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Introduction

The vascular endothelium constitutes the innermost lining of 
the body’s circulatory system and the largest tissue in the body. 
In capillaries, this cell is the primary barrier between elements 
in the blood and the parenchymal cells that rely on perfusion 
to deliver nutrients and remove wastes. Rather than serving as 
a static structure, microvascular endothelium performs several 
essential functions: maintenance of a semipermeable barrier 
to water and biomolecules, regulation of leukocyte diapedesis 
through the expression of apical adhesion molecules, modula-
tion of vascular tone, and fine-tuning of hemostasis. The mani-
festations of tissue inflammation readily apparent to the novice 
physical examiner—rubor, dolor, calor, and tumor—attest to the 
centrality and prominence of microvascular changes in inflam-
mation. Yet, in the field of sepsis, the molecular pathogenesis of 
microvascular disruption has been relatively under-studied, with 

Correspondence to: Samir M Parikh; Email: sparikh1@bidmc.harvard.edu
Submitted: 04/11/13; Revised: 05/01/13; Accepted: 05/02/13
http://dx.doi.org/10.4161/viru.24906

Dynamic changes in microvascular endothelial structure and 
function are pivotal in the acute inflammatory response, the 
body’s rapid, coordinated effort to localize, sequester, and 
eliminate microbial invaders at their portal of entry. To achieve 
this, the endothelium becomes leaky and inflamed, providing 
innate immune cells and humoral effector molecules access to 
the site of infection. During sepsis this locally adaptive response 
becomes manifest throughout the body, leading to dangerous 
host consequences. increased leakiness in the pulmonary 
circulation contributes to acute respiratory distress syndrome 
(ARDS), a complication of sepsis associated with 40% mortality. 
understanding the molecular governance of vascular leak 
and inflammation has major diagnostic, prognostic, and 
potentially therapeutic implications for this common and 
pernicious disease. This review summarizes results from cell-
based experiments, animal models, and observational human 
studies; together, these studies suggest that an endothelial 
receptor called Tie2 and its ligands, called angiopoietins, 
form a signaling axis key to the vascular dyshomeostasis that 
underlies sepsis.
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the focus instead being the initial interactions of innate immune 
effectors vs. invasive microbes.

Why the Cytokine Theory and the “Vasculo-Centric 
View” of Sepsis are not Mutually Exclusive

In the 1980s, investigations led by Beutler, Cerami, Dinarello, 
Tracey, and others identified the first host molecules responsi-
ble for the fever and shock response to bacteria: tumor necrosis 
factor-α (TNFα), interleukin-1 (IL-1), and interferon-gamma 
(IFNγ).1-3 In one landmark paper, Tracey and colleagues used 
three baboons intravenously injected with E. coli to demonstrate 
that neutralization of TNFα was sufficient to prevent death, 
without the administration of antibiotics!4 This startling finding 
spawned a revolution in our understanding of sepsis, focusing the 
research community’s attention on an expanding list of cytokine 
mediators of the septic phenotype that were potentially targetable 
with recombinant drugs.

Against this backdrop of excitement, the first negative clinical 
trials of TNFα neutralization in sepsis were a grave disappoint-
ment.5 While follow-up pre-clinical studies suggested that better 
animal models of sepsis would have revealed the ineffectiveness 
of TNFα neutralization,6 only 4% of subjects in the highest 
drug arm of one of these trials had detectable circulating levels 
of TNFα at the time of enrollment. More recently, a large Phase 
3 trial of a drug that inhibits the Toll-like receptor 4 (TLR4) 
failed to show benefit among patients with sepsis.7 TLR4 is the 
body’s primary sensor of gram-negative endotoxin.8 Its discovery 
was recognized by the 2011 Nobel Prize in Medicine because this 
research is considered foundational in immunology.

Do these examples imply that TNFα (or any other cytokine 
or bacterial product) does not contribute to sepsis pathogenesis in 
humans? Not at all. Rather, they illustrate the unique heterogene-
ity of sepsis as it comes through hospitals’ doors. Sufferers present 
to medical attention at different times in their illness with differ-
ent pathogens and portals of entry, bearing genetic differences in 
their acute inflammatory response that are further compounded 
by age and comorbidities. By the time patients present for medi-
cal care, levels of early mediators like endotoxin or TNFα may 
well have waned.

The remarkable heterogeneity of early sepsis narrows down to 
a handful of near-stereotypical features as the patient approaches 
death: the development of shock and the progressive dysfunction 



518 Virulence Volume 4 issue 6

cDNA library.10 Their PCR-based search for Tie-2 was in turn, 
based on a 1992 report from Alitalo’s group describing Tie-1.11 
Subsequent gene targeting experiments in mice revealed that 
Tie-2 expression was highly restricted to the endothelium and 
that its expression was essential to blood vessel maturation dur-
ing embryonic development.12 The homology of the extracellular 
domain to other receptor tyrosine kinases suggested the existence 
of peptide ligands. Through an innovative adaptation of expres-
sion cloning, scientists led by George Yancopoulos identified 
Angpt-1 and, soon thereafter, Angpt-2.13,14

Angpt-1 is largely made and secreted by peri-endothelial cells 
and platelets whereas Angpt-2 is synthesized in endothelium 
where pre-formed protein is stored for rapid release in granules 
called Weibel–Palade bodies.15 To a lesser extent, Angpt-2 is also 
made by macrophages. Both bind Tie-2 with nanomolar affinity, 
and excess Angpt-2 competes Angpt-1 off the receptor, suggesting 
that the latter is a competitive antagonist of the former on endo-
thelial cells.13 Crystallographic results show that the C-terminal 
fibrinogen domain common to Angpt-1 and Angpt-2 binds to an 
“arrowhead” structure within the ectodomain of Tie-2 composed 
of two immunoglobulin folds and three epidermal growth fac-
tor domains.16,17 While the difference in downstream signaling 
achieved by these ligands is not completely explained, biochemical 
studies suggest that an N-terminal region unique to Angpt-1 favors 
its multimerization into large aggregates, leading to more intense 
Tie-2 clustering and greater cross-phosphorylation.18 Consistent 
with this agonist-antagonist framework, the Angpt-1 knockout 
mouse and the Angpt-2 transgenic mouse phenocopy the vascu-
lar defects of the Tie-2 knockout mouse. Results described in the 
next section strongly suggest that Angpt-1 and Angpt-2 also have 
opposing functions in the setting of inflammation (Fig. 1).

Other molecules in the Angpt–Tie pathway include a para-
log of Angpt-1 called Angpt-3/4 that also activates Tie-219 and a 

of key organs. Working backward from this final pathway reveals 
a commonality—namely, that endothelial functions have become 
deranged. In the lungs, microvessel leak contributes to pulmo-
nary edema. In the kidneys, leukocyte adhesion to glomerular 
and peritubular capillaries impairs perfusion and filtration. In 
the macrocirculation, inability to regulate vascular tone neces-
sitates vasopressor drugs. Thus, based on empiricism alone, one 
could argue that patients with sepsis die not of the early induc-
tion of inflammatory cytokines, but rather, the late sequelae that 
impact the vasculature.

While such a distinction may be semantic, there are several 
practical implications. Focusing investigative effort on the sep-
tic vasculature may lead to the identification of novel molecular 
contributors to the disease. Measuring such molecules in patients 
may help segregate severe sepsis from milder forms or even iden-
tify individuals about to progress in disease severity. Intervening 
on such vascular molecular pathways may be more feasible than 
cytokine blockade simply because patients present hours to days 
after infection develops, not the timeframe of minutes to hours 
used in most pre-clinical models. By this “late” time point, levels 
of acute phase reactants such as TNFα have likely spiked and 
abated, setting off a biological chain reaction that culminates in 
clinical disease, but no longer present for neutralization in the 
bloodstream. Below, the author will summarize studies that 
implicate angiopoietin-1 and -2 (Angpt-1, -2) and their receptor, 
Tie-2, as an important candidate vascular pathway in sepsis.

Introduction to ANGPTs and TIEs

In 1992, Dumont and colleagues cloned a new transmembrane 
tyrosine kinase from endothelial DNA called tek.9 The gene was 
later re-named Tie-2 after Sato et al. independently cloned both 
Tie-2 and the related receptor Tie-1 from a brain microvessel 

Figure 1. The angiopoietin–Tie-2 axis in sepsis and acute respiratory distress syndrome. in quiescence, clusters of angiopoietin-1 (Angpt-1) aggregate 
and activate the transmembrane receptor tyrosine kinase, Tie-2, which is highly specifically expressed on endothelial cells. Tie-2 signals into the cell to 
favor phenotypes such as fortification of barrier function. in sepsis, angiopoietin-2 (Angpt-2) is upregulated and is believed to antagonize Angpt-1. The 
tonic homeostatic signaling through Tie-2 (pTie-2, phosphorylated Tie-2) is attenuated, contributing to the vascular leak and inflammation observed 
in sepsis and related conditions.
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with sepsis-associated ARDS and a mechanism whereby Tie-2 
inhibition forced the contraction of endothelial cells through 
remodeling of the cytoskeleton. Shortly thereafter, a group led by 
Augustin used knockout mice and siRNA to show that Angpt-2 
sensitizes the endothelium to inflammation by dose-dependently 
inducing vascular cell adhesion molecule-1 (VCAM-1),40 and an 
independent study from teams led by Elias and Matthay used 
knockout mice, siRNA, and bronchoalveolar lavage samples from 
people with ARDS to implicate Angpt-2 in inflammatory acute 
lung injury.41 Augustin’s group also showed that Angpt-2 synthe-
sized by endothelial cells is stored in Weibel–Palade bodies and 
rapidly exocytosed upon stimulation with different inflammatory 
mediators such as thrombin.15 Since sepsis in humans has been 
associated with a sustained elevation in Angpt-2, there is likely 
ongoing transcription and translation to generate Angpt-2 protein 
de novo, but the mechanisms are not well-understood. Finally, 
two recent reports suggest that Angpt-2 may actually be beneficial 
in acute infection-related inflammation,42,43 perhaps through an 
agonistic effect on Tie-2,44,45 but additional data may be needed to 
understand why these results refute the larger literature.46

Relatively few experimental studies in sepsis have focused 
directly on Tie-2, where the prediction would be that reduced 
Tie-2 signaling is associated with adverse outcomes. Stewart’s 
group applied intratracheal endotoxin to show that Tie-2 hetero-
zygous mice develop worse lung injury and earlier mortality than 
wild-type littermates.47 They also reported that levels of total and 
phosphorylated Tie-2 were depressed in whole lung homogenates 
of endotoxin-challenged mice. Using systemic endotoxin to model 
sepsis, David et al. also observed a decrease in total Tie-2 expression 

paralog of Tie-2 called Tie-1 that has no agreed-upon ligand and 
is thought to inhibit Tie-2 signaling by heterodimerizing with 
it.11,20-22 A naturally occurring extracellular cleavage product of 
Tie-2 may exert dominant-negative effects,23 and a transmem-
brane tyrosine phosphatase called VE-PTP also attenuates Tie-2 
signaling by removing phosphate from key tyrosines in Tie-2’s 
intracellular domain.24,25 Specific integrins appear to be alterna-
tive receptors for Angpts.26,27 Finally, a growing number of Angpt-
like proteins have been cloned, but they do not appear to act on 
endothelial cells per se or signal through Tie-2. To summarize the 
most rigorously tested hypotheses in a straightforward fashion, 
the rest of this review will focus on Angpt-1, Angpt-2, and Tie-2.

Tie-2 Signaling and Functional Consequences  
in Experimental Inflammation

In 1997, Wong, et al. showed that Tie-2 was not only expressed 
in the mature, non-angiogenic adult vasculature, but was also 
substantially phosphorylated.28 This important description sug-
gested that Tie-2 signaling aided one or more maintenance func-
tions in the mature endothelium. Based on the fact that Tie-2 
expression was necessary for nascent blood vessels to develop into 
mature vessels during embryogenesis, collaborative studies led by 
Yancopoulos and McDonald hypothesized that Tie-2 signaling 
may similarly “stabilize” non-angiogenic blood vessels. Using 
Angpt-1 transgenic mice and adenoviral Angpt-1 gene transfer, 
they showed that excess Angpt-1 prevented vascular leak induced 
by disparate stimuli, including vascular endothelial growth factor 
(VEGF), mustard oil, and serotonin.29,30

The list of permeability mediators against which Angpt-1 
defends barrier function was soon extended to gram-negative 
endotoxin. Witzenbichler et al. demonstrated that excess Angpt-1 
confers a survival benefit in murine endotoxemia associated with 
less vascular leakage and less cellular inflammation.31 Mammoto 
et al. showed that Angpt-1 prevents endotoxin-induced leak and 
inflammation by signaling through phosphatidylinositol-3-kinase 
(PI3-K) and Akt to regulators of the endothelial actin cytoskele-
ton called Rac1 and RhoA.32 This work provided the mechanistic 
complement to a live microscopy study of rat tracheal microves-
sels performed by Baffert et al. that strongly implicated junc-
tional and cytoskeletal remodeling in Angpt-1-mediated barrier 
defense.33 Finally, Brindle’s group showed that Angpt-1 applica-
tion to endothelial cells induced an inhibitor of the canonical 
inflammatory transcription factor NFκB.34 Together, these results 
described a novel phenomenon—vascular barrier defense against 
diverse ligands mediated by Angpt-1—and a molecular mecha-
nism to account for this remarkable effect (Fig. 2). More recent 
studies from the laboratories of Vestweber, Deutsch, Koh, Olsen, 
Mochizuki and Alitalo present compelling evidence for important 
phenotypic differences arising from Tie-2’s localization within the 
cell membrane and its downstream signaling partners.35-38

During this period, a converse set of findings for Angpt-2 was 
emerging from several laboratories. In 2006, Parikh et al. reported 
that circulating Angpt-2 was elevated in humans with severe sep-
sis and that acute disruption of Tie-2 weakened endothelial bar-
rier function.39 Their findings suggested a positive association 

Figure 2. Angiopoietin-1 ameliorates endothelial barrier dysfunc-
tion induced by diverse ligands. The ability of excess angiopoietin-1 
(Angpt-1) to prevent vascular leakage induced by diverse mediators 
of permeability, all of which act through unique cell surface recep-
tors or have incompletely known mechanisms of action, suggests that 
Angpt-1-induced Tie-2 activation impacts a final common pathway for 
permeability, such as the remodeling of intercellular junctions and the 
actin cytoskeleton. pAF, platelet activating factor; TNFα, tumor necrosis 
factor α; LpS, lipopolysaccharides.
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in serum, where ex vivo platelet aggregation may release Angpt-1 
and lead to artifactual elevation.57

Circulating Angpt-2 concentrations have a much broader 
dynamic range than Angpt-1. In 2006, Parikh et al. reported 10- 
to 20-fold elevation in circulating Angpt-2 among individuals with 
severe sepsis at the time of ICU admission compared with those 
with uncomplicated sepsis and hospitalized controls. The authors 
noted that subjects with severe sepsis developed higher peak 
Angpt-2 concentrations than those with uncomplicated sepsis and 
further observed that individuals with impaired lung gas exchange 
had higher peak Angpt-2 values than those with normal gas 
exchange.39 Combined with animal and cellular data, the authors 
speculated that Angpt-2 may be both a marker and mediator of 
vascular leakage during sepsis. Studies led by Bhandari and van 
der Heijden independently corroborated these concepts by show-
ing accumulation of Angpt-2 in the alveolar fluid of patients with 
acute lung injury (ALI) and a positive correlation between Angpt-2 
and quantitative measures of fluid extravasation in the lungs.41,58

The association between high Angpt-2 and ALI/ARDS has 
been borne out in surgical populations,59 non-infection-asso-
ciated ALI,60 and in primary graft dysfunction following lung 
transplantation.61 The link between Angpt-2 and pulmonary 
vascular leak may be coincidental or a product of the ease with 
which hyperpermeability in this vascular bed can be detected. It 
could also relate to the fact that the lung contains such an exten-
sive capillary network that endothelial cells—i.e., cells expressing 
the Tie-2 receptor as well the primary source of Angpt-2—con-
stitute nearly 10% of the total cell population.

Further evidence linking Angpt-2 to acute vascular leakage 
throughout the body has come from studies of patients receiving 
the immune stimulator IL-2 for cancer therapy—whose dose-
limiting toxicity is shock from vascular hyperpermeability—and 
from careful correlations of fluid balance in the ICU to serial 
Angpt-2 values.60,62,63 Finally, induction of circulating Angpt-2 
has also been reported in other conditions associated with acute 
vascular leakage, including severe malaria,64,65 systemic anthrax 
(in baboons, not yet studied in humans),66 acute pancreatitis,67 
polytrauma,68,69 and bacterial toxic shock syndrome.70

Possibilities for Applying ANGPTs  
to Improve Patient Care

Is Angiopoietin-2 or Angpt-2/Angpt-1 a biomarker of sepsis or 
ARDS? Measurement of these proteins could be used for diag-
nosis and/or prognosis in afflicted or at-risk individuals for 
critical illness. This kind of information could be particularly 
useful in resource-limited settings, where a quantitative, operator- 
independent tool could be deployed for triaging incoming patients 
to more intensive care and monitoring, such as battlefields. They 
could help risk-stratify patients in future ICU-based clinical tri-
als to segregate patients into pathophysiological groups, even for 
interventions that do not per se intersect with the Angpt–Tie-2 
axis. Criteria identified by Sir Austin Bradford Hill, an epidemi-
ologist famous for linking cigarette smoke to lung cancer, may be 
instructive for considering the Angpts in a clinical application. 
These criteria are bolded below.71

and a fall in the phosphorylated fraction of the receptor, arguing 
for a “two-hit” model of impaired Tie-2 signaling that results from 
a combination of receptor antagonism and reduced expression.48

David and colleagues also applied a peptide mimetic of 
Angpt-1 (identified by phage display experiments and bearing 
no sequence homology to Angpt-1) called vasculotide49 to endo-
toxemic mice and showed an improvement in Tie-2 expression, 
Tie-2 phosphorylation, endothelial barrier function, vascular 
permeability, and survival in endotoxemia. This same group 
also applied cecal-ligation-puncture to mice and observed simi-
lar beneficial effects of vasculotide, even demonstrating a rescue 
effect after sepsis induction.50 While the therapeutic potential of 
vasculotide may one day be realized, the mechanistic implica-
tion of these experiments is clear: by showing that a completely 
non-homologous Tie-2 activator achieves similar molecular and 
physiological effects to Angpt-1 in septic mice, the vasculotide 
data independently corroborate the importance of Tie-2 signal-
ing (vs. non-canonical angiopoietin receptors such as integrins) 
in septic vascular phenotypes.

Proof-of-Concept Studies in Humans

No targeted therapies and few biomarkers inspired by pre-clin-
ical studies have successfully translated to advances in the care 
of patients with sepsis or ARDS. There are many reasons for the 
chasm between mouse studies and human disease.51 As proposed 
above, the focus on translating innate immune effectors may be 
one factor in this divide: (1) the circulating leukocyte pool in 
mice is shifted toward lymphocytes whereas human WBC counts 
are dominated by neutrophils, (2) molecular aspects of acute 
inflammation may be different as well,52 and finally, (3) the tem-
poro-regional complexity and redundancy of this highly evolved 
response may be impossible to summate into a single measure-
ment or target. Early human testing of pre-clinical observations 
may streamline the process of molecular discovery and applica-
tion in critical illness. The availability of commercial ELISAs for 
Angpt-1 and Angpt-2 has facilitated efforts to validate the involve-
ment of this pathway in human sepsis and ARDS (Table 1).

Intriguing genetic and biochemical evidence suggests that 
tonic Tie-2 activation in the mature quiescent vasculature could 
be a ligand-independent phenomenon.53,54 Nonetheless, Angpt-1 is 
poised to mediate this effect since it is made and secreted by platelets 
and by cells adjacent to the endothelium. The N-terminal region 
of Angpt-1 may even promote local adherence to the extracellular 
matrix,29 leading to a high tissue concentration despite low circu-
lating levels. In sepsis, ARDS, and related conditions, circulating 
Angpt-1 appears to be suppressed (Table 1),55,56 consistent with 
the experimental observation that Tie-2 phosphorylation falls. 
The mechanisms driving Angpt-1 suppression in these settings are 
not known. However, the magnitude of Angpt-1’s decline tends to 
be 2- to 3-fold or less, compared with ~5- to 20-fold increase in 
circulating Angpt-2 observed under similar conditions. As shown 
in Table 1, an Angpt-2/Angpt-1 ratio may outperform Angpt-1 
alone in clinical correlations. In addition to non-covalent interac-
tions favoring Angpt-1’s adherence to the matrix, some studies of 
circulating Angpt-1 may also be confounded by its measurement 
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Table 1. Human findings in the Angpt–Tie2 axis related to sepsis and ARDS

Author Setting No. of subjects* Main findings Year

parikh39 icu, sepsis 22 • Angpt-2 ↑ in severe sepsis

• Angpt-2 ↑ with low p/F ratio

2006

Bhandari41 icu, ALi 3–4 • Angpt-2 ↑ in ALi

• Angpt-2 ↑ in ALi alveolar fluid

2006

orfanos78 icu, sepsis 13–18 • Angpt-2 ↑ in severe sepsis

• Angpt-2 correlates with TNF

2007

Giuliano55 pediatric icu, sepsis 61 • Angpt-2 ↑ at icu admission in septic shock > sepsis > SiRS

• Angpt-1 ↓ in septic shock

2007

Gallagher59 icu, ALi 18 • Angpt-2 ↑ in future non-survivors of ALi/ARDS 2008

Ganter68 eD/icu/ oR, trauma 208 • Angpt-2 ↑ within 30 min post-injury and correlates with injury severity, 
shock, and adverse outcomes

2008

van der Heijden58 icu, sepsis 22 • Angpt-2 ↑ in sepsis, ALi

• Angpt-2 correlates with measures of pulmonary vascular leakage

2008

Giamarellos-
Bourboulis69

icu, trauma, sepsis 16 with trauma 
and sepsis

• Angpt-2 ↑ upon advent of sepsis and correlates with adverse outcomes 2008

Kuempers73 icu, sepsis 43 • Angpt-2 ↑ healthy < sepsis < septic shock

• Angpt-2 correlates with clinical severity, outcomes

• No trend for Angpt-1

2008

Siner79 icu, sepsis 24 • Angpt-2 in septic non-survivors > septic survivors

• Angpt-2 correlates with IL-6 and severity of illness

2009

Su75 icu, ARDS 449 • 9 tag SNP survey over ANGPT2 locus yields 1 common variant associated 
with ARDS

2009

Kuempers80 icu, sepsis 21 in icu • in ICU, Angpt-2 ↑ in future non-survivors 2009

LpS trial 22 in LpS • in LPS infusion, Angpt-2 peaks at 4.5 h

van der Heijden63 icu, septic shock 50 • Angpt-2 correlates with fluid balance and pulmonary dysfunction 2009

ebihara81 icu, septic shock 12 • Angpt-2 ↑ in septic shock non-survivors

• Angpt-1 ↓ in septic shock non-survivors

2009

Kuempers82 icu, RRT 117 • Angpt-2 ↑ with more severe AKi

• Angpt-2 predicts mortality when RRT needed

2010

Davis83 icu, wards, sepsis 83 • Angpt-2 ↑ proportional to sepsis severity

• Angpt-2 inversely to NO-dependent vasoreactivity

2010

Mankhambo84 pediatric icu, wards, 
sepsis

293 • Angpt-2 ↑ in future non-survivors

• Angpt-1 ↓ in future non-survivors

• in multivariate analysis, ↓ Ang-1 associated with mortality

2010

Alves85 Febrile neutropenia 10 • Angpt-2 and Angpt-2/Angpt-1 ↑ 48 h after fever onset in those developing 
septic shock

2010

Ricciuto56 icu, sepsis 70 • Angpt-1 ↓ at icu admission associated with mortality

• Angpt-2 correlates with clinical severity and endothelial markers

2011

page70 icu, strep toxic shock 37 • Angpt-2 ↑ in strep toxic shock syndrome

• Angpt-1 ↓ in strep toxic shock syndrome

2011

icu, intensive care unit; eD, emergency department; oR, operating room; AKi, acute kidney injury; RRT, renal replacement therapy; p/F, plasma oxygen/
fraction inspired oxygen; ALi, acute lung injury; ARDS, acute respiratory distress syndrome; SiRS, systemic inflammatory response syndrome; SNp, 
single nucleotide polymorphism. *Number in main experimental group.

The experimental results outlined above highlight the bio-
logical plausibility of Angpt-2-driven features in sepsis and 
ARDS. Independent studies consistently report a strong 

association between higher Angpt-2 concentrations and dis-
ease severity measured variously by a clinical score of organ 
impairment, duration of ICU care, development of shock, or 
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6. Fisher CJ Jr., Agosti JM, Opal SM, Lowry SF, Balk RA, 
Sadoff JC, et al.; The Soluble TNF Receptor Sepsis 
Study Group. Treatment of septic shock with the tumor 
necrosis factor receptor:Fc fusion protein. N Engl J 
Med 1996; 334:1697-702; PMID:8637514; http://
dx.doi.org/10.1056/NEJM199606273342603

7. Opal SM, Laterre PF, Francois B, LaRosa SP, Angus 
DC, Mira JP, et al.; ACCESS Study Group. Effect of 
eritoran, an antagonist of MD2-TLR4, on mortality 
in patients with severe sepsis: the ACCESS randomized 
trial. JAMA 2013; 309:1154-62; PMID:23512062

3. Tracey KJ, Lowry SF, Cerami A. Cachectin/TNF 
mediates the pathophysiological effects of bacterial 
endotoxin/lipopolysaccharide (LPS). Prog Clin Biol 
Res 1988; 272:77-88; PMID:3293084

4. Tracey KJ, Fong Y, Hesse DG, Manogue KR, Lee AT, 
Kuo GC, et al. Anti-cachectin/TNF monoclonal anti-
bodies prevent septic shock during lethal bacteraemia. 
Nature 1987; 330:662-4; PMID:3317066; http://
dx.doi.org/10.1038/330662a0

5. Eskandari MK, Bolgos G, Miller C, Nguyen DT, 
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Summary

The cloning of Tie-2 was reported just over 20 years ago, and its 
major ligands were identified in the late 1990s. Since then, an 
accelerating body of work has demonstrated fascinating biology 
related to this pathway in cancer, vascular patterning, angiogene-
sis, lymphangiogenesis, inflammation, and vascular permeability. 
Drugs based on the Angpt–Tie-2 pathway have already been devel-
oped and are matriculating through clinical trials. The breathtak-
ing pace at which clinical applications have been sought attests to 
the intense interest these proteins have generated in the biomedi-
cal community. In the field of sepsis, the traditional focus on early 
innate immune aspects of the host response is gradually broad-
ening to consider the penultimate vascular changes that directly 
lead to the most damaging clinical manifestations of this disease. 
The Angpt–Tie-2 axis is a particularly strong candidate vascular 
pathway based on the remarkable convergence of experimental 
and human observational data. Tie-2 signaling impairment—via 
Angpt-2 induction and other potential mechanisms—may poten-
tiate the vascular leak and inflammation induced by the early 
cytokine wave of sepsis. The ultimate proof of these concepts will 
require carefully designed clinical trials.
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inpatient mortality. This association is proportional to sepsis 
severity in studies from different investigators.55,72,73 The marked 
induction of circulating Angpt-2 appears to be specific to condi-
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dence, targeted genetic scans suggest that common variants in 
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Meyer74 icu, ALi 822 •  50K SNP array for cardiovascular genes identifies two common variants in 
ANGpT2 locus associated with ALi

2011

calfee60 icu, ALi 931 • Angpt-2 ↑ in future non-survivors of non-infection ALi

• Angpt-2 ↓ with fluid-conservative therapy

2012

David72 eD, suspected infec-
tion

270 • Angpt-2 ↑ detectable within 1st h of hospitalization

• 1st h Angpt-2 associated with disease severity

• 1st h Angpt-2 predicts future shock and mortality

2012

icu, intensive care unit; eD, emergency department; oR, operating room; AKi, acute kidney injury; RRT, renal replacement therapy; p/F, plasma oxygen/
fraction inspired oxygen; ALi, acute lung injury; ARDS, acute respiratory distress syndrome; SiRS, systemic inflammatory response syndrome; SNp, 
single nucleotide polymorphism. *Number in main experimental group.
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