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Abstract

This note characterizes the impact of adding rare stochastic muta-
tions to an �imitation dynamic,�meaning a process with the properties
that any state where all agents use the same strategy is absorbing, and
all other states are transient. The work of Freidlin and Wentzell [10]
and its extensions implies that the resulting system will spend almost
all of its time at the absorbing states of the no-mutation process, and
provides a general algorithm for calculating the limit distribution, but
this algorithm can be complicated to apply. This note provides a sim-
pler and more intuitive algorithm. Loosely speaking, in a process with
K strategies, it is su¢ cient to �nd the invariant distribution of a K�K
Markov matrix on the K homogeneous states, where the probability of a
transit from "all play i" to "all play j" is the probability of a transition
from the state "all agents but 1 play i, 1 plays j" to the state "all play
j."

1 Introduction

Many papers in economics and evolutionary game theory study various sorts
of �imitation dynamics,�according to which agents are more likely to adopt
strategies that are popular and/or successful.1 Under the starkest version of
these dynamics, it is impossible for agents to adopt a strategy that is not cur-
rently in use, so that any �homogeneous�state where all agents use the same
strategy is absorbing. Moreover, it is typically the case that all of the interior
states are transient, so that the dynamics converges to one of the homogeneous
states. This does not mean that all of these states are equally plausible, as

1See e.g. [3], [7], [8], [18].
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they may di¤er in their robustness to a small probability of mutation or ex-
perimentation. One way to formalize the idea that some of the homogeneous
states are �more persistent� than others it to assume that a small mutation
term makes the system ergodic, and then analyze the limit, as the mutation
probability goes to zero, of the invariant distributions. The work of Freidlin
and Wentzell [10] and its subsequent applications and extensions2 shows that
the resulting system will spend almost all of its time at the absorbing states
of the underlying no-mutation process, and provides a general algorithm for
calculating the limit distribution, but this algorithm can be complicated to
apply, especially in games with more than two strategies.

This note provides a simpler and more intuitive algorithm for imitation
processes with the property that a single mutation is enough for there to be
a positive probability of a transition away from any homogeneous state. The
simplest version of the result applies to the "anonymous" case, where the state
is simply the number of agents playing each strategy. Here, in a game with K
strategies, it is su¢ cient to �nd the invariant distribution of a K �K Markov
matrix on the K homogeneous states, where the probability of a transit from
�all play i� to �all play j� is the probability of a transition from the state
�all agents but 1 play i, 1 plays j�to the state �all play j.�The more general
version of our result allows for larger state spaces, as in Ellison�s [5] model of
local interaction.

One implication of the result is that the properties of the no-mutation
process at strictly interior points have no impact on the limit distribution.
Intuitively, when mutations are of order ", the process will spend 1� O(") of
the time at the homogeneous states, which are the vertices of the state space,
O(") time on the "edges" where only two strategies have positive probability,
and o(") time at interior points. A second implication is that the ratio of the
mutation probabilities will matter, even when this ratio is bounded away from
zero and in�nity; this is related to the fact that a single mutation is enough
to cause a transition from one homogeneous state to another.

2 Anonymous Populations

This section states our assumptions and conclusion for the case of an anony-
mous population; section 4 considers a more general state space. Consider
a game with K pure strategies denoted by 1; : : : ; K. We �x a number N
of agents, and suppose that the state space S is simply the number of agents
playing each strategy. For " � 0, let fX"(t) : t = 0; 1; : : : g be a homoge-
neous Markov chain with state space S and transition probabilities p"(s; s0),
s; s0 2 S. The chain describes the composition of a population, which is as-

2 [4] pp. 255-258 gives a lucid and easy to use summary of the basic results. [15] gives a
fairly general discrete-time formulation. [12] and [20] are early applications to equilibrium
selection in games.
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sumed to be of constant size. The parameter " determines the size of mutation
rates, as speci�ed below. The chain fX0(t)g describes the evolution without
mutations; it has transition probabilities p0(s; s0). We assume that under p0;
if at any time a strategy is not played, it will remain absent; thus for each i
the homogeneous state si in which all players use strategy i is absorbing. We
further assume that all other states in S are transient under p0:

Assume that the transition probabilities p"(s; s0) depend continuously on
"; and that for every " > 0, fX"(t)g is irreducible. Let �" = f�"(s)gs2S
denote the unique invariant distribution of fX"(t)g, " > 0. A standard
argument implies that for every state s 2 S n fs1; : : : ; sKg, lim"!0 �"(s) = 0:

3

We will show how to compute the limit distribution lim"!0 �" by working with
a Markov process on state space fs1; : : : ; sKg.

For j 6= i let si=j denote the almost pure state in which all players use i
except for one, which uses j.

Assumption 1: For i = 1; : : : ; K,

lim
"!0

p"(si; si=j)

"
= �ij � 0; j 6= i: (1)

Assumption 2: For i = 1; : : : ; K,

lim
"!0

p"(si; s)

"
= 0 for all s 2 S n fsi; si=1; : : : ; si=i�1; si=i+1; : : : ; si=Kg: (2)

Combined, these assumptions imply that each transition has a well-de�ned
limiting order, that the probability that a single mutant invades a pure popu-
lation is O("), while the probability that two or more mutants invade simulta-
neously is o("). We do allow that for some pure population states the invasion
probabilities of certain mutant types are o("). That is, we allow that �ij = 0
for some i; j. The precise requirements are given below in connection with the
matrix �.

In biological applications it may be natural to assume that all of the mu-
tation probabilities p"(si; si=j) are of the same order, so that �ij > 0 for all
i; j with i 6= j. However, in the context of learning models, where mutations
may be interpreted as mistakes, certain types of mistakes may not occur or
more generally may become in�nitely less likely than others. In this case,
p"(si; si=j) = 0 for some i; j and all " > 0, and so �ij = 0.

Under the no-mutation process; absent strategies remain absent. Thus if
X0(0) = si=j, then fX0(t)g will be absorbed in si or sj. Let �ij denote the

3This is an implication of Theorem 4 of [20], but it can be shown directly with a much
shorter argument. Assume there exists some state s 2 S n fs1; : : : ; sKg such that �"(s) 6! 0
as " ! 0. Then there is a sequence ("(k))1k=1 � (0;1) with "(k) ! 0 and a distribution
�� = f��(s)gs2S with ��(s) > 0 such that �"(k)(s) ! ��(s) for every s 2 S. Since
�"(k)(s) =

P
r2S �"(k)(r)p"(k)(r; s) for every k, it follows that �

�(s) =
P

r2S �
�(r)p0(r; s),

that is, �� is an invariant distribution for the limit process. But then ��(s) > 0 implies
that �s is recurrent under the no-mutation process (see Theorem 4.5 in Durrett [9], page 306)
which yields a contradiction.
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probability that the no-mutation process will be absorbed in sj. That is, �ij
is the probability that a population of i-players invaded by a single j-player
evolves without mutations to a population of all j-players. De�ne a K �K
matrix � = (�ij) by

�ij = �ij�ij; j 6= i; �ii = 1�
X
j 6=i

�ij�ij:

For i 6= j, �ij is the probability that in a population of i-players a single
j-mutant occurs times the probability that this mutant takes over the whole
population so that only j-players remain. Every row sum of � is 1, and,
rescaling the parameter " if necessary, we may also assume that every diagonal
entry of � is non-negative.4 Thus � can be regarded as the transition matrix
of a Markov chain with state space fs1; : : : ; sKg. The following condition on
� is the key to our result:

Assumption 3: There is a unique vector � = (�1; : : : ; �K) with

�� = �; �1 + � � �+ �K = 1; �1 � 0; : : : ; �K � 0: (3)

Condition (3) means that � is an invariant distribution of the chain. In
particular, if for every pair of distinct strategies i; j, there exists a sequence
i0; i1; : : : ; im with i0 = i and im = j such that �ik;ik+1 > 0 for k = 0; : : : ;m�1,
then � is an irreducible matrix and there exists a unique � satisfying (3). An
even simpler su¢ cient condition is that for all pairs of di¤erent strategies i; j,
�ij > 0 and �ij > 0, so that a single mutation can cause a transition from any
basin to any other. In a more restricted setting, Noldeke and Samuelson [16]
show that if a state is in the support of the limit distribution, then so is any
other state that can be reached with a single mutation; when � is irreducible,
their condition applies to every homogeneous state. Conversely, Assumption
3 implies that there is at most one state that cannot be exited with a single
mutation. The assumption therefore rules out the cases studied by [12] and
[20], where �ij = 0 for all pairs i; j, and � is a diagonal matrix. Theorem 1 says
that the limit distribution is the unique invariant distribution of Assumption
3.

Theorem 1 In the anonymous-population model, under Assumptions 1 through
3, lim"!0 �"(si) = �i for i = 1; : : : ; K:

Proof. This is a consequence of the more general theorem 2.

Note that in general multiplying one of the �ij by a positive constant,
leaving the other �0s unchanged, will change � and hence change the limit dis-
tribution. This is in contrast to previous work such as Kandori et al [12] where

4Replacing X" with ~X" = Xc" and p" with ~p" = pc" does not change the limit behavior
of the ergodic distributions. From (1), lim"!0 ~p"(si; si=j)=" = c�ij = ~�ij and so, if c > 0 is
su¢ ciently small, ~�ii = 1�

P
j 6=i ~�ij�ij � 0 for i = 1; : : : ;K.
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the ratio of the mutation probabilities has no e¤ect on the limit distribution so
long as it is bounded away from 0 and in�nity.5 This dependence on the ratio
of the two sorts of mutations is a consequence of the fact that for �xed N the
limit distribution assigns positive probability to more than one point, which
in turn is related to the fact that a single mutation is enough to cause a tran-
sition from one homogeneous state to another. The "bandwagon properties"
analyzed by [14] lead to the conclusion that it is su¢ cient to analyze direct
transitions from one homogeneous state to another, but their assumptions are
rather di¤erent, as they impose restrictions on the payo¤matrix of the game,
and do not assume that a single mutation can upset a homogeneous steady
state.

3 Examples

Example 1. Consider a game with two strategies, i.e. K = 2, and suppose
�12 = �21 = � > 0 and that �12 and �21 are strictly positive as well. Then

� =

�
1� ��12 ��12
��21 1� ��21

�
is irreducible, and strictly positive for small enough �: Hence it has unique
invariant distribution

� =

�
�21

�12 + �21
;

�12
�12 + �21

�
;

and �" converges weakly to the probability measure on S that puts mass
�21

�12+�21
and �12

�12+�21
on s1 and s2, respectively.

Example 2. As a less trivial example, we consider the case of three pure
strategies, 1; 2; 3. We suppose that the no-mutation process is the frequency-
dependent Moran process studied by [11], where the payo¤matrix is (aij)3i;j=1;
and each pure strategy is a strict Nash equilibrium. 6 Suppose the population
size is N and �ij = � 2 (0; 12) for all i 6= j. Then the absorption probabilities
�ji are given by

�ji =
1

1 +
N�1X
k=1

kY
l=1

gl(i; j)

fl(i; j)

;

5Bergin and Lipman [2] show that allowing the ratio of mutation probabilities to converge
to 0 or in�nity does change the limit distribution in the model of Kandori et al [12].

6 [11] compute the limit distribution of this process in general 2x2 games, and compute
the limit of the limit distribution as the population becomes in�nite in these games and in
3x3 coordination games.
[19] compare the absorption probabilities of the no-mutation version of the process to the

benchmark of neutral selection; [17] apply that calculation to the two strategies "All D"
and "Tit for Tat" in the �nitely repeated prisoner�s dilemma.
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where

fl(i; j) =
aii(l � 1) + aij(N � l)

N � 1 ; gl(i; j) =
ajil + ajj(N � l � 1)

N � 1 :

The matrix � is

� =

241� �(�12 + �13) ��12 ��13
��21 1� �(�21 + �23) ��23
��31 ��32 1� �(�31 + �32)

35 :
This matrix is irreducible, and its unique invariant distribution is � = [1 +
2 + 3]

�1(1; 2; 3), where

1 = �21�31 + �21�32 + �31�23;

2 = �31�12 + �12�32 + �32�13;

3 = �21�13 + �12�23 + �13�23:

We conclude that the ergodic distribution �" converges weakly to the distri-
bution on S that puts mass �i at si, i = 1; 2; 3. Thus when the mutation
probabilities are small, X� spends time at the states s1; s2; s3 roughly in pro-
portions �1 : �2 : �3 and almost no time at other states.

Consider the pay-o¤ matrix

A =

0@1:0 1:0 2:0
0:1 2:5 1:0
0:1 1:0 4:0

1A
and suppose �ij = 0:1 for all i 6= j. Using the above expression for �, we
obtain that for N = 10, � = (:716; :061; :223), whereas for N = 50, � =
(:082; :0; :918). Suppose now that �21 = �23 = :001 and that the other �ij
remain unchanged. Thus, under a learning model, players of strategy 2 are
less likely to make mistakes than 1- or 3-players. Then, for N = 10, � =
(:101; :867; :032), but for N = 50, � = (:082; :004; :914).

Example 3. Consider the local interaction model of [5] and specialize to
the case of an odd number of agents (so that the only steady states of the no-
mutation process are homogeneous) and that each agent only interacts with
his two closest neighbors. Ellison looks at the myopic best reply dynamics,
but this is a form of imitation dynamics in coordination games, and in the case
under consideration, the homogeneous states are the only recurrent classes of
the no-mutation process.7 However, this example is not covered by Theorem
1, since the state space tracks the strategy played at each location, so a single
mutation can send the state "all A" to any one of N di¤erent con�gurations.
It is true that all of these con�gurations are in a sense identical, but that is
not true for the states where 2 agents play B and the rest play A. However,
the example is covered by the more general version of the theorem that we
present in the next section.

7With an even number of players, there is also a two-cycle.
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4 General Imitation Processes

To allow for the system to depend on the location or identity of the agents
playing each strategy, we now consider an arbitrary �nite state space S, and a
family of homogeneous Markov chains fX"(t) : t = 0; 1; : : : g on S with tran-
sition probabilities p"(s; s0), s; s0 2 S. As before, the chain fX0(t)g describes
the evolution without mutations; it has transition probabilities p0(s; s0). De-
note by si, i = 1; : : : ; K, the states that are absorbing under p0; we assume
that all other states in S are transient under p0: (In section 2 the absorbing
states were the homogeneous states.) Assume that the transition probabili-
ties p"(s; s0) depend continuously on "; and that for every " > 0, fX"(t)g is
irreducible. Let �" = f�"(s)gs2S denote the unique invariant distribution of
fX"(t)g, " > 0. Again, lim"!0 �"(s) = 0 for every s 2 S n fs1; : : : ; sKg.

Assumption 4: For every i = 1; : : : ; K and every s 2 S n fsig, �is =
lim"!0

p"(si;s)
"

exists.

Let Si denote the set of states s in S n fsig such that �is > 0; these are
the states that can be reached from si "with one mutation." In the model
of section 2, these were a subset of the states si=j where all agents but 1
play i. Thus Assumptions 1 and 2 together imply Assumption 4, and also
give additional structure on the sets Si. Working on an arbitrary state space,
we do not have much a priori idea of what the absorbing states or the sets
Si might look like; and instead de�ne them from the limit of the transition
probabilities.

Let �sj denote the probability that starting at s the no-mutation process
will be absorbed in sj. (With this notation, the absorption probabilities �ij
used in section 2 are denoted by �si=j ;j.) De�ne a K � K matrix � = (�ij)

by �ij =
P

s2Si �is�sj for i 6= j and �ii = 1 �
P

j 6=i �ij. As before, every row
sum of � is 1, and, rescaling the parameter " if necessary, we may also assume
that every diagonal entry of � is non-negative. Thus � can be regarded as the
transition matrix of a Markov chain with state space fs1; : : : ; sKg.

Assumption 5: There is a unique vector � = (�1; : : : ; �K) with

�� = �; �1 + � � �+ �K = 1; �1 � 0; : : : ; �K � 0:

Note that Assumption 5 reduces to Assumption 3 for the model of section
2.

As with Theorem 1, Theorem 2 says that the limit distribution is the in-
variant distribution corresponding to �. The �rst part of the proof shows that
it is su¢ cient to compute the invariant distribution of the embedded Markov
chain on the homogeneous states, the second part of the proof calculates what
this distribution is. Theorem 4 of [20] determines which states belong to the
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support of the limit distribution by analyzing the �rst-order terms in the in-
variant distribution of the embedded chain.8 Our theorem provides a simple
means to directly calculate the limit distribution.

Theorem 2 In the general imitation model, under Assumptions 4 and 5,

lim
"!0

�"(si) = �i for i = 1; : : : ; K:

Proof. For " � 0, let fY "(t)g be the Markov chain obtained from observing
fX"(t)g only when it is in fs1; : : : ; sKg. Speci�cally, Y "(t) = X"(� "t), t =
0; 1; : : : , where

� "0 = minfu � 0 : X"(u) 2 fs1; : : : ; sKgg;
� "t+1 = minfu > � "t : X"(u) 2 fs1; : : : ; sKgg; t � 0:

Note that Pf� "t < 1g = 1 for every t � 0. For " > 0, fX"(t)g is irreducible,
and so fY "(t)g is irreducible as well. Let �" = (�"(s1); : : : ; �"(sK)) denote the
ergodic distribution of fY "(t)g. According to the strong law of large numbers
for Markov chains [see e.g. Theorems 4.6 and 5.1 in Durrett [9], pages 307 and
312], for i = 1; : : : ; K,

lim
T!1

#ft � T : X"(t) = sig
T + 1

= �"(si); lim
T!1

#ft � T : Y "(t) = sig
T + 1

= �"(si);

where #A denotes the number of elements of the set A. For every T ,

#ft � T : X"(t) = sig � #ft � T : Y "(t) = sig;

and so
�"(si) � �"(si); i = 1; : : : ; K; " > 0:

Since
PK

i=1 �"(si) ! 1 as " ! 0, it follows that if �"(s1); : : : ; �"(sK) converge
as "! 0, then so do �"(s1); : : : ; �"(sK) and the respective limits must coincide.
It remains to show that �" ! �.

To determine the limit behavior of the transition probabilities q"(si; sj) of
the embedded chain fY "(t)g note �rst that

q"(si; sj) = P fX"(� "1) = sjjX"(0) = sig
=
X
s2S

p"(si; s)P fX"(� "0) = sjjX"(0) = sg : (4)

Consider the case i 6= j. Then

P fX"(� "0) = sjjX"(0) = sig = P fX"(0) = sjjX"(0) = sig = 0:
8See [13] for a simpler version of the argument. The result is the discrete-time, discrete-

state version of Freidlin andWentzell�s continuous-time, continuum-state analysis; [15] treats
the case of discrete-time and a continuum of states. [6] gives a fairly general su¢ cient
condition for the limit distribution to be concentrated on a single point.
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Hence, by (4) and Assumption 4,

lim
"!0

q"(si; sj)

"
= lim

"!0

X
s2Snfsig

p"(si; s)

"
P fX"(� "0) = sjjX"(0) = sg

= lim
"!0

X
s2Snfsig

�isP fX"(� "0) = sjjX"(0) = sg

= lim
"!0

X
s2Si

�isP fX"(� "0) = sjjX"(0) = sg : (5)

For every s� 2 Si,

lim
"!0

P fX"(� "0) = sjjX"(0) = s�g = lim
"!0

1X
t=0

P fX"(t) = sj; �
"
0 = tjX"(0) = s�g :

(6)
The assumption that all states in S n fs1; : : : ; sKg are transient for fX0(t)g
implies that there exist T <1 and � > 0 such that Pf� 00 < T jX0(0) = sg > 2�
for all s 2 S n fs1; : : : ; sKg. Therefore, for some "0 > 0, Pf� "0 < T jX"(0) =
sg > � for all s 2 S n fs1; : : : ; sKg and all 0 � " � "0. Consequently, Pf� "0 �
mT jX"(0) = sg � (1 � �)m for all s 2 S n fs1; : : : ; sKg, m = 0; 1; : : : , and
all 0 � " � "0. In particular, if bt=T c denotes the largest integer less than or
equal to t=T ,

P fX"(t) = sj; �
"
0 = tjX"(0) = s�g � P f� "0 � bt=T cT jX"(0) = s�g

� (1� �)bt=T c � (1� �)�1+t=T

for every t = 0; 1; : : : and 0 � " � "0. Thus, by the Weierstrass M-test, the
series in (6) converges uniformly on [0; "0], so that we can interchange limit
and in�nite sum, see e.g. Apostol [1], Theorems 9.6 and 9.7, page 223. Hence

lim
"!0

P fX"(� "0) = sjjX"(0) = s�g =
1X
t=0

lim
"!0

P fX"(t) = sj; �
"
0 = tjX"(0) = s�g

=

1X
t=0

P
�
X0(t) = sj; �

0
0 = tjX0(0) = s�

	
= P

�
X0(� 00) = sjjX0(0) = s�

	
= �s�j:

Inserting this into (5) we obtain that

lim
"!0

q"(si; sj)

"
=
X
s2Si

�is�sj = �ij; i 6= j:

Therefore, since
Pn

j=1 q"(si; sj) = 1,

lim
"!0

q"(si; si)� 1
"

= lim
"!0

X
j 6=i

�q"(si; sj)
"

= �
X
j 6=i

�ij = �ii � 1:
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In matrix notation,

lim
"!0

1

"
[Q" � In] = �� In:

For every " > 0, �" is the unique non-negative solution to

�"
1

"
[Q" � In] = 0; �"(s1) + � � �+ �"(sK) = 1;

and, by Assumption 5, � is the unique non-negative solution to

�[�� In] = 0; �1 + � � �+ �K = 1:

It is now obvious that �" ! �. �

Example 3 revisted. The absorbing states are the homogeneous points
s1 (all play A) and s2 (all play B); the states in S1 and S2 are those with N�1
A0s and N � 1 B0s respectively. Suppose that strategy A is risk-dominant.
In a 2 � 2 game with 2 neighbors, a single mutation is not enough to leave
the basin of the risk-dominant equilibrium, that is �s1 = 1 for all s 2 S1; so
�12 =

P
s2S1

�1s�s2 = 0: Moreover, �s1 = 1 for all s 2 S2, so �21 > 0; and

� =

�
1 0
�21 1� �21

�
has a unique invariant distribution, namely (1,0). Thus we recover Ellison�s
conclusion that the limit distribution assigns probability 1 to the risk-dominant
equilibrium. Moreover, the same conclusion obtains provided that �s1 > 0 for
some s 2 S2; while the limit distribution gives positive probability to both
absorbing states if �s1 < 1 for some s 2 S1:
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