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ABSTRACT

The equatorial atmospheric variability shows a spectrum of significant peaks

in the wave number-frequency domain. These peaks have been identified with the

equatorially trapped wave modes of rotating shallow water wave theory. This pa-

per addresses the observation that the various wave types (e.g. Kelvin, Rossby,

etc.) and wave numbers show differing signal strength relative to a red back-

ground. It is hypothesized that this may be due to variations in the linear

stability of the atmosphere to the various wave types depending both upon the

specific wave type and the wavenumber. A simple model of the convectively

coupled waves on the equatorial beta plane is constructed to identify processes

that contribute to this dependence. The linear instability spectrum of the re-

sulting coupled system is evaluated by eigenvalue analysis. This analysis shows

unstable waves with phase speeds, growth rates, and structures (vertical and

horizontal) that are broadly consistent with the results from observations. The

linear system shows peak unstable Kelvin waves around zonal wavenumber seven

with peak growth rates of ∼ 0.08/day (e-folding time of ∼ 13 days). The system

also shows unstable Mixed Rossby-Gravity (MRG) and Inertio-Gravity waves

with significant growth in the zonal wavenumber range from negative (westward

phase speed) fifteen to positive (eastward phase speed) ten. The peak MRG/n=0

EIG growth rate is around one third that of the Kelvin wave and occurs at zonal

wavenumber three. The Rossby waves in this system are stable, and the Madden-

Julian Oscillation is not observed. Within this model, it is shown that besides

the effect of the Inter-Tropical Convergence Zone configuration, the differing in-
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stabilities of the different wave modes are also related to their different efficiency

in converting input energy into divergent flow. This energy conversion efficiency

difference is suggested as an additional factor that helps to shape the observed

wave spectrum.
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1. Introduction

If the satellite record of outgoing long-wave radiation (Liebman and Smith 1996), OLR,

- a good proxy for deep tropical convection (see, for example Arkin and Andanuy (1989)) -

within 15 degrees of the equator is analyzed in zonal wavenumber-frequency space (Wheeler

and Kiladis 1999), it shows a number of statistically significant peaks (figure 1). These

propagating disturbances form a large part of the tropical synoptic scale variation, organizing

individual convective elements (typically 100km across, surviving for a few hours) on large

spatial (thousands of kilometers) and temporal (days) scales (e.g. Chang (1970), Nakazawa

(1988)). The wave activity peaks have been identified with the equatorially trapped waves

of shallow water theory (see, for example: Wheeler and Kiladis (1999), Yang et al. (2007)).

Many of the properties of these waves are well described by rotating shallow water wave

theories (Matsuno 1966). Here we attempt to address the observation that the various

wave types (e.g. Kelvin, Rossby, etc) and wave-numbers show differing amplitudes. It is

hypothesized that this is due, at least in part, to the (linear) stability of the atmosphere to

perturbations of the various wave types depending upon the specific wave type and the wave

number in question.

We explore this using the simple model of the convectively coupled waves using the first

two baroclinic vertical modes, mid-tropospheric moisture, and the sub-cloud layer developed

in Kuang (2008b), extended to the equatorial beta plane. The model of Kuang (2008b) is

part of a continuing effort in this field to construct models of minimal complexity to identify

the basic instability mechanisms of these waves. There is a long history of such simple

models, going back at least as far as 1970 (e.g. Hayashi, Y. A theory of large-scale equatorial
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waves generated by condensation heat and accelerating the zonal wind. J. Meteorol. Soc.

Japan., 48, 140-160, Lindzen (1974), Neelin et al. (1987), Wang (1988), Mapes (2000), Majda

and Shefter (2001), Khoudier and Majda (2006a), Raymond and Fuchs, 2007). The early

models emphasized a first baroclinic structure that is of one sign over the full depth of the

troposphere (e.g. Wang (1988),Neelin et al. (1987),Emanuel87). The importance of the

second baroclinic component was recognized and included in the model of Mapes (2000) and

an instability mechanism involving the second baroclinic temperature anomaly and deep

convective and stratiform heating was identified Mapes (2000). More recently, Khoudier

and Majda (2006a) included the interaction between free tropospheric moisture and deep

convective and congestus heating in their model and found that moisture plays a major role

in destabilizing the system. This is an important finding. However, the actual instability

mechanism was not clearly identified. Khoudier and Majda (2006a) described the process

of a dry episode causing more congestus heating, which moistens and preconditions the

free troposphere, leading to deep convection, which then returns the free troposphere to a

dry condition. This description, while correct, does not reveal how the initial perturbation

gets amplified, thus falls short of an instability mechanism. This motivated the study of

Kuang (2008b), which continued the effort by Khoudier and Majda (2006a) but seeked to

develop conceptually simple treatments of convection and to identify the basic instability

mechanisms.

In Kuang (2008b), the convective parameterization is based upon the quasi-equilibrium

concept - that convection responds quickly to the changes in the large-scale flow, so can

be considered to be in statistical equilibrium with the flow (Arakawa and Schubert 1974;

Emanuel et al. 1994), by keeping the Convectively Available Potential Energy (CAPE) con-
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stant for parcels rising from boundary layer to the midtroposphere. The tropospheric mois-

ture is included as an input to the convection calculation to represent the effect of lateral

entrainment of the drier tropospheric air into a rising convective cloud. This acts as a control

upon the depth of convection because with a more moist mid-troposphere, updrafts lose less

buoyancy from entrainment of environmental air and can reach higher so that for a given

amount of lower tropospheric convective heating, the upper tropospheric heating will be

greater.

Analyses in Kuang (2008b) identified a moisture-stratiform instability, in addition to

the stratiform instability of Mapes (2000). To see it in its most basic form (as illustrated

in Fig. 11 of Kuang (2008b)), consider the (horizontal) propagation of a sinusoidal wave

with a second-mode temperature structure in the vertical. The propagation of the wave

modulates deep (first baroclinic) convective heating by perturbing the statistical equilibrium

between the lower troposphere and the subcloud layer. More specifically, deep convection

is enhanced behind a warm lower tropospheric temperature anomaly (as large-scale ascent

cools the lower troposphere) and is reduced behind a cold lower tropospheric temperature

anomaly. The modulations on deep convection peak a quarter cycle behind temperature

anomaly peaks. The combined effect of an enhanced deep convective heating and its induced

vertical advection of moisture is to moisten the midtroposphere, leading to deeper (i.e. more

stratiform) convection in a region where the initial temperature anomalies are positive in the

upper troposphere and negative in the lower troposphere, amplifying the initial perturbation.

It was also found that in addition to the moist convective damping effect (MCD; e.g. Emanuel

1993; Neelin and Yu 1994) where the finite response time of convection damps high frequency

waves, the tendency of the second baroclinic mode convective heating to reduce existing
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midtropospheric moisture perturbations tends to reduce the instability at low wavenumbers.

These two effects were suggested as contributors to the wavenumber selection in convectively

coupled waves.

This paper describes an extension of the model of Kuang (2008b) to the equatorial

beta plane, allowing investigation of the Equatorial Rossby (ER), Mixed Rossby-Gravity

(MRG) and Inertio-Gravity (IG) wave types, all of which have significantly different con-

vection/temperature/wind structures and observed amplitudes from the Kelvin-like wave

studied in most previous work that is confined to a line along the equator. Our emphasis

will be on identifying the basic factors that contribute to the differing instability of the

different wave types and wavenumbers.

The linear instability spectrum of the resulting coupled system is found by eigenvalue

analysis. We use realistic model parameters estimated from Cloud System Resolving Model

(CSRM) studies of the convectively coupled waves. The instability analysis produces un-

stable waves with phase speeds, growth rates and structures (vertical and horizontal) that

compare reasonable well with observations.

The convective parameterization for this model is based upon the quasi-equilibrium con-

cept - that convection responds quickly to the changes in the large-scale flow, so can be con-

sidered to be in statistical equilibrium with the flow (Arakawa and Schubert 1974; Emanuel

et al. 1994), by keeping the Convectively Available Potential Energy (CAPE) constant for

parcels rising from boundary layer to the midtroposphere. The tropospheric moisture is in-

cluded as an input to the convection calculation to represent the effect of lateral entrainment

of the drier tropospheric air into a rising convective cloud. This acts as a control upon the

depth of convection, by representing the common observation that, for a given amount of
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lower tropospheric convective heating, the upper tropospheric heating will be greater if the

mid-troposphere is moist.

The linear instability spectrum of the resulting coupled system is found by eigenvalue

analysis. We use realistic model parameters estimated from Cloud System Resolving Model

(CSRM) studies of the convectively coupled waves. The instability analysis produces un-

stable waves with phase speeds, growth rates and structures (vertical and horizontal) that

compare well with the results from CSRM simulations and observations.

We will show that the instability’s dependence upon wave type is related to the projection

of mean state Inter-Tropical Convergence Zone (ITCZ) heating onto the mode (as has been

suggested in the past: e.g. Takayabu (1994) and Wheeler and Kiladis (1999)) and the

an energy feedback efficiency effect. This effect stems from the differing roles of divergent

and rotational flows in the convective parameterization and the differing efficiencies that

the waves convert wave energy input from convective heating into divergent wind. We

investigate this by analytical investigation of a simplified case to explore the details of the

mechanisms responsible for wave number and wave type selection in the instability spectrum.

The simplified case is chosen to remove the already understood instability mechanisms that

exist within the model. Considering the instability in terms of the energy flow between the

geopotential and wind fields shows that the instability strength is strongly influenced by

the differing efficiencies of conversion from the energy input due to convective heating to

divergent winds.

The paper is organized as follows. Section 2 provides a brief description of the model used

in this paper. Section 3 describes the results of an eigenvalue analysis conducted to determine

the spectrum of unstable waves present in our model, as well as tests of the sensitivity of the
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system to ITCZ configuration and to the parameters used. Section 4 describes a simplified

limiting case of our model and an energy flow based feedback mechanism that explains

the differing instabilities of the different wave modes. This is followed by a summary and

discussion (section 5).

2. Model description

a. Model equations

Our basic equations are a simple extension of the model of Kuang (2008b) to the equato-

rial beta plane. The relation to previous models was discussed in Kuang (2008b) and in the

introduction. The model equations can be derived from the anelastic primitive equations for

an atmosphere linearized about a resting mean state,

∂tu
′ − βyv′ = −

1

ρ̄
∂xp

′ (1)

∂tv
′ + βyu′ = −

1

ρ̄
∂yp

′ (2)

∂x (ρ̄u′) + ∂y (ρ̄v′) + ∂z (ρ̄w′) = 0 (3)

∂tT
′ + w′

(

∂zT̄ +
g

cp

)

= J ′ − εT ′ (4)

∂zp
′ =

gρ̄

T̄
T ′ (5)

where ρ and T represent the density and temperature, u, v, and w represent the velocities

in the zonal, meridional and vertical directions respectively and J represents the convective

heating. Overbars represent mean quantities and primes denote deviation from this mean
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state (assumed small). A linear damping on temperature,denoted by ε represents radiative

cooling/heating towards the mean temperature profile. The buoyancy frequency, N, is given

by:

N2 =
g

T̄

(

∂zT̄ +
g

cp

)

(6)

βy is the linear expansion of the Coriolis parameter, f, for small displacements away from

the equator.

Then, adding the additional assumptions of a rigid lid and constant buoyancy frequency,

we can expand these equations (1-5) in terms of the baroclinic modes numbered j, thusly:

gρ̄

T̄

[

T ′, J ′, w′

(

∂zT̄ +
g

cP

)]

= Σj [T, J, w]j (x, y, t)
π

2
sin

(

jπz

HT

)

(7)

[ρ̄u′, ρ̄v′, p′] = Σj [u, v, p]j (x, y, t)
HT

2j
cos

(

jπz

HT

)

(8)

where HT is the height of the lid at the top of the troposphere. We note, as in Kuang

(2008b), that despite the above derivation, the use of these modes is based on empirical

evidence rather than them being normal modes of the dry atmosphere, as the atmosphere

does not possess a rigid lid at the tropopause, a fact emphasized in the context of convectively

coupled waves by Lindzen (1974),Lindzen 2003, RaymondFuchs2007)

Substituting the expansion forms (equations (7) and (8)) into our perturbation velocity

equations (equations (1)-(3)) yields:

∂t &uj = −βyk̂ × &uj + ∇HTj (9)

wj = −c2
j∇H · &uj (10)
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where T is the temperature perturbation scaled to act similarly to a geopotential pertur-

bation. ∇H denotes the horizontal gradient vector operator ∇H = (∂x, ∂y). The wave speeds

cj are given by:

cj =
NHT

jπ
. (11)

We can also make the modal expansion of the thermodynamic equation (4), together

with equation (10), we have:

∂tTj − c2
j∇H ·−→u j = Jj − εTj (12)

For the rest of this paper, we restrict ourselves to j = 1, 2 - the first two baroclinic modes,

which are sufficient to explain most of the convective activity (Mapes and Houze 1995). The

heating anomalies associated with these two modes, J1 and J2, represent the convective

heating, broken into deep convective and congestus/stratiform components respectively. For

the purposes of the convective parameterization, the heating is rewritten in terms of lower

(L) and upper (U) troposphere heating anomalies:

L =
1

2
(J1 + J2) (13)

U =
1

2
(J1 − J2) (14)

The total upper tropospheric heating is considered to be a fraction of the lower tropo-

spheric heating:

U0 + U

L0 + L
= r0 + rqq (15)
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where U0 and L0 are the mean-state heating and r0 is the mean state ratio between L0 and

U0. q is the mid-tropospheric moisture anomaly and is evolved according to:

∂tq = a1c
2
1∇H · &u1 + a2c

2
2∇H · &u2 − d1J1 − d2J2 (16)

aj and dj give the mid-tropospheric moisture tendencies due to vertical advection and

convection respectively. The effect of horizontal advection of moisture in the midtroposphere

is neglected in our formulation. This is not because this advection by the second mode is

itself small (first mode advection is approximately zero in our uniformly stratified atmo-

sphere), rather it is neglected in combination with the opposite signed advection above and

below. These advection effects are expected to roughly cancel (in their contributions to en-

trainment drying) allowing us to continue to use a convective parameterization that makes

the representation of lower and upper tropospheric moisture difficult to implement.

Regarding the above discussion: In previous studies (ref), the mid-tropospheric moisture

anomaly is in general used as a control on precipitation or precipitation efficiency. Inad-

vertently not discussed in K08, a notable exception is Khoudier and Majda (2006a), which

included a nonlinear switch function that favors ?? the effect of free troposphere moisture

anomalies. While the physical meaning of their formulation for congestus heating (Eq. 2.8 in

Khoudier and Majda (2006a)) is somewhat unclear (congestus heating is relaxed towards the

downdraft multiplied by a measure of the dryness of the free troposphere), this formulation

does have the effect of modulating the depth of convection based on the free tropospheric

moisture anomaly.

In a region of the mid-troposphere which is anomalously moist with positive q, the

entrained air is more moist than average and the associated cooling is smaller, leading to
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relatively increased buoyancy of parcels in this region. This in turn leads to parcels rising to

greater altitude and heating the upper troposphere more. The opposite holds for a region

with an anomalously dry mid-troposphere.

The lower tropospheric heating is considered to be relaxing quickly (over a time scale τL

- typically a few hours) towards the quasi-equilibrium situation given by constancy of lower

troposphere non-entraining CAPE. In our context, quasi-equilibrium will be enforced by

keeping the difference between the boundary layer moist static energy (hb) and the vertically

averaged lower tropospheric saturation moist static energy (< h∗ >) approximately constant.

hb and < h∗ > both vary under the action of convection - a positive convection anomaly

dries and cools the boundary layer through the action of downdraughts and modifies the

lower tropospheric saturation MSE primarily (in our model) by heating the atmosphere - to

reach a consistent equilibrium state. Thus, if equilibrium was to be reached instantaneously:

∂thb = 〈∂th
∗〉LT (17)

where LT is the region of the lower troposphere where this QE formulation is assumed to

hold - extending vertically up to the level where entrainment begins to become important.

Assuming that the surface flux anomalies are negligible, we can write

∂thb = (−b1J1 − b2J2) . (18)

The bj describe the reduction of boundary layer moist static energy by the convection Jj.

Meanwhile, we also assume that the averaged saturation moist saturation energy in the

lower troposphere can be well approximated by a linear combination of the two baroclinic
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mode temperature anomalies.

〈∂th
∗〉LT = ∂t [F (γT1 + (1 − γ)T2)] . (19)

F is a proportionality constant relating the change in lower-troposphere temperature to

the change in moist static energy in the same region. γ describes the relative influence

of the two modes on temperature of the lower troposphere region. It is, loosely speaking,

equivalent to the fractional depth of the troposphere through which this QE formulation can

be assumed to hold before entrainment becomes an important effect.

Substituting these two relations into equation (17) allows us to quantify the quasi-

equilibrium in terms of our model.

(−b1J1 − b2J2) = F [γ∂tT1 + (1 − γ)∂tT2] (20)

Expanding this equation using equations (12-15), we can find a lower-tropospheric heat-

ing, Leq that satisfies the quasi-equilibrium assumption for the large scale variables (q, u,

and T ).

Leq =
AL0rq

B
q −

Fγc2
1

B

(

∇H · &u1 −
ε

c2
1

T1

)

−
F (1 − γ)c2

2

B

(

∇H · &u2 −
ε

c2
2

T2

)

, (21)

where,

B = F + (b1 + b2) − A(rqq + r0) (22)

A = (b2 − b1) + F (1 − 2γ) . (23)
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We can improve the realism of the model by assuming that the convection does not

respond to changes in the large-scale environment instantly. Rather, we allow L to relax

towards Leq over a short timescale τL:

∂tL =
1

τL

(Leq − L) . (24)

By introducing meridional velocity fields vj and the Coriolis force terms, βyk̂ × &uj , this

extension prevents the simple reduction of the dry part of the prognostic equations to tem-

perature fields that occurs in Kuang (2008b), leading to the presence of velocity fields in the

equations for Leq, (21) and q, (16) (c.f. equations (23) and (11) of Kuang (2008b)).

b. Parameter Choices

As described in Kuang (2008b), our parameter values, such as aj, bj , dj, F, γ, r0, rq, ε and

τL are estimated from the CSRM simulations of Kuang (2008a) which showed spontaneously

developing convectively coupled waves. The estimation is conducted by projecting the CSRM

results onto the vertical structure of our modes and interpreting regression results in the

framework of our convective parameterization. We consider this approach to be somewhat

more rigourous than tuning our model to match observations, and more efficient given the

pre-existence of the CSRM results.

Parameter values are given in Table 1 and are essentially identical to those used by Kuang

(2008b). The units of the parameters are based upon measuring energies in the equivalent

temperature change (in K) for 1 kg of dry air gaining that amount of energy. Moisture

content is likewise measured by the temperature change that would result if all the stored
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latent heat in a volume of air was converted to thermal energy in an identical, but dry, air

mass.

3. Beta-plane linear instability analysis

In Wheeler and Kiladis (1999), the observations are of waves of finite amplitude. If the

waves are indeed unstable, in the observations the linear growth of the unstable waves is

balanced by nonlinear terms and an equilibrium is reached. In this case, the equilibrium is of

a statistical nature, with waves growing and dying as they move around and enter regions of

differing forcing (due to the changing background state and wave-wave interactions) and is

also time varying on various scales. In this paper we investigate the linear regime of infinites-

imal waves with a zonally and temporally fixed background state. We see this as a first step

toward an understanding of the spectrum. Further investigation of the nonlinear effects is

planned. Also planned is an investigation of other interpretations of the observations, such

as stable waves continually excited by stochastic or extra-tropical forcing (e.g. Zhang and

Webster, 1992; Hoskins and Yang, 2000) in the context of this model.

a. Linearization

Calculation of the instability spectrum assumes that our system is growing from infinites-

imal anomalies, so we can remove any nonlinear terms from the equation set. In our case,

linearization is simply achieved by ignoring the first term in the second parentheses from the

definition of B (equation 22):
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B = F + (b1 + b2) − Ar0 (25)

and linearizing equation (15) into:

U = L0rqq + r0L (26)

Our linearized model consists of equations (9), (12), (13), (14), (16), (21), (25), (23),

(24), and (26).

For our control experiment, the basic state, represented by the parameter L0(y), is a

state of uniform background convection.

The linear system is then Fourier transformed to zonal wave-number/frequency space

and the resulting eigenvalue problem is solved on a meridionally discrete domain extending

approximately 6000km to the north and south, with 181 regularly spaced points. This large

domain is utilized to reduce the influence of any edge related errors, and can be implemented

without significant computational cost. The resulting complex frequency eigenvalues can be

separated into the real part ω, which gives the modal frequency, and the imaginary part Γ,

which gives the modal growth rate. The corresponding eigenvectors give the modal structure

in the prognostic fields (u1, v1 etc).
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b. Results

c. A realistic mean state ITCZ configuration

To address the question of how the wave structure might be influenced by more realis-

tic ITCZ mean state configuration, we have repeated this experiment several times, using

differenty L0(y) to represent different possible ITCZ configurations in the mean state.

Firstly, we use basic state that is an idealization of the zonal mean state. As shown in

Figure 2, this lower tropospheric heating profile consists of a Gaussian peak in mean state

convection centered on the equator, with a width of 5o, above a small, nonzero uniform offset

that extends to the edges of the domain.

The results from the linear analysis are shown in figures 3 and 4. Unstable waves are

indicated in the frequency/wavenumber diagram, with the marker radius proportional to

the growth rate. Unstable modes are assigned, subjectively, to an equivalent dry class

(dispersion curve ranges shown dashed) based upon their position in Figure 3, relative to the

dry dispersion curves indicated. Investigation of the modal structure (discussed below) shows

that these identifications are warranted. The system contains unstable modes corresponding

to the Kelvin waves, the n=1 and n=2 Inertio-Gravity waves and the Mixed Rossby-Gravity

wave.

Kelvin waves are the most unstable wave type. Wavelengths between about 13000 km

and 2300 km (planetary wave-numbers 3 and 17) are unstable, with a maximum growth rate

of ∼ 0.08day−1 occurring at wavelength of around 5700 km (wavenumber 7). These waves

have phase speeds between 20m/s and 25m/s, slightly slower than the second baroclinic

wave, with the speed deficit becoming stronger as the wavenumber decreases. The growth
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rate curve rises sharply between wave numbers 3 and 7, then decays more slowly as the

wave-number is further increased to 17.

Figure 5 shows the structure of this mode, along with vertical structure of temperature.

The first baroclinic mode is approximately in quadrature with the second, leading to a tilted

vertical temperature structure, similar to observations. Zonal winds blow in the standard

dry wave directions. The meridional wind has a small non-zero component. This is not

unexpected, as the moist physics that couples our system mixes the modes together so that

the convectively coupled“Kelvin” wave observed, while dominated by a Kelvin wave profile,

will still contain a small amount of other waves in superposition with it. The wind fields are

plotted for the lower troposphere at z = 0.

Figure 3 shows unstable MRG, also refered to as n=0 EIG waves for the k > 0 part

of the spectrum, (approximately between wavenumber -15 and 10, with peak growthrate of

∼ 0.03/day occurring at wavenumber 3 - ∼ 13000km wavelength). The phase speed of the

MRG also appears drop below the dry speed as the wavenumber decreases, although this

become less visible at large negative wave numbers as the dispersion curves converge. The

modal structure of the (eastward) planetary wavenumber 7 Mixed Rossby-Gravity wave is

shown in figure 6.

The system also shows instability in the n=1 (East and West bound) IG waves.

The n=2 IG modes are only marginally unstable in this model. We consider growth rates

below a few percent of the peak values to be only marginally unstable and far too dependent

on assumptions about parameters to draw solid conclusions about. The sensitivity of our

model to parameter variation is explored in section e below.

The reconstruction of the planetary wavenumber 7 Eastward Inertio-Gravity wave is
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shown in Figure 7. In figure 8, the k = −7 Westward Inertio-Gravity wave structure is

also shown for comparison. These modes too show horizontal and vertical structures that

compare well with observations.

All the reconstructed modes show first and second mode winds with similar amplitudes,

broadly consistent with observations (see, for example, Haertel and Kiladis (2004)), as well

as a vertically tilted structure, again generally consistent with observations (see, for example,

Straub and Kiladis (2001)).

Most noticeably absent from the instability spectrum are the Equatorial Rossby Waves

and the Madden-Julian Oscillation (MJO). The complete absence of the MJO signal indi-

cates, not unexpectedly, that the current simple model is missing the physics responsible for

the MJO. The Rossby waves exist in our system but are stable within a range of parameter

choices around our nominal values (discussed below in section e). As both these missing

wave types are at similar, low frequencies, the model may have either a too strong damping

at low frequencies, or may be missing some other physics that destabilizes waves at these

frequencies.

Comparison with Figure 1 shows:

1. Peak Kelvin wave growth occurs at a wavelength comparable to the most active waves

in the observations.

2. The ranges of wave number and wave type showing instability in our model match the

ranges of waves that are observed in the OLR signals.

3. The Kelvin Wave dispersion curves shifts to higher equivalent depth at higher wavenum-

bers, opposite to the trend observed.
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4. The model possesses a preference for unstable westward n=1,2 IG modes (as opposed

to eastward n=1,2 IG), similar to that observed.

5. The waves posses a tilted vertical structure that is generally consistent with the ob-

servations, with low level temperature anomalies preceeding a brief period of deep

anomaly followed by a period of “stratiform” temperature anomaly.

d. Varying ITCZ configurations

To address the question of whether the dominance of the Kelvin wave is due to the

colocation of the mean state heating and the center of the Kelvin wave profile, we have

conducted several additional experiments with different ITCZ configurations in our mean

state.

Figure 9 shows a double ITCZ mean state with the two peaks approximately a second

baroclinic deformation radius north and south of the equator, colocated approximately with

the MRG temperature anomaly peaks determined from Figure 6. Unstable modes for this

case are shown in Figure 10. While moving the peak heating away from the equator does

reduce the overall growth rate of the unstable Kelvin waves and increases that of the unstable

MRG waves, the growth rates of the Kelvin waves are still strongest. The MRG growth rates

surpass the n=1 IG wave in the small wavenumber region of the spectrum. The reconstructed

mode structures (not shown) are not significantly different from the single ITCZ case.

Two further experiments (not shown) placed i) a double ITCZ at the off-equatorial peaks

of the n=1 IG temperature anomaly field and ii) a single ITCZ at the northern MRG peak

temperature anomaly position. While the wave that had the greatest overlap with the
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convective envelope showed some enhancement of growth rate, neither of these experiments

altered the general dominance of the Kelvin waves.

Another aspect of the observed activity profile that stands out as possibly being related

to ITCZ configuration is the asymmetry between Eastward and Westward Inertia-Gravity

waves - the observed activity of the WIG is much stronger than that of the EIG. It has been

suggested that this is primarily due to the fact that the latitudinal structure of the EIG

is significantly more complex and a greater proportion of the EIG temperature anomaly is

located away from the equator and the ITCZ (see, for example,Takayabu (1994) and Wheeler

and Kiladis (1999)). In order to explore this possibility, a further experiment is shown, in

which the ITCZ was widened by a factor of 10 and reduced in amplitude by the same factor

(to keep the total heating by L0 constant). In this situation, the projection of the ITCZ

heating profile onto the EIG and WIG structures should be essentially the same. The results

are shown in figure 11, with the n=1 IG modes indicated. As can be seen some, but not all,

of the east-west asymmetry has been removed. Further experiments (not shown) with even

broader ITCZs (essentially flat across the model’s meridional extent) showed no significant

increases in symmetry. It will be demonstrated below that some of this asymmetry is due

to the differing efficiencies with which the East- and West-ward IG waves convert convective

heating into more convective heating.

e. Parameter Sensitivity

As mentioned above, the model does display some sensitivity to parameter variations.

Figure 12 shows the growth rate curves for sensitivity experiments conducted with the damp-
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ing (ε) and the convective equilibrium relaxation time (τL) increased and decreased by 10%.

The instability for the Kelvin, Equatorial Rossby, Mixed Rossby-Gravity and n=1 Inertio-

Gravity are seen to be generally robust, with the location of the peak instabilities in these

cases remaining approximately the same. The peak growth rates do change slightly, as is to

be expected, when the damping is varied. However, the n=2 and higher IG modes can be

observed to vary greatly in their instability character in this range of parameters. As would

be expected from the moist convective damping theory, decreasing the convective relaxation

time decreases the moist convective damping effect, which then decreases the damping ap-

plied to high wavenumber instabilities, leading to an increase in instability for the n=2 and

n=3 IG modes. For the same reason, the Kelvin wave peak instability can be seen to shift

very slightly to higher frequencies when τ is decreased.

A similar sensitivity test was applied to all of the semi-empirical paramters contained

within our model. Generally, for a 10% change in parameter value, variations in the spectrum

were similar in character and amount to those discussed for damping above (not shown). A

few parameters showed interesting sensitivity:

• r0: when r0 is varied, the position of the peak instability shifts to higher wavenumber

for higher r0. The reverse holds for reduced r0.

• c2: not surprisingly, as the unstable modes are dominated by the second baroclinic

component, a variation in the c2 parameter leads to the obvious variation in the speed

of the unstable modes. Any unstable mode speed variation caused by modification of

c1 is negligible.

The Equatorial Rossby waves are still not observed under any of these parameter varia-
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tions.

These results are similar to the more detailed sensitivity study conducted for the 1D

version of this model included in Kuang (2008b).

4. The role of energy flow efficiency

This model has previously been analyzed for Kelvin-like waves on the equator (Kuang

2008b), revealing some of the mechanisms determining the instability spectrum. Specif-

ically, the MCD effect (e.g. Emanuel 1993; Neelin and Yu 1994) damps high frequency

waves, and the tendency of the second baroclinic mode convective heating to reduce existing

midtropospheric moisture perturbations tends to reduce the instability at low wavenumbers.

Expansion of the model to the beta plane in this paper has revealed the existence of at least

one more mechanism within the model, responsible for the differences in growth rates for

waves with similar frequencies. We have already shown that the ITCZ configuration and

projection of the mean state heating on to the modes’ temperature anomaly profiles exert

some control upon the shape of the growth rate curves. However, this control is less than

might be expected and does not seem to explain all the aspects. We hypothesize that the

growth rate curves for the various wave types are further shaped by the relative efficiency

with which the various waves convert input energy into the divergent winds, which in turn

generate more energy input. In this section we will show that the growth rates can be directly

linked to the generation of divergent winds in the modes. In order to explore the mechanisms

that control the shape of the instability spectrum, in this section of the paper we consider

a simplified system that has been modified to remove the mechanisms already identified in
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Kuang (2008b) and any ITCZ convective projection amplitude effects (discussed in section

3c, above), through the choice of specific parameters. Some more detailed exploration of

limiting cases within the model (in 1D) is conducted in Kuang (2008b).

a. Physical Description of simplified system

Our simplified system is based upon the second limiting case of Kuang (2008b), where

the convective mass flux is dominated by entraining parcels and the boundary layer is in

quasi-equilibrium with the second mode temperature (γ = 0). The first temperature mode is

essentially uncoupled from our system and can be ignored. The system is further simplified

by setting b2 = 0 to remove the influence of the second mode heating upon the boundary-

layer moist static energy and ε = 0 to remove the radiative damping. d2 is also set to zero

to remove the effect of second mode heating upon the mid-tropospheric moisture, q. These

changes remove the scale selection of the moisture-stratiform instability

Let us further tighten quasi-equilibrium to “strict quasi-equilibrium” by enforcing instan-

taneous relaxation to the equilibrium values of L (by setting τL = 0). This change remove

the MCD effect.

A uniform L0 profile is used, removing the ITCZ projection effects.

Importantly, the parameter rq, which controls the coupling between moisture and heating

is set to a very small value, so that the heating can be approximated as an infinitesimal

perturbation upon the dry system.

This modified case is evaluated numerically (Figure 13) in the same manner as the con-

trol case. The simplified system shows many unstable modes, but for this section, we will
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concentrate on the Kelvin, MRG, n=1 ER and n=1 IG modes, so the modes with n > 1

are deliberately omitted in Figure 13. The Kelvin wave has a constant growth rate for all

wave numbers greater than zero. The MRG wave growth rate increases monotonically from

the very small for large negative wave numbers, to relatively large at high positive wave

numbers, with rapid increase in the region between k = −5 and k = +5. In the domain

evaluated, the MRG growth rate never reaches that of the Kelvin wave. The system also

shows unstable ER and IG waves, with ER growth rates increasing from a low value for

large (negative) wave numbers to close to the Kelvin value for wavenumber zero. n=1 IG

waves have a large growth rate for all wave numbers, with growth increasing as |k| increases.

(Discuss k=0, omega=0 mode)

b. Energy flow from heating into divergent winds and heating feedback

In order to demonstrate our hypothesis, let us consider how the energy that flows into

the wave due to our convective heating goes into increasing the divergence of the flow. As

we will show, the amplitude of the convective heating is proportional to the amplitude of

the divergence, so this component of the energy drives the positive feedback, whereas energy

that flows into the rotational component or the potential energy of the wave is essentially

trapped there and cannot contribute to the further growth of the wave.

For this section, let us consider a wave that is essentially dry in character, that is forced

by a diagnostic heating that approximates the simplified case discussed above. We will

further consider how this wave changes with time over a short interval while the heating

acts.
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The heating can be derived as an approximately diagnostic function of the dynamical

variables as follows:

In our limiting case, equations (16) and (20) become:

∂tq = (a1 − d1)J1 (27)

−b1J1 = F∂tT2 (28)

where we have further assumed that the vertical velocity field is well approximated by the

heating field (a good assumption for the first mode heating, as confirmed by the modal eigen-

structures for the control model discussed above). Equation 27 (***) states the combined

effect of deep convection and the associated vertical moisture advection is to moisten the

mid-troposphere. Equation 28 (***) is a statement of deep convection maintaining strict

quasi-equilibrium between the boundary layer and the second baroclinic temperature mode.

Furthermore, we can also write (from equations (13), (14) and (15)):

J2 = −rqL0q (29)

(letting r0 = 1).

Combining the above equations we have:

∂tJ2 = −rqL0∂tq

= −rqL0(a1 − d1)J1

=
rqL0(a1 − d1)F

b1
∂tT2

(30)
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We can see that J2 keeps the same phase as T2. Further, as J2 is a very small perturbation

upon the dry wave, we can also write:

∂tT2 ≈ c2
2δ2 (31)

where the divergence, δ2 is defined by:

δ2 = ∇H · &u2 (32)

and thus

∂tJ2 =
rq(a1 − d1)Fc2

2

b1
δ2. (33)

So we have:

|J2| ∝
|δ2|

ω
(34)

Combining our above relations for the heating field, we define:

J2 = −
B|δ2|T2

ω|T2|
(35)

B is a constant of proportionality, considered to be very small, so that the heating is only

a small perturbation to the waves.

B = −
rq(a1 − d1)Fc2

2

b1
(36)

In this limiting case, our equation set reduces to:
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∂tu2 = βyv2 + ∂xT2 (37)

∂tv2 = −βyu2 + ∂yT2 (38)

∂tT2 = c2
2δ2 + J2. (39)

From this point, the first mode is completely superfluous, so we can drop the subscripts

without ambiguity.

1) Kelvin wave heating-divergence feedback

We start with a neutral Kelvin Wave, with the standard form (assuming the dry dis-

persion relationship to be sufficiently accurate given the arbitrarily small heating) for the

complex wave:

ũ = u0e

„

−
βy2

2c

«

ei(kx−ωt) (40)

ṽ = 0 (41)

T̃ = −c2 k

ω
u0e

„

−
βy2

2c

«

ei(kx−ωt)

= cu0e

„

−
βy2

2c

«

ei(kx−ωt) (42)

where the amplitude of T̃ is determined using the standard wave relations (in wavenum-

ber/frequency space) and the dry dispersion equation (see, for example, Gill (1982)).

We can then calculate the total energy (per unit length in the x-direction) stored in the

wave (H is the equivalent depth of the second mode):

28

E =
1

2
u2H +

1

2

T 2

g

=
H

2

(

u2
0 +

(cu0)
2

c2

)

(

e
“

−
βy2

c

”

cos2 (kx − ωt)

)

= Hu2
0

ω

2π

k

2π

∫ 2π
ω

0

∫ 2π
k

0

cos2(kx − ωt)dxdt

∫

∞

−∞

e
−

„

βy2

c

«

dy

=
H

2

√

cπ

β
u2

0 (43)

The overbar denotes the time and zonal mean of a quantity, integrated over its meridional

extent.

The energy input in time ∆t is given by:

∆E = JT∆t

=
−B|δ|T 2

ω|T |
∆t

=
B|δ|

ωcu0
c2u2

0e
−

“

βy2

c

”

cos(kx − ωt)∆t

=
B|δ|cu0∆t

2k

√

cπ

β
(44)

(|T | = −cu0, |δ| is defined similarly).

With the increased energy in the wave after this interval, the amplitude of the wave

(given by u0) will have increased:

∆u0 = (∂u0
E)−1 ∆E

=
Bc|δ|∆t

2Hk
(45)

Now, the divergence in the wave can also be determined:
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δ = ∂xu = −ku0e
−

„

βy2

2c

«

sin(kx − ωt). (46)

We can calculate how the divergence increases in this time interval:

∆δ = −k∆u0e
−

„

βy2

2c

«

sin(kx − ωt). (47)

Because ∆δ is in exact phase with δ we can also say that:

∆|δ| = k∆u0

= k
Bc|δ|∆t

2Hk

∆|δ|

∆t
=

Bc

2H
|δ| (48)

As shown, the amplitude of the Kelvin Wave divergence grows exponentially with time,

at a rate that is independent of wavenumber, as observed in the numerical analysis above.

2) Mixed Rossby-Gravity wave heating-divergence feedback

The basic dry MRG wave is well described by its y-velocity field:

ṽ = v0e
−

„

βy2

2c

«

ei(kx−ωt). (49)

and a dispersion relationship:

ω = ±
kc

2

(

1 ±

√

1 +
4β

k2c

)

(50)
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Then, using the standard forms:

T̃ = −
iωc2

ω2 − c2k2

(

−∂y +
k

ω
βy

)

ṽ

=
icv0βye

−

„

βy2

2c

«

ck − ω
ei(kx−ωt) (51)

ũ =
βyṽ + ikT̃

−iω

= −
ivoβye

−

„

βy2

2c

«

ck − ω
ei(kx−ωt). (52)

Similarly to the Kelvin Wave example, we can find the energy per unit length stored in

this wave:

E =
H

4

v2
0 (c (ck2 + β) − 2ckω + ω2)

(ω − ck)2

√

πc

β
. (53)

Then, the increase in the wave amplitude due to an increase in energy ∆E is given by:

∆v =
2∆E (ω − ck)2

Hv0 (c (ck2 + β) − 2ckω + ω2)

√

β

πc
, (54)

and the increase in energy over ∆t is:

∆E = JT =
Bc4v0|δ|∆t

4βω (ω − ck)

√

πc

β
, (55)

(|T | = cv0β/(ck − ω), |δ| is defined similarly).

leading to an increase in the wave amplitude of
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∆v =
Bc3|δ|∆t (ω − ck)

2Hω (c (ck2 + β) − 2ck + ω2)
. (56)

The divergence of the MRG wave is

δ =
v0ωβ

c2k − cω
ye

−

„

βy2

2c

«

cos (kx − ωt) (57)

and the magnitude of the divergence is

|δ| =
v0βω

c (ω − ck)
(58)

(note the change of sign so that the magnitude of the divergence is positive - this simplifies

interpretation).

∆|δ|

∆t
=

Bc

2H
|δ|

(

cβ

c (ck2 + β) − 2ckω + ω2

)

(59)

=
Bc

2H
|δ|

β

2β ∓ k2c
2

(

∓1 +
√

1 + 4β
k2c

) (60)

where the upper sign applies for positive wave numbers and the lower sign applies for

negative wave numbers.

3) Equatorial Rossby and Inertio-Gravity wave heating-divergence feed-

back

A similar analysis for the n=1 Rossby and Inertio-Gravity waves yields:

∆|δ|

∆t
=

Bc

2H
|δ|

(

c (3c2k2 + 2ckωn=1 + 2ω2
n=1)

c4k4 + 3c3k2β + 3cβω2
n=1 + ω4

n=1 + 2c2kωn=1 (β − kωn=1)

)

(61)
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where

ωn=1 ≈

{

−
βk

k2 + 3β
c

,
√

k2c2 + 3βc

}

(62)

for the Rossby and IG waves respectively (see, for example, Gill (1982)) obtained from

the dispersion relationship
(ω

c

)2
− k2 − β

k

ω
= 3

β

c
(63)

by ignoring the first and last terms on the left hand side respectively.

c. Energy feedback results

Figure (14) shows the growth rate of the MRG, n=1 ER and n=1 IG waves in this

construction, normalized by the constant growth rate of the Kelvin waves. The growth rate

of the MRG increases as the divergent component of the wave increases from a small value at

negative wave numbers (where the wave is very much like the low-divergence ER waves) to

a large value at positive wave numbers, where the wave most resembles the high-divergence

Kelvin wave. Just as observed in the numerical study (Figure 13), the growth rate increases

rapidly between k = −5 and k = +5.

The growth rate of the n=1 ER wave increased as k increases from −∞ to zero, as

observed in the numerical results. The growth rate of the n=1 IG wave increases as |k|

increases, from a small non-zero value at k = 0 as observed.

It is interesting to note that the Rossby waves achieve growth rates very close to those

of the Kelvin waves, as the Rossby waves are typically considered to be dominated by
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vorticity. However, this can be explained by visualizing a very long wavelength Rossby

wave (k ≈ 0 - refer left column of Figure 15). This wave will consist of nearly uniform

motion away from and towards the equator, with zonally uniform meridional velocity and

near zero zonal velocity. In this case, the wave clearly has a large divergence and very small

vorticity. As the wavenumber increases, the contribution of the zonal divergence increases,

offsetting the meridional divergence (due to the phase difference). At large wave numbers,

the two components cancel, leading to reduced divergence and a wave has significantly larger

rotational flow (right column of Figure 9).

The Inertio-Gravity wave spectrum is explained by similar logic, although the details are

different due to the different structures of the waves, particularly the non-zero vorticity at

zero wavelength and the increasing divergence with wavelength.

The numerically calculated values of the corresponding growth rates (also normalized

to the numerical Kelvin wave growth rate) are also plotted on this Figure for comparison.

The MRG and ER growth rates are essentially indistinguishable from the analytic solutions.

The discrepancy for the inertio-gravity waves stems from the approximation used for the

wave frequency in equation (62), which is only accurate to within 13% in this case (see, for

example, Gill (1982)), whereas the error in the ER frequency is less than 2%.

The physical content of this argument is contained more in the method than the final

expressions. The construction of instability mechanism here emphasizes the differing effi-

ciencies with which the modes can convert input energy into divergent flow, driving more

energy input. As the growth rates derived from this construction of the model resemble

the numerical results closely, we feel that this vindicates our hypothesis, illuminating a fur-

ther mechanism that influences the linear instability spectrum of the equatorial convectively
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coupled waves.

The specifics of our derivation assume that the basic instability mechanism relies upon

low level divergence to drive convective heating. The detailed result is thus dependent upon

the existence of the moisture-stratiform (or similar) instability mechanism.

5. Summary and Discussion

In this paper, we have demonstrated that our extension of the model of Kuang (2008b) to

the equatorial beta plane allows us to produce a linear system with a spectrum of unstable

modes that bear a good resemblance to the modes visible in the global OLR data, in terms of

excited wavenumber range and also in terms of the wave types present. The unstable Kelvin,

MRG, and IG waves visible in the results of Wheeler and Kiladis (1999) are reproduced well

using this model.

As discussed in the introduction, simple models and interpretations of the convectively

coupled waves date back as least as far as Lindzen (1974). In this paper, Lindzen considers

the heating to be driven purely by convergent flow lifting conditionally unstable parcels high

enough that they begin to convect, which leads to warming of the troposphere and reenforces

the convergent flow (known as wave-CISK). This mechanism shares some characteristics with

the energy feedback arguments we made above, in that the growth of modes is related to

how strong the divergent winds of that mode are - for example, Lindzen determines that the

East-West asymmetry in the n=1, 2 IG waves may be related to the differing amounts of

convergence in the different propagation directions.

Our moisture-stratiform instability mechanism, however, is very different from wave-
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CISK; by assuming quasi-equilibrium, enhanced deep convection in our model leads to cool-

ing of the troposhere by cooling and drying the boundary layer. A purely wave-CISK mech-

anism suffers from an “Ultra-Violet Catastrophe” in which the energy at ever shorter wave-

lengths increases and the total energy in the spectrum diverges. In contrast, the moisture-

stratiform instability has bounded growth rates at short wavelengths and the MCD effect

further cuts off the wave energy at short wavelengths, averting the catastrophe.

Other interprations of the spectrum, like those of Takayabu (1994) and Wheeler and

Kiladis (1999) use the differing projections of the mean state heating onto the wave structure

to explain the East-West asymmetry. In the context of our model, we have shown that the

asymmetry still exists even with a meridionally uniform mean state heating.

Our model is closely related to that of Khouider and Majda (see, for example, Khoudier

and Majda (2006a), Khoudier and Majda (2006b), and Khouider and Majda (2008)), espe-

cially in the inclusion of mid-tropospheric moisture as a control of convection depth. How-

ever, by making our model conceptually simpler than their model, the various instability

and spectrum shaping mechanisms are made clearer. The further extension of our model

to the beta plane also allows the investigation of instability shaping due to the mean state

profile and due to the meridional winds of the various waves observed on the equatorial beta

plane.

The model does fail to produce any unstable ER or MJO waves. As stated above,

this may be due to our model possessing too great a low frequency damping or lacking an

effect that serves to destabilize the low frequency waves. It is also possible that the lack of

Moisture (for example Raymond and Fuchs (2007)) or WISHE-type surface flux anomaly

driven (either due to surface wind or solar irradiation anomalies, see for example ?) modes
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within our model may cause the absense of these modes. However, the observations of Yang

et al. (2007) indicate that the Rossby wave signal detected in the OLR spectrum might

have a different instability character. For example, they may be unstable only to finite

disturbances, requiring a large extra-tropical Rossby or near-resonant MRG wave to excite

them. Or possibly, the waves are simply stable with their decay in balance to near constant

stochastic forcing from the extratropics and the MRG activity. The lack of MJO activity

is possibly also related to the lack of non-linear effects in our model. The non-linear time

evolution of this model is a subject that we intend to address in the near future.

It was observed that the position and size of the ITCZ affects the growth rates of the

different waves: modes that posses a large spatial overlap with the ITCZ profile are enhanced

while those with a small overlap are weaker. However, even when the ITCZ configuration

provides large overlap for the MRG or IG waves and small overlaps for the Kelvin waves,

the Kelvin wave growth rates remain large compared to those of the MRG and IG waves,

indicating additional factors affect the growth rates of different wave types. We suggest that

the efficiency with which waves convert input energy into divergent winds is an important

factor.

With the addition of our energy-flow divergence feedback mechanism, the basic shape of

the wave spectrum is starting to become clearer. The linear part of the spectrum is shaped

by the combined actions of moist convective damping, which damps high frequency waves,

and the damping effect of the second mode convective heating on midtropospheric moisture

anomalies damps more strongly the lowest frequency waves, the ITCZ projection effect,

and the energy-flow divergence feedback which selects the wave types with larger divergent

components.
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Analytical extension of the energy flow feedback to our full set of equations is expected

to be non-trivial; furthermore, our discussion is based on a simple linear model of convec-

tively coupled waves. However, it seems likely that the principle of “wasted energy” in the

rotational component of the velocity fields of the equatorial waves will also apply in the

real atmosphere, helping to shape the observed spectrum of convectively coupled equatorial

waves.
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Fig. 1. OLR power divided by background spectrum for signals (left) symmetric about the

equator and (right) antisymmetric about the equator. Power spectrum is averaged over the

region 15oS to 15oN and is constructed from NOAA daily OLR data running from June 1974

to September 2007. Contours begin at 1.1 and are drawn every 0.1 interval. Shallow water

dispersion curves drawn are for equivalent depths of 12, 25 and 50m, in order of increasing

frequency. After Wheeler and Kiladis (1999).
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Fig. 2. Background state lower troposphere convective heating used in the control instability

experiment. The background state is an idealization of the zonal mean state, with an ITCZ-

like Gaussian peak over the equator and a small mean convection over the rest of the domain.
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Fig. 3. Eigenfrequencies for the linear system. Data point diameter corresponds linearly to

growth rate. Stable modes omitted. Lines show theoretical dispersion curves for dry waves

with equivalent depths of 40 and 60 m (in order of increasing frequency).
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Fig. 5. Structure of the coupled Kelvin wave at planetary wavenumber 7. Shows temper-

ature (contours) and wind anomalies (vectors) for the first and second (top and middle)

baroclinic modes, as well as the reconstructed vertical temperature anomaly above the equa-

tor (bottom).
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Fig. 6. Structure of the coupled Mixed Rossby-Gravity/n=0 Eastward Inertio-Gravity wave

at planetary wavenumber 7. Shows temperature (contours) and wind anomalies (vectors) for

the first and second (top and middle) baroclinic modes, as well as the reconstructed vertical

structure at y=1000km (north of the equator), approximately the peak of the MRG profile

(bottom)
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Fig. 7. Structure of the coupled n=1 Eastward Inertio-Gravity wave at planetary wavenum-

ber 7. Shows temperature (contours) and wind anomalies (vectors) for the first and second

(top and middle) baroclinic modes, as well as the reconstructed vertical temperature anomaly

above the equator (bottom).
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Fig. 8. Structure of the coupled Westward Inertio-Gravity wave at planetary wavenumber

7 (k = −7). Shows temperature (contours) and wind anomalies (vectors) for the first and

second (top and middle) baroclinic modes, as well as the reconstructed vertical temperature

anomaly above the equator (bottom).
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Fig. 9. Background state lower troposphere convection used in double ITCZ experiment.

The background state is an idealization with a pair of ITCZ-like Gaussian peaks centered

1000km north and south of the equator and a small mean convection over the rest of the

domain.
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Fig. 10. As Figure 3, except for a background state with a double ITCZ, located near the

MRG meridional structure peaks, shown in Figure 8.
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Fig. 11. As Figure 3, except for a background state with a very wide ITCZ (half width

5000km), centered on the equator.
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Fig. 12. Damping Sensitivity studies. As Figure 2, except for modification of the dapming

paramters as follows: a) ε → 1.1× ε, b) ε → 0.9× ε, c) τL → 1.1× τL, and d) τL → 0.9× τL.

Peak growth rates for each case are: a) 7 × 10−2day−1, b) 9 × 10−2day−1, c) 7× 10−2day−1,

d) 9 × 10−2day−1.
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Fig. 13. As Figure 3, except for the simplified system described in Section 4 and with the

dispersion curves for heq = 80m also plotted. All modes with meridional index (n) greater

than one are deliberately removed, despite existing within the system.
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Fig. 14. Analytic growth rate for the waves in the simplified limiting case, relative to the

Kelvin wave growth rate (lines) and numerical growth rates (points), as described in the

legend.
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Divergence for a Rossby Wave, λ =25×103km
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Fig. 15. Analytic divergence (top) and vorticity (bottom) fields for dry Equatorial Rossby

waves with λ = 25×103 km (left) and λ = 1.1×103 km (right). It is important to note that

the x-axes of the two columns have very different scales, as demanded by the very different

wavelengths depicted. Color scale is in arbitrary units.
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Table 1. Parameter values as used in the control cases discussed in section 3.

Symbol Normative Values Description

b1, b2 1.0, 2.0 Tendency for reduction in boundary layer moist

static energy per unit heating J1 and J2

a1, a2 1.4K, 0.0K Increase in q tendency per unit vertical velocity

(∂xu + ∂yv) by advection

d1, d2 1.1,-1.0 Decrease in q tendency per unit heating J1 and J2

r0 1.0 Background mean U/L ratio

rq 1.0 K−1 Linear dependence of U/L ratio on moisture deficit

F 4 Ratio between moist static energy and temperature

in the lower tropospheric “non-entraining” convection region

γ 0.5 Relative contribution of the first mode temperatures

to the lower tropospheric temperature anomaly

τL 2.0 hours Adjustment time to approach QE over the lower

troposphere

c1, c2 (50.0, 25.0)ms−1 Dry gravity wave speeds for the first and second

modes

ε 0.15 day−1 Temperature anomaly damping coefficient

σL 5.0o Meridional width of L0 profile, representing

the ITCZ structure
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