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This study examines how the domains of reward and attention, which are often studied

as independent processes, in fact interact at a systems level. We operationalize divided

attention with a continuous performance task and variables from signal detection theory

(SDT), and reward/aversion with a keypress task measuring approach/avoidance in the

framework of relative preference theory (RPT). Independent experiments with the same

subjects showed a significant association between one SDT and two RPT variables,

visualized as a three-dimensional structure. Holding one of these three variables

constant, further showed a significant relationship between a loss aversion-like metric

from the approach/avoidance task, and the response bias observed during the divided

attention task. These results indicate that a more liberal response bias under signal

detection (i.e., a higher tolerance for noise, resulting in a greater proportion of false alarms)

is associated with higher “loss aversion.” Furthermore, our functional model suggests

a mechanism for processing constraints with divided attention and reward/aversion.

Together, our results argue for a systematic relationship between divided attention and

reward/aversion processing in humans.

Keywords: attention, reward, relative preference, signal detection theory, psychophysics, iterative modeling,

neuroeconomics

INTRODUCTION

The association of attention and value-based choice is an important topic in behavioral
neuroscience that, until relatively recently (e.g., Maunsell, 2004; Taylor et al., 2004; Small et al.,
2005; Engelmann and Pessoa, 2007; Engelmann et al., 2009; Navalpakkam et al., 2009; Lim et al.,
2011), has been often overlooked. Recent behavioral (Engelmann and Pessoa, 2007) and imaging
(Taylor et al., 2004; Small et al., 2005; Engelmann et al., 2009; Lim et al., 2011) studies have begun
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to identify important relationships between reward and subjects’
performance on attention or working memory tasks, and have
also begun to identify brain areas whose activity is modulated
by these relationships. Multiple studies have shown that task
performance tends to improve as monetary incentives are
increased, either in terms of increased detection sensitivity
(Taylor et al., 2004; Engelmann and Pessoa, 2007; Engelmann
et al., 2009) or faster reaction times (Small et al., 2005).
Furthermore, changes in reward schedules affecting the gains
and losses incurred for correct responses and false alarms cause
subjects to systematically adjust their response biases in order to
optimize reward on the task (Taylor et al., 2004).

Imaging studies have generally converged on a core
frontoparietal network (widely implicated in attention; see
Ptak, 2012), whose activation is increased during conditions of
higher motivation (i.e., increased monetary incentives). Equally
intriguing, spatial attention has been found to influence how
subjects assign value to objects in a choice task (Lim et al.,
2011), demonstrating that attention also affects value-based
choice. In this task, ventromedial prefrontal cortex and ventral
striatum were found to encode relative value signals indicating
the difference in perceived value between the attended and
unattended objects (Lim et al., 2011). Other evidence suggests
similar neurotransmitters (e.g., dopamine) are involved with
both attention and reward/aversion processing (Waelti et al.,
2001). Psychopathology studies report alterations in attention
with presumed disorders of reward processing, such as major
depression or addiction, and addictive substances such as
amphetamine can be used to treat attention deficit disorder
(Biederman, 1992; Cook et al., 1995; Gossop et al., 2003).

While there is a body of evidence establishing that attention
and reward are tightly coupled at the behavioral level and
interact through common neural substrates, an open question is
whether there are specific factors that can account for individual
differences in both attention- and reward-related behaviors. We
propose that a common integrated neurocognitive substrate may
exist for the regulation of attention and processing of reward.
Characteristics of subjects’ performance on an attention task
would thus be associated with aspects of their value-based choice
behaviors when measured independently. The aforementioned
studies do not address this question because they consider
attention and reward as interacting components of a single
task, and do not seek to identify the association of independent
mathematical variables for these processes as a function that can
be visualized. We sought to determine if there was a relationship
between these variables that was mechanistic (i.e., observable
as a mathematical structure in which the interplay of any two
variables could be accurately quantified while holding the other
variables constant).

Differentiating the contributions of attention- and reward-
processing to behavior is also needed to better interpret results of
a wide range of choice-based behavioral experiments (Kawagoe
et al., 1998; Platt and Glimcher, 1999; see Maunsell, 2004 for
review). In such paradigms, the experimenter alters the expected
reward associated with making correct decisions pertaining to
a presented stimulus, but in so doing the animal’s attention to
that stimulus is likely also affected; this raises the question of

whether behavioral or neurophysiological effects observed in the
experiment should be attributed to attention, reward, or both
(Maunsell, 2004). Because these variables are so tightly coupled,
it may be that the brain does not process reward and attention
independently (e.g., Navalpakkam et al., 2009). Clearly, careful
experiments that independently dissect reward vs. attention
variables are in order to better assess the potential dependencies
between these two domains.

Our approach in the present study therefore used independent
experiments to isolate aspects of attention and reward behaviors
in a common cohort of subjects. The tasks were completely
independent so that any identified relationships could not be
trivially explained by the use of a single common task, or to the
use of identical experimental stimuli across the two tasks. These
tasks included an approach/avoidance keypress task we have
previously developed to gauge reward/aversion behavior (Kim
et al., 2010), and a continuous performance task that assessed
divided attention. The approach/avoidance task (Kim et al.,
2010) gauged to what extent subjects would actively keypress to
increase or decrease the amount of time they were exposed to
face stimuli belonging to four categories: non-model male, non-
model female, model male, andmodel female faces (Aharon et al.,
2001). This validated task (Aharon et al., 2001; Elman et al., 2005;
Strauss et al., 2005; Levy et al., 2008; Perlis et al., 2008; Gasic
et al., 2009; Yamamoto et al., 2009; Kim et al., 2010; Viswanathan
et al., 2015) quantified the effort subjects were willing to expend
to approach or avoid each face stimulus. We then computed
metrics that quantified the magnitude and predictability of the
participants’ keypress behavior. First, we calculated the mean
numbers of keypresses subjects made to either approach (K+)
or avoid (K−) face stimuli within each category. Second, we
calculated the Shannon entropy (i.e., information; see Shannon
and Weaver, 1949) of the distribution of keypress counts to
approach (H+) or avoid (H−) the face stimuli within each
category. Keypress measures of value such as those reported here
have also been studied in the context of neuroimaging data, and
have been specifically linked to activation of reward circuitry
(Aharon et al., 2001; Strauss et al., 2005; Perlis et al., 2008; Gasic
et al., 2009; Viswanathan et al., 2015) that appears affected by
genotype (Perlis et al., 2008; Gasic et al., 2009). In addition,
pattern variables such as Shannon entropy have been shown to
be important metrics for quantifying neural processing (Viola
et al., 1996; Rieke, 1997; Tiesinga et al., 2002; Reeke and Coop,
2004), and define the “information” that is processed in cognitive
neuroscience (Breiter et al., 2006; Kim et al., 2010).

When graphed, K and H produce a value function resembling
that of prospect theory (Kahneman and Tversky, 1979). In
prospect theory, the objective value of an economic gain or loss
is plotted on the x-axis against the subjective value assigned to
that gain or loss by the subject on the y-axis. A key phenomenon
observed through prospect theory is known as loss aversion
which is trait-like: humans tend to be more averse to economic
losses than they are to gains of the same magnitude, which
results in a value function that is steeper for losses than for
gains (Kahneman and Tversky, 1979; Tversky and Kahneman,
1992). Loss aversion can be calculated as the slope of the negative
portion of the value function (involving losses) divided by the
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slope of the positive part of the curve. This computation can
analogously be performed for the keypress data in our valuation
graph using relative preference theory (RPT) (Kim et al., 2010),
raising the question of whether attention-related metrics are
related to this RPT variant of loss aversion across individual
subjects.

To assess participants’ divided attention, we used a continuous
performance task (CPT), one of the most widely used
neuropsychological tasks for this purpose (Beck et al., 1956;
Davies and Parasuraman, 1982; Park and Waldman, 2014).
During the CPT, participants viewed a continuous (sequential)
presentation of letters, and responded to designated targets.
Specifically, we employed an AX-CPT, which requires subjects to
respond to the target (e.g., the letter “X”) only when preceded
by a specific cue (e.g., the letter “A”) (Halperin et al., 1988;
Seidman et al., 1998; Cohen et al., 1999). Performance on this
task has classically been assessed using signal detection theory
(SDT; Tanner and Swets, 1954; Green and Swets, 1966; McNicol,
1972; Verghese, 2001; Smith et al., 2013). By applying SDT, AX-
CPTs allow the quantification of two key measures: sensitivity
(d′) and response bias (β) (McNicol, 1972). The signal detection
framework has received widespread acceptance and use within
cognitive neuroscience (e.g., Eckstein et al., 2000; Verghese, 2001;
Christensen et al., 2014; Park and Waldman, 2014).

We used an iterative modeling approach (Banks and Tran,
2009) to determine if any quantitative relationships existed
between features of reward behavior (K+ and K− as K±,
H+ and H− as H±) and attention (β, d′) from these two
tasks. To foreshadow our results, our main findings included
a significant relationship between the response bias (β) on
the signal detection task and the K and H measures from
the approach/avoidance task. No significant relationships were
observed between the sensitivity d′ during divided attention and
the K and H approach/avoidance measures. In assessing the
mathematical model betweenK,H, and β across subjects, smaller
β (i.e., more liberal response bias) during divided attention was
associated with higher predictability of avoidance keypressing
and lower predictability of approach keypressing during the
approach/avoidance task (e.g., analogous to having more loss
aversion). As presented in several talks and meetings (e.g.,
Breiter, 2012, 2014; Raman, 2013), our study provides empirical
evidence for a quantitative link between divided attention and
reward/aversion behaviors assessed though independent tasks.

METHODS

Subjects
All subjects were recruited by advertisements from the New
England region. As described for other papers using subjects
from the MGH Phenotype Genotype Project (e.g., Strauss
et al., 2005; Perlis et al., 2008; Gasic et al., 2009; Kim et al.,
2010; Viswanathan et al., 2015), subject recruitment stopped
after a set temporal window for recruitment, where target
recruitment for healthy controls sought 50–100 subjects. This
resulted in 77 subjects meeting criteria to be considered healthy
controls, meaning that they were medically healthy and without
mental illness, and they were neither family members of a

participant with cocaine dependence or polysubstance abuse,
nor a participant with major depressive disorder. Of these 77
subjects, 6 subjects did not complete any divided attention task
and another 6 subjects completed an earlier version of the divided
attention task than the one reported in this manuscript, resulting
in the exclusion of these 12 subjects. Data from the 6 subjects who
completed the earlier divided attention task could not be used
because there was a very small number of false cues and false
targets on this version of the task, which limited the ability to
compute accurate false alarm rates or signal detection metrics. Of
the remaining 65 subjects who completed the reported version of
the divided attention task, 18 additional subjects were excluded
because they had false alarm rates of 0, making it impossible
to compute valid signal detection metrics (i.e., d′ and β). This
resulted in a final cohort of 47 subjects who had valid data
from both the divided attention and reward/aversion (beauty
keypress) tasks. These 47 subjects comprise the cohort whose
data are reported in the present study; their K, H keypress data
alone (from the reward/aversion task) was previously reported
within the larger group of 77 subjects by Kim et al. (2010). For
these subjects, the mean age was 32.0 ± 10.6 years (SD), mean
educational history was 15.8 ± 2.9 years, and subjects were 22 of
47 (46.8%) female, and 41 of 47 (87.2%) right-handed, with the
following race identification: 34 of 47 European-American, 2 of
47 Native American, 7 of 47 African-American, and 4 of 47 Asian.
All subjects underwent a clinical interviewwith a psychiatrist that
included the Structured Clinical Interview for Diagnosis—Axis I
(SCID-I/P; First et al., 1996). Race was determined by individual
self-identification on a standardized form (Benson and Marano,
1998), and handedness via the Edinburgh Handedness Inventory
(Oldfield, 1971). Eligible subjects were age 19–54, without any
current or lifetime DSM-IV Axis I disorder or major medical
illness known to influence brain structure or function, including
neurologic disease, HIV, or Hepatitis C as determined by assay.
Medical illness was assessed via a physician-led review of body
systems and a physical exam. Female subjects were studied during
their mid-follicular phase based upon self-reported menstrual
history, with confirmation at the time of testing based on
hormonal testing with a urine assay. All subjects were studied at
normal or corrected-to-normal vision.

Ethics Statement
All subjects signed written informed consent prior to
participation, approved for this study by the Institutional
Review Board of Massachusetts General Hospital (i.e., Partners
Human Research Committee, Partners Healthcare), and all
experiments were conducted in accordance with the principles
of the Declaration of Helsinki.

Experimental Paradigms
The divided attention and approach/avoidance tasks were
conducted alongside multiple other procedures as part of the
MGH Phenotype Genotype Project (PGP). Following accepted
methods, all data collection was counterbalanced within the fMRI
environment and outside of it. None of the MRI data from the
two experiments described herein has been published. Please see
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the Supplemental Information section for a complete description
of data acquired by the PGP.

Approach/Avoidance Task
An approach/avoidance keypress task was used to determine
each subject’s relative preference toward an ensemble of faces
presented on a screen (Kim et al., 2010). The keypress experiment
allowed rapid responses in which subjects were able to press
different sets of keys in order to change the viewing duration
for each presented stimulus (Aharon et al., 2001; Kim et al.,
2010). If subjects disliked a picture stimulus and wanted it to
disappear faster, they could alternate pressing one set of keys
(#3 and #4 on the button box), whereas if they liked a picture
stimulus and wanted it to remain on the screen longer, they
could alternate pressing another set of keys (#1 and #2 on the
button box). Subjects therefore had the choice to do nothing
(default condition), increase their viewing time (i.e., “approach”),
decrease their viewing time (i.e., “avoid”), or a combination
of both increasing and decreasing the stimulus viewing time
(Figure 1A). A slider was displayed to the left of each picture
to indicate the total remaining viewing time. Presented faces fell
within the following experimental categories: beautiful (models)
and average (non-models) faces of both genders [i.e., beautiful

female (BF), average female (AF), beautiful male (BM), and
average male (AM); Aharon et al., 2001]. Each category of faces
had 20 different faces in it. We used the same 80 faces with each
subject. Importantly, the experiment used the same number of
itemsets (i.e., categories of pictures) and items per itemset (i.e.,
number of pictures) for every subject. The itemset size sets the
range of possible H values, but does not determine the specific
H value, so it was important to keep the number of items (i.e.,
pictures) constant across subjects (Kim et al., 2010; Lee et al.,
2015).

The keypress procedure was implemented with Matlab
software. This task captured the reward valuation attributed
to each observed face, and quantified positive (approach) and
negative (avoidance) preferences involving (i) decision-making
regarding the valence of behavior, and (ii) judgments that
determine the magnitude of approach and avoidance (Kim et al.,
2010; Lee et al., 2015). The objective was to determine how much
effort each subject was willing to trade for viewing each facial
expression relative to a default viewing time. Subjects were told
that they would be exposed to a series of pictures that would
change every 8 s (Figure 1A) if they pressed no keys. As published
previously (Aharon et al., 2001; Elman et al., 2005; Strauss et al.,
2005; Levy et al., 2008; Makris et al., 2008; Perlis et al., 2008;

FIGURE 1 | Experimental paradigms for approach/avoidance and signal detection tasks. (A) A schema for the keypress paradigm shows, at top, raster plots

of keypressing effects on face viewing time (y-axis) as blue curves going up or down from a default viewing time of 6 s. Pink and red blocks represent the presentation

of beautiful and average female faces, respectively. Below the raster plots, the timing of face presentation on each trial is schematized (Methods). (B) Keypressing data

yielded distinct boundary envelopes to the (K, H) value functions at the group level, and were well fit by power-law functions in individual subjects, when plotting mean

keypresses (K) against the Shannon entropy of keypress responses (H, information) across face categories (Methods). (C) A visual continuous performance task

quantified signal detection parameters during divided attention. One letter was shown per second in the center of the visual field. Subjects responded when a target

letter (“a”) appeared exactly four letters after the cue (“q”). Cue-target pairs could be interleaved, necessitating divided attention. (D) Signal detection analysis allowed

estimation of a criterion response, signal and noise distributions, as well as β and d′ variables for the continuous performance task (Methods).
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Gasic et al., 2009; Yamamoto et al., 2009; Kim et al., 2010;
Lee et al., 2015; Viswanathan et al., 2015), each experimental
stimulus would be initially presented for 0.2 s and replaced by
a fixation point for 1.8 s (the “decision block”), until the face
reappeared at 2 s and the subject was given the option to increase
or decrease the viewing time via keypressing the “judgment
block”). The relationship between the number of keypressesmade
by the subject to approach or avoid the face stimuli and the
updated viewing time followed previous methods, and utilized
the following resistive function (Aharon et al., 2001; Elman et al.,
2005; Strauss et al., 2005; Levy et al., 2008; Makris et al., 2008;
Perlis et al., 2008; Gasic et al., 2009; Yamamoto et al., 2009; Kim
et al., 2010; Lee et al., 2015; Viswanathan et al., 2015):

tn =
∑N

n=1
tn− 1 + (A− tn− 1)/J, (1)

where tn is the updated viewing time achieved after the keypress,
tn - 1 is the allotted viewing time prior to the keypress, A is equal
to 0 s for avoidance keypresses reducing the viewing time or 14 s
for approach keypresses increasing the viewing time, and J is a
scaling constant equal to 40. The default viewing time, t0, was
equal to 6 s. The purpose of the resistive function was twofold:
(a) to sequentially increase the effort needed for changing viewing
time and the value thereof, and (b) to implement limits as to how
much shorter or longer the stimulus duration could bemodulated
at maximal keypressing (so that the stimulus duration could not
be indefinitely extended) (Aharon et al., 2001; Kim et al., 2010).
The resistive function accomplishes both of these because with
each subsequent keypress, the magnitude of the resulting change
in viewing time diminishes relative to the previous change. This
maintains viewer engagement by progressively increasing the
effort (Walton et al., 2006, 2007; Croxson et al., 2009) involved
with this intrinsic motivation-based judgment (Deci and Ryan,
1985; Bandura, 1997), and creates consistent bounds on the
range of possible viewing times. Our choice of constants in the
resistive function (i.e., A, J, and t0) resulted in stimulus viewing
durations that could theoretically range from 0 s (maximum
avoidance keypressing) to 12 s (maximum approach keypressing)
(Kim et al., 2010), where the 12 s keypressing interval followed a
2 s decision phase in the task (Figure 1A).

Subjects were told this with the goal of preventing them from
keypressing simply to shorten the length of time required to
complete the experiment. In actuality, the exact same number
of total stimuli was presented to each subject regardless of
their keypress behavior, entailing that the experiment could vary
somewhat in overall duration depending on subjects’ keypress
behavior across all stimuli.

Divided Attention Task
Subjects performed a continuous performance task [CPT; (Beck
et al., 1956; Davies and Parasuraman, 1982) using visual stimuli
(Seidman et al., 1998). In this task, subjects were required to
respond to an “A” (target) following a “Q” (cue) after three
intervening letters. This task added interference and divided
attention load by, respectively, including false cues and/or false
targets, and by intermingling a subset of QxyzA sequences
within each other (e.g., QxQyAzA) (Figure 1C). Each letter was

presented for 200ms and followed by a fixation point for 800 ms.
The task was administered as three blocks, with each block
lasting 60 s. Subjects were instructed to respond to targets with
a button press but not to respond to non-targets. Following a
signal detection framework (Tanner and Swets, 1954; Green and
Swets, 1966; McNicol, 1972; Verghese, 2001; Smith et al., 2013),
hits, misses, correct rejections, and false alarms were assessed
and used in statistical analyses. Hits indicate correct responses to
cues, misses indicate failures to respond to cues, correct rejections
indicate the correct absence of a response to a non-cue, and false
alarms indicate erroneous responses to non-cues (Figure 1D).

Data Analysis
a. Computation of Reward and Attention Measures

Approach/Avoidance Task
Descriptive Statistical Measures
Descriptive statistics were used to summarize subjects’ keypress
responses. The central relationship we considered was that
between the mean numbers of keypresses to approach or avoid,
averaged across all stimuli within each category of faces (K+

and K−), and the Shannon entropy of the approach/avoidance
keypresses counts within each face category (H+ and H−). To
do this, we separately computed each subject’s mean number
of keypress responses to either approach (K+) or avoid (K−)
stimuli within each face category. Next, we computed the
Shannon entropy (Shannon and Weaver, 1949) describing
subjects’ patterns of approach/avoidance keypressing (Kim et al.,
2010) for the positive (H+) and negative (H−) keypress responses
across each face category. It should be noted that prior work
(Aharon et al., 2001) showed a dissociation between ratings of
esthetic attractiveness of stimuli (consistent with individuals in
pictures being models or not) and keypress results controlling the
length of viewing. Namely, the mean keypress measure K and the
preference predictability measure H, can differ markedly from
the perceived attractiveness metric at the core of an individual
being a model or not.

We used the following approach to compute Shannon entropy
separately for the positive (approach) and negative (avoidance)
keypress responses in each category. First, consider an ensemble
of keypress responses (i.e., numbers of keypresses) A across
stimuli within a single face category: A± = (a1, a2, ..., an). We
can then define the relative proportions of the keypress responses
for the individual stimuli, pi (Kim et al., 2010), such that:

pi = ai/
∑n

j= 1
aj. (2)

Using these proportions of the keypress responses, the Shannon
entropy of the keypress response pattern can be computed for an
individual face category as follows:

H± =
∑n

i= 1
pi log2

1

pi
(3)

Table 1 provides summary statistics of K+, K−, H+ and H−

averaged across subjects and face categories. Observations with
a mean keypress (K±) of 0 were excluded from the analysis. A
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TABLE 1 | Descriptive statistics for K, H, β, d′, predictability bias (PB), and

false alarm rate (FA).

Variable N Mean SD Minimum Maximum

β 47 2.57 1.26 0.73 5.34

d′ 47 2.48 0.68 0.77 3.64

FA 47 0.062 0.041 0.029 0.206

PB 41 2.26 1.79 0.00 7.74

K+ 138 16.84 20.01 0.05 86.95

K− 181 11.37 7.81 0.15 29.30

H+ 138 2.34 1.46 0.00 4.24

H− 181 3.28 1.23 0.00 4.32

N is the total number of observations used to compute each descriptive statistic, and SD

is the standard deviation. The minimum and maximum values provide information on the

observed range for each variable.

mean keypress (K±) of 0 for a category implies that the entire
ensemble of stimuli in that category all had zero keypresses;
the resulting proportions pi are therefore undefined (i.e., since
0/0 is undefined) and the entropy (H±) cannot be computed
in such cases. Across all 47 subjects in the final cohort, there
were 13 observations with a K− of 0 (from 9 subjects) and 91
observations with a K+ of 0 (from 42 subjects). Recall that K
and H variables were computed within each subject for each
individual face category. Overall, for the models computed across
all subjects of the form H = f(K, β), we ended up with 138 total
valid data points for the “approach” models using H+ as the
dependent variable, and 181 valid data points for “avoidance”
models using H− as the dependent variable. No exclusion of data
points (i.e., exclusion of specific K and H metrics for individual
face categories) led to the complete exclusion of a participant’s
(K±, H±) data from the analysis.

Computing Relative Preference Theory Structure
After computing the values of K± andH± for each face category,
(K ,H) functions were generated by plotting the Shannon entropy
H± against the mean keypresses K± for all face categories in
an individual subject; we refer to this function as the (K , H)
value function. (K , H) data can also be plotted across multiple
subjects to visualize data at the group level. At the group level, we
confirmed that (K , H) data contained boundary envelopes that
conformed well to power-law functions (H = a Kb; see edges
of group data in Figure 1B). In previous work, we have also
reported logarithmic fits to the (K , H) value functions, as well
as logarithmic fits to boundary envelopes containing group (K ,
H) data (Kim et al., 2010). At the individual subject level, we also
fit simple power-law (H= a Kb) functions to the (K , H) data for
approach and avoidance across face categories within individual
subjects (e.g., Figure 1B). The fits for power-law functions were
obtained by performing simple linear regression of ln H on ln K .

After defining the (K , H) valuation graphs, we were also able
to compute how subjects tended to respond to face stimuli when
they were aversive compared to when they were attractive. This
was done by comparing the slopes of the valuation graph for the
negative (avoidance) segment to the positive (approach) segment.
Comparing the slopes in this way follows methods previously
described under Prospect Theory by Kahneman and Tversky

(1979) and Tversky and Kahneman (1991), but has a different
interpretation when used in the context of relative preference
theory. For the value function described under prospect theory,
the objective value of economic gains or losses is plotted on
the x-axis against the subjective value of the gains or losses to
the individual on the y-axis. The absolute value of the ratio
of the slope of the negative value function (s−) to the positive
segment of the value function slope (s+) is then referred to as loss
aversion: LA = |s−/s+|, describing the extent to which subjects
overweight losses relative to gains of equal magnitude (Tversky
and Kahneman, 1991; Köbberling and Wakker, 2005; Schmidt
and Zank, 2005).

Analogously, we applied a local definition of loss aversion
(Benartzi and Thaler, 1995; Abdellaoui et al., 2007; Booij and
van de Kuilen, 2009) to our (K , H) valuation graphs for
each individual subject to define predictability bias (PB) in the
framework of RPT. Predictability bias indicates how much more
predictable subjects’ preference patterns are during avoidance
(aversion) behaviors relative to approach (reward) behaviors. To
compute predictability bias, s− and s+ were computed as the
average of the slopes of the negative and positive components
of the (K , H) function over the 10% of the curves closest to the
origin:

PB =
∣

∣

∣

∣

s−

s+

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

∫ 0
−xc

f
′
−(x)dx/xc

∫ xc
0 f

′
+(x)dx/xc

∣

∣

∣

∣

∣

, (4)

where f
′
+(x) and f

′
−(x) are the first derivatives of the positive

(approach) and negative (avoidance) components of the (K , H)
valuation graph, respectively, and xc represents the range of the
valuation function over which the slopes are averaged; namely, xc
covers the range of K values that span up to 10% of the maximum
absolute H± value observed on a subject-wise basis.

Divided Attention Task
For analyzing data from the divided attention task, classic
signal detection measures (β and d′) were computed after first
computing the hit and false alarm rates from the task (Green
and Swets, 1966; McNicol, 1972; Verghese, 2001). Hit rates
were computed as the ratio of the number of correct responses
for identifying targets to the total number of (true) targets.
False alarm rates were calculated as the ratio of the number of
erroneous responses to non-targets to the total number of non-
targets (i.e., distractors). With these hit and false alarm rates,
we then computed β (beta) and d′ (d-prime) following standard
signal detection methods (Table 1). d′ was computed as follows:

d
′ = Z

(

hit rate
)

− Z
(

false alarm rate
)

, (5)

where Z(p) is the inverse of the cumulative distribution
function of the standard normal distribution (i.e., Z

(

p
)

=√
2erf−1

(

2p− 1
)

, p ∈ [0, 1] , and erf is the error function).
Beta is defined as follows:

β = e(Z(false alarm rate)
2−Z(hit rate)

2
)/2. (6)

b. Relationships between RPT and SDT Variables
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The aims of our paper were to (1) test for a mathematical
relationship between variables related to reward/aversion
(obtained from our relative preference theory (RPT) keypress
task), and variables related to divided attention (obtained from
the divided attention task) within the same cohort of subjects,
and (2) determine if this mathematical model allowed the
interplay of any two variables to be accurately quantified while
holding the others constant. To accomplish this, we fit a series
of mathematical models in which the RPT (reward/aversion)
variables K and H were related to the divided attention variables
β or d′, and then assessed if the observed mathematical model
provided interpretive insight in the quantitative interplay
between variables. For the first aim, we tested models formulated
such that H was defined as a function of K and β or of K and d′

(i.e., we fit functions of the form H = f(K , β) or H = f(K , d′)).
Three model formulations were evaluated (examples below show
the models for H = f(K , β); for the models of the form H =
f(K,d′), d′ is substituted for β):

(1) Logarithmic model: H= log a+ b log β + clog K
(2) Multiplicative power-law: H= aβbKc

(3) Additive power-law: H= a+ βb + Kc.

In the above equations, a, b, and c are coefficients fit separately
for each of the three models.

To assess the strengths of the fits for these three models with
H, K and β, or H, K, and d′, we computed Root Mean Square
Error (RMSE) for each model. RMSE was computed as follows:

RMSE =

√

∑n
i= 1

(

Ĥi−Hi

)2

n , where Ĥi is the value of the entropy
H (i.e., the dependent variable) predicted by the model, and Hi is
the observed (actual) value of the entropy for face category i. We
also computed R, where R is the Coefficient of Determination and
is the square root of the ratio of Regression Sum of Squares (SSR)
to Total Sum of Squares (SST). While SSR is a measure of the
variation of the predicted H values around the mean observed H
value, SST is a measure of the variation of the actual observed

H values around the mean. Therefore, R =
√

∑n
i= 1 (Ĥi−H̄)

2

∑n
i=1 (Hi−H̄)

2 ,

where Ĥi is again the predicted entropy and Hi is the observed
entropy for category i, and H̄ is the average entropy across all face
categories.

After assessing the goodness of fits for the three different
models that related the H, K, and β, d′ variables, we sought as
a second aim to this study to evaluate a potential relationship
between β or d′ from the divided attention task and predictability
bias (i.e., the loss aversion metric) as determined from
the approach/avoidance task. For example, using a potential
relationship between K, H, and the response bias β, we
first approached this question analytically by examining the
multiplicative power-law formulation relating H, K, and β: H
= aβbKc. By inserting the estimated model coefficients and
using the mean values of K observed across stimuli and subjects
(Results), we obtained quantitative model predictions for the
average values of H for approach (H+) and avoidance (H−)
expected as a function of β (Figure 4A) as follows:

1. Given the power law formulation H = a βb Kc, use the
estimated coefficients of b and c from the approach (H+) and

avoidance (H−) models for predicting approach (H+) and
avoidance (H−) entropy, respectively (Table 2).

2. Use the coefficient a estimated from the approach (H+) model
as a common coefficient for predicting both approach (H+)
and avoidance (H−) entropy (i.e., a = 1.066; see Table 2).
Note that the coefficient a is simply a scaling constant in
the multiplicative power law model; this coefficient was kept
constant between the approach and avoidancemodels in order
to allow for a direct relative comparison of approach (H+) and
avoidance (H−) entropy as a function of β.

3. For predicting both approach (H+) and avoidance (H−)
entropy, keep K constant at the mean level of K+ observed
across subjects (i.e., K = 16.84; see Table 1). Using the same
value of K for both the approach (K+) and avoidance (K−)
models allows for a direct comparison of the approach (H+)
and avoidance (H−) entropy as a function of β.

4. Finally, vary β in small steps over the range [0, 6] to predict
H+ andH− across a range of potential β values.

After using our fitted model to predict the effects of β on H−

and H+ (Figure 4A), we computed two proxy measures of the
predictability bias: a ratio metric (H−/H+) and a difference
metric (H−–H+) of the approach and avoidance entropies
(Figure 4B). This allowed us to make quantitative predictions
using our model of how variations in β could affect the
predictability bias. The ratio metric (H−/H+) has traditionally
been used in behavioral studies, although the difference metric
has also been used previously the context of neuroimaging (Tom
et al., 2007).

c. Multiple comparisons corrections

When drawing conclusions regarding the statistical significance
of our modeling work relating the divided attention variables
d′ and β to the reward/aversion variables K and H from our
approach/avoidance keypress task, it is essential to keep in
mind the large number of statistical tests that were performed,
which increases the probability of incorrect rejections of the null
hypothesis (i.e., Type I error). Our initial modeling involved
univariate modeling of power-law relationships between K , H,
β and d′. There were four types of univariate models (K vs. β, H
vs. β, K vs. d′, and H vs. d′), and two instances of each model
since they were fit to both approach and avoidance keypress data.
(Note that the significance of the power-law fits is equivalent
regardless of which variable is the dependent variable, since we fit
the models via linear regression after a log-log transformation.)
Thus, in total, there were 8 statistical tests considered with
the univariate data. For the multivariate modeling of the H =
f(K, β) and H = f(K, d′) models, there were three different
models considered in each case, fit separately to approach and
avoidance data; this resulted in another 12 comparisons for
the multivariate modeling. Therefore, in total, there were 20
statistical tests performed in our analysis of the relationship
between divided attention and reward/aversion variables. Since
Bonferroni correction is well known to be overly conservative,
we chose to address these multiple comparison issues by applying
false discovery rate (FDR) correction and examining the resulting
q-values of our statistical tests (Benjamini and Hochberg, 1995;
Storey, 2002). The q-values indicate the minimum false discovery
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TABLE 2 | Fits for different models of the form H = f(K,β).

Approach (H+) Parameter Logarithmic: H = a +

b·lnβ + c·ln K

Power Law Multiplicative:

H = a * (β)b * (K)c
Power Law Additive:

H = a + βb+ Kc

Estimate Estimate Estimate

Intercept/scaling constant a 0.847 1.066 −1.112

[0.535, 1.160] [0.865, 1.268] [−1.405, −0.819]

t(135) = 5.36 t(135) = 10.45 t(135) = −7.51

p = 3.42e-7 p =4.25e-19 p = 7.32e-12

β b 0.321 0.092 0.240

[0.042, 0.600] [−0.013, 0.196] [0.046, 0.434]

t(135) = 2.28 t(135) = 1.73 t(135) = 2.44

p = 0.024 p = 0.085 p = 0.016

q = 0.0304 q = 0.0557 q = 0.0304

K+ c 0.667 0.319 0.349

[0.582, 0.751] [0.267, 0.370] [0.324, 0.374]

t(135) = 15.61 t(135) = 12.30 t(135) = 27.36

p = 5.10e-32 p = 8.81e-24 p = 6.33e-57

RMSE 0.8682 0.8667 0.8675

R 0.8079 0.8086 0.8082

Model F-stat F (2,135) = 127 F (2,135) = 421 F (2,135) = 127

Model sig. p = 9.94e-32 p = 2.53e-68 p = 8.97e-32

Avoidance (H−) Parameter Estimate Estimate Estimate

Intercept/scaling constant a 1.230 1.523 −0.540

[1.031, 1.430] [1.369, 1.678] [−0.756, −0.324]

t(178) = 12.16 t(178) = 19.48 t(178) = −4.94

p = 3.65e-25 p = 5.35e-46 p = 1.81e-6

β b 0.196 0.044 0.141

[0.052, 0.340] [−0.003, 0.090] [0.006, 0.277]

t(178) = 2.69 t(178) = 1.86 t(178) =2.06

p = 0.008 p = 0.065 p = 0.041

q = 0.0304 q = 0.0497 q = 0.0376

K− c 0.951 0.337 0.443

[0.887, 1.014] [0.303, 0.371] [0.423, 0.463]

t(178) = 29.4 t(178) = 19.32 t(178) = 43.43

p = 2.70e-70 p = 1.44e-45 p = 1.17e-96

RMSE 0.5108 0.5656 0.5930

R 0.9112 0.8899 0.8782

Model F-stat F (2, 178) = 436 F (2, 178) = 2250 F (2, 178) = 300

Model sig. p = 2.74e-69 p = 2.92e-141 p = 9.43e-58

95% confidence intervals are in brackets. RMSE and R are measures of model fit as described in Table 3. FDR-adjusted q values are also provided for the b coefficient fits. These q

values correct for the 6 total model comparisons made and indicate the minimum false discovery rate at which these coefficients may be declared significant.

rates that can be claimed when declaring the corresponding
statistical tests significant, and the false discovery rate is the
proportion of rejected null hypotheses that are false positives.

RESULTS

Experimental Tasks
Divided Attention Task
Subject performance on the divided attention task is summarized
in Table 1, which provides average values and standard

deviations of β, d′, and the false alarm rate observed across
subjects.

Approach/Avoidance Task
For each individual subject, we plotted the values of H as a
function of K across all face categories, resulting in (K, H)
valuation graphs (Figures 1B, 2). Average values and standard
deviations of K± and H± observed across subjects are presented
in Table 1. The relationship is depicted in Figure 1B for both
individual and group data, and in Figure 2 for individual subject
data. The K, H relationship observed here has been described
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TABLE 3 | Model fits for H+ and H− using different functional forms.

Dependent Variable Functional Form RMSE R

H+ Logarithmic 0.8682 0.8079

H− Logarithmic 0.5108 0.9112

H+ Power multiplicative 0.8667 0.8086

H− Power multiplicative 0.5656 0.8899

H+ Power additive 0.8675 0.8082

H− Power additive 0.5930 0.8782

Root Mean Square Error (RMSE) and R are both measures of model fit. R is the Coefficient

of Determination and is the square root of the ratio of Regression Sum of Squares (SSR)

to Total Sum of Squares (SST).

previously by Kim et al. (2010), and is the same in the current
cohort as what was observed in the larger sample. In the current
study as well as previous analyses of this data (Kim et al., 2010),
we found that power-law functions of the formH= aKb offered a
strong fit both to the (K ,H) value functions in individual subjects
as well as to boundary envelopes containing the group (K, H)
data (Figures 1B, 2). We observed significant power-law scaling
for both approach (H+ = 1.381 K0.257) and avoidance (H− =
1.463 K0.369) data (Supplementary Table S1; all p < 10−21 for
exponential term). Figure 2 displays the power-law fits computed
for all subjects in the cohort, and shows overlaid (K , H) data
for a representative subject. Power-law scaling was also highly
significant for both the approach and avoidance data when H

was set as the independent variable in place of K (Supplementary
Table S2; all p < 10−21 for exponential term). These models
indicate there is a significant inter-relationship betweenK andH.

Relationships among Reward/Aversion
and Divided Attention Measures
Iterative Modeling of K, H, and β Measures
To compare subjects’ reward/aversion behavior to their
performance on the divided attention task, we first looked for
relationships between the reward/aversion measures K and
H and the response bias, β, from the divided attention task.
To understand the role of β in influencing subjects’ relative
preference behavior, we initially assessed whether there were
significant one-way associations between β and K orH separately.
Here, we used a power-law model of the form Y= a Xb (where Y
and X are the dependent and independent variables, respectively)
to allow for the possibility of a nonlinear relation between
variables. We tested these models using β as both the dependent
and independent variable, and fit separate models for the
approach (K+,H+) and avoidance (K−,H−) relative preference
data. First, we tested whether there was any significant power-law
scaling between β and H, and found no significant relationships
for either the approach or avoidance data whether β or H was
assigned as the independent variable (Supplementary Tables S3,
S4; all p > 0.46 for exponential term). Second, we tested whether
any significant relations existed between β and K+ or between
β and K−. In this case, we found no significant relationships
between β and K+ whether β was defined as the dependent
variable or independent variable (Supplementary Tables S5, S6;
p > 0.498). However, we did find significant power-law scaling

FIGURE 2 | (K, H) value functions display keypress behavior on the

approach/avoidance beauty keypress task for all 47 subjects. The

x-axis indicates mean keypress intensity (K) for each face category in terms of

the average number of keypresses to approach (right) or avoid (left) each

category of faces. The y-axis indicates the Shannon entropy (H) of the

ensemble of keypress responses to approach or avoid for each category of

faces (Methods). Red and green traces indicate power-law fits to the (K, H)

data computed within each individual subject by performing linear regression

of ln H against ln K. Symbols and dark green and red traces indicate the (K,

H) data points and power-law fit (respectively) for a representative subject; light

green and red traces indicate the power-law fits for the remaining subjects in

the cohort.

between β and K− whether defining β as either the dependent
or independent variable (Supplementary Tables S5, S6; p =
0.0265). This relationship was robust to multiple comparisons
corrections (Methods) accounting for all the statistical analyses
performed, with a q-value of 0.0304 (Methods; Supplementary
Tables S5, S6).

Given that none of the one-way relations between β and
the relative preference measures (K and H) were consistently
significant across both approach (K+, H+) and avoidance (K−,
H−) data, we decided to focus on models that included both
K and β as explanatory (i.e., independent) variables in order to
evaluate how they together influence H. Indeed, we found that
for both approach and avoidance data, the coefficients of β and
K are consistently significant in these models (Table 2), which we
describe below.

We assessed the relationship of K, H, and β through iterative
modeling (Banks and Tran, 2009), as done on prior occasions
to determine if any mathematical structure existed such as a
manifold, function, or boundary envelope (Kim et al., 2010).
Given the observation of apparent manifolds for the positive
(approach) and negative (avoidance) components of this function
(Figures 3A,B), we attempted to characterize the observed
relationship between these variables by fitting threemathematical
functions to the data: (a) a logarithmic relationship (H= log a+
b·log β + c·log K), (b) a multiplicative power law relationship
(H = a·βb·Kc; Figures 3B–C), and (c) an additive power law
relationship (H = a +βb + Kc). The variables a, b, and c
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FIGURE 3 | (A) When K and H (from Figures 1B, 2) are plotted against β on a third (z) axis, a manifold emerges. (B) Fitting of a multiplicative power-law model to the

(K, H, β) data of the form H = aβbKc reveals curvature along a manifold in three-dimensional space, reflecting an association between H and b. (C) The twisting of the

observed manifolds is made more distinct by plotting the error residuals of H± from the multiplicative power-law model (H = aβbKc) for approach (top right) and

avoidance (bottom right). The approach manifold resembles a Cobb-Douglas graph. Note that the error residuals for H± are largest for small values of K (i.e., face

categories of low mean keypressing), and become smaller at high values of K. This indicates that the multiplicative power-law model can most reliably predict entropy

(H) when keypressing is high in intensity (i.e., large magnitude of K), and becomes less accurate as mean keypress intensity decreases.

in these equations indicate fitted model coefficients. Fits and
goodness of fit metrics for these three models are tabulated in
Tables 2, 3.

Across the three models, we consistently found that K and β as
explanatory variables explained 65–83% of the variance in H. To
verify the stability of the model fits, we repeated the model fitting
using an iterative least squares procedure that utilized random
number generation to produce initial parameter estimates;
repeated iterations of this randomized procedure produced
consistent results with no changes in the estimated model
coefficients.

All three of the models we tested had high F values (127–
421 for approach data and 300–2250 for avoidance; see Table 2),
with the multiplicative power-law model having the highest
F value. On the other hand, all three models showed similar
goodness of fit values (see RMSE values in Table 3). RMSE
values were especially similar between the models when fitting
the approach (K+, H+) data: 0.8682 for logarithmic, 0.8667
for multiplicative power-law, and 0.8675 for additive power-law
models. Given the similarity observed in goodness of fits, we
did not perform formal model comparisons in an attempt to
identify the best model for this dataset. In order to definitively
compare these models, more statistical power would be required
by repeating the experiment on a much larger cohort of
subjects.

While we were unable to compare the model fits formally, we
selected the multiplicative power-law model (i.e., H± = a·βb·Kc

±)
for further study due to theoretical reasons. This multiplicative
power-law function is commonly referred to in economics as the
Cobb-Douglas production function (Cobb and Douglas, 1928).
In particular, the exponential terms b and c of the Cobb-Douglas

production function can be interpreted in terms of resource
matching: when b + c < 1, the production function has what
is called inelasticity (i.e., decreasing returns to scale), meaning
that large changes to either of the dependent variables (i.e., β

or K) will have comparatively only small effects on the output
variable (i.e., H). Among the three models tested, this model
exhibited the lowest rank root mean square error (RMSE) for
the approach data, and the second lowest rank RMSE for the
avoidance data. The F-statistic for the multiplicative power-
law models for the approach data and avoidance data were
also multiples of the other models (Table 2). However, it is
worth re-emphasizing that our observed RMSE values were
quite similar across the three models considered and thus no
formal model comparison tests were performed; our choice of
this model for further study was based purely on theoretical
grounds.

Following our evaluation of model goodness of fits and
selection of the multiplicative power-lawmodel for further study,
we used the parameter fits obtained from fitting themultiplicative
power-law to get a better understanding of how β influences H+,
H−, and by extension, proxy measures of a metric we refer to
as the predictability bias (Methods). In particular, we plugged in
the fitted model constants as well as the average observed value
of K+ into the multiplicative power-law equation in order to
predictH+,H− (Figure 3A) the ratio proxymetric (H−/H+), and
the difference proxymetric (H−–H+; Figure 3B). This procedure
is described fully in the Methods. Robustness checks, which
included using the mean value of K− rather than that of K+, and
using the intercept estimated from the avoidance model rather
than that of the approach model, did little to change the results
(not shown).
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FIGURE 4 | Relationship of K, H, and β: Evaluation of the Cobb-Douglas Function. (A) After inserting the respective estimated coefficients for the

Cobb-Douglas model (H = aβbKc) and plugging in the mean value of K+ observed across all subjects and face categories, the approach (H+) and avoidance (H−)

entropies are observed to intersect when β = 2.67. H−exceeds H+ for β < 2.67, while H+exceeds H− for β > 2.67. (B) Plot displays ratio (H−/H+) and difference

(H−–H+) proxies for predictability bias as a function of β. The model predicts that the average subject exhibits high predictability bias (i.e., H−/H+> 1 or H−–H+ > 0)

when β < 2.67, as opposed to low predictability bias (i.e., H−/H+< 1 or H−–H+ < 0) when β > 2.67. (C) An example signal detection schema is shown for a noise

distribution of N(0,2) and signal distribution of N(6,2). Given equal variance in the signal and noise distributions, the d’ is equal to the difference between the means of

the signal and noise distributions (i.e., d′ = 6). The decision threshold corresponding to the critical β value of 2.67 is equal to 3.33 in this scenario (Results).

Relationship of H−, H+, and β

When isolating the effects of β onH−andH+ using our predictive
model (Figure 4A), one observes that while the values of H−

are higher than H+ for small values of β, H+ values increase at
a faster rate than H− as β increases. One can look at the ratio
H−/H+ and the differenceH− - H+ as proxies for the measure of
predictability bias (Methods), which is analogous to the metric of
loss aversion defined under prospect theory (Methods; Kahneman
and Tversky, 1979; Tversky and Kahneman, 1991). Under our
model, H− and H+ are predicted to be of equal magnitude
when β equals 2.67 (Figure 4A). At this critical value of β, the
predicted ratio H−/H+ equals 1 and their difference (H−–H+)
equals 0 bits (Figure 4B). In other words, when one holds K+

and K− constant and evaluates the relationship of β to H+

and H−, one observes that for β less than 2.67 (i.e., a more
liberal response bias producing higher hit and false alarm rates),
H− is greater than H+, indicating a predictability bias on the
approach/avoidance task in which avoidance keypressing is more
predictable than approach keypressing, analogous to an increase
in loss aversion (Tversky and Kahneman, 1991, 1992). In contrast,
when β exceeds 2.67 (i.e., a more conservative response bias
resulting in lower hit and false alarm rates), H+ is greater than
H−, suggesting approach behavior becomes more predictable
relative to avoidance behavior, analogous to a decrease in loss
aversion.

To complete our modeling analysis ofK,H, and beta variables,
we used the values of β observed in Figures 4A,B to estimate
the decision threshold λ. Specifically, we estimated the decision
threshold λ for a scenario where the distribution of noise is

normally distributed with a mean of 0 and standard deviation
of 2, and the signal distribution is normally distributed with a
mean of 6 and standard deviation of 2 (Figure 4C). First, we can
calculate the parameter d′ as the distance between the means of

the two distributions: d′ = 6–0 = 6. β is calculated as β = fs(λ)
fn(λ)

,

where fs(λ) and fn(λ) are the probability mass functions for the
signal and noise distributions, respectively. Thus, β is defined as
the ratio of the heights of the two distributions at the threshold
criterion λ. Note that we have already estimated the critical β

value directly from our model fits as β = 2.67. Given this value,
we can then compute the decision threshold λ corresponding to
the critical β value by using the following formula:

λ = σ ln(β)

d′
+ µs + µn

2
, (7)

where σ is the standard deviation of the signal and noise
distributions (which are equal in this scenario), and µs and µn

are the means of the signal and noise distributions, respectively.
Plugging in the observed values for these parameters under the
scenario depicted in Figure 4C as well as the critical β value
of 2.67 obtained from our empirical model into Equation 7, we
obtain a decision threshold of λ = 3.33.

Importantly, this decision threshold (λ = 3.33) is closer to
the signal distribution than the noise distribution, indicating
that under our model, a subject with a neutral predictability
bias (H−/H+ = 1 or H−–H+= 0) is expected to tend toward
a more conservative response bias (i.e., will achieve fewer false
alarms and more correct rejections at the cost of more misses

Frontiers in Psychology | www.frontiersin.org 11 February 2017 | Volume 8 | Article 122

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Viswanathan et al. Relationship of Attention and Reward/Aversion

and fewer hits of the true signal). Conversely, the model results
displayed in Figure 4 suggest that a subject with a neutral
decision threshold (i.e., a threshold equidistant from the noise
and signal distributions; in this case, λ = 3) would be expected to
exhibit predictability bias greater than one. This is true because a
neutral decision threshold in this case would require λ to decrease
from 3.33 to 3, resulting in a corresponding decrease in β (i.e.,
β = 1 for a neutral decision threshold). As shown in Figure 4,
a decrease in λ and β coincides with an increase in H− relative
to H+ (Figure 4A), and hence an increase in predictability bias
(Figure 4B).

Relationship of Exponents under Multiplicative

Power Law Model
It is also informative to consider the magnitudes of the
exponential terms b and c in our fitted power-law model. Under
the multiplicative power law model we fit for theoretical reasons
(i.e., H = aβbKc), we observed that the exponential model
coefficients b and c summed to less than one for both the
approach (b + c = 0.092 + 0.319 = 0.411) and avoidance
(b + c = 0.044 + 0.337 = 0.381) models. In Cobb-Douglas
resource matching terms (Cobb and Douglas, 1928), the fact
that the sums of these exponential coefficients are less than 1
indicates that overall, individuals show decreasing returns to
scale or “inelasticity,” resulting in attenuated relative increases of
H± despite substantial increases in K± or β.

Iterative Modeling of K, H, and d′ Measures
To ensure there were no other significant relationships between
K and H variables from the approach/avoidance task and
other parameters estimated from the divided attention task,
we also assessed for one- and two-way relations between d′

(sensitivity) from the divided attention task and K and H
from the approach/avoidance task. We observed no significant
relationships between these variables (Supplementary Tables S7–
S11). When assessing power-law relationships between d′ and H,
the exponential terms were not significantly different from zero
for either the approach or avoidance data whether d’ was assigned
as the dependent or independent variable (Supplementary Tables
S7, S8; all p > 0.32). Likewise, the exponential terms did
not differ significantly from zero for any power-law models
relating d’ and K (Supplementary Tables S9, S10; all p >

0.119). After assessing for potential one-way relations between
d′ and the relative preference measures, we next considered
two-dimensional relationships by fitting models that related H,
K, and d′ (i.e., models of the form H = f(K, d′)). Specifically,
we fit the same three models that we considered previously
when evaluating the relationship between K, H, and β: (a) a
logarithmic relationship (H = log a + b·log d′ + c·log K),
(b) a multiplicative power law relationship (H = ad′bKc), and
(c) an additive power law relationship (H = a + d′b + Kc).
Notably, the model coefficients (b) representing the d′ variable
were not significantly different from 0 under any model for either
the approach or avoidance data (Supplementary Table S11; all
p > 0.28), indicating that d′ had no influence on predicting H±

even in the context of a two-dimensional model with K±.

Multiple Comparisons Corrections
All 20 of the univariate and multivariate p-values relating divided
attention and reward/aversion metrics went into our FDR
analysis to account for all of the statistical tests we performed.
The resulting q-values are listed below their corresponding raw
p-values in Table 2 and Tables S1–S11. Of the 20 statistical
tests we performed, only the multivariate models of the form
H = f(K, β) were putatively significant based on raw p-values.
The univariate models linking these variables as well as the
multivariate models for H = f(K, d′) were not even remotely
close to achieving significance for the relevant parameters (with
the exception of power-law scaling between K− and β, discussed
earlier), and we therefore limit our discussion here to the q-values
observed for the H = f(K, β) models. As shown in Table 2, all b
coefficients (exponential term for the β parameter) had associated
q-values of less than 0.05 for all three types of H = f(K, β)
models (whether considering the approach or avoidance keypress
data), with the exception of the multiplicative power-law model
for the approach data, which had a q-value of 0.0557. Thus, the
observed significance levels of the β parameters in these three
models can be accepted with confidence that less than 5% of these
observations are expected to be false positives (with the exception
of the multiplicative power-law model fit to approach data, for
which this confidence level drops to 5.57%).

DISCUSSION

In this paper, we explored the relationship between measures of
reward/aversion behavior from an approach/avoidance keypress
task (i.e.,K andH) andmeasures of signal detection performance
from a divided attention task (i.e., false alarm rate, β, and d′). We
found no significant relations between d′ under signal detection
and reward/aversion variables, but through iterative modeling,
we identified significant relationships between K, H, and β, in
particular of β on H, in parallel with K on H. We considered
in particular a multiplicative power-law model (H = aβbKc)
known in economics as the Cobb-Douglas production function.
Plugging in our estimated model coefficients and the mean
observed value of K allowed us to predict H± as a function of
β. Doing so revealed that the response bias (β) exerts an effect
on the relative magnitudes of approach (H+) and avoidance
(H−) entropies, which in turn can be used as proxy measures
to describe how predictable or consistent subjects’ avoidance
behaviors are relative to their approach behaviors on the keypress
task (i.e., predictability bias). Namely, lower values of β were
predictive of a greater predictability bias (analogous to greater
loss aversion) on the approach/avoidance task, higher values
of β predicted lower levels of predictability bias, and a neutral
predictability bias (i.e., H− = H+) was expected at a critical β

value of 2.67.
It is worth noting that our effort is not the first to

draw connections between attention or signal detection and
reward/aversion processing. A particularly interesting study
was conducted by Navalpakkam et al. (2009) that examined
how subjects perform on a signal detection task related to
visual attention in the context of variable reward schemes.
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The authors demonstrated that subjects’ target detection rates
could be specifically modulated by adjusting the reward/penalty
policies associated with the task, and that human participants
quickly arrived at the statistically optimal decision strategy
(Navalpakkam et al., 2009). This study thus established a clear,
quantitative, and directed link between reward and performance
on a visual attention task. Moreover, foundational work by
Busemeyer and Townsend as well as teams led by Usher,
McClelland, Rangel and others have also included frameworks
emphasizing attentional models of reward and value-based
choice (Busemeyer and Townsend, 1993; Roe et al., 2001;
Usher and McClelland, 2001, 2004; Krajbich et al., 2010, 2012;
Milosavljevic et al., 2010; Krajbich and Rangel, 2011; Vincent,
2015). Such work has involved both linear (e.g., Krajbich et al.,
2010, 2012; Krajbich and Rangel, 2011) and non-linear (e.g.,
Busemeyer and Townsend, 1993; Usher and McClelland, 2001,
2004) diffusion models of evidence accumulation bearing on
value-based decisions (see Vincent, 2015 for recent review).
In particular, Usher and McClelland have investigated the role
of loss aversion (analogous to predictability bias) in multi-
alternative value-based choice under a diffusion framework
(Usher and McClelland, 2004).

These and related models offer statistical accounts for how
attention or attention switching may lead to accumulation of
evidence favoring particular alternatives in value-based choice,
and make powerful predictions of choice behavior at the
single-trial level. However, it is important to note fundamental
differences in scope between these existing frameworks and our
application of RPT (Kim et al., 2010) in the present study. While
the aforementioned diffusion models offer dynamic, statistical
frameworks providing post-hoc explanations for value-based
decision-making, our aim in using a relative preference (i.e.,
approach/avoidance) task was rather to characterize the broad
emotional profile of individual preferences toward a range of
objects, within a model that allows inference and is lawful (Kim
et al., 2010), and is completely derived from empirical data
with a keypress task, an approach that has been considered a
gold-standard for neuroscience study of reward/aversion (e.g.,
White et al., 1987). The keypress task we used was developed
within a behaviorist operant framework (Aharon et al., 2001; Lee
et al., 2015). With the RPT analysis, we utilized an information
theory variable (Shannon entropy) to characterize individuals’
patterns of approach and avoidance behavior across multiple
categories of face stimuli. We view diffusion models of evidence
accumulation toward a threshold of value-based choice as
modeling an important aspect of motivated behavior, one that
might be strengthened if integrated with the multidimensional
modeling of preference and its control functions represented by
RPT. Integration of diffusion evidence accumulation with RPT
valuation may be of potential interest for future studies.

In considering our findings in the context of existing work,
it is important to acknowledge that additional or intermediate
variables may exist which moderate or mediate relations between
attention deployment and reward functions. This may facilitate
study of directional effects between these variables. We did not
find a relationship between K, H and d′, but it is possible
other variables in RPT may have such a relationship. For

instance, the K and σ variables in RPT form a variance-mean
graph that appear to encode features of Markowitz’s decision
utility (Kim et al., 2010), and might be hypothesized to have a
relationship with d′ which represents the separation of signal and
noise distributions. Future work is clearly needed to assess this,
including work done outside of large-scale phenotype genotype
projects that counterbalance many experiments beyond those
discussed here. In our study, all stimulus presentation in the MRI
was counterbalanced across subjects, but the possibility exists that
completing tasks in a supine position may influence the behavior
performance we report.

Although our study investigated attention and reward at
the behavioral level, it is interesting to speculate on the
neural pathways and mechanisms that may be involved in
the relationships we observed between these two domains.
The existing literature strongly suggests frontal and parietal
areas (notably, the intraparietal sulcus and ventromedial
prefrontal cortex) as being preferentially activated in high-reward
conditions during attentional states (Taylor et al., 2004; Small
et al., 2005; Engelmann et al., 2009), or conversely as being
modulated by the difference in perceived reward by the ventral
striatum between attended and unattended items in a choice
task (Lim et al., 2011). Although we can only speculate, it is
possible that underlying physiological differences in pathways
involving these brain regions exert common effects that lead to
systematic differences in both reward and attention behaviors
across individuals. The finding of β affecting H in our study,
shows an effect of attention on reward, which complements the
strong data showing reward affecting attention (Taylor et al.,
2004; Small et al., 2005; Engelmann and Pessoa, 2007; Engelmann
et al., 2009). These brain regions also serve as a subset of those
implicated in emotion more generally (e.g., Breiter and Rosen,
1999; Ochsner and Gross, 2005; Oosterwijk et al., 2012), raising
interesting parallels between modern hypotheses about emotion
as a relationship between systems for reward/aversion, memory,
and attention (Breiter and Rosen, 1999; Russell and Barrett,
1999; Breiter et al., 2006; Barrett et al., 2007; Gross and Barrett,
2011) and the current model between {K±, H±, β} variables
observed here.

Two general implications arise from the present findings.
The first relates to modeling the relations of variables in
the same manner as is done in mechanistic disciplines (e.g.,
pressure, temperature, and volume with the gas laws in
chemistry).Whenwe do this, predictability bias in the framework
of relative preference theory (which resembles loss aversion
in prospect theory Kahneman and Tversky, 1979; Tversky
and Kahneman, 1991) appears to be associated with how
individuals set their response bias during the divided attention
task. The more β decreases, consistent with an increasing
tolerance for noise during divided attention, the more avoidance
entropy (H−) increases relative to approach entropy (H+) on
the approach/avoidance task, which in the context of equal
keypressing intensity (i.e., K+ = K− = constant), implies that
the slope of the avoidance curve is steeper than the slope of the
approach curve on the (K , H) value function. These data argue
that subjects who exhibit greater predictability bias during the
approach/avoidance task may also tend to have a more liberal
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response bias during the divided attention task (i.e., smaller β).
When individuals are more conservative on the divided attention
task and the false alarm rate is low (i.e., large β),H+ is prioritized
relative to H−, and these individuals’ patterns of approach
behavior become relatively more predictable when compared to
their avoidance behaviors on the keypress task (e.g., analogous
to having less loss aversion). Altogether, our study suggests that
the decision threshold (demarcating the trade-off between hit
and false alarm rates) that is chosen by subjects during divided
attention may be closely linked to the predictability bias observed
in the same individuals during reward/aversion behavior.

A second implication arises when one considers that the
multiplicative power-law relationship evaluated in our study
(i.e., H = aβbKc) has the same format as the Cobb-Douglas
production function in economics (Cobb and Douglas, 1928). In
economics, the Cobb-Douglas function has been broadly applied
in applications ranging from matching theory for describing
mutually beneficial relationships (Mortensen and Pissarides,
1994) to modeling the private domestic sector of the US economy
from 1929 to 1967 (Sinai and Stokes, 1972). An important
feature of the Cobb-Douglas function is that the power law
exponents together determine the relationship between the input
variables (i.e., K± and β) and the output variable (H±) as a
type of resource matching operation (Cobb and Douglas, 1928).
For instance, the output variable increases proportionally with
the input variables (i.e., the output variable doubles when the
input variables double) if the exponents b + c = 1. If b +
c < 1, the output variable will show decreasing returns to
scale or “inelasticity”: in this case, there will be relatively small
changes in H± despite substantial changes in K± and β. For
our data, b + c << 1 for both approach and avoidance data,
raising the hypothesis of a control function defining capacity
constraints (Mortensen and Pissarides, 1994) to processing for
divided attention and reward/aversion behavior, and potentially
suggesting a mechanism for the capacity constraints to attention
hypothesized by Kahneman (1973).

In conclusion, our data suggest that a systematic relationship
exists between quantitative formulations of reward/aversion
behavior and divided attention as gauged by independent
approach/avoidance and divided attention tasks carried out in
the same cohort of subjects. The relationship uncovered in
the present study underscores why concerns have arisen about
the potential interplay of attention with reward variables in
psychology and neuroscience (Maunsell, 2004), and supports
the need for further study. It raises at least two issues; first,
when reward or attention tasks are performed in isolation, the

results may bear the caveat of the other function not being
controlled in the experiment. Second, the relationships we report
between divided attention and relative preference variables in
Figures 3, 4 were accomplished through exploratory, iterative
modeling of various possible associations among these variables.
Our success using this approach builds upon existing efforts
that have identified relationships across behavioral domains,
and further demonstrates how quantitative approaches permit
complex associations between variables spanning many domains
of human behavior to be rigorously assessed and identified.
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