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Abstract: Each period, a player must choose an action without knowing the outcome that
will be chosen by “Nature,” according to an unknown and possibly history-dependent
stochastic rule. We discuss have a class of procedures that assign observations to
categories,  and prescribe a simple randomized variation of  fictitious play within each
category. These procedures are “conditionally consistent,” in the sense of yielding almost
as high a time-average payoff as could be obtained if the player chose knowing the
conditional distributions of actions given categories.  Moreover given any alternative
procedure, there is a conditionally consistent procedure whose performance is no more
than epsilon worse regardless of the discount factor.  Cycles can persist if all players
classify histories in the same way; however in an example, where players classify
histories differently, the system converges to a Nash equilibrium. We also argue that in
the long run the time-average of play should resemble a correlated equilibrium.
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1. Introduction

In this paper we consider the decision problem of a single player who must choose

an action without knowing an outcome chosen either by Nature or by other players.  The

distribution of these outcomes is governed by an “outcome function” that maps histories

(sequences of past actions and outcomes) into current outcomes, but the player does not

know the form that this function takes. Thus the player’s task is to learn the outcome

function through repeated observations.

 We have a designed a class of procedures that are a simple randomized variation

on fictitious play. We show that the player obtains almost as high a time-average payoff

as he could if he divided the sample into categories, and knew in advance both the

frequencies within the categories, and which category the current period's outcome was

going to be drawn from.  We call this property “conditional consistency.”  We show that

this is possible if (i) the categories are chosen with respect to information available at the

time decisions are taken, and (ii) the number of categories used grows sufficiently slowly.

Moreover, given any learning procedures, we can find a procedure of this type that does

no more than epsilon worse regardless of the discount factor; in this sense, there is no

need to look outside this class of procedures.

To focus thoughts, it is useful to consider the game  “matching pennies,” in which

the player announces H or T, the outcome is H or T, and the player’s payoff is 1 if he

guesses correctly, and 0 otherwise.  If the player knew what that period’s outcome was

going to be at the beginning of each period, he could guess correctly all of the time, with
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average payoff of 1.  Obviously there is no procedure that can guarantee that the player

does about this well regardless of the rule that generates the outcomes, since the player’s

minimax payoff is 0.  However, there are procedures that guarantee that the player’s

average payoff is at least as high as if the player knew the asymptotic frequency of

outcome H over the entire infinite horizon, uniformly over all rules for generating

outcomes.   Blackwell [1956] and Hannan [1957] were the first to design learning rules

with this property, which we call “universal consistency.”

We do not have time to present a complete review of the many universally

consistent rules here, but we should stress one important property these rules share: All

universally consistent rules must prescribe randomized play in at least some instances.

(Some intuition for this fact can be gained by considering the minimax theorem, and

noting that “guessing the frequencies” is a kind of zero-sum game. Alternatively, note

that any deterministic procedure can be “defeated” by the outcome function that

“predicts” the action the player is about to play and chooses the action that will minimize

the player’s payoff.) In particular, “classical” fictitious play is not universally consistent.

However, Fudenberg and Levine [1995] show that there are simple “smoothed” or

randomized versions of fictitious play that do satisfy universal consistency.

The starting point for this paper is the fact that universal consistency is a fairly

weak  criterion, since it requires only that the players “get the time averages right,” and

allows them to ignore even simple patterns in the data.   For example, if the outcome in

matching pennies alternates deterministically HTHT... between H and T, universal

consistency only requires the player win half the time, while there are simple universally

consistent rules that can win all the time against this pattern of outcomes.  The weakness
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of universal consistency leads us to develop to the concept of universal conditional

consistency, which is the topic of this paper.  Under this criterion, we divide the player’s

data into subsamples, and ask if the player’s payoff is as high as if he knew the

frequencies of the subsamples and was told each period which subsample that period’s

outcome was going to be drawn from.  For example, we could divide the sample into all

the observations in which the previous outcome had been H, and all those in which the

previous observation had been T (plus the first observation).  In the example of

deterministic alternation, this would mean that the outcome in the first subsample would

always be T, and in the second subsample it would always be H.  Thus, when faced with

this simple deterministic pattern, the only way the player could do as well as he could by

knowing the subsample frequencies in advance would be to win most of the time.

Arbitrary methods of dividing the sample into subsamples do not make sense.  We

focus on classification rules which assign outcomes to categories based only on

information available prior to the observation being made, namely the past history of

actions and outcomes, the action chosen immediately prior to the outcome in question,

and calendar time.  Whether it is in fact possible to be universally conditionally consistent

with respect to such a scheme of dividing the sample depends on the number of categories

into which outcomes can be assigned.  For example, we could assign the outcome in each

time period a different category, in which case universal conditional consistency would be

the same thing as optimization against the actual realized sequence of outcomes, which

we already observed is impossible.

Given a categorization rule, at any moment there is frequency data for certain

categories.  For each such category, we can compute the best response(s)  to the historical
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frequency of opponent’s play in that category, as in the process of fictitious play.  We can

also consider slightly randomized or “smoothed” fictitious play as we did in our [1995]

paper.  We define a conditional smooth fictitious play as a particular randomization

between smoothed fictitious plays corresponding to the different categories for which

observations are available.   Our main results are that these conditional smooth fictitious

plays have two important properties: First, they are universally conditionally consistent.

This shows that they have good asymptotic properties.  But more striking, given any

learning rule, with or without good asymptotic properties, we can find a conditional

smooth fictitious play that does almost as well regardless of the discount factor; that is,

over any short- medium- or long- run, and regardless of the rule generating the

observations.  In other words, we do not have to give up much short-term performance to

assure good asymptotic performance, even in the worst case.

We also discuss the issue of which categorization rules are sensible. Most obvious

examples of categorization rules are finite ones.  For example, if a player suspects that the

outcome may be following a deterministic two-cycle, he can use two categories according

to whether the period is odd or even.   Or, if the player is concerned that the outcome may

be generated by a first-order Markov process, he could use the previous period’s outcome

to define categories. While we have no formal results on “optimal categories, ” we do

have  some  observations to make about category selection.  Most important is the

observation that, if it turns out a player’s own play is a good prediction of the outcome, he

can make use of this information to be “calibrated” in the sense of incorporating any

information implicit in the player’s own intended play.  If a player chooses to use a

calibrated rule, he needed not actually condition on how own play, provided that it  does
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not turn out to be a good prediction of the outcome.  Nevertheless, if all players in a game

use calibrated rules, then the time-average of play must converge to the set of correlated

equilibria.  Since we argue that there is no need to give up asymptotic performance to

achieve short-term goals, this is, in our view, a strong argument in favor of the idea that

the long-run time averages should lie near the set of correlated equilibria.

This paper is closely connected to several lines of research.  Foremost is the

literature on universal consistency, beginning with Blackwell [1956] and Hannan [1957],

and continuing through Banos [1968], Megiddo [1980], Fudenberg and Levine [1995]

and Auer, Cesa-Bianchi, Freund and Schapire [1995].  This work is closely connected to

work in the computer science literature by Vovk [1990], Desantis, Markowski and

Wegman [1992], Feder, Mehrav and Gutman [1992], Kivinen and Warmuth [1993],

Chung [1994], Littlestone and Warmuth [1994] and Freund and Schapire [1996] on

“worst case analysis.”

A second related line is in the papers by Aoyagi [1994] and Sansino [1994]  on

extending the model of fictitious play to allow players to try to detect cycles; we discuss

these papers in  Section 5.

The third related line of research is  the papers on calibrated beliefs by Foster and

Vohra [1993,1994].  They consider the problem of a forecaster who each period must

issue a forecast, that is, a probability distribution over an exogenous set of outcomes such

as the weather.  The forecaster is said to be calibrated if in the asymptotic limit, the

empirical frequencies in periods where each particular probability distribution is forecast

exactly match the forecast probabilities. That is, exact calibration requires that

(asymptotically) it should have rained in exactly 1/3 of the periods in which the forecast
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probability of rain was 1/3, and so on.  Foster and Vohra give an algorithm that ensures

that beliefs are approximately calibrated, based on tracking the historical frequencies for

each (of finitely many) possible probability announcements.

The type of calibration considered by Foster and Vohra is relatively naïve.  Kalai,

Lehrer and Smorodinsky [1996] use Dawid’s [1982] stronger notion of calibration with

respect to checking rules, which can be viewed as a generalization of our conditioning

scheme.   They show that calibration with respect to all checking rules is equivalent to the

merging of opinions, and since the merging of opinions with respect to all models is

impossible, so is calibration with respect to all checking rules.   One interpretation of our

results is that calibration is possible provided that the set of checking rules is sufficiently

small.

Foster and Vohra go on to consider play in games when each player’s behavior

rule is to play a best response to calibrated beliefs.  This guarantees that each action is a

best response to the frequency distribution of outcomes in those periods in which it was

chosen, which is exactly the requirement (in this case) of universal conditional

consistency.  Moreover, as Foster and Vohra show, it assures that in the long run if all

players play this way, the time average of play converges to a correlated equilibrium.

Foster and Vohra’s results provide an argument in favor of the idea that in the

long run the time-average of play should resemble a correlated equilibrium.  The results

here  generalize3 those of Foster and Vohra,  and provide a stronger argument in several

                                                

3 They are not a strict generalization, because we deal only with games, and not with other types of
forecasting problems.
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respects.  First, the behavior rules we construct are simpler4, and hence more easily

interpretable and more straightforward to implement.  Moreover, we strengthen their

results by considering the case of discounted payoffs as well as time averaging.  Finally,

we do not require that players actually condition on their own actions, but only that they

are prepared to so if evidence suggests so doing would be beneficial.

2. The Model

Each period t = 1 2, ,..., the player chooses an action a from a finite set of actions

A, then observes an outcome y Y∈ , a finite set.  The utility from the action a when the

outcome is y is denoted by u a y( , ) .   The space of probability distributions over a (finite)

set S is denoted by ∆( )S .  Mixed actions are denoted by α ∈∆( )A , and mixed outcomes

by γ ∈∆( )Y .  We will write u u a y a y
a y

( , ) ( , ) ( ) ( )
,

α γ α γ= ∑  for the expected utility to

mixed actions and outcomes.   It is convenient to define U u a ya y= max | ( , )|,  to be the

greatest difference in utility between any action/outcome pair.

A strategy for the player can depend only on the information available to him

when he moves, namely the past values of his own play and the outcome.  A history of

play for the player is denoted by h a y a yt t t= ( , , , , )1 1 K , the space of all histories of play is

denoted by H.  A (behavior) strategy for the player is a map σ: ( )H A→ ∆ , while an

outcome function is a map ρ: ( )H Y→ ∆ .  Each strategy-outcome function pair induces a

stochastic process over action/outcome pairs, where given the history ht−1  the conditional

probability of a yt t,  is σ ρ( )[ ] ( )[ ]h a h yt t t t− −1 1 .  In other words, the player and nature play

                                                

4 Fudenberg and Levine [1996] and Hart and Mas-Colell [1996] also provide simpler algorithms.
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independently, and must base their play only on the history of actions and outcomes.  In

some interpretations, the outcomes may be chosen by other players rather than by nature.

We are also interested in classifying observations into subsamples.  We suppose

that there is given a priori a countable collection of categories Ψ  into which

observations may be placed.     A classification rule is a map $ :ψ H A× → Ψ .5  The

interpretation is that prior to observing yt  the player knows h at t−1, , and must choose a

category $ ( , )ψ h at t−1  based only on this information.

Fix a classification rule $ψ .  Given a history of actions and outcomes ht , we

define nt ( )ψ  to be the number of times that the category ψ has been observed, and

Pt ( )ψ  to be the vector whose components are the number of times that each outcome has

occurred in the subsample corresponding to ψ .  Thus  P n Yt t( ) / ( ) ( )ψ ψ ∈∆  represents

the empirical distribution of outcomes conditional on the category ψ . For example,

the category might correspond to the previous period’s outcome, so that the distribution

in question is simply the empirical distribution of outcomes P y n yt t( ) / ( )  conditional on

the previous period’s outcome having been y. 6 It will also be convenient to define e y( )

to be the unit vector corresponding to the outcome y .

Notice that although there are countably many categories, for a fixed horizon t

there are only finitely many possible histories.  It follows that there is a minimal finite

subset $Ψ Ψt ∈  to which all observations taken through time t must belong.  We refer to

                                                

5 For notational simplicity we limit attention to deterministic classification rules.  The use of random
classification rules would lead to notional changes only, provided that Assumption 1 below is satisfied
almost surely.
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this subset as the set of effective categories, and let mt  denote the number of effective

categories.  Our basic assumption is that the number of effective categories does not grow

too rapidly.

Assumption 1: lim /t tm t→∞ = 0 .

  We consider two different criteria for the performance of strategies.  First we

consider the time average utility the player receives, compared to how much he can get ex

post if he is restricted to strategies that are measurable with respect to the same

classification rule.  If we define the most utility that is possible against the mixed

outcome γ  as V u aa( ) max ( , )γ γ≡ , the most utility per period that can be achieved ex

post using a single action in the subsample  ψ  is

V
P

n
t

t

( )
( )
ψ
ψ

�
��

�
��

Denote the total utility received in the subsample ψ  by ut ( )ψ  = u a( ( )τ
τ ψ∈∑ .  For each

subsample we define the difference between the utility that might have been and the

utility that actually was as

c
n V

P

n
u n

n
t

t
t

t
t t

t

( )
( )

( )
( )

( ) ( )

( )

ψ ψ ψ
ψ

ψ ψ

ψ
=

�
��

�
�� − >

=

%
&K
'K

0

0 0

We define the total cost to be c ct t
t

= ∈∑ ( )
$

ψψ Ψ .

Our criterion for successful long run learning relative to the rule $ψ  for choosing

subsamples is that the time average cost c tt /  should be small.

                                                                                                                                                

6 The rules considered by Ayoyagi and Sonsino correspond to categorization by the opponent’s play in the
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Definition 1: A strategy σ: ( )H A→ ∆  is ε -universally consistent conditional on $ψ if for

every outcome function ρ , lim sup /t tc t→∞ ≤ ε  almost surely with respect to the

stochastic process induced by σ ρ, .

When the classification rule is fixed, we simply refer to a strategy being ε -universally

conditionally consistent.

As with universal consistency, universal conditional consistency measures the

rule’s effectiveness in optimizing against an exogenous distribution of opponents’ play.

However, it does not require that players experiment in order to learn how their

opponent’s play varies with their own, nor does it require that the rule do a good job of

influencing their opponents’ play.  Thus the condition seems most natural in settings of

anonymous random matching.  To illustrate this point, consider a repeated Prisoner’s

Dilemma game, with actions “C” (cooperate) and “D” (defect).   Since “D” is a strictly

dominant strategy, it maximizes player 1’s expected payoff in the current period after any

history, so the rule “always play rule D” is universally conditionally consistent with

respect to any categorization scheme. Of course, if player 2’s strategy is Tit-for-Tat, then

player 1’s time average payoff would be much higher if he always played C.

Second, we wish to consider a discounted criterion.  Since strategies may work

well or poorly in the short run depending upon how well the player guesses ρ , we cannot

hope for a criterion like universal consistency to be satisfied in the first few periods.

However, we can compare two particular strategies.  We will allow time varying discount

                                                                                                                                                

“recent” past.
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factors, so we will say that { }β t  is a sequence of discount factors if for each t, β t  is a

strictly positive number, the sequence { }β t  is strictly decreasing and β tt
==

∞∑ 1
1

.

Definition 2: A strategy $σ  is ε -as good as a strategy σ  if for all sequences of discount

factors { }β t , all histories h, and al outcome functions ρ,

β σ ρ β σ ρ εtt t t tt t tu h h u h h=
∞

− − =
∞

− −∑ ∑≤ +
1 1 1 1 1 1( ( ), ( ) ( $ ( ), ( )) .

(Note that this condition is not probabilistic; it must hold over all histories.)

3.  Conditional Smooth Fictitious Play

We begin by introducing a smoothing of the best response function which takes

on interior values (that is, strictly prefers mixed strategies) and is continuous. As noted in

the introduction, all universally consistent rules must prescribe randomized play in at

least some instances. Some intuition for this fact can be gained by considering the

minimax theorem, and noting that “guessing the frequencies” is a kind of zero-sum game.

Alternatively, note that any deterministic procedure can be “defeated” by the outcome

function that “predicts” the action the player is about to play and chooses the action that

will minimize the player’s payoff. In particular, “classical” fictitious play is not

universally consistent.  Further discussion of why randomization is critical to universal

consistency can be found in Fudenberg and Levine [1995]; see Fudenberg and Levine

[1997] for descriptive/behavioral motivations for considering randomized learning rules.

Let v A:int( ( ))∆ → ℜ  be any smooth strictly differentiably concave function

satisfying the boundary condition that as γ  approaches the boundary of ∆( )A

Dv → ∞ .  Define v v= sup ( )α α , and suppose that v U≤ .  For example, the
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function v a a
a

( ) ( / ) ( ) log ( )α κ α α= − ∑1 , discussed more extensively below, satisfies

these properties.  For any such function the function

 V u vv ( ) max ( , ) ( )γ α γ αα= +1 6
will be smooth and convex and satisfy V V vv( ) ( )γ γ− ≤ .  Note the convenient fact that

V Uv ≤ 2 .  In other words, if v is small, V v  is a smooth approximation of V.  We also

define α α γ αα
v u v= +arg max ( ( , ) ( )) .  This is unique since v is strictly concave, and by

the boundary condition it is interior to the simplex.

There are several useful properties of V v v,α  which we now summarize.  First,

since v is strictly differentiably concave, the implicit function theorem implies that αv  is

itself smooth.  Moreover, by the envelope theorem DV uv v( ) ( ( ), )γ α γ= ⋅ .  This implies

that V v  is smooth, and since the domain is compact that the second derivative is

bounded.  We can apply Taylor’s theorem to conclude that there is a constant Bv  such

that

V V DV Bv v v v( ) ( ) ( )( )′ − − ′ − ≤ ′ −γ γ γ γ γ γ γ 2
.

When there is only a single category, the historical frequencies in that category are

the same as the overall historical frequencies, given by P nt t− −1 1/ .  The procedure of

playing at time t a best response to these frequencies is called fictitious play.  Of greater

interest in the current context is the procedure of smooth fictitious play that is given by

α v
t tP n− −1 1/1 6 .

It may be useful to consider a specific example.   Suppose as above that

v a a
a

( ) ( / ) ( ) log ( )α κ α α= − ∑1 .
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Then

u v u a a
a

( , ) ( ) ( , ) ( / ) ( ) log ( )α γ α α γ κ α α+ = − ∑1 ,

and the first order condition for a maximum is

u a av( , ) ( / )(log $ ( ) )γ κ α λ− + − =1 1 0 .

where λ  is the Lagrange multiplier corresponding to the constraint that the probabilities

α( )a  must sum to one.  We may easily solve these equations to find

α κ γ
κ γ

v

a

a
u a

u a
( )

exp ( ( , )
exp ( ( , )

=
′′∑

.

Substituting P nt t− −1 1/ , we find

α κ
κ

v t t

t ta

a
u a P n

u a P n
( )

exp ( ( , / )
exp ( ( , / )

=
′

− −

− −′∑
1 1

1 1

This is exactly the logistic fictitious play introduced in Fudenberg and Levine [1995].7  In

the case of a single category, this method of play is ε -universally consistent, where

ε → 0  as κ → 0 .8

Because P0  is null, we are left with flexibility on how design a fictitious play in

the initial period.  The procedure we shall use is to assume that in each category there is

an initial “prior” sample P0( )ψ , which may contain fractional observations.  The size of

the prior sample is defined as n P y
y0 0( ) ( )( )ψ ψ≡ ∑ .  While we do not require that the

size of the prior be the same for every category, we do assume that there is a uniform

bound.

Assumption 2: sup ( )ψ ψ∈ < ∞Ψ n0 .
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We also define the augmented sample, 
~

( ) ( ) ( )P P Pt tψ ψ ψ= + 0 , with corresponding

sample size ~ ( ) ( ) ( )n n nt tψ ψ ψ= + 0 .

In the general case of multiple categories, there is a different smooth fictitious

play

α ψ
ψ

v t

t

P

n

~
( )

~ ( )
−

−

�
��

�
��

1

1

corresponding to the subsample for each category. If the categorization rule picks a single

category at time t, so that $ ( , )ψ h at−1  does not depend on a but only on the history ht−1 ,

then we may define a categorical smooth fictitious play by

σ
α ψ

ψ

α ψ
ψ

v
t

v t t

t t

v t

t

h

P h a

n h a
t

P

n
t

( )

~
( $ ( , ))

~ ( $ ( , ))
~

( )
~ ( )

−

− −

− −

−

−

=

�
��

�
�� >

�
��

�
�� =

%
&
KK

'
KK

1

1 1

1 1

1 0

1 0

1

1

.

In other words, the strategy should be based only on the subsample corresponding to the

category currently selected.  In the case where the category is endogenous, in the sense

that it depends on the action chosen, there is a kind of fixed point problem: the category

determines the probability distribution over actions by a smooth fictitious play, but on the

other hand, the probability distribution over actions determines which category is actually

picked.  We refer to this as the calibrated case.

In the calibrated case, we define categorical smooth fictitious play by solving this

fixed-point problem.  Set 
~ ~

( $ ( , )), ~ ~ ( $ ( , ))P P h a n n h at
a

t t t
a

t t− − − − − −= =1 1 1 1 1 1ψ ψ  to be the cell counts

                                                                                                                                                

7  We originally called this “κ -exponential fictitious play.”
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and totals corresponding to each different action.  Define the matrix of different smooth

fictitious plays corresponding to different actions (and implicitly, different subsamples)

A P n
P

n
v

t t
v t

a

t
a

a A

( , )
~

~− −
−

− ∈

=
�
��

�
��

%&K'K
()K*K1 1

1

1

α .

Notice that by assumption on v, the α v ’s are strictly positive, and hence so is the matrix

Av .  It follows from the Perron-Frobenius theorem (see, for example, Gantmacher

[1959]) that the equation α α= − −A P nv
t t( , )1 1  has a unique solution. This unique solution is

denoted σ v
th −11 6 , and is called categorical smooth fictitious play.

We can now state our main results, deferring the proofs to section 6 below.

Proposition 1: The categorical smooth fictitious play σ v  is 2
1 0

v
B

n

v

+
+ ∈inf ( )ψ ψΨ

universally conditionally consistent.

Notice that as v → 0 , we must have the maximum norm of the second derivative of V v ,

which we denote by  B
v

, converging to infinity.  Consequently, the smaller we take v ,

the larger we must take the number of prior observations inf ( )ψ ψ∈Ψ n0 if the

approximation error in the definition of universal conditional consistency is to be

reduced.

Proposition 2: For any pure9 strategy s  and any ε  there exists a categorical smooth

fictitious play σ v that is ε -as good as s.

                                                

9 The assumption that s is pure simplifies the notation; the theorem can easily be extended to incorporate
mixed strategies as well.
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In other words, σ v  is almost as good as s and is also universally consistent (by

proposition 1).  Note that it is easy to construct a rule that is universally consistent and

does as well as s for a fixed per-period discount factorδ : simply play s until enough time

has gone by that nothing much matters given the δ , then switch to something universally

consistent.  The reason that this result is not trivial is that the definition of “as good”

requires that σ v  yield about as high a present value for any sequence of decreasing

weights on successive time periods. For this reason, the rules that we construct in the

proof of proposition 2 have the property that the amount of time needed to achieve a

given degree of universal consistency is fixed.  Thus, if s is not nearly universally

consistent, there will be discount factors d  sufficiently close to 1 and outcome functions

for which σ v  will substantially outperform s in discounted present value.  In other words,

the uniformly small sacrifice e  provides real insurance against bad outcome functions.

To illustrate proposition 2, consider the particular rule of playing a best response

to the previous period’s outcome and Jordan’s  [1993] three-player matching pennies

game.  In this game, player 1 wins if he plays the same action as player 2, player 2 wins if

he matches player 3, and player 3 wins by not matching player 1.  If all players follow a

fictitious play, play cycles; the same is true for a smooth fictitious play.  However, each

player, in a certain sense, waits too long before switching: for example when player 1

switches from H to T, player 3 does not switch from T to H until player 1 has switched

for a sufficiently long time that the average frequency with which he has played H drops

to  ½.  Smooth fictitious play performs similarly.  However, a player who plays the best-

response rule will switch one period after his opponent does, and as a result will get a
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much higher payoff (in the time average sense, even) than a player using a smooth

fictitious play.

The reason that best response does better is that it guesses correctly both that

opponents’ last period play is a good predictor of this period’s play, and that the

correlation is positive.   If in fact the correlation was negative, so for example the

opponent alternated deterministically between H and T, then best response would do

considerably worse than a smooth fictitious play.  The basic idea of Proposition 2 is that it

is possible (with a small cost) to have the best of both worlds: use a conditional smooth

fictitious play conditioning on the opponents’ play last period, with a strongly held prior

that this period’s play is the same as next period’s play.  In the short run such a rule does

exactly the same thing as best response.  In the long run, if the correlation is actually

positive as it is in the Jordan example, the rule continues to behave like best response.

However, if the correlation is negative, as is the case when the opponent alternates

deterministically between heads and tails, eventually the data overwhelms the prior, and

the conditional smooth fictitious play begins to match the opponents’ moves, beating both

best-response and even ordinary smooth fictitious play.

4. Use of Categorization Rules

So far, we have held fixed the particular categorization rules.  We now examine

the issue of which categorization rules make sense.  Most obvious examples of

categorization rules are finite ones.  For example, if a player suspects that y may be

following a two-cycle, he can use two categories according to whether the period is odd

or even.  He could also use a number of categories corresponding to the number of
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outcomes, and categorize current outcomes according to the outcome in the previous

period.  This type of scheme is considered by Aoyagi [1994] and Sonsino [1995].  This

method has the additional advantage of doing well when the opponents play follows

cycles that are growing in length over time.  This can be the case when both player use

exponential fictitious play: when the same outcome occurs many times in a row,

prediction based solely upon the last period will err only on the infrequent occasions

when there is a switch from one outcome to another.

To understand why particular categorization rules may or may not be useful, we

analyze play between a fixed pair of in a specific example.  As we noted earlier, our

consistency concepts are more compelling with anonymous random matching than in a

setting where the same agents face each other repeatedly, so the following should be

taken  as a possible suggestion of what one might find in richer models, and not as a self-

contained analysis. Consider then the Shapley game, a two player, three action per player

game with payoffs of the form

L M R

U ε ε, 0,1 1,0

M 1,0 ε ε, 0,1

D 0,1 1,0 ε ε,

where e > 0 . We consider first, as did Shapley, the case where e = 0 .  Suppose that both

players use a single category, and given the history in that category they use logistic

fictitious play, for example.  From results of Benaim and Hirsch [1994] we know that
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play can asymptote approximately to any stable best-response cycle.  In this game, such a

cycle begins at L,,M.  Player 1 then wishes to switch to D.  At D,M, player 2 wishes to

switch to L, then from D,L to M,L to M,R to U,Rthen back to the start at U,,M.  It can be

shown that this cycle is asymptotically stable in both the best response and approximate

fictitious play dynamic.  In the case of interest to us, approximate fictitious play, the

cycles are of ever increasing length.  This suggests that players might condition on the

profile from last period.  Suppose that both players do so.  Then it is easy to see that

within each of the nine categories, play is simply an approximate fictitious play, and (if

the initial condition is the right one in each category), play will simply follow the Shapley

cycle within each category.  Of course, players might notice this, and introduce even more

sophisticated conditional cycle detection, but no matter how complicated the

categorization rule they use, as long as they both condition on exactly the same histories,

there will still be a Shapley cycle within each category.

This is reminiscent of Aoyagi’s observation that players who play exact best

responses to their beliefs and asymptotically condition in the same way as each other will

end up following the dynamics of a fictitious play in each category separately.  Intuitively,

the use of a common categorization scheme is much like a public randomization between

initial conditions of the fictitious play.

Why should a player wish to use a calibrated rule?  This is most easily illustrated

in the case e > 0 .  In this case we have

Proposition 3: The Shapley game with e > 0  there is a unique correlated equilibrium ; it

is the Nash equilibrium of equal weight on all outcomes.
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Proof:  Consider the first row, and suppose that the equilibrium weights

are ρ ρ ρLL LM DM, , .  If these are not all zero, then U must be a best response for player 1

against these weights.  However, D is a strictly better response unless either the weights

are all equal, or ρ ρDM UM> . In a similar way, examining the final column, and making a

similar argument for player 2, we see that either all weights in this row are equal (possibly

to zero) or that ρ ρMR DM> .  Continuing around the Shapley cycle in this way, we see that

we get a contradiction unless all the weights are equal, which corresponds to the unique

Nash equilibrium.

q

On the other hand, while we have not been able to give an algebraic proof that the

Shapley cycle remains locally stable when e > 0 , simulations10 with ordinary and

exponential fictitious play for e < 1 3/  always give rise to cycles even for initial

conditions that begin near the Nash equilibrium.  A typical Monte Carlo simulation of the

time average of the joint distribution of play is shown below, where e = 1 4/  and players

use smoothing function of the form v a a
a

( ) ( / ) ( ) log ( )α κ α α= − ∑1 , where k = 40  is

shown below.

                                                

10 The simulations were done using Excel 7.0 on a Dell XPS 100c with a bug-free Pentium chip.  The
spreadsheets used for the simulations are available electronically on the World Wide Web at
http://levine.sscnet.ucla.edu/.
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Exponential Fictitious Play
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As can be seen the initial condition is nearly Nash.  The three lines going to zero are the

frequency of the three diagonal outcomes: asymptotically, the diagonal receives

practically no weight.  This is true of all of the simulations.

We conclude from proposition 3 that the cycle does not contain any correlated

equilibria.  It follows from the definition of correlated equilibrium that at each moment of

time that one of the two players has received less utility in time average than he could

have received if he had conditioned on his own action.  However, this player could have

guaranteed a better result by using a calibrated strategy.

It is worth pointing out that if instead of using a calibrated strategy, players

condition on their opponent’s previous action, play in simulations converges to the Nash
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equilibrium.11  However, as we already argued above, if players  condition on both their

opponent’s and their own previous period play, then we simply get a more complicated

variation of the Shapley cycle. The key is that if the long-run average play is not

converging to a correlated equilibrium, then players will benefit from using a calibrated

rule.

5. Calibrated Play and Correlated Equilibrium

In the previous section we argued that either play converges to a correlated

equilibrium, or players have an incentive to use calibrated rules.  On the other hand, if

players all use universally calibrated rules, the long run average of play must in fact

converge to a correlated equilibrium.

Suppose in fact that players do indeed use calibrated rules in the sense that they

condition on their own anticipated action.  By this we mean that no category can ever be

assigned two observations in which the player’s own action is different. In this case, it is

immediate that the empirical joint distribution of action profiles must come to

approximate a correlated equilibrium, since each player, conditional on his own action, is

playing an approximate best response to the distribution of opponents play.

The resemblance of the empirical joint distribution of action profiles to a

correlated equilibrium is closely related to a point originally made by Foster and Vohra

[1993] who consider best-responses to beliefs that are calibrated.  This means that if we

                                                

11 Aoyagi [1994] also considers an example where two players classify observations using different
categories.  However, in his example players are using exact fictitious play within categories so the player
with a more refined category scheme can exploit the player with the less refined scheme.  This cannot
happen with exponential fictitious play.
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categorize periods according to forecasts of opponents’ play, the frequency distribution of

actual opponents’ play converges to the forecast.  This implies that actions are calibrated

in the sense that each player conditional on his own action, is playing an approximate best

response to the distribution of opponents play, the condition that leads directly to

correlated equilibrium.

However, even the use of calibrated rules leaves open the possibility that

opponents “accidentally” correlate their play.  If they did not do so, then we would have

the stronger result that play would eventually come to resemble a Nash equilibrium.

What we should point out is that calibration guarantees no such thing.  The easiest way to

make this point is to observe that calibration of actions does not actually require that

players condition on their own actions; it is sufficient that they condition on their own

pairs of actions.  By this we mean that no category can ever be assigned two periods with

more than two distinct values of the players own action. The essential point is that if a

joint distribution over two actions and all outcomes has the property that the realized

utility is at least that that can be obtained by playing a single best-response to the

marginal distribution over outcomes, then each action must actually be a best response

conditional on that action.12  In particular, if each player has only two actions, then his

strategy is calibrated even if he uses only a single category, for example, exponential

fictitious play is calibrated in this case.

                                                

12 More generally, it follows from straightforward algebra that if  a joint distribution over all actions and all
outcomes has the property that the realized utility is at least that that can be obtained by playing a best
response to the marginal distribution over outcomes, then no action is a worst response to the distribution of
outcomes conditional on that action.
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Consider once again the three player, two action per player game of matching

pennies introduced by Jordan [1993].  In this game player 1 wishes to match player 2,

who wishes to match player 3, who wishes to avoid matching player 1.  Again we can

apply the results of Benaim and Hirsch [1994], and, supposing that player use exponential

fictitious play,13 focus on best-response cycles.  The key is that in every pure strategy

profile exactly one player can gain by deviating.   Once he does so, one opponent wishes

to switch, and so on in a cyclic fashion.  Jordan also shows that this cycle is

asymptotically stable under exact fictitious play; Benaim and Hirsch extend this to

stochastic smoothed versions.  Moreover, since each player has only two actions, it

follows that this cycle takes place (approximately) through the set of correlated equilibria.

Despite the fact that players are calibrated and play resembles a correlated equilibrium,

this cycle is just as disturbing as the Shapley cycle: players observe long sequences of

their opponent repeatedly playing the same action, yet fail to anticipate it will happen

again.  If they (all) introduce schemes conditioning on last period’s play, then the cycle

simply takes place independently in each category and so forth and so on.  Consequently

the issue in cycling is not calibration per se, but rather, whether or not players use

categorization rules in lock step.

Finally, we should observe that the long-run behavior of the exponential fictitious

play is quite different from that of calibrated play: in the Shapley example with

0 1 3< <e /  calibrated play converges globally to the unique correlated equilibrium

                                                

13 Implicitly we assume that when there are more than two players, the profile of opponents’ actions is
treated as a single outcome.  This means that each player tracks a joint distribution of opponents’ play.
Jordan actually supposes that players do fictitious play in his example by keeping a separate distribution for
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(which places weight 1/9, 1/9, 1/9 on the diagonal).  In contrast, exponential fictitious

play does not converge, and asymptotically places almost no weight on the diagonal.

6.  A Bound for Universal Conditional Consistency

We turn now to proving the two main results.  It is convenient to begin by

imagining that, in a sense to be made precise, the player gets to play against his prior as

well as the actual sample.  More precisely, each category has a prior utility

u n u P n P nv
0 0 0 0 0 0( ) ( ) ( ( ( ) / ( )), ( ) / ( ))ψ ψ α ψ ψ ψ ψ=

corresponding to the utility that would have been received had the player played a

“smoothed best-response” to repeated observation of the prior sample.  We can also

define a utility with prior for the entire course of play ~ ( ) ( ) ( )u u ut tψ ψ ψ≡ + 0  that includes

the prior utility.  If we compute the cost using not only the prior utility, but also replacing

the utility that could have been achieved V  with the smooth version V v , we get the

smooth cost with prior

~ ( ) ~ ( )
~

( )
~ ( )

~ ( )c n V
P

n
ut t

v t

t
tψ ψ ψ

ψ
ψ=

�
��

�
�� − .

There is of course also the total smooth cost with prior ~ ~ ( )
$

c ct t
t

= ∈∑ ψψ Ψ

The basic idea in what follows is that V v  is very close to V , and in a large

sample, the prior does not matter very much, so it is sufficient to study the smooth cost

with prior.  Indeed, define the incremental (smooth) cost (with prior)

~ ( , ) ~ ( , | ) ~ ~g a y g a y h c ct
v

t t
v

t t t t
v

t
v= = −− −1 1 .

                                                                                                                                                

each opponent, and assuming their play is independent.  However, in this particular game, there is no
distinction between the two procedures, since each player cares only about the play of one opponent.
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Our two propositions follow from a lemma that gives a basic bound on the incremental

cost.

Lemma 1: (a) | ~ ( , )|g a y Ut
v ≤ 4

(b) ~ ( ( ), )
inf ( )

g h v
B

nt
v v

t t

v

σ γ
ψψ

−
∈

≤ +
+1

01 Ψ

.

Remark 1:  Note that the bound (b) is by far the most significant; the bound (a) simply

says that ~gt
v  is a bounded random variable, which makes it easy to use the strong law of

large number.  The bound (b) is what enables us to reach conclusions about universal

consistency.

Remark 2: Since ~ ( ( ), ) / ( inf ( ))g h v B nt
v

t
vσ γ ψψ− ∈≤ + +1 01 Ψ , then the same bound must

also be satisfied by the maxmin strategy for the zero-sum game −~ ( , )g a yt
v .  If $σ v  is such

a strategy, we refer to it as a myopic play.   It follows that Lemma 1 (and Proposition 1)

remain true if the strategy of smooth categorical fictitious play is replaced with myopic

play.

Proof of Lemma 1:

We begin by writing out ~gt
v .  Let ψ t

a  = $ ( , )ψ h at−1  be the category at time t chosen

by the classification function if a is played then.  Abbreviate ~ ~ ( )n nt
a

t t
a

− −=1 1 ψ  and

~ ~
( )P Pt

a
t t

a
− −=1 1 ψ .  With this notation, (a) follows from the following calculation
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Moreover, since V v is smooth we may apply Taylor’s theorem as discussed above to

conclude

~ ( , ) ( (
~

~ , ) ( )
~

~ ( ) ( , ) (
~

~ ) ~

( (
~

~ ), ) ( (
~

~ ),
~

~ ) ( , ) (
~

~ )

g a u
P

n
e y

P

n
y u a V

P

n

B

n

u
P

n
u

P

n

P

n
u a V

P

n

B

t
v

t v
t
a

t
a

t
a

t
ay t t

v t
a

t
a

v

t
a

v
t
a

t
a t v

t
a

t
a

t
a

t
a t

v t
a

t
a

v

γ α γ γ

α γ α γ

≤ ⋅ −
�
! 

"
$#

− + +
+

≤ − − + +
+

−

−

−

−

−

− −

−

−

−

−

−

−

−

−

∑ 1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1 inf ( )ψ ψ∈Ψ n0

Moreover,

V
P

n
u

P

n

P

n
v

P

n

u
P

n

P

n
v

v t
a

t
a

v t
a

t
a

t
a

t
a

v t
a

t
a

v t
a

t
a

t
a

t
a

~

~

~

~ ,
~

~

~

~

~

~ ,
~

~

−

−

−

−

−

−

−

−

−

−

−

−

�
��

�
�� =

�
��

�
��

�
��

�
��

�
��

�
�� +

�
��

�
��

�
��

�
��

≤
�
��

�
��

�
��

�
��

�
��

�
�� +

1

1

1

1

1

1

1

1

1

1

1

1

α α

α

yielding

~ ( , ) ( (
~

~ ), ) ( , )
inf ( )

( (
~

~ ), )
inf ( )

g a u
P

n
u a v

B

n

u a
P

n
v

B

n

t
v

t v
t
a

t
a t t

v

v
t
a

t
a t

v

γ α γ γ
ψ

α γ
ψ

ψ

ψ

≤ − + +
+

= − − + +
+

−

− ∈

−

− ∈

1

1 0

1

1 0

1

1

Ψ

Ψ

.



28

We may rewrite this in terms of the matrix A P nv
t t(

~
, ~ )− −1 1  as
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1 1 03 8 , the conclusion follows.

q

proof of Proposition 1:  Observe first that
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By Lemma 1(a) ~g v
τ  are uniformly bounded random variables.  In addition by Lemma 1(b)

E g h g h h v B nt
v

t t
v v

t t
v[~ | ] ~ ( ( ), ( )) / ( inf ( ))− − − ∈= ≤ + +1 1 1 01σ ρ ψψ Ψ .

It follows directly from the strong law of large numbers for orthogonal sequences14 othat

lim sup ~ / / ( inf ( ))T T
v vc T v B n→∞ ∈≤ + +1 0ψ ψΨ .

Next leting ~cT  denote the cost where the actual utility V is used in place of the smoothed

utility V v  (but keeping the prior observations) we observe that since V V vv − ≤

lim sup ~ ~ /T T
v

Tc c T v→∞ − ≤ ,

from which

lim sup ~ / / ( inf ( ))T T
vc T v B n→∞ ∈≤ + +2 1 0ψ ψΨ .

Finally, observe that
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since by Assumption 1 m TT / → 0  while by Assumption 2 sup ( )ψ ψ∈ < ∞Ψ n0 .  This
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since the difference in the objective functions is going to zero.  So we conclude

lim sup ~ /T T Tc c T→∞ − = 0  giving the desired result.

æ

Turning to Proposition 2, we observe that it follows from the following Lemma

dealing with the non-history contingent case.

Lemma 2: For any strategy σ  of playing a constant action α  and any ε  there exists a

smooth fictitious play σ v that is ε -as good as σ .

Before proving the Lemma, we discuss how it can be used to prove Proposition 2.

The rule that is being outperformed in Lemma 2, that of guessing the opponent will

always play a single action, is not a terribly interesting rule.  However, let s  be an

arbitrary deterministic learning rule,15 and let ε > 0  be given.   Take a set of  Ψ = A  to be

                                                                                                                                                

14 Recall that a sequence of r.v.’s yt  is orthogonal if Ey y t kt k = ≠0, .
15 The extension to random rules is straightforward.
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set of actions. Define the classification rule $ ( ) ( )ψ h s ht t= , that is, classify histories

according to the way in which s  is going to play.  For each a  choose a smooth fictitious

play σ ε( , )a so that Lemma 2 is satisfied with respect to ε , and define a rule

$ ( , )( ) ( , $ ( ))( ( $ ))σ ε σ ε ψ ψs h h ht t t=

by applying the appropriate smooth fictitious play to the sub-history of the chosen

category. Lemma 2 immediately implies that $σ  is the rule that gives Proposition 2.  Note

that the fact that Lemma 2 holds for arbitrary non-stationary discount sequences is

important, since even if we use stationary discounting in Proposition 2, when we look at

sub-histories to apply Lemma 2, the discount factor will no longer be stationary, since the

sequence of sub-histories involves skipping periods during which a particular category

was not used.

Proof of Lemma 2: We may assume without loss of generality that α  is a best-response

to an open subset of opponent correlated strategies, since if not, α  is weakly dominated

by a strategy that does satisfy this property, and we may simply replace α  with this

dominating strategy in the calculations below.  Consequently, there exists a prior such

that α  is a best response to P n0 0/ .  From Lemma 1(b)

~ ( )
~

~ ( ( ), ( )) ( )
~

~g t n V
P

n
u h h t n V

P

n
v

B

t nt
v v t

t

v
t t

v t

t

v

= +
�
��

�
�� − − + −

�
��

�
�� ≤ +

+− −
−

−
0 1 1 0

1

1 0

1σ ρ .

  We may now compute

u h u u h h

g u h t n V
P

n
t n V

P

n

v
B

t n
u t n V

P

n
t n V

P

n

t
v

t t

t
v

t
v t

t

v t

t

v

t
v t

t

v t

t

( , ( ))) ( ( ( ), ( )))

~ ( , ( )) ( )
~

~ ( )
~

~

( , ) ( )
~

~ ( )
~

~

α ρ σ ρ

α ρ

α ρ

− − −

−
−

−

−

−

−

= + − +
�
��

�
�� − + −

�
��

�
��

�
��

�
��

≤ +
+

+ − +
�
��

�
�� − + −

�
��

�
��

�
��

�
��

1 1 1

1 0 0
1

1

0
0 0

1

1

1

1



31

Adding up over periods, we have
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and since α  is by assumption a best response to P n0 0/ , it must also be that
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Applying this inequality give
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Finally, choosing v n, 0  appropriately, we get
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for all T.

Making use of the fact that average present value may be written as a convex

combination of time averages over shorter time intervals we immediately can convert this

into a result for discounting;
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7. Conclusion

Given any particular learning rule we have shown how to construct a rule that

does almost as well regardless of the discount factor and does as well asymptotically as if

the conditional probabilities of a sufficiently small number of events was known in

advance.  This is true regardless of the process generating the outcomes. These rules have

the interpretation of being a convex combination of smooth fictitious plays corresponding

to the different available categories.  If strategies that successfully condition on the most

recently chosen actions are used by all players, then in the long the time average of the

frequency of strategy profiles must remain near the set of correlated equilibria.

Moreover,  it is not essential that players actually condition on their own most recently

chosen action, it is enough that they have the option of doing so, and use a categorization

procedure with the property that if has been historically advantageous to condition on

own past action, then this type of categorization will be introduced.  This suggests that in

the long run the play of sophisticated players should resemble a correlated equilibrium.

The convergence-to-correlated- equilibrium s result cannot in general be

strengthened to eliminate cycles or give convergence to a Nash equilibrium, no matter

how sophisticated the learning procedure employed by players are, since they might

“accidentally” coordinate their learning procedures.  In an example, noise, in the form of

lack of coordination between players’ learning procedures, does lead to a Nash
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equilibrium.  Whether this type of noise, or noise from a large population of players

playing independently, might generally lead to Nash equilibrium remains an open

question.
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