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Abstract

Background: Alcoholism has a strong genetic component. Twin studies have demonstrated the heritability of a large
proportion of phenotypic variance of alcoholism ranging from 50–80%. The search for genetic variants associated with
this complex behavior has epitomized sequence-based studies for nearly a decade. The limited success of genome-wide
association studies (GWAS), possibly precipitated by the polygenic nature of complex traits and behaviors, however, has
demonstrated the need for novel, multivariate models capable of quantitatively capturing interactions between a host of
genetic variants and their association with non-genetic factors. In this regard, capturing the network of SNP by SNP or
SNP by environment interactions has recently gained much interest.

Results: Here, we assessed 3,776 individuals to construct a network capable of detecting and quantifying the
interactions within and between plausible genetic and environmental factors of alcoholism. In this regard, we propose
the use of first-order dependence tree of maximum weight as a potential statistical learning technique to delineate the
pattern of dependencies underpinning such a complex trait. Using a predictive based analysis, we further rank the
genes, demographic factors, biological pathways, and the interactions represented by our SNP�SNP�E network.
The proposed framework is quite general and can be potentially applied to the study of other complex traits.

Keywords: GWAS, Alcoholism, SNP, Environment, Interaction, Network

Background
Alcohol dependence is characterized by increasing toler-
ance to and consumption of alcohol, even in the face of
adverse effects [1]. Almost 14% of alcohol consumers in
the United States meet the criteria for alcohol dependence
at some point in their lifetimes [2]. The consequences of
alcohol dependence are severe. Overconsumption of alco-
hol is known to be a contributing factor to more than 60
diseases, including several types of cancer, and accounts
for approximately 2.5 million deaths each year [3].
Alcoholism is very difficult to overcome once it initiates,

and thus there has been much interest in preventing the
onset of alcoholism altogether [3]. The construction of a
genetic model of alcoholism has become increasingly pos-
sible with new genetic case–control studies of the disease

[2]. Indeed, alcoholism is particularly amenable to a gen-
etic model, as the genetic basis of the disease is strong.
Adoption studies have demonstrated that children with al-
coholic biological parents are likely to become alcoholics
themselves, even if they are reared by adoptive parents in
environments with few traces of alcohol [4]. Most adop-
tion and twin studies suggest that 50–80% of variation in
the phenotype is due to genetic factors [5]. That different
people have different initial levels of tolerance to alcohol
and thus different propensities to become physically
addicted to it is further evidence of the genetic basis of the
disease. That said, the same studies that have pointed to
genetic factors have shown that demographic factors such
as culture and level of education also contribute to alco-
holism [6]. Thus, an effective model of alcoholism should
incorporate both demographic and genetic information.
There have been several association studies that have

sought to identify a small number of susceptibility loci for
alcoholism [7]. However, complex traits like alcoholism
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are commonly underpinned by numerous factors, genetic
as well as demographic, each of which has a small effect
size [8]. Thus, many genome-wide association (GWA)
studies on alcoholism have struggled to pinpoint individ-
ual single nucleotide polymorphisms (SNPs) that explain a
good portion of the variation in the phenotype; the best
odds ratios for individual SNPs reported in [2] were
around 2, a relatively low figure. The detected variants
with such a small effect size have explained a small
portion of heritability. This problem is not only specific to
alcoholism but to many other GWA studies commonly re-
ferred to as the “missing” heritability problem [9].
Various explanations have been suggested for the

missing heritability [9], e.g., existence of rare variants
with larger effect size that are not detectable with
current genotyping techniques; more variants of small
effect size that are not yet detected; and gene-gene
(G×G) or gene-environment (G×E) interactions that are
not discovered. The latter has resulted in various
complementary studies to detect the SNP×SNP or
SNP×E interactions in different phenotypes. For ex-
ample, Jamshidi, et al. conducted a two-SNP interaction
analysis and compared Cox’ regression models of pairs
of SNPs with and without interaction term, i.e., SNP1
+SNP2 vs. SNP1+SNP2+(SNP1×SNP2) [10]. For each
pair of SNPs, the best model was selected based on the
p-value of the likelihood ratio. Similarly, a logistic re-
gression model SNP+E+(SNP×E) was used in [11] to
identify a possible interaction between each SNP and the
environment. The p-values of the interaction term was
used to declare the significance of interaction. Limita-
tions of linear or logistic regression analysis in detecting
SNP-SNP interactions have been discussed elsewhere
[12]. In particular, when the susceptibility to disease is
caused by the interaction among several factors, the
number of parameters required to fit a (logistic) regres-
sion model increases exponentially. This is not only
computationally a challenge for constructing the regres-
sion model, but also this results in the quasi-complete
separation effect (also known as “empty-cell” effect) in
which case the estimate of parameters may not exist
[13–15]. Therefore, rather than fitting one single unified
regression model of many SNPs, researchers commonly fit
many regression models of a pair of SNPs and either com-
bine their results by further analysis (e.g. the gene-level ana-
lysis in [11]), or draw conclusion directly based on the
results of the many fitted regression models (e.g., [10]).
Here, in an effort to discover plausible epistasis, i.e.,

non-additive SNPs association with alcoholism pheno-
type, we propose the use of first-order dependence tree
of maximum weight. Although this technique has been
proposed for the first time by Chow and Liu in [16], but
its application in GWAS remains unexplored. This tech-
nique not only leads to an intuitive interpretation of

detected interactions, but at the same time, provides the
maximum likelihood estimate of the joint distribution of
SNPs and/or environmental variables given the pheno-
typic label (case or control). At the core of this network
approach is the mutual information of pairs of variables.
However, in contrast with other network approaches
such as [17–19] that also employ mutual information
among SNPs/genes, the knowledge of joint distribution
here creates a flow of information across nodes and
edges of the network upon which inference is possible.
In another words, the detected interactions are unified
in a single probabilistic network. Based on the con-
structed network, we propose complementary analyses
to rank the demographic factors, genes, biological path-
ways of alcoholism and compare our findings to prior
domain knowledge.

Results
The SNP×SNP×E Network of Alcoholism
The Manhattan plot in Fig. 1 shows the significance of
association of each SNP from genome-wide association
analysis conducted in the available cohort of alcoholism.
In this plot, each marker is represented by a dot and the
–log10 (p-value) is displayed on the y-axis. Markers
above the horizontal black line (p<0.0005) have been
used in subsequent analysis for construction of the
SNP×SNP×E network of alcoholism (see Methods Sec-
tion for more details). Figures 2 and 3 provide the full
picture of the SNP×SNP×E network and a sub-graph of
this network, respectively. Data collection, preprocess-
ing, and the working principle of the model are de-
scribed in Methods Section. The network has 413 nodes
(397 SNPs, 15 environmental factors (Table 1), and one
phenotypic variable). An edge from a node (parent node)
to another node (child node) indicates the conditional
probability of the child node being in a state (homozy-
gous wild-type or BB, heterozygotes or Bb, and homozy-
gous mutant or bb) given the state of the parent node.
Note that each node can have either a single parent or
two parents, one of which is constantly the phenotypic
node with two states (case and control). The 397 SNPs
in the network are found in the 21 chromosomal regions
that have been linked to alcoholism in previous associ-
ation or linkage studies (all of which employed datasets
and/or statistical methods different from ours).
Figures 2 and 3 confirm the frequent assertion that

alcoholism is a byproduct of genetic and demographic
factors. Based on Fig. 3, there seem to be a few likely
reasons why such a synergy exists between demographic
and genetic variables. First, the inclusion of race allowed
the network to distinguish between SNPs that increase
the risk of alcoholism only in African Americans (AAs)
and those that do so only in European Americans (EAs).
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It is clear from Fig. 3 that there are a large number of
SNPs that fit that description. As further evidence of
race’s role, removal of race from the demographic-
genetic classifier results in a decline in area under re-
ceiver operating characteristic curve (AUC) of 8.7%, the
largest decline occurred by removing any feature from
the network. Note that throughout this work, the AUC
metric is merely used for ranking purposes (see Methods
Section for details).

Results of network composition analysis
We sought to rank the genes, demographic factors, bio-
logical pathways, and the interactions represented in our
SNP�SNP�E network. In prior studies on modeling the
gene effect based on SNP level interactions using regres-
sion analysis, the test statistic is obtained by summing
the chi-squared 1° of freedom statistics within the gene,
e.g., see [11]. However, here constructing an MWDT
gives us an alternative and more intuitive way to com-
bine the effect of various SNPs in a gene level analysis
based on the AUC metric. In this regard, we sought to
dissect our network to identify strong associations be-
tween alcoholism and genes, demographic variables, bio-
logical pathways, and interactions among factors. The
results of the analysis (see Methods Section for details)
are shown in Table 2. As described next, literature expli-
citly confirm some of the identified associations, providing
further evidence that the network is not spurious. In other
cases, we found evidence in the literature suggestive of the
validity of associations. A few associations are not corrob-
orated with the domain knowledge, but the general align-
ment of our results with prior work suggests that insight

into the emergence of alcoholism. These associations are
worthy candidates for further study.

Discussion
Genes
Alcohol has a variety of effects on the body; many of
these arise from alcohol’s activation of receptors in the
brain [20]. A number of the genes identified in our ana-
lysis have important functions in the brain. In total, 9 of
the 13 genes listed in Table 2a (excluding the intergenic
set) either have been explicitly associated with alcohol-
ism in the literature or have functional ties to the disease
(e.g. are involved in brain activity). Three genes have
been explicitly associated with the development of alco-
holism. CPE has been identified in prior GWA studies
on alcoholism [7], and it encodes the enzyme carboxy-
peptidase E, which activates neuropeptides [21], proteins
crucial to communication among neurons. PKNOX2,
which regulates the transcription of other genes and
affects anatomical development [22], has been linked to
various types of substance abuse in European women
[23]. GLT25D2 was identified as related to alcoholism in
a GWA study on a dataset that had no samples in com-
mon with ours [24]. Five other genes have functional ties
to alcoholism and the development of the behavior
(Additional file 1, Supplementary Notes, Section 1).
While many identified genes were generally in alignment
with prior knowledge, further work should be done to
understand the associations between alcoholism and the
five genes that went uncorroborated in the literature
(BLNK, BMPER, PDLIM5, VEPH1, AMPD3). Finally, the
high importance of intergenic SNPs in Table 2a is
surprising, but similar SNPs have been tied in prior

Fig. 1 Manhattan plot of raw p-values from genome-wide association analysis (CMH test). Markers above the horizontal black line (p<0.0005) have
been used in the iterative network construction. For the actual p-values and ranking of these 652 SNPs, see Additional file 2: Table S1

The Author(s) BMC Systems Biology 2017, 11(Suppl 3):19 Page 3 of 11



GWA studies to alcoholism [25], and the noncoding
RNA that is transcribed from intergenic regions affects
gene expression levels in some cases [26].

G×G and G×E Interactions
Table 2b and c show demographic variables and interac-
tions with a significant p-value (see Methods Section for
details). Some of these factors and interactions are expli-
citly stated in prior studies. For example, a prior study
[27] has demonstrated that alcohol consumption is nega-
tively correlated with both income and educational

status, both of which were deemed important demo-
graphic factors in Table 2b. The significance of the edge
between income and education is sensible as well, as the
conditional probability tables of the network indicate
that a high level of education may be able to counteract
a low level of income with respect to the development of
alcoholism, and vice versa. Another prior study [28] pro-
vides the reason for the significance of the edge between
race and income: there is a much stronger association
between income and alcoholism in African Americans
than in European Americans. Although no SNP-SNP

Fig. 2 The SNP×SNP×E network of Alcoholism. The network contains 397 SNPs and 15 demographic variables. The nodes represent variables and an
edge between two nodes represents their dependency quantified by conditional probabilities. For the node labels and the complete list of interactions
see Additional file 3: Table S2. To enhance the quality of representation, we have removed the “alcoholism” node and the edges from this node to all
other nodes
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interaction were deemed significant, the numerous SNP-
SNP interactions that connect SNPs on the same gene
(see Fig. 3) are reasonable, as SNPs that are closer to-
gether are more likely to interact and/or affect the same
function [29].
There is also an interesting interaction between race

and rs8225 in Table 2c (decline in AUC has p<0.04).

While we used an AUC-metric-based approach to high-
light this interaction, one may realize the importance of
such link by examining the distribution of rs8225 among
cases and controls in both races. As presented in Table 3,
the distribution of this variant is substantially different
between the two race groups in both cases and controls
(difference of distribution of AAs and EAs in controls

Fig. 3 A subgraph of the SNP×SNP×E network in Fig. 2. All demographic factors are included, as well as the SNPs of several genes that have
multiple SNPs in the network. Each blue box is labeled with the gene on which all of the SNPs within the box are found. The grey box contains
all of the demographic factors
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has a p<10−15 and in cases p<10−15 as determined by
Cochran-Armitage test [30]). The within race group
distribution of this variant is also significantly different
between cases and controls (difference of distribution of
AAs in controls and cases has a p<0.005 and this differ-
ence for EAs has p<0.0002 as determined by Cochran-
Armitage test [30]). Another interesting interaction in
Table 2c is the interaction of sex and rs5933820 (decline
in AUC has p<0.02). While rs5933820 is located on the
X chromosome, but its appearance as a significant inter-
action with gender in the context of alcoholism seems
interesting and needs further validation and functional
analysis.

Biological Pathways
Twelve of the 14 biological pathways detected in our
analysis (Table 4) have already been linked in the litera-
ture, either explicitly or indirectly, to the alcoholism.
Two pathways have been explicitly cited for their in-
volvement in the development of alcohol dependence.
Fombonne, et al. demonstrated that children with long-
term depression are at higher risk for alcohol depend-
ence in adulthood [31]. The binding of GABA receptors,

which are neuroactive ligand receptors, was found to be
abnormally high in the brains of alcoholics [32]. Evi-
dence in the literature suggests that four pathways may
be involved in the emergence of alcoholism. It has been
noted that alcohol inhibits the reorganization of the
actin cytoskeleton [33]. Chronic exposure to alcohol re-
duces calcium signaling in response to glutamate recep-
tor stimulation in neuronal cells [34]. Exposure of
intestinal Gram negative bacteria to alcohol results in
accumulation of acetaldehyde, which in turn increases
tyrosine phosphorylation of adherens junction proteins
[35]. Treatment of the ventral tegmental area in mice
with glial cell line-derived neurotrophic factor activated

Table 1 Demographic variables used in the SNP×SNP×E
network

Variable Level/Range

Income/yr $ 0–10 K
10–20 K
20–30 K
30–40 K
40–50 K
50–75 K
75–100 K
100–150 K >150 K

Location of childhood home large city/suburbs/small
city/village/rural area

Level of education less than H.S. grad/H.S.
grad/some college/college
grad or more

Gender M/F

Age at interview 18–77

Race AA/EA

Sexually abused as a child yes/no

Otherwise physically abused as a child yes/no

Neglected as a child yes/no

Experienced sexual trauma yes/no

Otherwise experienced physical trauma yes/no

Experienced non-physical trauma yes/no

Weight 85–435 lb

Frequency with which attends religious
services

0–500

Height 49–80 in

Table 2 (a) The 14 most significant genes (p < 0.01) in the
SNP×SNP×E network, including the intergenic set. 221 total
genes were considered; (b) The four significant demographic
factors (p < 0.05) in SNP×SNP×E network. 15 total
demographic factors were considered; (c) The four significant
interactions (p < 0.05) in the demographic-genetic model.
427 total interactions were considered

Table 2a

Intronic/Intergenic SNPs p-value

Intergenic 0.001

BLNK 0.002

BMPER 0.002

SERINC2 0.003

LGALS2 0.004

CPE 0.006

PDLIM5 0.006

PKNOX2 0.008

VEPH1 0.008

NPAS3 0.009

AMPD3 0.01

CADM3 0.01

DAB1 0.01

GLT25D2 0.01

Table 2b

Demographic Factor p-value

Race 0.001

Sex 0.001

Education Level 0.002

Income 0.002

Table 2c

Factor-Factor Interaction p-value

Race-Income 0.011

Sex-rs5933820 0.016

Race-rs8225 0.04

Income-Education Level 0.041
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the MAPK signaling pathway and reduced desire for al-
cohol [36]. Six pathways do not seem likely to be in-
volved in the onset of alcoholism, but do appear to have
links to the behavior (Additional file 1, Supplementary
Notes, Section 1). Due to the overall alignment of the re-
sults of the analysis with the literature, it is likely that
the two pathways that have not yet been explicitly tied
in some way to alcoholism (dilated cardiomyopathy and
hypertrophic cardiomyopathy) have links to the behav-
ior; further study is required to confirm such
associations.

Conclusion
The analytical machinery proposed in this study can be
potentially used to capture the complex multifactor ef-
fects between many genetic and environmental factors,
providing a characterization of the underlying biological
and environmental mechanism that determines the
phenotype. The underlying framework is quite general

and we anticipate seeing it applied to the study of other
complex traits. The gene-gene-environment interactions
are also known as one possible source of the “missing”
heritability problem. In this regard, the next natural step
is to use the proposed framework to quantify the pro-
portion of the missing heritability explained by identified
interactions.

Methods
Data Collection and Preprocessing
We utilized SAGE data [2], which featured 3,829 sub-
jects and considered 948,658 SNPs from across the hu-
man genome, as well as several demographic variables.
The data included human samples from three prior
studies [2]; 30% of the individuals were African Ameri-
cans and 70% were European Americans. The SAGE
dataset includes 1,897 Diagnostic and Statistical Manual
of Mental Disorders (DSM-IV) cases and 1,932 alcohol-
exposed non-dependents. We used 15 environmental
variables (demographic factors) that are listed in Table 1.
Several demographic factors were left out, especially
ones relating to comorbidities, because their distribu-
tions across the cases and controls were heavily imbal-
anced. All continuous demographic variables in the data
(e.g. income) were discretized. We first removed any
SNPs out of Hardy-Weinberg equilibrium (P < 0.0001).
Hardy-Weinberg equilibrium tests were run separately
on the African Americans and the European Americans
in order to ensure identification of any SNPs common
only in one race out of equilibrium. SNPs with minor al-
lele frequency (MAF) below 0.01 or call rate below 98%
were also removed from consideration, leaving a total of
934,128 SNPs. Finally, the 3,776 samples (1909 cases and
1867 controls) with a genotyping rate above 98% were
maintained. A Cochran-Mantel-Haenszel (CMH) associ-
ation test was used to rank the 934,128 SNPs [30]. The
association analysis was performed with the software
PLINK [37]. The top 652 SNPs (p < 0.0005) were main-
tained for network construction as detailed in the next
few subsections.

Maximum-weight Dependence Tree (MWDT)
First-order dependence tree of maximum weight is pro-
posed initially by Chow and Liu [16] and further devel-
oped and evaluated by Friedman et al. [38]. Although
there is no biological evidence that dependence between
variables (genes or SNPs) follow a tree structure, but
limitations on the number of available sample points
compared to the complexity of the problem in hand re-
quire the joint distribution of variables be approximated
by some simplifying assumptions. In this regard, tree de-
pendence assumption is made to approximate a nth

order joint probability distribution by a product of n-1 s-
order distributions. To understand the working principle

Table 3 Distribution of rs8225 in the two race groups among
cases and controls. The link between this variant and “race”
group is determined to be statistically significant (see Table 2c)

Controls

Race 2 C (wild type) Heterozygous 2 T (variant)

African American 9.20% 41.80% 49.00%

European American 76.30% 22.20% 1.60%

Cases

Race 2 C (wild type) Heterozygous 2 T (variant)

African American 6.00% 37.5 56.50%

European American 70.40% 26.5 3.10%

Table 4 The 14 significant biological pathways (p < 0.05) in the
demographic-genetic model. 186 total pathways were
considered

KEGG Pathways p-value

Calcium Signaling Pathway 0.001

Focal Adhesion 0.002

ECM Receptor Interaction 0.007

Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) 0.012

Hypertrophic Cardiomyopathy 0.012

Dilated Cardiomyopathy 0.012

Regulation of Actin Cytoskeleton 0.014

Oocyte Meiosis 0.014

Fc-Gamma Receptor-Mediated Phagocytosis 0.021

Long-term Depression 0.036

Adherens Junction 0.04

MAPK Signaling Pathway 0.04

Endocytosis 0.04

Neuroactive Ligand Receptor Interaction 0.047
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in the context of GWAS, let P(x) denote the probability
mass function of a random vector x. The mutual infor-
mation between two variables (here SNP1 and SNP2) is
given by

I SNP1; ; SNP2ð Þ ¼
X

SNP1 ;SNP2

P SNP1; ; SNP2ð Þ

log
P SNP1; ; SNP2ð Þ
P SNP1ð ÞP SNP2ð Þ

� �

Intuitively, I(SNP1, SNP2) measures the amount of in-
formation that SNP1 carries about SNP2 and vice versa.
In a graphical representation of dependency among
SNPs, we assume the dependencies have a tree structure
(meaning each node has a single parent and one node
(the root) has no parent), and assign to every edge of the
tree an I SNPi; ; SNPmið Þ . Then the tree with the max-
imum weight is the one that maximizesX

i¼1

n
I SNPi; ; SNPmið Þ where mi denotes the parent

node of node i and n is the number of SNPs under
study. Note that there is no difficulty to maximizeX

i¼1

n
I SNPi; ; SNPmið Þ without considering the class la-

bels; however, doing so leads to a static network that
may not differentiate one class from another. In other
words, it is not possible to use the network as an infer-
ential tool. The technique originally proposed in [16] re-
solves this problem by stratifying the samples at the
outset and constructing one network for each class.
Nevertheless, having a different network of interactions
for each class will not only make the inference a more
difficult and elusive task, but may not have a biological
ground either.
In a case–control study, we can define a “class” vari-

able C to measure the amount of information between
SNPs given the phenotype (case or control). In this case,
the maximum weight first-order dependence tree be-
comes the one with the maximumX

i¼1

n
I SNPi; SNPmi jCð Þ. By the first-order tree assump-

tion on the structure of dependencies between SNPs,
one can write the joint distribution between all SNPs
given C as

P SNP1; SNP2;…; SNPnjCð Þ ¼
Yn

i¼1

P SNPijSNPmi ;Cð Þ

This decomposition of joint probability to product of
“second-order” distributions or the distribution of first-
order tree dependence leads to an algorithm that can
“grow” the tree in polynomial time (Kruskal algorithm
detailed in [16]). In practice, the knowledge of condi-
tional probability distributions is not available, and they
must be estimated from data. Nevertheless, it can be
shown that due to decomposition of joint probability

distributions as mentioned above, the strategy that finds
the tree with maximum weights is also the maximum
likelihood estimate (MLE) of the joint distribution. In
other words, finding the tree with maximumX

i¼1

n
Î SNPi; SNPmi jCð Þ , with Î SNPi; SNPmi jCð Þ being

the sample estimate of I SNPi; SNPmi jCð Þ , is equivalent
to the MLE of the joint distribution of SNPs, P(SNP1,
SNP2,…, SNPn|C), under the first order dependence tree
structure (see [16]). This implies that if the true depend-
ence between SNPs has a tree structure, then as the
sample size increases, the estimated trees converge to
the true tree with probability one. For further details on
estimating I SNPi; SNPmi jCð Þ , see Additional file 1, Sup-
plementary Notes, Section 2. Another interesting feature
of MWDT is that approximating and estimating the
joint distribution of SNPs create a flow of information
among nodes of the network. As opposed to other net-
work approaches based on mutual information [17–19],
this interesting property of the network gives us the abil-
ity to employ the network as an inferential tool. For ex-
ample, for an observation of unknown class, one can
assign a case label if

Yn

i¼1

P SNPijSNPmi ;C ¼ caseð Þ

>
Yn

i¼1

SNPijSNPmi ;C ¼ controlð Þ

AUC in Ranking Networks of Interactions
From the previous section, we have to note that the
MWDT guarantees the maximum likelihood estimate of
the joint distribution given the true tree dependency
among a set of given SNPs. However, for a set of SNPs
of size n (here 652 SNPs selected as described before),
there will be 2n-1 potential maximum weight networks
that can be constructed on any subset of n variables. Of
course one may choose to grow the tree on all n SNPs
but here we propose a complementary step to further
narrow down the list of potential genetic factors used in
the proposed network of alcoholism. To do so, we use
the network as a classifier and use the AUC to rank a
set of potential networks (see next subsection) and
choose the one with the highest AUC. Unless otherwise
stated, we employ 3-fold cross-validation procedure to
compute AUCs. Nevertheless, since for the initial di-
mensionality reduction step, we use the CMH test on
the full training data, we shall not interpret AUC as the
predictive ability of our constructed network on a subset
of SNPs and/or other factor. In other words, the use of
AUC here is merely a measure to rank constructed sub-
networks of interactions.
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Ranking mechanism
To construct the optimal network of interactions, two
approaches were employed: one is a backward sequential
iterative approach described below, and the other is an ap-
proach based on a combination of linkage disequilibrium
(LD) analysis [39] and the backward iterative approach. In
the (backward) iterative approach, the MWDT was first
trained with the remaining SNPs and the 15 demographic
variables as part of the network. In each subsequent iter-
ation, the 50 SNPs with the largest CMH p-values were re-
moved and a new network was constructed using the
reduced list of SNPs. The best network was the one with
the highest AUC in differentiating cases from controls.
The LD analysis-based approach sought to eliminate re-
dundant SNPs. LD analysis was performed and SNPs that
were strongly linked (i.e. frequently co-occurred in both
the cases and the controls) were grouped into bins. The
approach outlined by Carlson, et al. [40], with the r2

threshold lowered from 0.8 to 0.4, was used to produce a
single tag SNP for each LD bin. Only the tag SNPs were
maintained, and the iterative approach was applied to
them. This approach ensures that multiple SNPs that are
proxies due to low LD distance are not selected. The tag
SNP acts as a proxy for all SNPs in that region. The best
networks from the two approaches were compared, and
the one with the highest AUC was selected as the
SNP×SNP×E network.

Analysis of network composition
To study the gene level interactions with the phenotype
based on SNP level variations, we enumerate all genes
with at least one SNP in the network. For each gene, we
construct a sub-network of SNPs involved in the full
SNP×SNP×E network located on that gene and record
the AUC of a newly constructed sub-network. We con-
sider race and sex as part of each sub-network. This
would unlock the full potential of race- or sex-specific
SNPs. In a sense, this analysis is similar to the adjust-
ment for sex and age in the classical regression analysis.
We next considered important demographic features.

To evaluate the importance of each demographic factor,
we calculated the decline in resubstitution AUC (AUC
on the training set) upon removal of that factor and all
edges connected to it from the full SNP×SNP×E net-
work. Resubstitution was used because the response of
cross-validation AUC to minor changes is relatively im-
precise due to larger variance of cross-validation estima-
tors [41]. We used the Molecular Signatures Database
[42] to determine the lists of genes related to 186 path-
ways from the Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) [43]. For each KEGG pathway, we
recorded the AUC of the corresponding sub-network
constructed using SNPs in the full network that are
within the pathways’s genes, as well as race and sex.

Finally, to detect most important interactions, we suc-
cessively removed each edge in the full SNP×SNP×E net-
work and recorded the decline in AUC. The analysis left
us with an AUC for each gene, pathway, and a decline in
AUC for each demographic feature and interaction. Ra-
ther than reporting the actual AUCs, which here is
merely used for ranking purposes, we calculated a p-
value associated with each AUC. Although here ranking
based on AUC or p-value leads to the same result, we
use the p-value threshold of 0.05 (non-adjusted) to nar-
row down the list.
To determine a p-value for each gene- or pathway-

specific network, we constructed 1,000 networks, each
with the same number of nodes for which the AUC in
question was calculated, and determined their AUCs.
The set of genetic features for each of the 1,000 net-
works was drawn randomly from the background set of
SNPs. Race and sex were included as features in all
1,000 networks in order to ensure parity with the pro-
cedure used to generate the gene- or pathway-specific
network. The list of 1,000 random AUCs enabled the
calculation of a p-value for the AUC in question.
To determine the statistical significance of each de-

cline in AUC (used for quantifying the importance of
each demographic variable and the interactions in the
SNP×SNP×E network), we used the same background
set to construct 1,000 random networks with the same
set of demographic factors and the same number of
SNPs as in the SNP×SNP×E network. For each randomly
generated model, we recorded the decline in AUC upon
removal of a random SNP (in the case of the declines in
AUC for demographic factors) or a random edge (in the
case of the declines in AUC for interaction). The 1,000
random declines in AUC enabled the calculation of a p-
value for the decline in AUC of interest. Each gene,
demographic factor, pathway, and interaction relation-
ship was now associated with a p-value.
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