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Abstract

Over 100 genetic loci harbor schizophrenia associated variants, yet how these variants confer 

liability is uncertain. The CommonMind Consortium sequenced RNA from dorsolateral prefrontal 

cortex of schizophrenia cases (N = 258) and control subjects (N = 279), creating a resource of 

gene expression and its genetic regulation. Using this resource, ~20% of schizophrenia loci have 

variants that could contribute to altered gene expression and liability. In five loci, only a single 

gene was involved: FURIN, TSNARE1, CNTN4, CLCN3, or SNAP91. Altering expression of 

FURIN, TSNARE1, or CNTN4 changes neurodevelopment in zebrafish; knockdown of FURIN in 

human neural progenitor cells yields abnormal migration. Of 693 genes showing significant case/

control differential expression, their fold changes are ≤ 1.33, and an independent cohort yields 

similar results. Gene co-expression implicates a network relevant for schizophrenia. Our findings 

show schizophrenia is polygenic and highlight the utility of this resource for mechanistic 

interpretations of genetic liability for brain diseases.

Keywords

Schizophrenia; dorsolateral prefrontal cortex; postmortem study; gene expression; RNA-seq; case-
control study; biomarker; eQTL; functional GWAS; zebrafish; hiPSC

INTRODUCTION

How the human brain dynamically performs its innumerable functions is recognized as one 

of this century’s “Grand Challenges”. Indeed, seemingly straightforward fundamental 

information such as which genes are expressed therein and what functions they perform are 

only partially characterized. To overcome these obstacles, we established the CommonMind 

Consortium (CMC; www.synapse.org/CMC), a public-private partnership to generate 

functional genomic data in brain samples obtained from autopsies of cases with and without 

severe psychiatric disorders. The CMC is the largest existing collection of collaborating 

brain banks and includes over 1,150 samples. A wide spectrum of data is being generated on 

these samples, including regional gene expression, epigenomics (cell-type specific histone 

modifications and open chromatin), whole genome sequencing, and somatic mosaicism.

Schizophrenia (SCZ), affecting roughly 0.7% of adults, is a severe psychiatric disorder 

characterized by abnormalities in thought and cognition1. Despite a century of evidence 

establishing its genetic basis, only recently have specific genetic risk factors been 

conclusively identified, including rare copy number variants2 and >100 common variants3. 

However, there is not a one-to-one Mendelian mapping between these SCZ risk alleles and 

diagnosis. Instead, SCZ is truly complex and appears to result from a myriad of genetic 

variants exerting small effects on disease risk4,5, conforming closely to a classical polygenic 

model. The available data are incomplete but implicate synaptic components, including 

calcium channel subunits and post-synaptic elements5–7. A consequence of polygenic 

inheritance is that the small effect sizes of individual variants complicate characterization of 

the biological processes they influence, both at the level of particular genes and pathways.
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Post-mortem gene expression studies of SCZ cases suggest subtle abnormalities in multiple 

brain regions including the prefrontal and temporal cortices, hippocampus, and several 

specific cell types8. More than 50 gene expression studies of SCZ cases and controls have 

been reported, often of overlapping samples and mostly of modest scale (prior RNA 

sequencing studies evaluated only 5–31 cases, Supplementary data file 1). Results are often 

inconsistent and there are few replicated findings. These studies are probably underpowered 

to detect subtle effects that might be expected to arise as a result of this complex disease and 

within tightly regulated brain tissue9, among other limitations of existing microarray-based 

gene expression studies10.

RNA sequencing can accurately detect transcription at the gene and isoform level. We 

sequenced a cohort of SCZ and control subjects that is an order of magnitude larger than 

prior RNA sequencing studies. By applying state-of-the-art analytic methods and including 

genome-wide characterization of common variants, we generated a rich resource of the 

genetics of gene expression in the brain. This resource can serve as a useful catalogue of 

regulatory variants underlying the molecular basis of SCZ and other brain disorders. We use 

this resource to identify: (a) specific effects on gene expression of genetic variants 

previously implicated in risk; (b) genes showing a significant difference in expression 

between SCZ cases and controls; and (c) coordinated expression of genes implicated in 

SCZ. Our results shed light on the subtle effects expected from the polygenic nature of SCZ 

risk and thus substantially refine our understanding of the neurobiology of SCZ.

RESULTS

Samples and sequencing

We generated RNA sequence data from post-mortem human dorsolateral prefrontal cortex 

(DLPFC; Brodmann areas 9 and 46) from brain banks at the Icahn School of Medicine at 

Mount Sinai, the University of Pennsylvania, and the University of Pittsburgh 

(Supplementary Table 1). To control for batch effects, multiple randomization steps were 

introduced and DNA and RNA isolation and library preparation were performed at one site 

(Supplementary Fig. 1A). Samples were genotyped on the Illumina Infinium 

HumanOmniExpressExome array (958,178 SNPs) and imputed using standard techniques 

with the 1000 Genomes Project as reference data11. These genotypes were then used to 

detect SNPs that have an effect on gene expression (eQTLs, expression quantitative trait 

loci), to estimate ancestry of the samples, and to ensure sample identity across DNA and 

RNA experiments. Ethnicity was similar between cases and controls (Caucasian 80.7%, 

African-American 14.7%, Hispanic 7.7%, East Asian 0.6%, Supplementary Figs. 1B, C). As 

expected3, SCZ cases inherited an increased number of common variant alleles previously 

associated with SCZ risk (P = 1.6 × 10−8, Supplementary Fig. 1D).

RNA sequencing was performed after depleting ribosomal RNA (rRNA). Following quality 

control, there were 258 SCZ cases and 279 controls. Fifty-five cases with affective disorder 

were included to increase power to detect eQTLs. The median number of paired end reads 

per sample was 41.6 million, with low numbers of rRNA reads (Supplementary Fig. 2). 

Following data normalization, 16,423 genes (based on Ensembl models) were expressed at 

levels sufficient for analysis, of which 14,222 were protein coding. Validation using PCR 
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showed high correlation (r > 0.5) with normalized expression from RNA-seq for the 

majority of genes assessed (Supplementary Fig. 3). Gene expression measurement can be 

influenced by a number of variables; some are well documented (e.g., RNA integrity (RIN) 

and post-mortem interval (PMI)), but others may be unknown. We investigated known 

covariates by standard model selection procedures to find a good statistical model 

(Supplementary Fig. 4 and 5). Covariates for RIN, library batch, institution (brain bank), 

diagnosis, age of death, genetic ancestry, PMI, and sex together explained a substantial 

fraction (0.42) of the average variance of gene expression, and were thus employed to adjust 

the data for all analyses.

Generation of a brain eQTL resource

To identify eQTLs, gene expression data from European-ancestry subjects (N = 467) were 

adjusted for known and hidden variables detected by surrogate variable analysis (SVA) 

conditional on diagnosis but excluding ancestry (Supplementary Fig. 2 and 4). Adjusted 

expression levels were then fit to imputed SNP genotypes, covarying for ancestry and 

diagnosis, using an additive linear model implemented in MatrixEQTL. The model 

identified 2,154,331 significant cis-eQTLs, (i.e., within 1 Mb of a gene) at a false discovery 

rate (FDR) ≤ 5%, for 13,137 (80%) of 16,423 genes. Many eQTLs for the same gene were 

highly correlated, due to linkage disequilibrium, and 32.8% of eQTL SNPs (“eSNPs”) 

predict expression of more than one gene. Cis-eSNPs were enriched within genic elements 

and non-coding RNAs, particularly within 100 kb of the transcription start and end sites12, 

and depleted in intergenic regions (Fig. 1A, B). As defined by GTEx13, an “eGene” is a gene 

with at least one significant eSNP after strict correction for multiple marker testing for that 

gene. There were 8,427 eGenes at FDR ≤ 5%, or 18 eGenes discovered per sample, 

consistent with a prediction from GTEx. We examined the enrichment of max-eQTLs 

(defined as the most significant eSNP per gene, if any) in predicted enhancer sequences 

derived from the Roadmap Epigenomics Consortium and ENCODE across 98 human tissues 

and cell lines14. Cis-eQTLs were enriched for enhancer sequences present in brain tissues 

(Kolmogorov-Smirnov (KS) test versus non-brain: D = 1, P = 4.5 × 10−6), and the strongest 

enrichment is observed in DLPFC enhancers (Z = 9.5) (Fig. 1C).

To assess the utility of analyzing a much larger brain dataset, we compared previously 

reported DLPFC eQTLs to CMC-derived eQTL, estimating the proportion of non-null 

hypotheses (π1) in CMC and the number of additional eQTL found in CMC that were not 

detected in the other studies. GTEx v6 is the largest public dataset of eQTLs from DLPFC 

tissue (n = 92) assayed by RNA-seq; its replication in CMC is π1 = 0.98. Considering 

microarray-based eQTLs from the Harvard Brain Bank 15, BrainCloud16, NIH17, and the 

UK Brain Expression Consortium (UKBEC)18, we estimated π1 to be 0.75, 0.70, 0.79, and 

0.93, respectively, indicating that our results captured most eQTLs found in other 

independent samples. Replication was somewhat lower for a recent meta-analysis that 

included a mix of several distinct brain regions19 (π1 = 0.62), and for eQTLs detected in 

blood (π1 = 0.54)20. We also derived eQTL for 279 DLPFC samples as part of the NIMH 

Human Brain Collection Core (HBCC) microarray data and found replication π1 = 0.77. 

Moreover, concordance of the direction of allelic effect was high, with 93% of eQTL 

showing the same direction of effect when intersecting CMC eQTL (FDR ≤ 5%) with even a 
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liberally defined set of HBCC eQTL (FDR ≤ 20%). In addition to containing the vast 

majority of eQTL found in the literature, the CMC sample finds a substantial number of 

genes with previously undetected eQTL (Table 1).

The patterns of results should be different for “trans-eQTLs”, i.e., SNPs correlated with 

expression of a gene beyond 1 Mb of its genomic location. Trans-eQTLs incur a greater 

penalty for multiple testing, require greater power for detection, and are thus more 

susceptible to false positives and less likely to replicate than cis-eQTL. Nevertheless, the 

data supported 45,453 significant trans-eQTL at FDR ≤ 5%, of which 20,288 were also cis- 

eQTL SNPs for local genes, and 34% predicted expression of more than one distant gene. 

The proportion of trans eQTL in CMC that replicate in HBCC is 18.6% (both FDR ≤ 5%). 

The proportion of HBCC trans eQTL that replicate in CMC is 29.7%. Enrichment of trans-

eQTLs with brain enhancers was not observed (data not shown), though enrichment in genic 

regions and depletion in intergenic regions was observed, particularly when restricting to 

trans eQTL ≥ 10 Mb from the gene location. We used similar techniques to derive isoform 

expression quantitative trait loci (isoQTLs).

eQTL signatures at SCZ risk loci point to specific genes

A hallmark of polygenic inheritance is that individual SNPs confer small effects on risk. For 

some risk SNPs, perhaps the majority, their impact could be mediated through effects on 

gene expression. Indeed, GWAS SNPs associated with SCZ risk occur more often than 

expected by chance in cis-regulatory functional genomic elements, such as enhancers or 

eQTL SNPs3,21–24. Yet, GWAS loci typically contain many genes, and SNPs therein are 

often highly correlated via linkage disequilibrium, so that assigning a biological role for a 

particular risk SNP has been difficult. Here, we leverage CMC-derived eQTL to relate SCZ 

risk variants to expression of specific genes.

Of the 108 SCZ GWAS loci previously reported3, 73 harbor cis-eQTL SNPs for one or more 

genes (FDR ≤ 5%). To determine if 73 out of 108 loci were larger than that expected by 

chance, we conducted an experiment that randomly chose such loci in the genome; it 

showed that 73 loci with cis-eQTL SNPs is consistent with chance expectation (data not 

shown). Moreover, the simple presence of an eQTL does not imply disease causality. We 

used Sherlock 25, a Bayesian approach that prioritizes consistency between disease 

association and eQTL signatures in GWAS loci, to identify genes likely to contribute to SCZ 

etiology. While Sherlock evaluated genes across the genome, we only evaluated genes 

within the 108 SCZ GWAS loci because SNPs in these loci showed genome-wide significant 

association with SCZ; thus, in essence, we fine mapped these loci. The results suggested that 

GWAS risk and eQTL association signals co-localized for 84 genes in 30 of these loci 

(adjusted P < 0.05; Supplementary Fig. 6A, Supplementary data file 2). After removing 

genes where additional evaluation indicated lack of consistency (Supplementary Fig. 7B), 

there were 33 genes highlighted in 18 of the 108 GWAS loci (Supplementary data file 2). 

Genes found to have variants affecting risk for autism are often found enriched for variation 

affecting risk for SCZ; indeed, compared to other genes with eQTL in the GWAS loci, these 

33 genes are more enriched for nonsynonymous de novo mutations in autism (fold 

enrichment = 2.4, Pcorrected = 0.03), although not for SCZ, intellectual disability, or epilepsy.
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Repeating the analyses using isoform-level eQTLs (isoQTL) identified nine genes in eight 

GWAS loci, with all but three genes already identified in the gene-level analysis 

(Supplementary data file 2). Combining the gene and isoform data, 20 of 108 GWAS loci 

(19%) had evidence suggesting that mis-regulated gene expression could, in part, explain the 

genetic association with schizophrenia: 18 cis-QTL loci (cis-eQTL for 33 genes + 2 genes 

with cis-isoQTL), one locus implicated only by cis-isoQTL (SNX19), and one trans-eQTL 

association for IMMP1L at a GWAS locus on chr7. We discuss other genes identified by 

Sherlock in the Supplement.

Of the 19 GWAS loci harboring SCZ-associated cis-eQTLs, eight involved only a single 

gene (i.e., no additional gene with relaxed adjusted Sherlock p < 0.5): furin (FURIN, down-

regulated by risk allele), t-SNARE domain containing 1 (TSNARE1, up), contactin 4 

(CNTN4, up), voltage-sensitive chloride channel 3 (CLCN3, up), synaptosomal-associated 

protein of 91 kDa (SNAP91, up), ENSG00000259946 (up), ENSG00000253553 (down), 

and the ENST00000528555 isoform of sorting nexin 19 (SNX19, down) (Fig. 2 and 

Supplementary Fig. 6B and 7A). For functional follow-up, we focused on the five single-

gene loci encoding known proteins implicated at the gene level. First, we replicated these 

eQTL in the Religious Orders Study and Memory and Aging Project (ROS/MAP)26, with 

unpublished human DLPFC RNA sequencing data (N = 461). The most significant GWAS 

SNP was also a significant eQTL with the same direction of effect as in CMC for FURIN 
(rs4702: P = 1 × 10−6), CLCN3 (rs10520163: P = 9 × 10−6), and SNAP91 (rs3798869: P = 3 

× 10−4); TSNARE1 (rs4129585: P = 0.057) and CNTN4 (rs17194490: P = 0.07) also had 

alleles in the same direction of effect as in CMC but did not reach significance.

CLCN3, SNAP91, and TSNARE1 are direct synaptic components, and CNTN4 and FURIN 

play roles in neurodevelopment. Specifically, CLCN3 (or ClC-3) is a brain-expressed 

chloride channel, where it appears to control fast excitatory glutamatergic transmission 27. 

SNAP91 is enriched in the presynaptic terminal of neurons where it regulates clathrin-coated 

vesicles, the major means of vesicle recycling at the presynaptic membrane. TSNARE1 

plays key roles in docking, priming, and fusion of synaptic vesicles with the presynaptic 

membrane in neurons, thus synchronizing neurotransmitter release into the synaptic cleft. 

CNTN4 is a member of the contactin extracellular cell matrix protein family responsible for 

development of neurons including network plasticity28. It plays a key role in olfactory axon 

guidance29, and there is evidence for association of copy number variants overlapping 

CNTN4 with autism30. FURIN processes precursor proteins to mature forms, including 

brain-derived neurotrophic factor (BDNF), a key molecule in brain development whose 

down-modulation has been hypothesized as related to schizophrenia31, and BDNF and 

FURIN are up-regulated in astrocytes in response to stress.

The major histocompatibility complex (MHC / human leukocyte antigen / HLA) region is 

consistently most highly associated with SCZ, but it is a difficult region to dissect for causal 

variation because of its unusually high linkage disequilibrium and gene density (>200 

DLPFC-expressed genes in chr6:25–36 Mb). Nevertheless, only five genes in this locus were 

ranked highly by Sherlock and passed evaluation for concordance of associations 

(Supplementary data file 2): C4A, HCG17, VARS2, HLA-DMB, and BRD2. Consistent with 

recent work identifying structural variation of the C4 genes as partly mediating the genetic 
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MHC association, resulting in higher expression and perhaps driving pathological synapse 

loss in schizophrenia32, we found a strong correlation between the risk alleles for SCZ and 

up-regulation of expression of C4A (complement component 4A; Spearman’s ρ = 0.66, P < 

10−16).

Functional dissection of genes highlighted

Our results point to a number of genes worthy of follow-up, and we sought an assay that was 

rapid and amenable to over- and under-expression. Manipulation of zebrafish embryos fits 

these requirements, especially for evaluation of anatomical phenotypes of early 

development, such as head and brain size (or area). Perturbing expression of one or more 

genes in zebrafish has been used to identify genes contributing to neuropsychiatric 

disorders33–35. Therefore, we asked whether suppression or overexpression of the 

corresponding gene within each of the five SCZ risk loci could identify key proteins that 

regulate brain development. To evaluate the four genes up-regulated by risk alleles in the 

GWAS loci, we injected 200pg of human capped mRNA encoding TSNARE1, CNTN4, 

SNAP91, or CLCN3 in 1–8 cell stage embryos (N = 60 per experiment, at least two 

biological replicates performed). At 3 days post-fertilization (dpf), we assessed the area of 

the head that contains the forebrain and midbrain structures (Fig. 3A, B). Relative to control 

embryos, overexpression of TSNARE1 or CNTN4 resulted in a significant decrease in head 

size, 9.5% (P < 0.001) and 3.5% (P = 0.018), respectively, while SNAP91 or CLCN3 
showed no statistically significant effect (Fig. 3A, B). Body length and somitic structures 

were similar across all embryos, suggesting that our observations were unlikely due to gross 

developmental delay. For FURIN, we sought to mimic the transcriptional down-regulation in 

human brains associated with SCZ risk. A reciprocal BLAST search of the zebrafish genome 

revealed a FURIN ortholog with two potential paralogs; both copies were expressed at ~40–

60 counts per million reads in mRNA from heads of 3 dpf zebrafish embryos36. We depleted 

furin_a, the isoform most closely resembling the human ortholog, using a splice blocking 

morpholino (sbMO) that almost completely extinguished expression of the endogenous 

message by triggering the inclusion of intron 7 (Supplementary Fig. 8). Suppression of 

furin_a led to a 24% decrease in head size (Fig. 3A, B); this observation was replicated in 

CRISPR/Cas9 mutants (Supplementary Fig. 8) and in embryos injected with a second sbMO 

targeting exon 5 (data not shown) Importantly, expression of human FURIN mRNA could 

rescue the phenotype induced by either morpholino, providing evidence for specificity 

(Supplementary Fig. 8).

Given a potential role for FURIN, TSNARE1, and CNTN4 during neurogenesis, we asked 

whether the decrease in head size could be attributed to changes in cell proliferation and/or 

apoptosis. Overexpression of CNTN4 and suppression of furin_a led to a 9.8% (P = 0.003) 

and a 29.8% (P < 0.001) decrease, respectively, in proliferating cells marked by phospho-

histone3 (PH3), and overexpression of TSNARE1 led to a 9.5% increase (P = 0.018) in 

proliferating cells (N = 20 per experiment; Fig. 3C, D). Next, we wondered how more 

proliferating cells nevertheless resulted in a smaller head size phenotype for the case of 

TSNARE1. To test the possibility that cells exiting cell cycle experience a higher apoptotic 

index, we performed TUNEL staining on injected embryos, and determined that modulation 

of all three target genes led to a significant increase in apoptotic cells in the head region 
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corresponding to our head size measurements (N = 20 per experiment; P < 0.001; Fig. 3E, 

F). Taken together, the data support the hypothesis that changes in FURIN, TSNARE1, and 

CNTN4 expression levels induce subtle neuroanatomical variation in multiple brain regions.

Depletion of furin in our in vivo zebrafish model had the largest impact on head size. Thus 

we further tested the impact of FURIN knockdown in human neural progenitor cells (NPCs) 

capable of differentiating into mixed populations of post-mitotic neurons and astrocytes37,38. 

Neurosphere outgrowth is a well-established neural migration assay measuring the distance 

NPCs migrate away from the neurosphere. NPCs were differentiated from human induced 

pluripotent stem cells (hiPSCs) reprogrammed from human fibroblasts using sendai viral 

vectors39,40. Pairwise isogenic comparisons were conducted in 307 neurospheres from three 

independent unaffected controls. We measured migration of DAPI-positive nuclei from 

pLKO.1 non-hairpin-PURO control neurospheres (n = 147) and LV-FURIN shRNA-PURO 

(shRNA-FURIN) knockdown neurospheres (n = 160). FURIN knockdown in the hiPSC 

NPCs resulted in significantly decreased total radial migration for all three individuals (C1: 

1.16-fold decrease, P < 0.0017; C2: 1.23-fold decrease, P < 3 × 10−6; C3: 1.22-fold 

decrease, P < 2 × 10−6) (Fig. 4).

Gene expression is subtly disrupted in schizophrenia

We next evaluated whether SCZ cases versus controls differed in their expression levels per 

gene. Following normalization of read counts for each gene, a weighted linear regression 

adjusting for known covariates was performed (Supplementary Figs. 2 and 4). Analysis of 

the distribution of P values for the 16,423 genes was tested for a mixture of disease-

associated and null distributions for 25 cases and 25 controls and suggests that 

approximately 44% of genes are perturbed in SCZ; this excess of low P values disappears 

when case and control labels are permuted. While polygenic inheritance, where many genes 

are affected but to a small degree3, could explain this result, treatment and environmental 

factors also likely play a role. Without imposing a threshold on the magnitude of fold change 

in mean expression between SCZ and controls, we find 693 genes to be differentially 

expressed after correction for multiple testing (FDR ≤ 5%), 332 up-regulated and 361 down-

regulated (Fig. 5A, Supplementary data file 3). All had modest fold changes (Fig. 5B), with 

a mean of 1.09 and range 1.03–1.33 (inverting down-regulated expression ratios). As 

expected, hierarchical clustering of the differentially expressed genes showed case-control 

distinctions but were independent of institution, sex, age at death, ethnicity, and RIN (Fig. 

5A). We examined differential expression in an independent sample, the NIMH Human 

Brain Collection Core (HBCC), which generated DLPFC gene expression data using 

Illumina HumanHT-12_V4 Beadchip microarrays from 131 SCZ cases and 176 controls. 

Though these arrays differ from RNA-seq in their capture features, there was high 

correlation of test statistics for differential expression in CMC compared to HBCC for the 

differentially expressed genes also present in the HBCC data (480 of 693), Pearson 

correlation r = 0.58 (P < 10−16); the correlation remains high (r = 0.28, P < 10−16) across all 

10,928 genes common to both platforms after QC (Fig. 5C).

The differential expression observed here is smaller than that reported in earlier studies 

(Supplementary data file 1), but it is consistent with plausible models for average differential 
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gene expression and the polygenic inheritance of SCZ (Supplementary Text, “Differential 

gene expression: expectation, variability, and power analyses”). Consider, for example, a 

gene for which the major determinant of differential expression is the case-control difference 

in allele frequency at an eQTL SNP. For that gene, the expected magnitude of differential 

expression fold change will be on the order of the allele frequency differences seen in the 

recent large Psychiatric Genomic Consortium SCZ genetic association study (~1–2%)3, 

precisely what is observed in the CMC data. Beyond case-control difference in allele 

frequency, our modeling can also explain the difference between earlier studies and CMC 

results (Supplementary Fig. 9); because earlier studies tend to be far smaller in sample size, 

their larger differential expression is consistent with either the well-known “Winner’s 

Curse”41 or false positives that may occur in smaller samples. Finally, our results imply a 

need for thousands of samples to ensure 80% statistical power to observe differential 

expression between cases and controls for the genes implicated at SCZ-associated eQTL, 

e.g., the five genes of interest above.

The most highly up-regulated protein-coding gene is tachykinin receptor 3 (TACR3, NK3 

receptor, 1.24-fold, Fig. 5D). NK3 antagonists have been tested in SCZ and other CNS 

diseases42. Moreover, rat and human studies have suggested a role for the NK3 receptor in 

memory and cognition43, both key impairments of schizophrenia. Insulin-like growth factor 

2 (IGF2), the most strongly down-regulated gene (1.33-fold, Fig. 5D), can rescue 

neurogenesis and cognitive deficits in certain mouse models of schizophrenia44. Also 

included among the top 100 differentially expressed genes are the alpha 5 subunit of the 

GABA A receptor (GABRA5) and calbindin (CALB1), genes previously reported as 

differentially expressed in cortical tissue from schizophrenia patients, suggesting 

GABAergic interneuron dysfunction45. Available in situ hybridization data from DLPFC 

suggest that genes identified by DE analysis display various degrees of cell-type specificity, 

which could affect the estimated fold changes (Supplementary Fig. 10).

We identified 239 isoforms differentially expressed between SCZ cases and controls: 94 up-

regulated and 145 down-regulated. These isoforms derive from 223 genes, which are 

enriched, as expected, for overlap with the 693 differentially expressed genes (P = 2 × 

10−131, Fisher’s exact test), and 136 are differentially expressed at both the gene and isoform 

levels (Supplementary Fig. 11). No obvious unifying biological theme emerges from this set 

of genes and isoforms on the basis of pathway enrichment analysis (Supplementary data file 

4). An assessment of the impact of age at death or cell type proportions suggests that these 

variables do not explain significant differential expression (Supplementary Fig. 12). 

Although analyses of experiments performed using either monkeys or rodents indicate that 

genes whose expression are affected by antipsychotics are often the same as those we find 

altered in individuals with SCZ, the impact of antipsychotic drugs nevertheless tends to be 

significantly in the opposite direction of that observed in the SCZ subjects (Supplementary 

Table 2). Thus, our analyses find that genes highlighted by the contrast of SCZ cases versus 

control subjects do not largely trace their differential expression to antipsychotic 

medications, although intriguingly they do suggest a mechanism for the efficacy of these 

drugs46.
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Brain co-expression networks capture SCZ associations

Coordinated expression of genes is critical to brain development and function. One 

expectation of polygenic inheritance of disease is that this coordination may be subtly 

altered in individuals with SCZ. To assess this, we applied weighted gene co-expression 

network analysis (WGCNA) to the matrix of pairwise gene co-expression values. WGCNA 

recovers a network that consists of nodes (genes) and edges connecting nodes (i.e., the 

degree of co-expression for a pair of genes, measured as their correlation after 

transformation by raising the value to a power β that results in an overall scale-free 

topology). WGCNA divides the network into subnetworks called modules, or clusters of 

genes with more highly correlated expression.

We constructed gene co-expression networks separately from control individuals and SCZ 

cases (Supplementary data file 5), since we wished to assess disease-dependent changes in 

co-expression for modules of interest15. The co-expression network generated from the 

controls consisted of 35 modules each containing between 30 and 1,900 genes, along with 

~3,600 unclustered genes (Supplementary data file 5). Four modules stand out in harboring 

an excess of differentially expressed genes (Fig. 6A, Supplementary data file 6). Of these, 

however, only one (M2c) shows association with differential expression (OR = 2.3, P = 1 × 

10−13) and multiple prior genetic associations with SCZ; the latter encompasses genes in 

GWAS loci (FE [fold-enrichment] = 1.36, P = 0.04), rare CNV (FE = 1.52, P = 0.051), and 

rare nonsynonymous variants (FE = 1.18, P = 2 × 10−4) (Supplementary table 3). Given its 

apparent relevance to SCZ risk, we tested if the co-expression pattern for M2c was perturbed 

in SCZ samples relative to controls. We used two categories of network-based preservation 

statistics: (a) testing whether highly connected nodes in a module remain as highly 

connected (“density”), or (b) testing for differences in the overall connectivity pattern in a 

module (“connectivity”). The M2c module exhibits a loss of density in the SCZ cases 

(permutation Z = −1.79, one-tailed P = 0.037, Fig. 6B) but no loss of connectivity. The loss 

of density replicates in the HBCC cohort (Z = −3.02, P = 0.003), indicating that the 

regulatory coordination of genes in this module is disrupted in SCZ. The dysregulation of 

M2c in SCZ is not due to medication effect or clinical and technical confounds.

Consistent with prior studies of the brain transcriptome15,47–50, we find gene co-expression 

to be organized into modules of distinct cellular and functional categories (Supplementary 

data file 7). In particular, the M2c module is enriched for multiple categories, including axon 

guidance, postsynaptic membrane, transmission across chemical synapses, and voltage-gated 

potassium channel complexes (Fig. 6C). Gene sets identified in prior genetic studies that 

highlighted certain neurobiological functions are also enriched in the M2c module, including 

the activity-regulated cytoskeleton-associated (ARC) protein complex, targets of fragile X 

mental retardation protein (FMRP), neuronal markers, post-synaptic density (PSD) proteins, 

and NMDA receptors (Fig. 6A). Overall, our results point to the M2c module of ~1400 

genes that possess functions related to synaptic transmission as being enriched for 

differential expression, overlapping SCZ genetic signal, and with some genes having less 

dense co-expression in SCZ cases.
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DISCUSSION

Deficits in executive functions, especially cognitive function, are key features of SCZ. The 

roots of these deficits lie in cortical function and integration, at least in part tracing to the 

DLPFC. Here we have used gene expression derived from this tissue to understand how 

genetic liability is related to the molecular etiology of SCZ. Our analyses had two 

fundamental goals: to identify mechanisms that underlie genetic risk and to describe 

differences in gene expression and co-expression related to disease. By intersecting 

transcriptomics and genetics, we elucidated important aspects of the genetic control of 

transcription and found that genetic variants in 20 of the 108 SCZ GWAS risk loci alter 

expression of one or more genes. Prior analyses using brain eQTL datasets derived from 

older technologies have pointed to less than a handful of such associations3. In five of the 20 

loci for which we observed regulatory potential of GWAS variants the risk variants altered 

expression of only one gene. Experimental manipulation of three of these genes had an 

impact on neuroanatomical and developmental attributes in model systems, making these 

genes excellent candidates for further biological investigation. We also detected replicable 

differences in gene expression in SCZ that point to subtle but broad disruption in 

transcription, which is consistent with the polygenic nature of genetic risk underlying SCZ. 

Finally, we identified a subnetwork of ~1400 genes sub-serving functions related to synaptic 

transmission that is significantly perturbed in SCZ and is highly enriched for SCZ genetic 

signal.

In contrast, we did not find evidence for case-control differential expression among the 

implicated GWAS risk genes. At first blush this appears to contradict evidence for impact on 

risk. Yet the magnitude of differential expression will be determined largely by case-control 

differences in allele frequencies, which we know are small. Modeling the differential in 

allele frequencies and the predicted effect of alleles on gene expression demonstrates that the 

distribution of expected differential expression, across genes, is quite similar to the observed 

distribution from the CMC data (Fig. 7A). Using allele frequencies from the PGC 

schizophrenia data, we can ask what the number of cases are needed to detect differential 

expression. For example, 11,784 cases and 11,784 controls would be needed to have 80% 

power to detect a significant case-control difference in FURIN expression. Genome-wide, 

the median number of cases and controls needed to obtain 80% power assuming 10,000 

genes is ~28,500, well beyond any available dataset (Fig. 7B,C). Our model demonstrates 

that the distribution of expected differential expression, across genes, is quite similar to the 

observed distribution from the CMC data (Fig. 7). This calls into question results from 

smaller studies that report large differential expression. Our analyses show that these studies 

would have notably larger variability, and because genome-wide surveys test a large number 

of genes, that variability can translate into large observed differential expression: even when 

no gene is differentially expressed, studies with only 25 cases and 25 controls can lead to 

estimates of differential expression exceeding twofold. Notably, this pattern not seen when 

the N is raised to 250. (See supplementary text for additional scenarios, discussion and 

modeling.).

It is conceivable, indeed probable, that certain cells or cell types (e.g., pyramidal neurons) 

are more salient for risk than the heterogeneous tissue evaluated here. Depending on the 
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pattern of cell-specific gene expression, this scenario could have little or no impact on 

differential expression or it could diminish it somewhat. The same is true for detection of 

eQTLs. We do not expect, however, that the scenario will compromise the bulk of our 

results, all of which complement the genomic studies of this disease. Alterations of the 

cellular composition in SCZ versus controls might also introduce a systemic bias in the 

analysis of differential expression; e.g., if the proportion of neurons were reduced by 2% in 

SCZ versus controls, multiple neuronal genes might appear to be downregulated in SCZ. 

Analyses of cell composition, however, do not support global differences in the cellular 

composition in DLPFC tissue from SCZ versus control subjects.

The findings reported here by the CommonMind Consortium (CMC) represent a unique 

resource to understand brain function, basic neuroscience, and brain diseases at the 

molecular level. They include a comprehensive compilation of gene expression patterns, 

together with intensive evaluation of eQTLs across the genome. The expertise and support to 

produce and analyze these data required a consortium of brain banks, pharmaceutical 

companies, a foundation, academic centers, and the NIMH, and this work represents the first 

phase of our ongoing project. All results are available through the CommonMind 

Knowledge Portal with a searchable database of eQTLs and other visualizations (https://

shiny.synapse.org/users/ssiebert/cmc_eqtl_query/). Both alone, and in combination with 

other datasets such as GTEx, the CMC data will empower future studies paving the way for 

connecting genetic influences on cellular function with changes in macroscopic circuits of 

the brain that may ultimately lead to disease.

ONLINE METHODS

Post-mortem samples

Data generated for this study came from postmortem human brain specimens originating 

from the tissue collections at the three brain banks described below. All samples were 

shipped to the Icahn School of Medicine at Mount Sinai (ISMMS) for nucleotide isolation 

and data generation. See Supplementary Fig. 1A for an overview of the sample collection 

and aggregation workflow.

Selection criteria—Postmortem tissue from schizophrenia (SCZ) and bipolar or other 

affective/mood disorder (AFF) cases were included if they met the appropriate diagnostic 

DSM-IV criteria, as determined in consensus conferences after review of medical records, 

direct clinical assessments, and interviews of family members or care providers. Cases were 

excluded if they had neuropathology related to Alzheimer’s disease and/or Parkinson’s 

disease, acute neurological insults (anoxia, strokes, and/or traumatic brain injury) 

immediately prior to death, or were on ventilators near the time of death. Three case samples 

(2 with leukotomies, and 1 with a history of a head injury prior to diagnosis) were included; 

these were not outliers on any metrics that we used to evaluate our samples (see “RNA-seq 

outliers” below).

“MSSM” sample - Mount Sinai NIH Brain Bank and Tissue Repository (NBTR) 
(http://icahn.mssm.edu/research/labs/neuropathology-and-brain-banking)—
The Mount Sinai Brain Bank was established in 1985. The NBTR obtains brain specimens 
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from the Pilgrim Psychiatric Center, collaborating nursing homes, Veteran Affairs Medical 

Centers and the Suffolk County Medical Examiners Office. Diagnoses are made based on 

DSM-IV criteria and are obtained through direct assessment of subjects using structured 

interviews and/or through psychological autopsy by extensive review of medical records and 

informant and caregiver interviews52,53. Informed consent is obtained from the next of kin. 

The brain bank procedures are approved by the ISMMS IRB and exempted from further IRB 

review due to the collection and distribution of postmortem specimens. All samples for the 

study were dissected from the left hemisphere of fresh frozen coronal slabs cut at autopsy 

from the dorsolateral prefrontal cortex (DLPFC) from Brodmann areas 9/46. Immediately 

after dissection, samples were cooled to −190°C and dry homogenized to a fine powder 

using a L-N2 cooled mortar and pestle. Tissue was transferred on dry ice to ISMMS as a dry 

powder for DNA and RNA extraction.

“Pitt” sample - The University of Pittsburgh Brain Tissue Donation Program—
Brain specimens from the University of Pittsburgh Program are obtained during routine 

autopsies conducted at the Allegheny County Office of the Medical Examiner (Pittsburgh) 

following the consent of the next of kin 54. An independent committee of experienced 

research clinicians makes consensus DSM-IV diagnoses for all subjects on the basis of 

medical records and structured diagnostic interviews conducted with the decedent’s family 

member 55. All procedures for Pitt samples have been approved by the University of 

Pittsburgh’s Committee for the Oversight of Research involving the Dead and Institutional 

Review Board for Biomedical Research. At autopsy, the right hemisphere of each brain is 

blocked coronally, immediately frozen, and stored at −80°C56. Samples for this study 

contained only the gray matter of DLPFC, where Brodmann area 9/46 was cut on a cryostat 

and collected in tubes appropriate for DNA or RNA extraction. The DNA and RNA tubes 

were shipped on dry ice to ISMMS as homogenized tissue in trizol for RNA extraction and 

thinly sliced tissue for DNA extraction. Specimens from Pitt were provided as matched case/

control pairs. These were perfectly matched for sex, and as closely as possible for age (73% 

of pairs were matched within 5 years, and 95% within 10 years) and race (71% of pairs were 

matched for race). Members of a pair were always processed together for RNA-seq. Tissue 

for 10 of the Pitt controls was extracted in duplicate, once as part of a SCZ pair and once as 

part of a bipolar pair.

“Penn” sample - University of Pennsylvania Brain Bank of Psychiatric 
illnesses and Alzheimer’s Disease Core Center (http://www.med.upenn.edu/
cndr/biosamples-brainbank.shtml)—Brain specimens are obtained from the Penn 

prospective collection. Disease diagnoses were made based on DSM-IV criteria and 

obtained through a clinical interview by psychiatrist and review of medical records. All 

procedures for Penn are approved by the Committee on Studies Involving Human Beings of 

the University of Pennsylvania, and the use of control postmortem tissues was considered 

exempted research in accordance with CFR 46.101 (b), item 65 of Federal regulations and 

University policy. At autopsy, the right or left hemisphere of each brain is blocked into 

coronal slabs, which are immediately frozen and stored at −80°C. For this study, Brodmann 

areas 9/46 were dissected from either the left or right hemisphere and pulverized in liquid 

nitrogen. The tissue was shipped in tubes appropriate for DNA or RNA extraction to 
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ISMMS as homogenized tissue in trizol for RNA extraction and as dry pulverized tissue for 

DNA extraction.

Tissue, RNA and DNA preparation

Total RNA was isolated from approximately 50 mg homogenized tissue in Trizol using the 

RNeasy kit according to manufacturer protocol. Samples were processed in batches of 12, 

and the Pitt matched case/control pairs were always processed in the same batch. The order 

of extraction for SCZ-affected and control samples was assigned randomly with respect to 

brain bank, diagnosis, and all other sample characteristics. Because the affective disorder 

cases (AFF) and matched controls from Pitt were not available until after the processing of 

the SCZ and controls was underway, these samples were randomized among the remaining 

132 SCZ and control samples still queued for extraction at that time. The mean total RNA 

yield was 15.3 ug (+/− 5.7). The RNA Integrity Number (RIN) was determined by 

fractionating RNA samples on the 6000 Nano chip (Agilent Technologies) on the Agilent 

2100 Bioanalyzer. 51 samples with RIN < 5.5 were excluded from the study (see Sample QC 

below). Among the remaining samples, the mean RIN was 7.7 (+/− 0.9), and the mean ratio 

of 260/280 was 2.0 (+/− 0.02).

DNA was isolated from approximately 10 mg dry homogenized tissue from specimens 

coming from the MSSM and Penn brain banks. The thinly sliced tissue from Pitt was 

homogenized before DNA isolation. All DNA isolation was preformed using the Qiagen 

DNeasy Blood and Tissue Kit according to the manufacturer’s protocol. DNA yield was 

quantified using Thermo Scientific’s NanoDrop. The mean yield was 12.6 ug (+/− 4.6), the 

mean ratio of 260/280 was 2.0 (+/− 0.1), and the mean ratio of 260/230 was 1.8 (+/− 0.6).

RNA Library Preparation and Sequencing

Processing order was re-randomized prior to ribosomal RNA (rRNA) depletion, and samples 

were processed in batches of 8. To expedite sequencing, processing began before extraction 

was complete and randomization occurred among all available extracted samples in sets of 

120 to 226. Briefly, rRNA was depleted from about 1 ug of total RNA using Ribo-Zero 

Magnetic Gold kit (Illumina/Epicenter Cat # MRZG12324) to enrich for polyadenylated 

coding RNA and non-coding RNA. The Pitt case/control pairs were batched together in each 

processing step, including Ribo-Zero depletion, sequence library preparation, and 

sequencing lane. 10 of the Pitt controls were extracted and sequenced as independent 

duplicates, once as part of a SCZ pair and once as part of a bipolar pair. The sequencing 

library was prepared using the TruSeq RNA Sample Preparation Kit v2 (RS-122–2001-48 

reactions) in batches of 24 samples. The insert size and DNA concentration of the 

sequencing library was determined on Agilent Bioanalyzer and Qubit, respectively. A pool 

of 10 barcoded libraries were layered on a random selection of two of the eight lanes of the 

Illumina flow cell bridge amplified to ~250 million raw clusters. One-hundred base pair 

paired end reads were obtained on a HiSeq 2500. The sequence data were processed for 

primary analysis to generate QC values (reads were mapped to the human reference genome 

using TopHat; see “Mapping, QC and quantification of Gene Expression” below). Samples 

with a minimum of 50 million mapped reads (~25 million paired end reads) and less than 

5% rRNA-aligned reads were retained for downstream analysis. We attempted a single 
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round of re-sequencing for samples that failed these QC criteria. In the end, a total of 15 

samples did not meet these sequencing criteria (see “Sample QC” below) and were 

discarded.

DNA genotyping, QC, ancestral evaluation and polygenic scoring

Genotyping was preformed on the Illumina Infinium HumanOmniExpressExome 8 v 1.1b 

chip (Catalog #: WG-351–2301) using the manufacturer’s protocol. Samples for genotyping 

were aliquoted onto 96 well plates, where each plate had an internal control from the 

HapMap project (NA12878 - Coriell Institute) in two unique locations. Initial QC was 

preformed using PLINK 57 to remove markers with: zero alternate alleles, genotyping call 

rate ≤ 0.98, Hardy-Weinberg P value < 5 × 10−5, and individuals with genotyping call rate < 

0.90. This removed 2 samples from the analysis. After QC, 668 individuals genotyped at 

767,368 markers were used for imputation. Phasing was performed on each chromosome 

using ShapeIt v2.r79058, and variants were imputed in 5 Mb segments by Impute v2.3.159 

with the 1000 Genomes Phase 1 integrated reference panel11 excluding singleton variants. 

Note that, in addition to the 22 autosomes, we also included chromosome X, split out into 

pseudoautosomal (PAR) and non-PAR genomic regions to properly handle male haploidy in 

the non-PAR regions.

To infer ancestry from genetic data, we identified a set of high quality autosomal SNPs from 

the pre-imputed data with the following properties: an rs dbSNP database identifier, known 

physical location in the hg19 reference genome, alleles coded as either A, C, G, or T, call 

rate ≥ 99.5%, minor allele frequency MAF > 0.05. These criteria yielded 552,351 SNPs. 

Next, using PLINK57, we performed LD pruning using sliding windows of 50 SNPs, with 

steps of 5 and a pairwise r2 < 0.04 and found 28,663 SNPs. Ancestry was determined using 

clusterGem in GemTools (arXiv:1104.116260,61, http://www.wpic.pitt.edu/wpiccompgen/

GemTools/GemTools.htm). Gemtools found that 5 dimensions and 7 clusters were sufficient 

to describe the ancestry space. Because one sample was missing key phenotypic 

information, 667 subjects were assigned ancestry based on DNA genotypes. Supplementary 

Fig. 1B, C describe the distribution of nominal ancestry and diagnosis and plot several 

informative dimensions of genetically-inferred ancestry.

We carried out analyses for polygenic scoring of schizophrenia risk using the largest 

available schizophrenia association dataset3 as the “discovery” set. Quantitative scores were 

computed for each subject in this paper based on the set of SNPs with P values less than 

predefined P value thresholds (pT) in the discovery data set: pT < 0.0001, pT < 0.001, pT < 

0.01, pT < 0.05, pT < 0.1, pT < 0.2, pT < 0.3, pT < 0.5, and pT < 1. For each SNP set 

defined by pT, we calculated the proportion of variance explained (Nagelkerke’s r2, 

Supplementary Fig. 1D). Throughout this work, we refer to the scores defined at pT < 0.5 

simply as “polygenic risk scores” (PRS).

RNA Sample QC

Samples were excluded if RIN < 5.5 or genetic information from the sample was 

inconsistent with subject descriptors such as sex. Of the 633 samples sent for sequencing 

(those with RIN ≥ 5.5), 15 samples were removed because they yielded < 50 million total 
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reads (~25 million paired end reads) or had > 5% of reads aligning to rRNA, based on two 

attempts to produce quality sequence (all samples failing either QC criterion on the first 

attempt were re-prepped and/or re-sequenced, and those failing twice were removed); 

calculation of RNA-seq QC metrics is described in “Mapping, QC and Quantification of 

Gene Expression” below. Of the 10 Pitt control samples that were sequenced twice, only the 

first sequencing run was included in our analysis. Of the remaining 609 samples, two were 

removed because their DNA genotypes had high rates of missingness; one sibling pair was 

identified and the sample with the lower RNA quality (RIN) was removed; 14 samples were 

removed (see details below) because they were determined to be outliers based of a series of 

multivariate analyses of the RNA-seq data (N =10), or due to sample contamination/mix-up 

(N = 4). This left 592 samples for subsequent analyses.

To evaluate discordance between nominal and genetically-inferred sex, we used PLINK 57 to 

calculate the mean homozygosity rate across X-chromosome markers and to evaluate the 

presence or absence of Y-chromosome markers. Pairwise comparison of samples across all 

genotypes was done to identify potentially duplicate samples (duplicate pair defined as 

having genotypes > 99% concordant) or related individuals, again using PLINK.

RNA-seq outliers were detected using two methods in parallel.

i. To evaluate the data for outliers, one group of analysts used four 

approaches to normalization: FPKM (fragments per kilobase per million 

reads) from Cufflinks; quantile normalization across samples; quantile 

normalization across genes; and trimmed mean of M values (TMM) from 

the edgeR package62,63. We applied three different methods of analysis to 

these normalized data sets: Hierarchical Clustering with average linkage 

(HC); the number of extreme transcripts (NT: the number of transcripts 

with expression value outside the 95% confidence interval for the 

transcript, across individuals); and Principal Component Analysis (PCA). 

For HC, a sample (or small group of samples) was declared an outlier if it 

did not cluster with other samples. If NT > 7.6% of total transcripts, it was 

declared an outlier. Finally, if the PCA revealed a sample or small group of 

samples represented by a leading PC (largest 5), it was declared an outlier. 

When combining these results, if a sample was declared an outlier by all 

three methods, it was labeled an outlier.

ii. Separately, another group of analysts applied two procedures to detect 

outliers on the TMM-normalized data, namely Inter Array Correlation 

(IAC49) and “Iterative” PCA (iPCA). IAC computes the pairwise 

correlation over genes for all pairs of samples, plots the distribution of the 

resulting correlations, and empirically finds outliers. Here we used 3 

standard deviations as a threshold to declare a sample an outlier. 

Alternatively, for iPCA, the following algorithm was implemented: the 

first two PCs were computed from the data; samples beyond the 95% 

confidence envelope were identified and removed; then the first two PC 

were recomputed, outliers identified and removed; and so on, until no 

outliers were detected. All of the samples removed were declared outliers. 
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The full set of samples labeled outliers was then the union of the IAC and 

iPCA sets.

The results from analysis (i) and (ii), were compared for consensus. In total, 10 samples 

were identified as outliers by both groups and these were eliminated from all subsequent 

analyses.

We ensured DNA and RNA data were from a single individual by making SNP calls from 

RNA-seq results using samtools and bcftools 0.1.19, using the author-recommended 

protocol, which includes the “Bayesian inference” option. Calls were made only for SNP 

locations that were assayed on the genotyping chip. Raw variant calls were filtered, as 

recommended, using the vcfutils.pl varFilter (v0.1.18) option with the maximum depth set to 

120 (roughly twice the average read depth). SNP calls from the DNA genotyping were 

converted to reference forward strand using PLINK. PLINK/Seq (https://

atgu.mgh.harvard.edu/plinkseq/) was then used to generate a VCF file by running the fix-

strand and write-vcf commands.

Pairwise-discordance of SNP calls between RNA-seq and the genotyping chip was assessed 

for all possible combinations of RNA-seq samples and DNA genotyping samples. 

Discordance was calculated using the variant tools software64, which reports the fraction of 

discordant sites out of the total number of sites where both samples report a genotype. The 

basic approach for calling a match was to plot the discordance values across all samples, for 

an all-by-all comparison, and look for a bimodal distribution with an obvious cutoff point 

(consistent with pairs that should match and all other pairs which do not). Indeed, all of the 

distributions were bimodal with regions of zero frequency in between the two peaks. The 

distributions of discordance values were different for RNA-RNA vs. RNA-DNA. For RNA-

RNA sample matches, we called matches as instances where two samples had less than 15% 

discordance from each other; for DNA-RNA matches, the cutoff was 25%. We verified 

RNA-DNA matching within samples. Finally, we predicted gender for each sample based on 

the fraction of total reads aligning to the Y chromosome; if the log(fraction) was ≤ −7.4, the 

sample was called female, otherwise male. This called gender was evaluated to ensure it 

matched the reported gender from the corresponding brain bank manifest. By this process, 

we identified one sample mix-up (wrong sample sent for RNA-seq), and three samples were 

likely contaminated with other samples (high degree of genotype matching). These four 

samples were removed.

The entire QC process yielded 592 high-quality samples for analysis (258 SCZ, 279 control 

individuals, and 55 AFF [47 bipolar disorder, 6 major depressive disorder, and 2 mood 

disorder, unspecified]), with demographic breakdown of the cases and controls as described 

in Supplementary Table 1.

Evaluation of RNA Quality

RIN is a standard measure of RNA quality, but it focuses on the integrity of ribosomal RNA, 

rather than surveying quality of RNA from genes throughout the genome. A few alternatives 

to RIN have been proposed, a very recent proposal being the “mRIN” method65, which 

analyzes read coverage over transcripts and derives statistics related to quality. Here we use 

Fromer et al. Page 17

Nat Neurosci. Author manuscript; available in PMC 2017 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://atgu.mgh.harvard.edu/plinkseq/
https://atgu.mgh.harvard.edu/plinkseq/


the mRIN software to evaluate the RNA quality of the samples. The CMC data were 

processed using the pipeline described on the mRIN website (http://

zhanglab.c2b2.columbia.edu/index.php/MRIN). Parameters were set as suggested in the 

documentation. Additional filtering based on gene expression values was not performed. 

Data were analyzed without any QC beyond what is automatically implemented in mRIN.

We computed mRIN on the 537 SCZ case and control samples for 18,338 (17,527 uniquely 

identified) RefSeq transcripts using the mRIN package by Feng et al. Sample by transcript 

combinations were required to have an abundance > 2. After this step, 6,072 transcripts with 

a missing rate > 50% were removed from the analysis. Finally, for transcripts with more than 

one entry in the dataset the entry with the lowest missing rate was retained. After these edits 

a total of 12,246 transcripts remained. The mRIN statistics and associated P values were 

subsequently computed using the formulas from the Feng et al. paper. Samples with extreme 

negative values for the mRIN statistic should indicate low quality samples. The distribution 

is centered near zero and has no extreme negative values. There were 17 and 3 samples with 

P value < 0.05 and < 0.01, respectively. One would expect a total of 29 and 5 samples to 

have P values of this magnitude by chance alone. We therefore conclude the RNA quality of 

the samples is adequate.

Mapping, QC and Quantification of Gene Expression

The top panel of Supplementary Fig. 2 gives an overview of the RNA-seq data processing 

pipeline and QC metrics. In detail, reads were mapped to human reference genome hg19 

using TopHat version 2.0.9 and Bowtie version 2.1.0, with the following parameters: 0 

mismatches in a 20 bp seed, reference guided against Ensembl genes and isoforms (version 

70). For each sample, this produced a coordinate-sorted BAM file of mapped paired end 

reads including those spanning splice junctions, as well as a BAM file of unmapped reads.

Overall quality control metrics were calculated using RNA-SeQC66 for each sample, 

including total number of reads (counting twice each fragment sequenced, once for each end 

in pair), number of mapped reads (again, separately counting each end of a paired end since 

one may map and not the other), the rates of reads mapping to rRNA, intergenic regions, 

intragenic regions, introns, exons, and the number of genes and transcripts detected (defined 

here simply as those with at least 5 exon-mapping reads). UCSC Genome Browser 

transcripts were used for this quality control (QC) analysis.

Genes—Known Ensembl gene levels were quantified by HTSeq version 0.6.0 in 

intersection-strict mode (the BAM file was streamed to HTSeq through novosort version 

1.0.1, as HTSeq accepts read-name-sorted alignments). This provides an integral count of 

reads for each gene in each sample to be used in downstream analyses (a sample-by-gene 

“read count matrix”).

Isoforms—Relative isoform abundances (PSI = percent spliced in) of Ensembl genes were 

estimated using MISO (http://genes.mit.edu/burgelab/miso/; version 0.5.2, run with default 

parameters 67). We processed the per-sample, per-gene MISO output files to extract the 

estimated PSI, as well as the standard deviations of the estimated sampled PSI values. We 
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constructed corresponding sample-by-isoform matrices for all subsequent data processing 

and analysis (see “Isoform-level normalization and analysis” below).

In addition, Cufflinks version 2.1.1 was applied to the BAM files to estimate both gene- and 

isoform-level FPKM values for all Ensembl genes and isoforms. Separately, Cufflinks was 

applied to the BAM files to assemble isoforms for each sample. These assembled isoforms 

were unified across samples using Cuffmerge, resulting in a single GTF file of “merged” 

genes and isoforms annotated by Ensembl annotations. Cufflinks was then applied to this 

GTF file to estimate both gene- and isoform-level FPKM values for all merged genes and 

isoforms.

RAPID RNA-seq pipeline

To robustly facilitate the large-scale nature of the RNA-seq data processing described above 

for ~600 samples, we utilized RAPiD, an efficient and dependable RNA-seq pipeline 

manager that automates read alignment, quality control, and quantitative analyses of next-

generation sequencing gene expression experiments. By closely integrating with the Apollo 

framework, RAPiD utilizes high-performance computing clusters and provides pipeline 

monitoring so that RAPiD runs are automatically tracked, QCd, and visualized on the 

Apollo Run Console web interface. Of note, RAPiD is designed to be an agile framework 

that is user-configurable via JSON-formatted “recipes” that define the set of tools and 

algorithms, and corresponding parameters, for running various pipelines. Thus, in this work, 

RAPiD easily permitted the addition of alternative splicing analyses by running MISO and 

custom post-processing of MISO results

Normalization of Gene Expression and Adjustment for Covariates

Gene-level analyses started with the HTSeq-derived sample-by-gene read count matrix. The 

basic normalization and adjustment pipeline for the expression data matrix (Supplementary 

Fig. 2, middle and bottom panels) consisted of: a) exploration to determine which known 

and hidden covariates should be accounted for during analyses; b) voom-based calculation 

of normalized log(CPM) (read counts per million total reads), along with weights that 

estimate the precision of each log(CPM) observation estimate68 c) linear regression-based 

adjustment for the chosen covariates, where linear regression for each gene is performed 

independently and using the observation weights, so that observations with higher presumed 

precision will be up-weighted in the linear model fitting process (i.e., weighted least squares 

regression). We now detail the procedure involved for each of the above steps, where we 

include both SCZ and AFF cases and controls, and the corresponding diagnosis status 

(“Dx”) is the primary variable of interest.

Initial normalization of read counts—To define the set of covariates for adjustment, 

we start by initially normalizing the HTSeq read count matrix for all 56,632 Ensembl genes, 

using voom without covariates. Next, we filtered out all genes with lower expression in a 

substantial fraction of the cohort, with 16,423 genes remaining with at least 1 CPM in at 

least 50% of the individuals; note that only these genes were carried forward into all 

subsequent analyses. This initially-normalized gene expression matrix was then used to 

select known covariates (described above). Next, hidden covariates were derived (for use in 
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eQTL analyses only, as is common practice13). These covariates were then included for 

adjustment in the normalization and adjustment steps.

Normalize observations and estimate confidence of sampling abundance by 
sequencing—The voom68 normalization scales each sample’s read count for each gene by 

their total counts across all genes to account for variable sequencing depths across the 

samples. It then transforms each gene to be more approximately Gaussian by taking the 

logarithm (base 2) of the counts. Still, as a result of the experimental steps involved in 

obtaining read counts for genes (PCR, library preparation, sequencing, etc.), the read count 

for a particular gene will only on average be proportional to the underlying expression level 

of that gene. Thus, it is critical to model the statistical sampling of gene expression level, 

since larger log(CPM) typically exhibit lower variance (an example of heteroscedasticity). 

To this end, voom estimates confidence weights for each normalized observed read count. It 

does this by residualizing on the covariates (known and surrogate, as applicable), fitting a 

mean-variance relationship function across all genes, using the fitted function to estimate the 

variance of a particular read count observation, and then setting the observation weight to be 

the inverse of the corresponding estimated variance. The normalized observed read counts, 

along with the corresponding weights, move forward into the next step.

Adjust for covariates—For most analyses, we perform a variant of the following basic 

linear regression:

where Dx is the disease status of an individual, the gene expression is given in log(CPM), 

and weighted regression is performed using the voom confidence weights from above. For 

differential expression, we used the linear regression utilities in the limma package, where 

regression is performed for each gene separately.

Otherwise, to generate input for the eQTL and network analyses, we directly used the lm() 

function in R, and the weighted-regression residuals were combined with the estimated 

effect of the disease status (to preserve the estimated effect of disease on expression); in the 

main text, we refer to this as expression data that is adjusted for all other covariates 

“conditional on diagnosis”. This procedure yields a normalized and adjusted gene 

expression matrix carried forward for eQTL and network analyses.

Technical validation of normalized gene expression levels using qPCR—The 

voom-normalized log(CPM) levels provide estimates of true gene expression. To determine 

if these estimates were precise, we compared their values to independent estimates of gene 

expression. Studies reporting validation of their RNA quantification typically report 

“technical validation;” i.e., after extraction from a common source, an RNA pool is 

measured by the primary quantification tool and the same pool is assessed by a secondary 

quantification tool, such as qPCR. Technical validation often results in excellent fit between 

the two methods; yet it avoids other sources of experimental variation involved in extracting 

RNA from tissue. We take a somewhat different approach here. For a selected set of 13 
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genes that had been previously reported to be altered in this same brain region in 57 SCZ 

cases relative to 57 matched controls among the Pitt cohort (Supplementary Fig. 3), we 

compared results from RNA-seq to that of qPCR when these quantifications are taken from 

different tissue samples, although they were taken from the same subject and roughly the 

same brain region. Therefore our results also account for possible differences in pathological 

sampling of brain region and variability in RNA extraction.

Some of these genes showed increased expression and others showed decreased expression 

between cases and controls in the Pitt cohort, and many have been reported to be similarly 

altered in other cohorts of SCZ subjects. After selection of uniquely-mapping primers 

(approximately 20 bp for each of forward and reverse strand), qPCR was performed for each 

of these 13 genes and mRNA levels were normalized to the expression of ACTB, PPIA, and 

GAPDH, yielding “expression ratios” calculated using CTs (i.e., the PCR cycle threshold). 

The Pearson correlation between these expression ratios and the voom-normalized 

log(CPM) levels for the same subjects was greater than 0.5 for 9 of the 13 genes 

(Supplementary Fig. 3A); for an additional 3 genes, it was between 0.1 and 0.3, and only for 

one gene (HIVEP2) was the correlation negative. The correspondence between estimates is 

notable because of the different measurement methodologies and because, while the samples 

came from the same subject and brain region, they were drawn independently for the qPCR 

and RNA-seq experiments. We thus conclude that the genome-wide RNA-seq-based 

quantification provides good estimates of true gene expression in DLPFC tissue. Voom-

normalized log(CPM) are presented by diagnosis and site for GAD1, PVALB, SLC32A1 and 

SST(Supplementary Fig. 3B).

Evaluation and selection of co-variates—Following basic sample-level normalization 

and gene-level filtering, we assessed the relationship between known clinical, technical, and 

experimental sample-level variables and the gene-level expression values in the normalized 

read count matrix. The purpose of this exploratory analysis was to determine which of these 

variables should be included as covariates that statistically adjust the gene expression levels 

for downstream analyses (i.e., eQTL discovery, differential expression, and gene co-

expression). The final model, which we call “the covariate model”, included 12 sample 

variables (Dx [3], Institution [3], Sex [2], AOD, PMI, RIN, RIN2, and 5 ancestry vectors) 

and 1 experiment variable (clustered LIB [9]), where the number of levels for factor 

variables is noted here in square brackets. Counting the intercept term, this model accounted 

for 23 df and yielded an average r2 of 0.42 (For description of the model selection 

procedure, see Supplementary Text). We use this model in most analyses reported in the 

manuscript, except where otherwise noted (see Supplementary Fig. 2). We discuss the 

addition of surrogate variables (Supplementary Fig. 4G, H and Supplementary Text); the fit 

of the various models to the data is summarized in Supplementary Fig. 4I. Graphical display 

of the distribution of selected covariates by diagnosis are provided for the CommonMind 

Consortium (CMC) and Human Brain Cohort Collection (HBCC) data in Supplementary 

Fig. 5, which demonstrate that cases and controls show roughly the same ranges.

Isoform-level normalization and analyses—Relative isoform abundances were 

estimated using the MISO software package. The estimates of PSI (percent spliced in; i.e., 
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fraction of each isoform of a gene expressed) and their standard deviations of those 

estimates, were calculated for a total of 160,305 isoforms. The isoforms were initially 

filtered to include only those deriving from genes expressed at a CPM > 1 in at least 50% of 

the samples (the same 16,423 genes used in gene-level analyses). To obtain absolute 

abundance estimates of isoform expression (“isoform-assigned” CPM), the isoform PSI 

values were multiplied by their respective effective isoform lengths 67 to control for variable 

isoform length, re-normalized to sum to 1, and then multiplied by the HTSeq gene-level read 

counts, which were then converted to isoform-level CPM, and log(CPM), using voom. Next, 

we retained only isoforms that had sufficient expression for analysis (CPM > 0.5 and PSI > 

0.01 in more than 50% of the samples) and sufficiently well-estimated PSI (standard 

deviation across MISO iterations of PSI estimate < 0.1, and a coefficient of variation on the 

estimate < 0.5 in more than 50% of samples). After filtering, a total of 43,817 isoforms of 

12,329 genes remained for analysis. The covariate model used for gene analyses was used 

for isoform-level analyses. As a technical assessment of self-consistency, For 85% of the 

analyzed isoforms, the correlation across samples between the number of unique reads per 

isoform, arguably, the most direct measure of relative isoform abundance from RNA-seq, 

and the isoform-level CPM was above 0.2. Analyses for discovery of differential isoform 

expression and isoform-eQTL association used a strategy analogous to that at the gene level. 

Of note, we estimated isoform-level voom sampling weights from the isoform log(CPM) 

data and then used these weights in all linear regression analyses..

eQTL generation and analysis

For the 16,423 genes with above-threshold expression, gene-level eQTL (gene expression 

quantitative trait loci) were derived using the N = 467 genetically-inferred Caucasian 

samples (209 SCZ cases, 206 Controls, and 52 AFF cases), across the 6.4 million genotyped 

and imputed markers with imputation score (INFO) ≥ 0.8 and estimated minor allele 

frequency (MAF) ≥ 0.05. eQTL were computed using a linear model on the imputed 

genotype dosages using MatrixEQTL69. The gene expression data were adjusted for the 

covariate model, although without adjusting for ancestry vectors. In addition, the estimated 

Dx effect was added back to the residuals because we wanted to allow for an effect of 

diagnosis on gene expression. The 5 ancestry vectors were included instead in the eQTL 

model to control for ancestry differences in SNP allele frequencies. Thus, the final 

regression model for eQTL discovery in the full Caucasian CMC cohort was:

FDR was estimated separately for cis-eQTL (defined as ≤ 1 MB between SNP marker and 

gene position) and trans-eQTL (> 1 MB between marker and gene), controlling for FDR one 

chromosome at a time. The regression modeling was performed for SNPs on the X 

chromosome in the same manner as for those on the autosomes (i.e., with a dosage scaling 

between 0 and 2 for both males and females); this gender-neutral model was appropriate 

here since the gene expression was already adjusted for gender.

Additionally, eQTL were generated separately in SCZ cases and controls, and the 

combination of those samples (excluding AFF cases). However, permutation of disease 
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status indicated that the overlaps between case-derived eQTL and control-derived eQTL 

were similar to the amount expected for two homogeneous sets of these sample sizes, and 

there was limited evidence for condition-specific eQTL. Nevertheless, to potentially identify 

eQTL that differ by disease state, a disease-genotype interaction term was also explicitly 

tested, but only a handful of such associations were found to be significant after controlling 

for FDR.

Lastly, per-gene permutations were performed to identify genes with at least one significant 

eQTL after correcting for multiple marker testing13. 1000 permutations were performed per 

gene and FDR was estimated on the permutation P values using the qvalue R package 

(Dabney A and Storey JD. qvalue: Q-value estimation for false discovery rate control. R 

package version 1.43.0).

Using similar techniques to derive isoform expression quantitative trait loci (isoQTLs), we 

identified 3,355,111 significant cis-isoQTLs at FDR ≤ 5%, representing 27,691 isoforms of 

10,779 genes. IsoQTLs and gene-level eQTLs overlapped substantially; 58% of isoQTLs 

were cis-eQTLs for the parent gene at FDR ≤ 5%; conversely, 71% of cis-eQTLs for genes 

with at least one represented isoform were isoQTLs at FDR ≤ 5%. There were, however, 

1,584 genes having no cis-eQTL (FDR ≤ 5%) that nevertheless had at least one significant 

isoQTL. At the isoform level, there were 39,414 significant trans-isoQTLs, representing 964 

isoforms (836 genes), of which 61% were also trans-eQTLs for the same gene.

Overlap with other eQTL databases—Since there exist a number of previous brain 

eQTL studies, we wanted to assess the overlap of the eQTL derived here from CMC with 

those existing databases. To that end, eQTL for the DLPFC from the (i) Braincloud16 (GEO 

accession number GSE30272, n samples = 108), (ii) NIH17 (GEO accession number 

GSE15745, n samples = 145), and (iii) Harvard Brain Tissue Resource Center (HBTRC) / 

Harvard Brain Bank (HBB)15 (GEO accession number GSE44772, n samples = 146) 

datasets were generated as previously described21. In addition, eQTL for the frontal cortex 

from the (iv) UKBEC data18 (GEO accession number GSE46706, n samples = 134) were 

generated in a similar manner using imputed genotypes obtained directly from the study 

authors. eQTL for a (v) meta-analysis of brain cortical regions (N = 424) were also obtained 

from the supplementary materials included with the publication19; note that this meta-

analysis included some of the individual studies above. For each of these 5 datasets, an FDR 

threshold of 5% was used to declare significance of cis-eQTL, and those associated pairs 

were carried forward for testing. For RNA-seq-based eQTLs from DLPFC (Brodmann area 

9, n samples = 92) that are part of the Genotype-Tissue Expression (GTEx) Project13, we 

utilized those eQTLs significant after permutation (as performed by the GTEx Consortium); 

these data were downloaded from the GTEx Portal (www.gtexportal.org), corresponding to 

dbGaP accession number phs000424.v6.p1.

Next, before performing any comparison analyses, the database eQTL were first filtered, 

removing all eQTL involving: a) array probes that mapped to more than one gene, b) genes 

not expressed above the minimum threshold in our cohort (and thus would necessarily be 

missing from our results), c) genes that could not be uniquely mapped to Ensembl (v70) 

genes, or d) SNPs not included in our analysis.
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Then, because the data herein are substantially larger than existing brain eQTL datasets that 

were therefore more limited in power for eQTL discovery, we focused on testing the 

sensitivity of our eQTL towards recapitulating publicly available eQTL. To robustly assess 

this sensitivity, we considered the eQTL P values from our CMC cohort with regards to the 

eQTL associations described in each public database we had curated. We scored the overlap 

using π1, the proportion of non-null hypotheses (as estimated by the ‘qvalue’ package in R) 

among the distribution of CMC P values for the database eQTL SNP-gene association pairs.

For another comparison with genome-wide eQTL, we also used the unpublished, but 

publicly available HBCC microarray cohort (dbGAP ID: 000979.v1.p1) described below to 

generate a large set of eQTL better powered for replication of the CMC-derived eQTL. 

Genotypes were obtained using the HumanHap650Yv3 or Human1MDuov3 chips, and 

ancestry components were subsequently inferred as above for CMC. Next, eQTL were 

generated using N = 279 genetically-inferred Caucasian samples (76 controls, 72 SCZ, 43 

BP, 88 MDD) in an analogous manner to CMC, adjusting for diagnosis and 5 ancestry 

components.

Lastly, we employed the eQTL derived from the unpublished ROS/MAP study (https://

www.synapse.org/#!Synapse:syn3219045, details on the study given below) in a limited way 

to replicate the 5 single-gene QTL associations we detected as having strong overlap with 

GWAS risk variants. The subset of the ROS/MAP cohort currently RNA-sequenced and 

analyzed (N = 461 DLPFC samples) was used to derive eQTL. To account for non-genetic 

factors such as batch effects, age, gender, and technical artifacts in the gene expression data, 

PEER70 was applied. The optimal numbers of PEER factors for association analysis were 

determined based on the factors that resulted in the maximal number of cis-eQTLs. This 

procedure identified between 30 and 40 factors in this DLFPC dataset; here, we used 30 

PEER factors. We regressed out these factors from the gene expression levels and used the 

residuals as phenotypes for all eQTL association analyses. The ROS/MAP study 26 takes 

advantage of data and biological specimens from more than 1000 persons from two 

prospective, longitudinal clinical-pathologic studies of older subjects that are non-demented 

at the time of recruitment (the religious order study and the memory and aging project). The 

subjects have detailed clinical and phenotypic data such as detailed annual cognitive 

function testing, clinical evaluations for dementia, and a detailed neuropathologic 

examination.

Religious Orders Study (ROS): From January 1994 through June of 2010, 1,148 persons 

agreed to annual detailed clinical evaluation and brain donation at the time of death. Of 

these, 1,139 have completed their baseline clinical evaluation: 68.9% were women; 88.0% 

were white, non-Hispanic; their mean age was 75.6 years; and mean education was 18.1 

years. To date, there have been 287 cases of incident dementia and 273 cases of incident AD 

with or without a coexisting condition.

Memory and Aging Project (MAP): From October 1997 through June 2010, 1,403 persons 

agreed to annual detailed clinical evaluation and donation of brain, spinal cord, nerve, and 

muscle at the time of death. Of these, 1,372 have completed their baseline clinical 

evaluation: 72.7% were women; 86.9% were white, non-Hispanic; their mean age was 80.0 
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years; and mean education was 14.3 years, with 34.0% with 12 or fewer years of education. 

To date, there have been 250 cases of incident dementia and 238 cases of incident AD with 

or without a coexisting condition. At this time, over 900 subjects from either ROS or MAP 

are deceased and have frozen brain tissue available for data generation. To avoid population 

stratification artifacts in the genetic analyses, the first 500 subjects were randomly selected 

from among those subjects that are self-reported to be of white, non-Hispanic ancestry, and 

have genome-wide genotype data (N = 1,709 for the entire ROS and MAP studies) that 

confirm this self-reported ancestry.

Overlap of eQTLs with enhancer sequences—To assess how cis- and trans-eQTLs 

relate to known enhancer sequences, we tested for overlap between eQTLs and enhancer 

sequences from the Roadmap Epigenomics Consortium71. More specifically, we used 

chromatin states for enhancer sequences (active, genic, and weak enhancers), derived from a 

recent joint analysis that the Roadmap Epigenomics Consortium applied in different 

chromatin immunoprecipitation sequencing (ChIP-seq) data across 98 human tissues and 

cell lines. We included tissues that were assayed for 6 different chromatin marks (H3K4me1, 

H3K4me3, H3K27ac, H3K36me3, H3K27me3, and H3K9me3). We tested for enrichment of 

significant eQTLs at FDR ≤ 5%, using as an index eQTL SNP (eSNP) the most significantly 

associated SNP per gene (“max-eQTL”), which resulted in 13,137 and 851 cis- and trans-

eSNPs, respectively. For each tissue or cell line, we counted the number of index eSNPs that 

lie within enhancer sequences respectively found in that tissue or cell line. To assess if this 

overlap is higher than expected by chance, we generated 1,000 sets of random SNPs 

matched with the index cis- and trans-eSNPs, in terms of allele frequency, gene density, 

distance from TSS, and density of tagSNPs arising from genomic variability of linkage 

disequlibrium. Z scores were estimated as:

Where observed is the number of index eSNPs that lie within enhancers, and meannull and 

SDnull are the mean and standard deviation of the null distribution of overlap, as estimated 

using the sets of permuted SNPs.

Using genetic association with eQTL - Sherlock

The Sherlock method25 attempts to uncover disease-associated genes (“risk genes”) by using 

a Bayesian statistical framework to assess overlap between eQTL for a gene and GWA 

significant SNPs loci for a disease. Its underlying principle is that genetic-driven changes in 

expression levels of risk genes (discovered as eSNPs) should ultimately also manifest as 

genetic association of those same SNPs with disease (GWAS SNPs). Specifically, we expect 

that cis-eQTL and trans-eQTL for a risk gene should be associated with disease (if risk is 

mediated by expression changes of that gene); note that the converse need not be true (since 

not all associated SNPs need be related to the function of any single disease gene). Briefly, 

Sherlock uses a Bayesian model to integrate signal across all statistically independent eQTL 

loci for a gene, where an independent linkage block is defined as a genomic interval 

containing one or more eSNPs associated with a gene and having a within-eSNP interval of 
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500 kb or less. For each such independent block, a single Bayes factor is calculated as the 

mean of the SNP-level Bayes factors within the block; the SNP-level Bayes factor 

corresponds to the likelihood of the observed GWAS and eQTL P values under the 

alternative hypothesis that expression changes in the gene mediate disease risk, relative to 

the likelihood under the null model where the gene is not related to disease. Bayes factors 

are multiplied for the independent loci, yielding a single per-gene score. P values for these 

genic scores are estimated using permuted disease GWAS P values to generate a null 

distribution of Sherlock Bayes factors across all genes. In this study, we used the eQTL 

derived from the full cohort of 467 Caucasian-inferred individuals, resulting from the 

expression-on-SNP regression that included the covariate model with the surrogate variables. 

The Sherlock method takes as input liberally-defined cis-eQTL associations (P < 10−3) and 

trans-eQTL associations (P < 10−5). For the trans-eQTL, we used a very strict definition to 

exclude putatively artifactual associations of SNP and gene expression, requiring, in addition 

to P < 10−5, that the trans-eQTL association also be present in the 206 controls-only 

Caucasian cohort, albeit with a P value as high as 10−3. Additionally excluding trans-eQTL 

where the eSNP was within 10 Mb of the associated gene (since such scenarios are perhaps 

instances of cis-eQTL for regions with larger LD blocks), yielded a final reduced subset of 

13,114 trans-eQTL (~7% of all trans-eQTL SNP-gene pairs at P < 10−5) across 661 genes. 

This stricter filter increases the replication rate in HBCC to 36% at FDR ≤ 5% in both 

cohorts. For generating null GWAS P values, we used 100 permutations of random case-

control assignments of the 2,504 individuals in the 1000 Genomes Phase 3 genotype data 

(http://www.1000genomes.org) 72, as suggested by the author of the Sherlock software (Xin 

He, personal communication). We also slightly modified the Sherlock source code, omitting 

the exclusion criterion for SNPs (and genes whose expression is associated with those SNPs) 

that could not be found in the 1000 Genomes data, which encompassed only 49,612 [4.4%] 

of the 1,127,447 eSNPs also found in the PGC SCZ2 GWAS data 3. Default Sherlock 

parameters (priors) were used, except for setting the number of individuals in which the 

eQTL were discovered to N = 467, setting a 1% prevalence for SCZ, and setting the PGC 

SCZ2 GWAS primary meta-analysis cohort sizes (35,476 cases and 46,839 controls). For 

input allele frequencies, we used the frequencies estimated from the 46,839 GWAS controls. 

Also, instead of using the minor allele frequency, we used the “risk” allele frequency at each 

SNP; i.e., the allele at higher frequency in cases. This ensures that, for significantly 

associated SNPs, the minor or major allele is appropriately chosen for likelihood 

calculations based on the direction of risk. Still, for most SNPs in the genome, those not 

clearly associated with SCZ, the choice of major or minor allele is essentially random and 

unbiased.

Notably, in the PGC SCZ2 paper detailing the 108 SCZ-associated loci the authors 

attempted to ask if any eSNPs from brain eQTL databases existing at the time were credibly 

associated with schizophrenia. Specifically, they tested if the most significant eQTL SNP for 

any gene is among those SNPs 99% most likely to be credibly causal for SCZ at any locus 

(assuming only a single causal SNP per locus). This process led to 3 genes based on brain 

eQTL: 1, TINAGL1, and LIG1. In our CMC eQTL data, there is only overlap between the 

SCZ association and eQTLs for MLH1, with up-regulation of expression predicted to be 
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associated with the genetic risk variation; however, this overlap is below the genome-wide 

threshold, Sherlock P = 6 × 10−5, Bonferroni corrected P = 0.69.

Zebrafish functional assays

Morpholino (MO)-mediated depletion and complementation with human mRNA. All 

zebrafish assays were performed utilizing the wild-type ZDR strain in accordance with 

standard zebrafish husbandry practices at Duke University. To assess the functional outcome 

of FURIN down-regulation in a zebrafish model, a splice-blocking morpholino for furin_a 
targeting the splice site donor region of exon 7 (5’ – 

CAGTTAAATGCGCCGACTCACCTCC – 3’) was designed from Gene Tools, LLC 

(Philomath, OR). All eggs were injected with 3ng/µl of the furin_a MO construct at the 1- to 

4-cell stage. Embryos were collected at 3 days post-fertilization (dpf), and RT-PCR was 

performed to validate the efficiency of the MO. The forward RT-PCR primer targets the start 

of intron 7 (5’ – GTTGTGCTGGAGAGGTTGCT – 3’) with the reverse primer targeting the 

intronic region bordering exon 8 (5’ – GGTGTGCTCTGTGTGCTGAT – 3’). For mRNA 

rescue of furin_a MO and the overexpression study of TSNARE1, CNTN4, SNAP91, and 

CLCN3, human wild-type capped mRNA for each gene was transcribed using the SP6 

Message Machine Kit (Ambion). All RNAs were injected at the 1- to 4-cell stage at 200ng 

concentrations. Immunohistochemistry and phenotyping: For immunostaining purposes, all 

embryos were collected at 3dpf, dechorionated, and fixed in Dent’s solution (20% DMSO; 

80% MeOH) overnight at 4°C. Embryos were rehydrated in a step-wise manner starting with 

75% ethanol in 1XPBS, followed by 50%, and 25% ethanol solutions. Embryos were then 

bleached, post-fixed with 4% PFA, and permeabilized using proteinase-K. Embryos were 

then washed twice in IF buffer (1% BSA, 0.1% Tween-20 in 1XPBS) and incubated in 

primary antibodies for anti-α-acetylated tubulin (1:1000, Sigma-Aldrich, T7451) and anti-p-

histone H3 (PH3; 1:500, Santa Cruz Biotechnology, sc-8656-R) in blocking solution 

overnight at room temperature (RT). Following two washes in IF buffer, embryos were 

placed in secondary antibody solution containing Alexa Fluor 594 goat anti-mouse IgG 

(1:1000) and Alexa Fluor 488 goat anti-rabbit IgG at 488(1:500; Invitrogen) in blocking 

solution for 2hrs at RT. Embryos were then washed and stored in IF buffer at 4°C until used 

for microscopy.

Head size measurements of 3dpf embryos were assessed using brightfield microscopy and 

quantified using the NIH ImageJ software package. To assess proliferation, PH3-stained 

embryos, images were taken using fluorescent microscopy along the z-axis and stacked to 

obtain a focused image spanning the full head. PH3-positive cells from the forebrain to 

hindbrain (directly behind the cerebellum) were then counted for quantification purposes 

using ImageJ. TUNEL staining was performed to measure apoptosis using Apoptag Red In 

Situ Apoptosis Detection Kit (Millipore). TUNEL-stained embryos were then imaged and 

quantified using the same technique as for proliferation. All experiments were replicated 

twice and aggregate data was compiled. Statistical differences between controls and 

treatment conditions for each phenotype were calculated using Student’s t-test.
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Human neural progenitor cell (NPC) model of FURIN

Fibroblast biopsies were obtained from healthy controls that were recruited as part of a 

longitudinal study by Dr. Judith Rapoport (NIMH)73. All participants provided written 

assent/consent with written informed consent from a parent or legal guardian for minors. 

Human fibroblasts (HFs) were cultured on plates coated with 0.1% gelatin (in milli-Q water) 

and grown in HF media (DMEM (Invitrogen), 20% FBS (Gemini)).

hiPSCs were derived as described previously (http://www.nature.com/articles/

npjschz201519); replicating but nearly confluent HFs were transfected with Cytotune Sendai 

virus (Life Technologies). Cells were allowed to recover for at least 3 days, dissociated with 

TrypleE (Life Technologies) and re-plated onto a 10-cm dish containing 1 million mouse 

embryonic fibroblasts (mEFs). Cells were switched to HUES media (DMEM/F12 

(Invitrogen), 20% KO-Serum Replacement (Invitrogen), 1× Glutamax (Invitrogen), 1× 

NEAA (Invitrogen), 1× 2-mercaptoethanol (Sigma) and 20 ng/ml FGF2 (Invitrogen)) and 

fed every 2–3 days. hiPSC colonies were manually picked and clonally plated onto 24-well 

mEF plates in HUES media. At early passages, hiPSCs were split through manual 

passaging, but at higher passages, hiPSC could be enzymatically passaged with Collagenase 

(1mg/ml in DMEM) (Sigma). Karyotyping analysis was performed by Wicell Cytogenetics 

(Madison WI); only karyotypically normal lines were used for subsequent studies.

hiPSC forebrain NPCs were derived from the three controls as described previously74. These 

samples were selected irrespective of their genotypes for the FURIN-eQTL SCZ-risk variant 

at SNP rs4702, with two being heterozygous G/A and the third homozygous risk G/G. 

Incubation with Collagenase (1 mg/ml in DMEM) at 37°C for 1–2 hours lifted colonies, 

which were transferred to a nonadherent plate (Corning). Embryoid Bodies (EBs) were 

grown in suspension with dual-SMAD inhibition (0.1mM LDN193189 (Stemgent) and 

10mM SB431542 (Tocris)) N2/B27 media (DMEM/F12-Glutamax (Invitrogen), 1× N2 

(Invitrogen), 1X B27 (Invitrogen)). 7-day-old EBs were plated in N2/B27 media with 1 

µg/ml Laminin (Invitrogen) onto poly-ornithine/Laminin-coated plates. Neural rosettes were 

harvested from 14-day-old EBs using Neural Rosette Selection Reagent (STEMdiff™) for 

60 minutes at 37°C before being plated in NPC media (DMEM/F12, 1× N2, 1× B27-RA 

(Invitrogen), 1 µg/ml Laminin and 20 ng/ml FGF2 on poly-ornithine/laminin-coated plates.

hiPSC NPCs were maintained at high density, grown on Matrigel in NPC media (DMEM/

F12, 1× N2, 1× B27-RA (Invitrogen), and 20 ng/ml FGF2 (Invitrogen) and split 

approximately 1:3–1:4 every week with Accutase (Millipore)37. NPCs can be expanded 

beyond 10 passages. NPC experiments were conducted on passage-matched populations, 

between passages 9 and 12. Control hiPSC and NPC validation as shown39,75. All hiPSC 

and NPCs in the laboratory are tested monthly using MycoAlert (Lonza) to ensure they 

remain mycoplasma free.

Neurosphere migration assay—NPCs were dissociated with accutase and then cultured 

for 48 hours in nonadherent plates to generate neurospheres. Neurospheres were manually 

picked and cultured in “Matrigel matrix (0.5 mg Matrigel was plated in cold NPC media on 

a 96-well plate 1 hour prior to neurosphere plating; following neurosphere picking, an 

additional 0.5 mg Matrigel was added in cold NPC media per 96-well plate). DAPI-stained 
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neurospheres were imaged at 48 hours. Average radial migration from each neurosphere was 

measured using NIH ImageJ40,74.

Knockdown of FURIN—pLKO.1 - TRC control was a gift from David Root (Addgene 

plasmid # 10879)76. A bacterial glycerol stock containing the LV-FURIN-shRNA plasmid 

was purchased from Sigma (SHCLNG-TRCN0000262167). High-titer lentiviral supernatant 

was generated by co-transfection of shRNA expression vector together with psPAX2 and 

pMD2.G to package letivirus particles in HEK-293T cells. psPAX2 (Addgene plasmid # 

12260) and pMD2.G (Addgene plasmid # 12259) were gifts from Didier Trono. Lentiviral 

supernatant was concentrated by centrifugation at 19,300 × g for 2hr at 4°C and resuspended 

in NPC media. Viral titer was determined using a qPCR lentiviral titration kit (Applied 

Biological Material Inc. - LV900) and TaqMan® RNA-to-Ct™ 1-Step Kit (ThermoFisher 

Scientific – 4392938). NPC transduction was performed by addition of lentiviral particals to 

NPCs at an MOI of 0.5–1 followed by centrifugation of plate at 1,000 × g for 1hr at RT then 

incubation of NPCs at 37°C for an additional 6 hours. 48hr after infection, transduced cells 

were selected for with 1µg/mL puromycin for 48hr. FURIN knockdown was validated by 

qPCR using TaqMan® RNA-to-Ct™ 1-Step Kit (ThermoFisher Scientific – 4392938).

Differential Expression Analyses

Differential expression between SCZ cases and the controls was assessed (Supplementary 

Fig. 2, bottom panel) utilizing the limma package in R, with the following inputs: the voom-

normalized gene expression matrix, the voom precision weights matrix corresponding to the 

values in the expression matrix, and the final “covariate model”. Note that the expression 

matrix we utilized contained data for 592 samples in total (SCZ cases, controls, and AFF 

cases), and 16,423 genes passing the expression-level threshold of > 1 CPM in > 50% of the 

samples. The rationale for including ~50 AFF, even though they were not analyzed for 

differential expression, was to: a) increase statistical power during linear modeling of 

covariates (such as age, RIN, PMI, etc.); and b) place the expression data for the AFF cases 

on the same scale as for the SCZ and control samples for the sake of simplicity.

For each gene, weighted least-squares linear regression was performed using limma to yield 

coefficients for the effect on gene expression of each variable on the right-hand side:

Then, for each gene, the SCZ disease status coefficient was statistically tested for being non-

zero, implying an estimated effect for SCZ, above and beyond any other effect from the 

covariates. This test produces a t-statistic (then moderated in a Bayesian fashion) and 

corresponding P value. P values were then adjusted for multiple hypothesis testing using 

false discovery rate (FDR) estimation, and the differentially expressed genes were 

determined as those with an estimated FDR ≤ 5%. FDR was calculated by the limma 

package, which uses Benjamini-Hochberg from p.adjust() function in R. Significance was 

also assessed by permuting case-control status for 1,000 experiments. Of these experiments, 

the average number of significant genes at FDR ≤ 0.05 was 4.3, well below 693 found in our 

sample. If 5% of the 693 were false, the threshold established of 34.7 genes is exceed in 9 
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out of 1000 experiments, slightly less than 1%. Differential expression of gene isoforms was 

performed analogously.

Cross-validation of differential expression

We performed cross-validation of the differential expression by randomly splitting the full 

cohort into an 80% “discovery” cohort and 20% “replication” cohort (with equal proportions 

of SCZ cases and controls into the two parts of the split). This splitting process was repeated 

20 times. Each time, we chose the t-statistics of the genes considered to be differentially 

expressed at an FDR < 5% in the discovery cohort and looked up the corresponding statistics 

in the independent 20% replication cohort. Across the 20 samplings, the median number of 

FDR < 5% differentially expressed genes was 216 (mean = 315, sd = 261, 25th percentile = 

92, 75th percentile = 562). For these FDR < 5% “discovery” differentially expressed genes, 

the median Pearson correlation of t-statistics with the “replication” cohort was 0.79 (mean = 

0.75, sd = 0.16, 25th percentile = 0.67, 75th percentile = 0.88). This strongly supports the 

robustness of the differential expression results described herein.

In situ hybridization images from the Allen Human Brain Atlas

Given the broader dynamic range of RNASeq and its ability to detect low abundance 

transcripts – because it does not suffer from hybridization-based limitations associated with 

microarray such as background noise – we would expect to see large fold-changes, if they 

existed, even for genes displaying low expression; or expression and differential expression 

restricted to a specific subset of cells. ISH images for representative genes taken from the 

same brain region used in our experiment can add extra information when related to 

RNASeq intensity data. Supplementary Fig. 10 shows in situ hybridization images from 

Allen Human Brain Atlas for a selected set of genes showing significant differential 

expression in CMC; the figure shows different cell type specific expression (from high to 

low specificity). These are from the largest dataset for DLPFC, the Neurotransmitter Study 

(176 genes across cortical regions and 88 genes across subcortical regions in 4 control 

cases), 12 of which were in common with our list. The data suggest that genes identified by 

DE analysis display various degrees of cell-type specificity.

Effect of age on differential expression

To assess the impact of age-at-death on expression differences between SCZ cases and 

controls, we compared the per-gene differential expression t-statistics derived from various 

subsets of the entire cohort described here. Specifically, for the 172 cases and controls 

whose age of death was youngest (mean age 45.5, range 20–60), the t-statistics for 

differential expression were highly correlated with those from the full cohort (Pearson r = 

0.62), yet somewhat lower (though not significantly, P = 0.28) than for 100 random subsets 

of the same size (mean r = 0.69, standard deviation = 0.13), suggesting that age at death may 

have only a modest impact among adult cohorts. Furthermore, we explicitly compared the 

differential expression between the aged 20–60 individuals (172 samples, mean age 45.5) to 

an analysis of the complementary age 60 or older cohort (362 cases and controls, mean age 

77.8) by independently processing the data for each of those sub-cohorts. The differential t-

statistics between these independent sub-cohorts were correlated (r = 0.18, P < 2 × 10−16), 

arguing for some consistency of case-control differences across the lifespan. Still, it is 
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possible that a larger cohort of younger cases and controls would exhibit somewhat different 

patterns of gene expression changes. It is important to note, however, that the effect of age is 

not the only possible explanation for a lower correlation; e.g., while Pitt samples compose 

26% of all SCZ cases and controls in CMC, 63% of the aged 20–60 CMC samples are from 

Pitt, and other factors besides age also differ between the Pitt and non-Pitt samples.

Drug effects on differential expression

To examine whether drug treatment effects were responsible for the differential expression 

observed in SCZ, we examined enrichment of differential expression and directional 

concordance for drug treatment signatures derived from studies of Rhesus macaque monkeys 

and rodents. Subjects from a cohort of N = 34 Rhesus macaques born between 1995 and 

2004 were randomly selected for four treatment groups: 7 for high doses of haloperidol (4 

mg/kg/day), 10 low doses of haloperidol (0.14 mg/kg/day), 9 clozapine (5.2 mg/kg/day), and 

8 vehicle. Monkeys were administered the antipsychotic drugs orally for six months, mixed 

with powdered sugar and given in peanut butter or fruit treats. Monkeys were raised at Wake 

Forest University and received standard enrichment, including social enrichment, human 

interaction, variety in diet, and age-appropriate objects as dictated by the Animal Welfare 

Act and the Emory University and Wake Forest School of Medicine policies for non-human 

primate environmental enrichment. Animal care procedures strictly followed the National 

Institutes of Health Guide for the Care and Use of Laboratory Animals and were approved 

by the Institutional Animal Care and Use Committees of Emory University and Wake Forest 

School of Medicine. Monkeys were sacrificed and necropsied on average at age 6.2 years 

(range between 3.6 and 8.2 years old) after the six-month treatment protocol by an overdose 

of barbiturate and transcardially perfused with ice cold saline. The brains were removed and 

cut into 4 mm slabs in the coronal plane using a brain matrix (EMS, Fort Washington, PA) 

and immediately frozen and stored at −80°C. Tissue was dissected from slabs of the right 

hemisphere that included the basal ganglia from the rostral pole to the beginning of the 

anterior commissure. The DLPFC was dissected from the dorsal and ventral banks of the 

principal sulcus (Area 46) and pulverized. The identical RNA-seq protocol (using the 

RiboZero Gold kit [Illumina]) was followed as for the primary human CMC cohort. 

Sequencing data were processed similarly as for the human CMC cohort, with reads aligned 

to the macaque reference genome and transcriptome (mmul1), but with two minor changes: 

STAR77 was used for efficient alignment, and featureCounts78 was used for gene-level 

quantification. rRNA rates were all below 1%. RNA expression levels were normalized 

using voom, and limma differential expression analysis was performed, adjusting for sex and 

RNA isolation batch, to assess the effects of haloperidol treatment (N = 17 in total, grouped 

to increase statistical power) and clozapine (N = 9) drug groups, as compared to the baseline 

untreated group (N = 8). While no genes were considered differentially expressed after 

multiple test correction, we used a nominal P ≤ 0.01 cutoff to identify signatures for 

haloperidol and clozapine treatment, which resulted in human-orthologous gene sets of size 

237 and 31, respectively.

To assess enrichment of overlapping genes, we performed a one-sided Kolmogorov-Smirnov 

(KS) test of the P values for the gene signatures versus all genes and assessed significance 

via resampling. Significant enrichment was observed (Supplementary Table 2A) for the 
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haloperidol signatures, but not the clozapine signature (P = 1 × 10−9 and 0.29, respectively). 

We also tested whether the direction of effect for drug signature genes was more concordant 

than expected by chance; this was tested using a hypergeometric test whose null hypothesis 

assumes that up- and down-regulated drug-mediated genes were randomly sampled from 

genes either up- or down-regulated (at any P value) in the CMC SCZ differential expression 

tests. We found the haloperidol signature significantly less concordant than expected by 

chance (35 out of 237 genes concordant, one-sided P < 1 × 10−4), while the clozapine 

signature showed significant concordance, despite the lack of enrichment in the previous test 

(22 of 31 genes concordant, one-sided P = 0.013). For haloperidol, the enrichment of 

significance but depletion of concordance is perhaps consistent with a scenario in which 

such antipsychotic drugs target these genes and affect them in the opposite direction of what 

etiologically occurs in the course of disease (hence their efficacy).

We also performed similar analyses in rodent drug treatment signatures. We had access to 

unpublished data (PFS) from RNA sequencing performed on mice previously treated with 

haloperidol. A brief description of data generation is as follows. All experimental procedures 

were randomized to minimize batch artifacts, including assignment of mice to receive 

haloperidol (HAL) or placebo (PLA), home cage, order of dissection, RNA extraction, and 

assay batch. Male C57BL/6J mice were chronically treated with HAL (N = 16) or PLA (N = 

12) for 30 days, and the striata were dissected (15–17 mice per treatment group). All 

individual striatal samples were assayed using RNA-seq. Quality control and analysis for all 

data types conformed to those developed in our prior publications19. We considered 

differential expression at FDR q < 0.05 as the criterion for inclusion in the set of genes we 

considered to be affected by the drug.

Secondly, we culled from the literature rodent drug treatment signatures for experiments that 

profiled frontal or prefrontal cortex. To ensure higher quality, we required the study to be 

published after 2005. In total, we curated 11 gene signatures from 7 rodent studies 

comparing antipsychotic-treated animals to vehicle-treated controls79–85. Nine of the 11 

gene signatures were represented by orthologs that were expressed in our study. In total 

(including the unpublished data described above), 10 rodent gene signatures were tested.

Using the independent rodent datasets, we found overall similar results as that in the 

monkeys, with some overlaps of genes impacted by drugs and associated with disease, but 

with opposite directions of effect on gene expression. Specifically, using the KS test for 

enrichment, none of the gene signatures were strictly significant after Bonferroni correction 

(Pbonferroni > 0.05), though two signatures were significantly less concordant than expected 

by chance after multiple test correction (Pbonferroni = 0.01 and 0.01, Supplementary Table 

2B). However, we identified a set of 21 genes that appeared in 4 or more of the gene 

signatures; 16 of these genes were represented by orthologs in our normalized data, and 8 

showed concordant direction in all 4 studies. A one-sided test of enrichment for these “most 

represented” genes showed a non-significant trend towards enrichment (p = 0.061), with one 

gene from the signature significant in the CMC DLPFC data at FDR ≤ 5% (ATRX, FDR = 

4.5%). Sets of genes that appeared in 3 or more studies, or 2 or more studies, also did not 

reach statistical significance but did show a trend for overlap (P = 0.084 and 0.071, 

respectively). However, for each of these gene signatures, the direction of effect was 
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significantly less concordant than expected by chance (1 of 8 [P = 0.004], 10 of 55, and 122 

of 388 for those in ≥4 studies, ≥3 studies, and ≥2 studies, respectively).

HBCC replication microarray cohort

Microarray-based gene expression data were available from the DLPFC samples of the 

Human Brain Collection Core (HBCC, http://www.nimh.nih.gov/labs-at-nimh/research-

areas/research-support-services/hbcc/human-brain-collection-core-hbcc.shtml). These 

samples were prepared by extraction of RNA using Qiagen RNAeasy kits, generation of 

biotin-labeled cRNAs using Affymetrix 3’IVT express kits, and hybridization of cRNAs to 

Illumina HumanHT-12_V4 Beadchips. Expression values were extracted with 

GenomeStudioV2011.1. After preprocessing and quality control to check for outliers and 

sex mismatches, there remained 131 SCZ and 176 control samples (as well as 43 BP and 88 

MDD samples, where these latter samples were used only for eQTL derivation).

Gene expression data for samples passing quality control were normalized by first aligning 

data within each batch, then by addressing batch effects. In detail, within-batch 

normalization included: (i) background correction using negative control probes; (ii) 

quantile normalization; and (iii) log2 transformation86. We used the Inter-Array 

Connectivity (IAC) to identify outliers as those samples with values 3 standard deviations 

lower than the mean in their respective batches; samples identified as outliers were then 

removed from the batch and preprocessing was repeated. After the within-batch 

normalization, probes were considered as robustly expressed only if the detection P value 

was < 0.01 for at least half of the samples in the dataset. Next, systematic batch effects 

across the entire dataset were addressed, by application of ComBat87 (http://

statistics.byu.edu/johnson/ComBat/), a parametric empirical Bayes framework, to achieve 

cross-batch normalization.

To maximize comparability with the CMC data, we designed an analysis pipeline analogous 

to that which we used for the CMC RNA-seq processing. We remapped probes to genomic 

locations of genes using the sequence of the probe (using the same reference genome and 

Ensembl transcriptome as for the CMC RNA-seq data). For transcripts with more than one 

probe, we chose the probe with the maximum intensity for each sample (this choice had only 

minimal impact on results). We retained samples with genotype data so that we could 

include ancestry as a covariate.We selected covariates based on variance explained in data. 

The following covariates were used in the differential expression (and eQTL) analysis: Dx, 

Age of death, sex, PMI, pH, RIN, clustered processing batch, and ancestry markers. We 

performed differential expression analysis with adjustment for covariates, using linear 

regression models in limma and identified 2,288 differentially expressed genes at FDR 5%, 

among which 1,166 and 1,122 were up-regulated and down-regulated in SCZ, respectively.

Overlaps with genetic associations

To assess how genetic risk for schizophrenia relates to brain function in the DLPFC at the 

molecular level, we tested for overlap between genes found in genetic loci previously 

associated with SCZ and the genes exhibiting expression differences between SCZ cases and 

controls in this study. To this end, we curated genetic associations with schizophrenia from 
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the literature, including those derived from: a) 108 loci discovered in a common variant 

genome-wide association (GWAS) meta-analysis study of 36,989 SCZ cases and 113,075 

controls3, b) a literature consensus of 12 copy number variant (CNV) regions collated from 

numerous rare CNV studies88, c) 756 nonsynonymous (NS; mostly missense, but also 

including 114 loss-of-function [LoF; nonsense, essential splice site, or frameshifting indels]) 

de novo mutations discovered from exome-sequencing across 1,024 schizophrenia trios 

[probands and their parents]7,89–92 and uniformly re-annotated using PLINK/Seq (http://

atgu.mgh.harvard.edu/plinkseq), and d) rare variants in an exome-sequencing study of 2,536 

SCZ cases and 2,543 matched controls from Sweden5.

For category c (de novo mutations), in addition to the data from SCZ studies, we also 

collated information from studies of autism (3,446 NS mutations, 579 LoF, from 3,985 

trios)93–95, intellectual disability (259 NS, 67 LoF, 192 trios)96–98, and epilepsy (341 NS, 58 

LoF, 356 trios)99. However, these additional datasets were only used to test enrichment of 

genes in GWAS loci that were prioritized by eQTL), not for overlap with differential 

expression.

To statistically assess the overlap between the genetic and the mRNA expression 

associations with schizophrenia, we integrated the overlap individually found for each of the 

four classes of SCZ genetic variation using Fisher’s method for combining P values. For 

each class of genetic variation and corresponding disease association data, we tested the 

associations for enrichment in a gene set consisting of the 693 genes found to be 

significantly (FDR ≤ 5%) differentially expressed between SCZ cases and controls (up- or 

down-regulated). To control for the fact that some genetically-associated genes may not be 

brain-expressed, we conditioned all enrichment tests on the background set of 16,423 genes 

with above-threshold expression that we had included in differential expression analysis 

(and were thus candidates for being labeled as differential in the first place). Note that all 

genetic variants and regions were annotated using RefSeq transcripts as downloaded from 

the UCSC Genome Browser in April 2013; see references 5 and 7 for more details.

In detail, we used the following tests for the four classes of genetic variation: a) GWAS loci: 

INRICH100 was used to assess if the 108 SCZ-associated PGC SCZ2 GWAS loci (with a 20 

kb window added both upstream and downstream) tended to hit the 693 differentially 

expressed genes (DEG) more than expected by chance loci. These random loci were 

generated by permutation of the associated loci within the genome, but matched to the 

associated loci in terms of the number of SNPs, SNP density, and the number of overlapping 

genes; background SNPs for matching were taken from the full imputed list of 9.4 million 

SNPs tested for SCZ association. After intersecting with DLPFC-expressed genes from this 

paper, there were 87 loci spanning one or more genes, encompassing a total of 489 genes. 

10,000 permutations were performed. b) CNV regions: INRICH was also utilized to test if 

the 12 SCZ-associated CNV regions (without any additional genomic window) tended to hit 

the differentially expressed genes more than expected by randomly generated regions in the 

genome matched to the associated regions in terms of the number of overlapping genes. 

After conditioning on DLPFC expression, the 12 regions spanned 127 genes. 10,000 

permutations were performed. c) De novo mutations: DNENRICH7 (https://

psychgen.u.hpc.mssm.edu/dnenrich) was employed to measure if the 756 nonsynonymous 
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(114 loss-of-function) SCZ mutations affected the differentially expressed genes more than 

expected by randomly generated de novo mutations matched to the observed mutations for 

their trinucleotide base context and functional consequence and then placed in the genome 

uniformly at random to account for gene size (e.g., larger genes tend to have more 

mutations). Conditioning on DLPFC expression, there were 103 loss-of-function mutations 

in 101 genes, and a total of 638 nonsynonymous mutations across 605 genes. 50,000 

permutations were employed for each test. The two tests, for nonsynonymous and loss-of-

function mutations, were combined by taking the minimum P value after Bonferroni 

correction for the 2 tests. d) Rare variants: PLINK/Seq and SMP5 (http://

atgu.mgh.harvard.edu/plinkseq) were used to assess whether the exome-sequenced SCZ 

cases exhibited a burden of rare singleton variants (observed just once in the entire cohort of 

~5,000 individuals) in the differentially expressed genes, as compared to controls. 

Enrichment statistics for the differentially expressed set (the sum of gene burden statistics) 

were calculated via permutation that controlled for any exome-wide case-control differences, 

residual linkage disequilibrium among rare variants in nearby genes, and differences 

between cases and controls arising from ancestry (based on exome-wide identity-by-state 

[IBS]), experimental batch, and gender. Case burden in the differentially expressed genes 

was tested for either nonsynonymous variants (comprised of loss-of-function variants and 

missense variants predicted in silico as deleterious by each of five different algorithms5), or 

just the smaller set of loss-of-function variants. Looking only at differentially expressed 

DLPFC genes, there were 236 genes with one or more singleton loss-of-function variants 

and a total of 440 genes harboring singleton damaging nonsynonymous variants. 10,000 

permutations were used for each test. Again, the two tests were combined by choosing the 

minimal P value after Bonferroni correction.

Overlap of differential expression with polygenic common variant risk for SCZ

Since the CMC cases bear an aggregate common polygenic schizophrenia risk burden, we 

subsequently performed an independent controls-only analysis (using limma) of the effect of 

polygenic risk scores on expression of each gene. While no single gene was found to be 

significantly associated with PRS after correction for multiple testing using an FDR 

approach (cutoff of 5%), there was inflation of the P value distribution101 consistent with a 

non-uniform distribution (π1 = 0.22). Moreover, there was a significantly positive, but small, 

correlation (Pearson r = 0.095, p < 10−16) between the independent t-statistics for the effect 

of PRS on expression in controls and those we found for case-control expression differences 

in the full cohort, consistent with at least some of the SCZ case-control differences in CMC 

perhaps being driven by underlying genetic differences between the SCZ cases and controls.

Generation of gene sets for enrichment analyses of differential expression

To further attempt to interpret the list of differentially expressed genes and isoforms, we also 

conducted a series of structured tests to evaluate their functional enrichment, including 

evaluating primary hypotheses previously implicated by genetic findings in schizophrenia 

research (e.g., targets of regulation by FMRP, fragile X mental retardation protein), and 

performing exploratory analyses of a large number of gene sets (such as those obtained from 

Gene Ontology). In brief, we found no convincing patterns to the primary or exploratory 
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hypotheses, after correction for multiple set testing, confounders such as gene size, and after 

combining results over multiple enrichment tests.

We started by curating two classes of gene sets for analyzing the differential expression data: 

1) a small group of pathways and gene sets previously implicated in genome-wide genetic 

studies of schizophrenia (“hypothesis-driven”), and 2) a collection of thousands of 

“hypothesis-free” gene sets from large databases that would allow us to potentially 

characterize novel biology arising in brain expression related to schizophrenia. We 

considered each of these classes independently for multiple test correction owing to their 

dissimilar goals.

1. Hypothesis-driven: This collection consisted of 12 sets of genes previously 

implicated in the literature of schizophrenia genetics, including: a) all 

genes within 20 kb of 108 GWAS loci3, b) genes sitting under rare SCZ-

associated CNV88, and c) nonsynonymous and loss-of-function de novo 
mutations discovered from exome-sequencing of schizophrenia probands 

and their parents7,89–92; note that these correspond to the data described 

above, where all genes in associated regions are simply lumped together as 

a single gene set (losing the important distinction that some loci bear many 

more genes than others). In addition, we added gene sets previously shown 

to be enriched for genetic variation associated with schizophrenia102, 

including genes regulated by FMRP (fragile X mental retardation protein) 

targeting103, predicted targets of miR-137 (filtered to include those with a 

total context score ≤ 0.3 or an aggregate PCT (probability of conserved 

targeting) ≥ 0.9 in TargetScan version 6.2)104, voltage-gated calcium 

channels102, and 5 related subsets of genes whose protein products are 

localized to the postsynaptic density of neurons, including those involved 

in glutamatergic neurotransmission105.

2. Hypothesis-free: These gene sets were derived from three widely-used 

databases for functional gene classification: curated GO (Gene Ontology) 

sets of molecular functions (MF), biological processes (BP), and cellular 

components (CC) (http://www.geneontology.org)106; the curated 

Reactome database of pathways and reactions in human biology (http://

www.reactome.org)107; and HGNC (HUGO Gene Nomenclature 

Committee) gene families (http://www.genenames.org)108.

We sought to retain sets that were relevant to the DLPFC brain expression we observed here, 

as well as address overlap between the 3 databases, using the following strategy. We only 

retained a gene set in which at least 10% of the genes are expressed in DLPFC (that is, are 

among the 16,423 genes passing the expression-level threshold. For each set, we filtered out 

any genes not expressed in DLPFC. We then retained only sets with a final number of genes 

between 10 and 1,000. For adding the latter two databases, we did not include any set with a 

Jaccard overlap index > 0.5 to a GO set already included (since in such cases, a substantial 

portion of the genes were already included in the GO set and the added test would likely be 

redundant). This procedure yielded 2,902 gene sets in total: 1,938 sets from GO, 824 from 

Reactome, and 140 gene families.
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Geneset enrichment for differential expression

Enrichment methodologies for differential gene expression between cases and controls can 

be broadly classified into two categories: gene permutation and subject permutation109. In 

gene permutation methods, such as a hypergeometric test, the null distribution of the overlap 

statistic is derived by (either analytically or empirically) permuting the genes found in the 

set being tested. In the subject sampling methods, such as GSEA110, case control labels are 

(either analytically or empirically) permuted to generate the null distribution of the overlap 

statistic. Since these methods differ in their statistical assumptions and thus appropriateness 

for a particular dataset and gene set, which subsequently affects their performance, here we 

used a combination of methods and then merged the results. Note that for these subject 

permutation tests, only the expression at the level of genes, but not isoforms, was 

incorporated.

For the gene permutation test category, we used the Fisher’s exact, hypergeometric, and 

GOSeq111 tests. For these tests, genes were separated into two classes depending on whether 

they met FDR criteria for differential expression at the gene or isoform levels (estimated 

FDR ≤ 5% for either genes or isoforms), or not; this set of differentially expressed genes was 

then evaluated for overlap versus non-overlap with the gene set being evaluated for 

enrichment (i.e., a 2 × 2 table was constructed). Compared to the hypergeometric and 

Fisher’s tests, GOSeq has an advantage for RNA-seq data in that it explicitly accounts for 

the detection bias of long and highly expressed transcripts. For the subject permutation 

category of tests, we used GSVA112, ssGSEA110, PLAGE113, and zScore114, all 

implemented in the gsva package of bioconductor115. To combine the results of these tests, 

within each of the two primary categories, we used Fisher’s method for combining P values 

with Brown’s correction, which is an extension of Fisher’s method that accounts for 

correlation between the different enrichment test statistics 116. Then, within category, P 
values were Bonferroni corrected across all gene sets tested, yielding two P values for each 

gene set. Lastly, these two P values arising from the two categories of tests (gene and subject 

sampling) were again Bonferroni-corrected to adjust for the twofold testing, and the 

minimum of the two was reported (Supplementary data file 4).

Weighted gene co-expression network analysis (WGCNA)

We constructed gene co-expression networks using the WCGNA and coexpp packages in R 

(https://bitbucket.org/multiscale/coexpp), starting with the normalized expression data for 

16,423 genes. To ensure a more robust correlation-based co-expression analysis, we first 

removed 5 samples as outliers based on IAC analysis, specifically those more than 4 

standard deviations from the mean), leaving a final cohort for co-expression analysis 

consisting of 278 control samples and 254 cases with schizophrenia. We constructed gene 

co-expression networks separately in control individuals and SCZ cases117.

The connectivity metric between a pair of genes i and j, or kij, is a transformed correlation 

between their expression profiles, with the matrix A = (kij) known as the unsigned adjacency 

matrix. kij is defined as |rij|β, using the absolute value of rij, the Pearson correlation 

coefficient between the profiles of genes i and j, and β is the parameter of a power function. 

β is selected using the fitting index proposed by Zhang et al. 117, i.e., to maximize the scale-
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free topology model fitting index r2 of the linear model that regresses log(p(k)) on log(k), 

where k is connectivity and p(k) is the frequency distribution of connectivity. For the current 

data, we used an R2 cutoff of 0.8, which corresponded to a selection of β = 6.5 and β = 9 for 

the control and schizophrenia networks, respectively.

To explore the modular structures of the co-expression network, the adjacency matrix is 

further transformed into a topological overlap matrix118. Use of the topological overlap 

metric leads to more cohesive and biologically meaningful modules, since it not only 

represents the direct correlation between two genes but also incorporates their indirect 

interactions through other genes in the network 117,118. Next, to identify discrete modules of 

highly coregulated genes (either correlated or anti-correlated), average linkage hierarchical 

clustering of the genes is performed, followed by a dynamic tree-cut algorithm to 

dynamically cut clustering dendrogram branches into discrete subsets of gene modules119. 

Ordered from largest (the module containing the most genes) to smallest, each module is 

sequentially assigned: 1) a unique number (with higher numbers indicating smaller 

modules), 2) a color, and 3) a label of “c” or “s” for control or schizophrenia modules, 

respectively. The less well-connected genes are arbitrarily grouped in the “M0” module 

(grey color in the WGCNA package).

Prioritization of modules for association with SCZ

We aggregated the outcome of the overlap of modules with differentially expressed genes 

and genetic associations with SCZ, as follows. 1. Overlaps with differentially expressed 

genes: The genes in each module were used to define a gene set, and each such gene set was 

tested for overlap with the gene set of differentially expressed genes for schizophrenia (from 

our CMC data). Briefly, we assess the overlap with genes in each module using Fisher’s 

exact test, and Bonferroni correction is applied across all modules. Overlaps with genetic 

associations: The genes in each module were used to define a gene set, and each such gene 

set was tested for overlap with genetic associations for schizophrenia as described above in 

the section on differential expression. Briefly, for each module, we consider the genetic 

overlap for each of the four classes of genetic variation tested (GWAS, CNV, de novo 
mutations, rare variants), where overlaps within each class of variation are combined by 

choosing the minimal P value after Bonferroni correction. In Supplementary table 3, we 

report nominal P values without correction for multiple testing of all modules, since we use 

this only as a secondary filter for choosing modules of interest.

In addition, we explored the specificity of the enrichment for common SCZ variants by 

testing the enrichment of each module with common variants for Alzheimer’s disease 

(AD)120, a neurodegenerative brain disorder, and rheumatoid arthritis (RA)121. Summary 

statistics were downloaded from publically available datasets for AD (http://web.pasteur-

lille.fr/en/recherche/u744/igap/igap_download.php) and RA (http://plaza.umin.ac.jp/

~yokada/datasource/software.htm). For each GWAS dataset, SNPs were ‘clumped’ using 

Plink 1.9 (https://www.cog-genomics.org/plink2) and samples of European ancestry from 

the 1000 genomes project phase 3, using the following settings: threshold of significance for 

disease-associated SNPs P value = 5 × 10−8, r2 = 0.6, and a window of 500 kb. Enrichment 
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of modules with AD and RA loci was tested using INRICH as described in the “Overlaps 

with genetic associations” section.

Module Preservation Analysis

We quantified the preservation (or lack thereof) of within-module topology between 

schizophrenia and control co-expression networks by calculating network-based 

preservation statistics. Our analysis is based on previously published methods implemented 

in the WGCNA package122, which requires a list of genes assigned to modules in a 

reference network, as well as adjacency matrices for both the reference and a test network. 

We thus ran two separate analyses, once with the controls-based network as the reference 

and the SCZ-derived network as the test, and vice versa

We compared networks using various preservation statistics that can be grouped in two main 

categories:

1. Density-based preservation statistics are used to determine whether the 

genes in a reference module remain highly connected in the test network.

2. Connectivity-based preservation statistics assess whether the overall 
connectivity pattern between genes in a reference module is similar in the 

reference and test networks.

Network statistics used to assess preservation of density and connectivity are described in 

the supplementary text. Within each category (density or connectivity), composite module 

preservation statistics are constructed to summarize changes in module preservation. In 

detail, the comparison of network preservation in the reference and test networks is based on 

a permutation-based approach. The permutation approach implemented in the WGCNA 

package (module label permutation in the test network) shows a strong dependency on 

module size in our cohort (fitting index r2 > 0.95 based on a quadratic model). Thus, as an 

alternative, we performed 1,000 permutations of disease status for the final cohort analyzed 

for co-expression (278 control and 254 schizophrenia samples), followed by generation of 

gene co-expression networks and estimation of network preservation statistics. In the 

permuted sets, we again observed large differences of the network statistics with module 

size. Therefore, we estimated module size-dependent distributions of null statistics, based on 

the permuted network statistics for various ranges of binned module sizes: 30–60, 61–125, 

125–250, 251–500, 501–1500, and 1501–3000.

For each module q and module preservation statistic α, the z-score , where 

 is the observed value for the statistic α regarding module q, and µα and σα are the 

mean and standard deviation of the empirical distribution of permuted values for the size bin 

corresponding to the number of genes in module q.

We define the following composite statistics:

a. permuted Z density statistics:
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b. permuted Z connectivity statistics:

Lower (negative) values of z-scores indicate larger relative non-preservation of the reference 

module in the test network. Empirical z-scores are then converted into empirical P values 

using the normal cumulative distribution function.

As a replication of significant findings for non-preserved modules we used the microarray 

gene expression data from the HBCC cohort, which included 131 SCZ and 176 control 

samples. We used similar approaches as the ones described above to: (1) generate the null 

distribution of network preservation statistics in the HBCC cohort and (2) test the non-

preservation of CMC significant modules in the HBCC SCZ cases vs. controls.

For the differential expression analysis, we curated two classes of gene sets to characterize 

the modules:

1. Hypothesis-driven: This collection consisted of the hypothesis-driven sets 

dpreviously described with additional gene sets derived from previous cell 

type or region-specific studies or co-expression analyses.

• Cell type- or compartment-specific annotations:

– a) Cell type markers based on in situ 
hybridization in mouse brain tissue 

(abbreviated as ABA for Allen Brain 

Atlas123.

– b) Definite (10+ fold) enrichment for seven 

brain cell types, estimated based on FPKM 

for the given cell type vs. the average 

FPKM in the remaining types (abbreviated 

as Zhang124. For each cell type, only genes 

with FPKM > 1 were considered.

– c) Markers for different organelles and 

cellular compartments (markers of 

organelles, or MO)125–128

– d) Mitochondrial genes from the somatic 

vs. synaptic fraction of mouse cells 

(MitochondrialType) 129.

• Brain region-specific annotations: We used three 

categories of markers130:
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– a) top 200 global marker genes for 22 large 

brain structures [globalMarker(top200)]. 

Genes were ranked based on fold change 

enrichment (expression in region vs. 

expression in rest of brain).

– b) top 200 local marker genes for 90 large 

brain structures [localMarker(top200)]. 

Same as a, except that fold change is 

defined as expression in region vs. 

expression in larger region (For example, 

enrichment of CA1 region relative to other 

subcompartments of the hippocampus).

– c) same as b, but only local marker genes 

with fold change > 2 were included 

[localMarker(FC>2)]. Regions with < 10 

marker genes were omitted.

• Previous WGCNA studies in brain tissue:

– a) modules from the cortex (CTX) network 

from human brain tissue49.

– b) modules showing region-specificity in 

both human and chimp (HumanChimp)131.

– c) modules from human (HumanMeta) and 

mouse (MouseMeta) brain tissue132.

– d) modules from neuronal-cell-type-

selection experiment in mouse128,129.

• Previous modules associated with schizophrenia:

– a) modules (modules 1, 2, 7, 16, and 21) 

that are significantly enriched in genes 

differentially expressed in DLPFC between 

subjects with schizophrenia (N = 47) 

versus control (n = 54) subjects 

(Torkamani48).

– b) modules (M1A and M3A) that are 

significantly affected in the parietal cortex 

of subjects with schizophrenia (n = 50) 

versus control (n = 50) subjects (Chen133).

– c) a module (tan module) that is affected in 

peripheral blood of cases with 

schizophrenia (deJong134).
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2. Hypothesis-free: The same hypothesis-free gene sets described above were 

used here.

The genes in each module were tested for overlap with each hypothesis-driven and 

hypothesis-free gene set using Fisher’s exact test. For each class of gene sets (hypothesis-

driven and hypothesis-free), Bonferroni correction was applied across all modules and all 

gene sets tested.

Cross-validation of module reproducibility

Using the same 20 sets of 80%-20% splits used to evaluate differential expression (see 

“Cross-validation of differential expression”), we estimated the module reproducibility. We 

generated modules in the controls and SCZ using the 80% split and then examined the 

reproducibility of connectivity in the independent 20% replication cohort. The connectivity 

is estimated based on adjacency matrix using the same power (beta = 6) across all 

comparisons. The median Pearson correlation of connectivity values among the “discovery” 

and “replication” cohorts was 0.77 (mean = 0.76, sd = 0.06, 25th percentile = 0.73, 75th 

percentile = 0.78) and 0.80 (mean = 0.78, sd = 0.07, 25th percentile = 0.70, 75th percentile = 

0.84) for cases with SCZ and controls, respectively. This strongly supports the robustness of 

the gene-gene correlation structure, since this replication process occurs in a completely 

independent sub-cohort of 20% of the brain samples.

Effect of genetic risk variants on M2c hub genes

We examined whether genes implicated in genetic studies are more likely to affect hub 

nodes (genes with higher number of connections) in the M2c module. For each gene in the 

M2c module, we estimated the intramodular connectivity (connectivity of nodes to other 

nodes within the M2c module). We then examined whether genes that have association for 

common GWAS variants (PGC SCZ2 GWAS loci), CNVs or de novo mutations have higher 

intramodular connectivity compared to genes that are not genetically associated with SCZ. 

We found a significant effect for PGC SCZ2 GWAS loci (T test: t = 2.6; P = 0.013) and de 
novo mutations (T test: t = 5.1; P = 2.9 × 10−6) but no CNVs (T test: t = 0.88; P = 0.4), 

where genes associated with SCZ have higher intramodular connectivity. Nodes from the top 

50 hub genes that have been associated with SCZ are illustrated in Figure 6C.

Effect of medication exposure on genetic risk variants on M2c hub genes

In theory drug treatment could have a strong effect on the abundance of specific transcripts 

in cases with SCZ and thereby induce a subset of genes to cluster together and have different 

co-expression patterns compared to controls. To explore this hypothesis, we performed 

enrichment analysis of drug gene expression signatures (see “Drug effects on differential 

expression” section), and identified an overlap for 3 out of 18 drug signature datasets with 

M2c. While the overlap was significant after correcting for multiple testing, this is not 

surprising because M2c contains multiple receptor subunits and genes underlying synaptic 

neurotransmission, including direct targets of different neuroleptics. We then explored the 

hypothesis that genes affected by medications (or belonging to a drug signature) are 

differentially expressed between cases with SCZ and controls, which subsequently leads to 

loss of density in SCZ modules. To explore this hypothesis, we focused on genes that cluster 
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within the M2c module and examined whether the distribution of the differentially expressed 

genes significance (estimated as −log10 P value) is different for genes with (“Drug”) and 

without (“NonDrug”) a drug signature. We did not find a significant difference in the 

distribution of −log10 P values for genes that have or do not have drug signature (drug versus 

non-drug: Kolmogorov–Smirnov test: P = 0.54). Therefore, our results do not support the 

hypothesis that drugs drive the loss of density through alteration in the transcript abundance 

of target genes. We also explored whether “Drug” versus “NonDrug” signatures within the 

M2c module show a different effect for loss or gain of connectivity in controls compared to 

SCZ. We did not observe any significant effect (Kolmogorov–Smirnov test: P = 0.054). This 

analysis provides additional evidence that the density loss in SCZ is not driven by 

medication effects.

Effect of covariates on networks

We examine the correlation of clinical/technical covariates, including: Institution, Gender, 

Age of death, PMI, RIN, Library batch and Ancestry with the Module Eigengene (ME) 

values from the control and SCZ networks. There was no significant association at FDR < 

20% (range of Pearson’s r: −0.16 to 0.21). At nominal P value < 0.05 we found an 

association of M0c, M16c, M6c, M26c, M28c, M32c, M7s and M12s MEs with Institution, 

RIN or Library batch. We found no association of the blue (M2c) module with any covariate 

at P < 0.1, indicating that our differential co-regulated results are not biased from clinical or 

technical covariates.

A supplementary reporting checklist is available.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Enrichment of cis-eQTLs in regulatory and other genomic elements
(a) Enrichments of cis-eQTLs compared to all eQTLs in sequence-defined elements 

according to the Ensembl annotations implemented in the ANNOVAR (version 2014-07-14) 

software51. The bars illustrate the proportion of SNPs that belong to each category for 

significant cis-eQTLs (at FDR 5%) compared to all cis-SNPs (within 1 Mb from expressed 

genes). These categories are illustrated: exonic (fold change (FC) = 2.14); intronic (FC = 

1.3); upstream (1 kb region upstream of transcription start site (TSS); FC = 1.48); 

downstream (1 kb region downstream of transcription end site (TES); FC = 1.52); UTR3 (3’ 

untranslated region; FC = 2.10); UTR5 (5’ untranslated region; FC = 2.35); splicing (within 

2 bp of a splicing junction; FC = 2.51); ncRNA (transcripts without coding annotation in the 

gene definition, within either the exonic or intronic region; FC = 1.62 or 0.91, respectively); 

intergenic (FC = 0.69). (^) and (*) indicate significant (Iadjusted < 0.05) depletion or 

enrichment of cis-eQTLs compared to all cis-SNPs, respectively. (b) Distribution of cis-

eQTL location relative to the gene. (c) Enrichment of “max-cis-eQTLs” (most associated 
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eSNP per gene) within enhancer sequences across 98 human tissues and cell lines. Bars 

represent the Z score for the overlap of max-cis-eQTLs compared to 1,000 sets of random 

SNPs matched with respect to allele frequency, gene density, distance from the TSS, and 

linkage disequilibrium density. Brain (red) shows significantly higher enrichment for eQTLs 

compared to non-brain tissues and cell lines (P = 4.5 × 10−6) and the strongest enrichment is 

observed in DLPFC enhancers.
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Figure 2. Overlap of GWAS for schizophrenia with eQTL in the DLPFC
(a) eQTL association profiles across two representative SCZ GWAS loci on chromosomes 

15 and 4, respectively. SNP-level associations are plotted for the SCZ GWAS (gray), and 

cis-eQTL association profiles for genes with Sherlock Pcorrected < 0.5 (or RTC > 0.9) are 

plotted in colors, with colors and Sherlock P values noted on top of the graphic (P = 4.07 × 

10−7 and P = 4.07 × 10−7 for FURIN and CLCN3, respectively). For additional genes in the 

region with significant eQTL, the single eSNP with minimal eQTL P value (“max-eQTL”) is 

marked by a black point (corresponding genes names are located above the chromosome 

marker bar). Locations of regional protein-coding genes and non-coding RNAs without 
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significant eQTL are annotated in gray. Vertical dotted lines mark recombination hotspot 

boundaries; horizontal dotted lines denote the significance thresholds for eQTL and GWAS, 

and the ceiling imposed for visualization purposes. Association betas (effect sizes) are 

plotted for SNP alleles associated with increased SCZ risk, in colors corresponding to genes 

as above. The red points illustrate the betas for the SCZ risk alleles on expression of the 

corresponding gene (FURIN and CLCN3, respectively), where values above the 0 line mark 

up-regulation (CLCN3) and below the line down-regulation (FURIN). (b) The association of 

expression of FURIN (N = 467, β = −0.071, P = 4.5 × 10−13) and CLCN3 (N = 467, β = 

0.037, P = 1.6 × 10−9) with SCZ risk allele at the GWAS index SNP in the respective loci 

from (a), with shape corresponding to diagnosis.
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Figure 3. Neuroanatomical phenotypes upon suppression or overexpression of genes at SCZ risk 
loci
(a) Head size phenotype after suppression of furin_a (3ng MO) or overexpression of 

TSNARE1, CNTN4, SNAP91 or CLCN3 (200ng). Representative head size images per 

treatment condition are shown, quantified area is depicted by the dashed white lines in the 

control image. (b) Quantification of head size phenotype in each treatment condition as 

compared to control embryos for furin MO (Ncontrol = 76, Nfurin MO = 66, P = 5.32 × 10−20), 

TSNARE1 (Ncontrol = 78, NTSNARE1 = 64, P = 4.69 × 10−5), CNTN4 (Ncontrol = 66, NCNTN4 

= 75, P = 0.018), SNAP91 (Ncontrol = 114, NSNAP91 = 106, p = 0.57), CLCN3 (Ncontrol = 

Fromer et al. Page 56

Nat Neurosci. Author manuscript; available in PMC 2017 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



114, NCLCN3 = 100, P = 0.40). (c) Representative images of PH3 staining assessing 

proliferation phenotypes. Dashed blue lines depict the area included in the quantification of 

cell counts. (d) Quantification of PH3-labeled cells with respect to each treatment condition 

for furin MO (Ncontrol = 19, Nfurin MO = 20, P = 7.56 × 10−17), TSNARE1 (Ncontrol = 40, 

NTSNARE1 = 40, P = 0.018), CNTN4 (Ncontrol = 39, NCNTN4 = 38, P = 0.0032), SNAP91 
(Ncontrol = 40, NSNAP91 = 40, P = 0.25), CLCN3 (Ncontrol = 40, NCLCN3 = 40, P = 0.07). (e) 

Representative images of TUNEL staining per condition marking cells undergoing 

apoptosis. Area quantified is depicted within the dashed blue lines. (f) Cell counts of 

apoptotic cells in each treatment condition as compared to controls for furin MO (Ncontrol = 

33, Nfurin MO = 39, P = 1.10 × 10−10), TSNARE1 (Ncontrol = 33, NTSNARE1 = 38, P = 9.44 × 

10−6), CNTN4 (Ncontrol = 33, NCNTN4 = 35, P = 1.98 × 10−8). Error bars are s.e., * P < 0.05, 

** P < 0.005, *** P < 0.0005; MO - morpholino. Scale bar = 100 µm. In all cases, t- tests 

were used to generate P values.
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Figure 4. Decreasing FURIN expression in human NPCs perturbs neural migration
(a) FURIN expression reduction achieved by lentiviral (LV)-FURIN shRNA-PURO, relative 

to LV-non-hairpin-PURO control (C1: N = 6; P = 4.5 × 10−4; C2: N = 6, P = 6.2 × 10−9; C3: 

N = 5, P = 4.2 × 10−6). (b) Representative images of the hiPSC NPC neurosphere outgrowth 

assay after 48 hours of migration, following transduction with LV-FURIN shRNA-PURO 

and LV-non-hairpin-PURO control. The average distance between the radius of the inner 

neurosphere (dense aggregate of nuclei) and outer circumference of cells (white dashed line) 

was calculated. DAPI-stained nuclei (blue), scale bar 100 µm. (c) Across hiPSC NPCs 
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generated from three controls (C1: Nvehicle = 42, NshRNA-FURIN = 44, 1.16-fold decrease, P 
< 0.0017; C2: Nvehicle = 49, NshRNA-FURIN = 53, 1.23-fold decrease, P < 3 × 10−6; C3: 

Nvehicle = 56, NshRNA-FURIN = 63, 1.22-fold decrease, P < 2 × 10−6), average radial 

neurosphere migration following transduction with LV-FURIN shRNA-PURO (red bars) or 

LV-non-hairpin-PURO (gray bars). Error bars are s.e., *P < 0.05, **P < 0.01, ***P < 0.001. 

In all cases, a t-test was used to generate P values.
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Figure 5. Differential expression between schizophrenia cases and controls in the DLPFC
(a) For the N = 693 genes differentially expressed at FDR ≤ 5%, bivariate clustering of 

individuals (columns) and genes (rows) depicts the case-control differences, as marked by 

the red-blue horizontal colorbar at top (‘Diagnosis’). An individual’s expression (converted 

to a z-score per gene) is red for above-average values, and green for below-average values; 

thus, the top cluster of the plot consists of genes up-regulated in cases versus controls (green 

in top left; red in top middle), and the bottom cluster of down-regulated genes (red in bottom 

left; green in bottom middle). In addition to the horizontal colorbar marking case-control 
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status for each sample, additional colorbars denote brain bank (‘Institution’), gender, 

reported ancestry (‘Ethnicity’), age of death, and RNA quality (‘RIN’), where the latter two 

use a continuous-values color scale (with low, medium, and high as colored), relative to the 

range denoted on the figure. (b) Distribution of fold-change of differential expression for 

693 differentially expressed genes. Case:control fold-changes for up-regulated genes are 

plotted in red (N = 332, positive values), and control:case fold-changes for down-regulated 

genes in green (N = 361, negative values). (c) Binned density scatter plot comparing the t-

statistics for case versus control differential expression between the independent HBCC 

replication cohort assayed on microarrays and the CommonMind RNA-seq data; correlation 

between the statistics is 0.28 (P < 10−16). (d) For the 10 significantly differentially expressed 

genes with the largest fold changes (5 up- and 5 down-regulated), the 25 cases and 25 

controls of normalized and adjusted gene expression in cases (red) versus controls (blue).
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Figure 6. Co-expression network analysis in control DLPFC samples
(a) Control-derived modules were ranked by enrichment [estimated based on Fisher’s exact 

test (FET)] with differentially expressed genes; number of genes in each module is given in 

parentheses. Among the 4 modules with strongest overlap (marked in blue), only the M2c 

module genes are strongly enriched for multiples lines of prior genetic evidence: differential 

expression (FET: OR = 2.3, Bonferroni adjusted P = 1.9 × 10−12), SCZ GWAS loci (tested 

by INRICH: FE [fold-enrichment] = 1.36, P = 0.04), rare CNV (tested by INRICH: FE = 

1.52, P = 0.051), and rare nonsynonymous variants (tested by PLINK/Seq and SMP: FE = 

1.18, P = 2 × 10−4). The enrichment of each module with SCZ genetics, cell type-specific 

markers, neuronal proteome sets (proteins that are localized to the postsynaptic density of 

neurons), and fragile X mental retardation protein (FMRP) targets is depicted at right. As a 

control, note the lack of enrichment of M2c with common variants for Alzheimer’s disease 

(AD) and rheumatoid arthritis (RA). (b) Topological overlap matrix of the differentially 

connected M2c module in controls (upper right triangle) and SCZ cases (lower left triangle) 

in the CMC (left) and HBCC (right) cohorts. (c) Circle plot showing connection strengths 

for the top 50 hub genes of the M2c module, where node size corresponds to intramodular 

connectivity and nodes are ordered clockwise based on connectivity. Pie chart: SCZ 

susceptibility genes based on GWAS PGC2-SCZ (green), CNV (orange) or de novo (cyan) 

studies; Genes that belong in the NMDA (black) or mGluR5 (yellow) signalling pathway; 

Genes that are differentially expressed in schizophrenia vs. controls at FDR ≤ 5% (red).
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Figure 7. Power to detect differential expression
Analysis of power to detect differential expression of a gene for case versus control subjects, 

where differential expression is expressed as expected log-fold change, the sample size is the 

total number of cases and controls to achieve significance (50:50 cases:controls), and the 

significance level for 80% power is 5 × 10−6. (a) For each gene in the differential expression 

analysis, we found the cis-eQTL with the smallest P value (see text for additional 

restrictions). Expected differential expression to achieve 80% power was computed for 

10,094 gene-by- cis-eQTL associated pairs. (b) Increased resolution of (a) by limiting the 

range of differential expression. (c) Standardized log-fold change (80% power) obtained by 

dividing estimated log-fold change by its estimated standard deviation.
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