Western
blotting. In addition to the trimeric forms, nearly half of
the Env(−)Δ712 and Env(+)Δ712 glycoproteins (without
the C-terminal fibritin trimerization domain) migrated
as dimers, and another smaller fraction migrated as
monomers (Fig. 5a). By contrast, the Env(−)Δ712 FT and
Env(+)Δ712 FT glycoproteins migrated predominantly as
trimers. Thus, the trimeric forms of the Env(−)Δ712 FT

and Env(+)Δ712 FT glycoproteins are stabilized by the
addition of a C-terminal fibritin trimerization domain.
The glycosylation of the Env(−)Δ712, Env(+)Δ712,

Env(−)Δ712 FT and Env(+)Δ712 FT glycoproteins purified
from membranes was examined. All four glycoproteins
were efficiently deglycosylated by Endo Hf, in contrast to
the sgp140(−) and TMmod10 glycoproteins (Fig. 5b). Thus,
as expected for native membrane Envs, the Env(−)Δ712,
Env(−)Δ712 FT, Env(+)Δ712 and Env(+)Δ712 FT glyco-
proteins are mainly modified by high-mannose carbohy-
drates. This property does not apparently change with
the addition of the C-terminal fibritin motif.
The Env(+)Δ712 FT glycoprotein was efficiently expressed

on the surface of transfected 293T cells (Fig. 5c). Unlike the

Fig. 3 Effects of cytoplasmic tail and cleavage site modifications on TMmod10 Env. a The TMmod10 EKNA variant has the E168K + N188A changes
that allow the HIV-1JR-FL Env to be recognized by the PG9 and PG16 antibodies [96–99]. The full-length TMmod10 EKNA Env or the TMmod10 EKNA
variants with a deleted (Δ712) or truncated (Δ753 and Δ808) cytoplasmic tail were expressed in 293T cells. The cell lysates and supernatants were
analyzed by SDS-PAGE, and the cell supernatants by Blue Native PAGE. The gels shown in this figure were Western blotted with a polyclonal goat
anti-gp120 antibody. Addition of the cytoplasmic tail did not prevent TMmod10 EKNA expression in cells, but only the TMmod10Δ753 EKNA
glycoprotein with the shortest tail was secreted. The secreted TMmod10Δ753 Env was mainly dimeric based on the Blue Native gel. b The
TMmodΔ712 and TMmodΔ753 EKNA Envs precipitated from the supernatants of expressing cells by the indicated antibodies are shown. The
antigenic profiles of these two Envs are similar. c TMmod10 EKNA variants with modifications of the cleavage site, including a wild-type cleavage site
(+) or a flexible linker ((GGS)4) replacing the cleavage site (modCS), were analyzed as in a. Note that the TMmod10 (+) EKNA Env is partially cleaved, as
indicated by the presence of a gp120 band on SDS-PAGE. d Precipitation of the TMmod10 and TMmod10 EKNA variants by the indicated antibodies is
shown. Data are representative of those obtained in at least two independent experiments
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soluble Envs (Fig. 4c), the membrane-anchored Envs were
inefficiently recognized by the poorly neutralizing antibodies
902090 and 17b (Fig. 5d). Following incubation with soluble
CD4 (sCD4), 17b recognition of the Envs was increased.
The proteolytic processing of the Env(+)Δ712 FT glycopro-
tein was less efficient than that of the Env(+)Δ712 glycopro-
tein (Fig. 5e). We tested the ability of the HIV-1JR-FL
Env(+)Δ712, Env(+)Δ712 FT and Env(−)Δ712 FT glycopro-
teins to mediate cell-cell fusion in an α-complementation
assay. The Env(+)Δ712 glycoprotein mediated cell-cell fu-
sion very efficiently in this assay (Fig. 5f). Consistent with
the importance of gp120-gp41 cleavage for HIV-1 Env func-
tion, the activity of the Env(−)Δ712 glycoprotein was near
the background level of the assay. The Env(+)Δ712 FT
glycoprotein mediated cell-cell fusion at 35% of the effi-
ciency of the Env(+)Δ712 glycoprotein, consistent with the
lower degree of processing of Env(+)Δ712 FT (Fig. 5e). We
tested the hypothesis that the interactions among the fibritin

trimerization domains at the C-terminus of the Env(+)Δ712
FT glycoproteins contributed to the relative decrease in the
processing and syncytium-forming ability of this Env variant.
Consistent with this hypothesis, the Env(+)Δ712 FTmut

glycoprotein, in which the residues Y469 and R471 that con-
tribute to trimerization of the fibritin domain were altered,
mediated cell-cell fusion as efficiently as the Env(+)Δ712
glycoprotein (Fig. 5f). The Env(+)Δ712 FTmut glycoprotein
was cleaved more efficiently than the Env(+)Δ712 FT glyco-
protein (Fig. 5e), providing one explanation for the better
syncytium-forming ability of Env(+)Δ712 FTmut.

The ability of the membrane Env variants to mediate
virus entry was evaluated in a single-round env comple-
mentation assay. The HIV-1JR-FL Env(+)Δ712 FT glycopro-
tein did not detectably support virus entry into Cf2Th-
CD4/CCR5 cells in this assay, whereas the Env(+)Δ712
FTmut glycoprotein mediated infection at a level 37% of
that observed for the Env(+)Δ712 glycoprotein (Fig. 5g).

a b

c

Fig. 4 Effect of a fibritin trimerization motif on the TMmod10 Env. a Cell lysates and supernatants from 293T cells expressing the EKNA variants of
sgp140(−) or TMmod10, or these Envs with a C-terminal fibritin trimerization domain (sgp140(−) FT and TMmod10 FT, respectively), were analyzed
on gels and Western blotted. A polyclonal goat anti-gp120 antibody was used to detect the Envs on the Western blots shown in this figure.
Addition of the fibritin domain to the C-terminus of TMmod10 did not prevent Env expression but significantly diminished release of the
TMmod10 FT glycoprotein from the cells. b The indicated soluble Envs were subjected to digestion with PNGase F or Endo Hf and Western
blotted. c Antibody precipitation of the EKNA variants of sgp140(−), sgp140(−) FT, TMmod10 and TMmod10 FT Envs secreted into the medium
of expressing cells is shown. All EKNA Env constructs contain the E168K + N188A changes that restore the PG9/PG16 epitopes [96–99]. Data
are representative of those obtained in duplicate or two independent experiments
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Differences in the amount of mature, processed Env glyco-
proteins in the virions correlated with the differences in
virus infection (Fig. 5h). Taken together, these results

suggest that the presence of a fibritin trimerization do-
main at the C-terminus of the Env(+)Δ712 glycoprotein
can affects its incorporation into virions.

a b c

d e

f g

h

Fig. 5 Effect of the C-terminal fibritin trimerization motif on membrane-anchored Envs. a Envs purified from transfected 293T cell membranes were
analyzed by Blue Native PAGE. The Env(−)Δ712 FT and Env(+)Δ712 FT glycoproteins migrate at a size expected for trimers. b The purified soluble or
membrane Envs were treated with PNGase F (top panel) or Endo Hf (bottom panel). The arrows indicate Envs after Endo Hf digestion. Compared to
sgp140(−) and TMmod10 Envs, which are relatively resistant to Endo Hf digestion, purified membrane Envs are Endo Hf-sensitive, and thus rich in high-
mannose carbohydrates. c Flow cytometry was used to study Env surface expression and recognition by the 2G12 glycan-dependent antibody and the
VRC01 CD4-binding site antibody. d To immunoprecipitate cell-surface Env, 293T cells transiently expressing the indicated Envs were incubated with
antibodies, washed and lysed. Cell lysates were incubated with Protein A-Sepharose beads. Precipitates were Western blotted with a goat anti-gp120
antibody. e To assess cell-surface Env processing, cells expressing the indicated Envs were biotinylated as described in Methods. The cell lysates (upper
panel) or deglycosylated cell-surface Envs (lower panels) were Western blotted with the 4E10 anti-gp41 antibody. After deglycosylation, the uncleaved Env
is 75 kD, and the cleaved transmembrane Envs are 20–23 kD. f An α-complementation assay was used to measure Env-mediated cell-cell fusion. The
reduced cell-cell fusion activity of Env(+)Δ712 FT was restored by the disruption of fibritin trimerization in the Env(+)Δ712 FTmut glycoprotein. g The infectivity of
recombinant luciferase-expressing HIV-1 with the indicated Envs was measured on Cf2Th-CD4/CCR5 target cells. The luciferase activity in the
target cells was normalized to that observed for the Env(+)Δ712 glycoprotein. h Virions pseudotyped with the indicated Env proteins were
purified through a 20% sucrose cushion, denatured and Western blotted. Data in this figure are representative of, or averaged from, those
obtained in at least two independent experiments. Error bars are standard deviations
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Discussion
CD4 binding has been shown to trigger transformation
of the HIV-1 Env from an unliganded conformation
(State 1) to an intermediate conformation (State 2) and
then to the prehairpin intermediate (State 3) [13, 14].
The degree to which HIV-1 Env variants sample these
conformational states spontaneously, in the absence of
CD4, can determine their ability to utilize low levels of
target cell CD4 and their susceptibility to antibody
neutralization [12, 14]. Therefore, primary HIV-1 Envs
need to maintain Env in a State 1 conformation, a situation
that depends upon the integrity of multiple gp120 and
gp41 components, including the membrane-interactive ele-
ments of gp41, i.e., the transmembrane region and MPER
[12, 14, 71–74]. We investigated various strategies for ex-
pressing HIV-1 Envs that contain minimally modified ecto-
domains and include membrane-interactive components.
Guided by the available information, we altered the

helical faces of the transmembrane coiled coil that are
predicted to interact with the lipid bilayer [62, 66]. The
wild-type HIV-1 Env has leucine, valine and isoleucine
residues on these helical faces; this is consistent with the
preference for these hydrophobic amino acids at the lipid
interface in many multispanning alpha-helical membrane
proteins [112]. Substitution of single alanine residues in
this putative lipid-interactive surface of the transmem-
brane region exerted no discernible effect on membrane
anchorage. However, when combined charged, polar and
alanine residues replaced the six hydrophobic residues
naturally located on these helical faces, the Env complex
was secreted into the medium. A control Env mutant in
which the residues predicted to face the interior of the
transmembrane coiled coil were replaced by charged resi-
dues expressed only at low steady-state levels and may
have been poorly folded. Thus, we disrupted a stop-
transfer signal in the Env transmembrane coiled coil by al-
tering predicted lipid-interactive faces of the HIV-1 trans-
membrane helical coiled coil. The membrane-anchorage
phenotypes of the Env mutant panel support the orienta-
tion of the Env transmembrane helices predicted by the
structural models [62, 66].
As previously observed [34–40], soluble cleavage-

negative sgp140(−) Envs lacking the transmembrane an-
chor formed heterogeneous oligomers, including trimers
[44]. The addition of the Env transmembrane region,
engineered to remove stop-transfer signals, significantly
increased the percentage of secreted Envs in dimeric
forms. Apparently, the interprotomer interactions that
are predicted to occur among the transmembrane heli-
ces in the wild-type Env are not maintained efficiently in
the secreted TMmod Envs. The favorable energetics of
such interactions in a membrane environment may not
apply in the context of a soluble protein. Although the
formation of soluble Env trimers could be restored by

the addition of a known trimerization domain from T4
bacteriophage fibritin [80], the resulting trimers were
similar in conformation to comparable soluble Env con-
structs lacking the gp41 transmembrane region. The sig-
nificant amount of complex carbohydrates and the
antigenic profile of both the soluble gp140 and TMmod

Env constructs, regardless of the addition of the fibritin
motif, indicate significant differences in conformation
from that of native HIV-1 Envs. The absence of the
interaction of the gp41 transmembrane region and/or
MPER with the membrane may result in an increase in
the overall conformational flexibility of the Env protomers
in these soluble glycoprotein trimers. Indeed, changes in
gp41 transmembrane residues and MPER residues near
the viral membrane have been shown to disrupt the main-
tenance of the HIV-1 Env in a State 1 conformation
[12, 71–74]. Thus, achieving a topology of the gp41
transmembrane region that supports a native State 1
Env conformation in the absence of a membrane-like
environment remains an elusive goal.
Certain conformations of the HIV-1 Env trimer ecto-

domains have been stabilized for structural analysis by
the introduction of gp120 and gp41 changes, or selected
by the binding of specific antibodies [48–59]. In all of
these structures, the gp41 membrane-spanning region
and MPER are disordered, leaving open the possibility
that the interaction with the membrane may make import-
ant contributions to the maintenance of Env structures
other than those stabilized states. A complete understand-
ing of the conformations sampled by the native unliganded
and receptor-bound HIV-1 Env may thus require the study
of Envs in membrane-anchored contexts. To this end, we
compared the properties of uncleaved and cleaved Envs
anchored in membranes, specifically demonstrating
that the addition of a fibritin trimerization domain to
the C-terminus could help to maintain trimer stability
after Env solubilization in detergent solutions. In con-
trast to the soluble Envs, the membrane Envs exhibited
a predominantly high-mannose carbohydrate profile,
indicative of a compact ectodomain with restricted ac-
cessibility of surface glycans.
The Env(+)Δ712 FT glycoprotein was expressed on the

surface of cells nearly as efficiently as its Env(+)Δ712 coun-
terpart, which lacks the fibritin trimerization (FT) domain.
Of interest, the proteolytic processing efficiency and cell-
cell fusing capacity of the Env(+)Δ712 FT glycoprotein
were lower than that of the Env(+)Δ712 glycoprotein. This
decreased activity of Env(+)Δ712 FT was relieved by alter-
ation of the trimer interface of the FT motif, suggesting
that the oligomeric interactions of the C-terminal fibritin
domain limit gp120-gp41 cleavage and the syncytium-
forming ability of Env in this context. Albeit decreased
compared with the Env(+)Δ712 glycoprotein, the intact
cell-cell fusing activity of the Env(+)Δ712 FT glycoprotein
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and the observed increase in the stability of these trimers
makes them attractive candidates for further study. For ex-
ample, these trimers could be useful tools to investigate
the impact of Env cytoplasmic components on ectodomain
conformation and function.
The trimerization of the C-terminal fibritin domain on

the Env(+)Δ712 FT glycoprotein appears to interfere with
the ability of the pseudotyped virions to support infection.
Compared with the Env(+)Δ712 and Env(−)Δ712 counter-
parts, the respective Env(+)Δ712 FT and Env(−)Δ712 FT
glycoproteins were incorporated less efficiently into virion
particles. Even more striking was the relative reduction in
the amount of the proteolytically cleaved Env in virions
for Env(+)Δ712 FT compared with Env(+)Δ712. These
phenotypes were partially reversed by alteration of the res-
idues implicated in trimerization of the C-terminal fibritin
motif. These results suggest that the presence of a trimeric
fibritin domain in the Env cytoplasmic tail may have inter-
fered with the efficient incorporation of Env, particularly
the mature Env, into HIV-1 virions.
The studies reported herein underscore the difficulty

of mimicking the functional State 1 conformation of Env,
which represents a major target for many small-molecule
entry inhibitors and most broadly neutralizing antibodies
[13, 14, 28], with soluble Envs. Our work provides a path
toward purification and characterization of HIV-1 Envs
that are anchored in the membrane and retain the ability
to fuse membranes. Such studies may be critical to the
discovery and optimization of interventions that disrupt
the process of virus entry for the purposes of HIV-1 treat-
ment and prophylaxis.

Conclusions
Introduction of at least two polar/charged residues into
the proposed lipid-facing side of the gp41 transmembrane
helical coiled coil resulted in release of the HIV-1 Env
from the membrane. These soluble TMmod Envs were di-
meric and loosely associated, implying that the modified
transmembrane region minimally contributes to the tri-
merization and antigenicity of the soluble Envs.
In contrast to the soluble Envs, the membrane-bound

Env assumed a compact conformation and thus is of
interest for structural and vaccine studies. Addition of
the C-terminal fibritin motif stabilized the membrane
Env trimer during preparation and represents a promis-
ing strategy for purification and characterization of
native-like Envs.
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