
On The Robustness of Majority Rule

Citation
Dasgupta, Partha, and Eric Maskin. 2008. “On The Robustness of Majority Rule.” Journal of the 
European Economic Association 6 (5) (September): 949–973. doi:10.1162/jeea.2008.6.5.949.

Published Version
doi:10.1162/JEEA.2008.6.5.949

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:32072356

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:32072356
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=On%20The%20Robustness%20of%20Majority%20Rule&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=8a5df31d23efc2d456185d6b72c1afd0&departmentMathematics
https://dash.harvard.edu/pages/accessibility


 
 
 
 

On the Robustness of Majority Rule and Rule by Consensus† 
 
 

Partha Dasgupta* and Eric Maskin** 
 

January 1998 
Current version: September 2003 

 
 
 
 
 
 

Abstract 
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property, anonymity, neutrality, and (generic) transitivity on a 
bigger class of preference domains than any other voting rule.  If 
we replace neutrality in the above list of properties with 
independence of irrelevant alternatives, then the corresponding 
conclusion holds for unanimity rule (rule by consensus). 

 
 
 
 

* Faculty of Economics and Politics, University of Cambridge 
 

** School of Social Science, Institute for Advanced Study 
and 

Department of Economics, Princeton University 
 
 
†  This research was supported by grants from the Beijer International Institute of Ecological 

Economics and the U.S. National Science Foundation. 
 
 We thank Salvador Barberá, François Maniquet, and William Thomson for helpful comments 

on an earlier version. 
 



 1 

1. Introduction 
 
 A voting rule is a method for choosing from a set of social alternatives on 

the basis of voters’ preferences.  Many different voting rules have been studied in 

theory and used in practice.  But far and away the most popular method has 

been simple majority rule, the rule that chooses alternative x over alternative y if 

more people prefer x to y than vice versa. 

There are, of course, good reasons for majority rule’s 1 popularity.  It not 

only is attractively straightforward to use in practice, but satisfies some 

compelling theoretical properties, among them the Pareto property (the principle 

that if all voters prefer x to y and x is available, then y should not be chosen), 

anonymity (the principle that choices should not depend on voters’ labels), and 

neutrality (the principle that the choice between a pair if alternatives should 

depend only on the pattern of voters’ preferences over that pair, not on the 

alternatives’ labels)2. 

But majority rule has a well-known flaw, discovered by the Marquis de 

Condorcet (1785) and illustrated by the Paradox of Voting (or Condorcet 

Paradox): it can generate intransitive choices.  Specifically, suppose that there are 

                                            
1 For convenience, we will omit the modifier “simple” when it is clear that we are referring to simple 
majority rule rather to the many variants, such as the supermajority rules. 
2 In fact, May (1952) established that majority rule is the unique voting rule satisfying the Pareto property, 
anonymity, and neutrality, and a fourth property called positive responsiveness—if alternative x is chosen 
(perhaps not uniquely) for a given configuration of voters’ preferences and the only change that is then 
made to those preferences is to move x up in some voters’ preference ordering, x is now uniquely chosen.  
Without positive responsiveness, there are many voting rules—including all the supermajority rules—that 
satisfy the properties.  We shall come back to May’s characterization in section 5. 
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three voters 1, 2, 3, three alternatives x, y, z, and that voters’ preferences are as 

follows: 

 1 2 3
x y z
y z x
z x y

 

(i.e., voter 1 prefers x to y to z, voter 2 prefers y to z to x, and voter 3 prefers z to x to y).  

Then, as Condorcet noted, a two-thirds majority prefers x to y, y to z, and z to x, so that 

majority rule fails to select any alternative. 

 Despite the theoretical importance of the Condorcet Paradox, there are important 

cases in which majority rule avoids intransitivity.  Most famously, when alternatives can 

be arranged linearly and each voter’s preferences are single-peaked in the sense that his 

utility declines monotonically in both directions from his favorite alternative, then, 

following Black (1948), majority rule is transitive for (almost) all3 configurations of 

voters’ preferences.  Alternatively, suppose that, for every three alternatives, there is one 

that no voter ranks in the middle.  This property, called limited agreement (see Inada 

1969, Sen and Pattanaik 1969), seems to have held in recent French presidential 

elections, where the Gaullist and Socialist candidates have not inspired much passion, but 

the National Front candidate, Jean-Marie Le Pen, has attracted either revulsion or 

admiration, i.e., everybody ranks him either first or last.  Whether or not this pattern of 

preferences has been good for France is open to debate, but it is certainly “good” for 

majority rule: limited agreement, like single-peakedness, ensures transitivity (almost 

always). 

                                            
3 We clarify what we mean by “almost all” in section 2. 
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 So, majority rule “works well”—in the sense of satisfying the Pareto property, 

anonymity, neutrality and generic transitivity—for some domains of voters’ preferences 

but not for others.  A natural question to ask is how its performance compares with that of 

other voting rules.  Clearly, no voting rule can work well for all domains; this conclusion 

follows immediately from the Arrow impossibility theorem 4 (Arrow, 1951).  But we 

might inquire whether there is a voting rule that works well for a bigger class of domains 

than does majority rule.5 

 We show that the answer to this question is no.  Specifically, we establish 

(Theorem 1) that if a given voting rule F works well on a domain of preferences, then 

majority rule works well on that domain too.  Conversely, if F differs from majority rule6, 

there exists some other domain on which majority rule works well and F does not. 

 Thus essentially majority rule is uniquely the voting rule that works well on the 

most domains; it is, in this sense, the most robust voting rule.  This property can be 

viewed as a characterization of majority rule complementing the one given by May 

(1952) (for more on this, see the discussion and corollary following Theorem 1). 

 Theorem 1 strengthens a result obtained in Maskin (1995).  That earlier 

proposition requires two rather strong auxiliary assumptions: 

                                            
4 Our formulation of neutrality (see section 3)—which is, in fact, the standard formulation (see Sen, 
1971)—incorporates Arrow’s independence of irrelevant alternatives, the principle that the choice between 
two alternatives should depend only on voters’ preferences for those two alternatives and not on their 
preferences for other alternatives.  We could instead have decomposed neutrality into two separate 
properties: (i) symmetry with respect to alternatives, and (ii) independence of irrelevant alternatives. 
5 It is easy to find voting rules that satisfy three out of our four properties on all domains of preferences.  
For example, two-thirds majority rule (which deems two alternatives as socially indifferent unless one 
garners at least a two-thirds majority against the other) satisfies Pareto, anonymity, and neutrality on any 
domain.  Similarly, rank-order voting (see below) satisfy Pareto, anonymity, and generic transitivity on any 
domain. 
6 More precisely, the hypothesis is that F differs from majority rule in some open neighborhood of 
preference configurations belonging to a domain on which majority rule works well. 
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 The first is that the number of voters be odd.  This assumption is needed because 

Maskin (1995) demands transitivity for all preference configurations drawn from a given 

domain.  And as we will see below, even when preferences are single-peaked, 

intransitivity is possible if the population splits exactly 50-50 between two preference 

orderings; an odd number of voters prevents this from happening.  To capture the idea 

that such a split is unlikely, we will work with a continuum of voters and ask only for 

generic transitivity. 

 Second, to prove the second half of the proposition, Maskin (1995) makes the 

strong assumption that the voting rule F being compared with majority rule satisfies 

Pareto, anonymity, and neutrality on any domain.  We show that this assumption can be 

dropped. 

 Although treating all alternatives alike—as neutrality entails—is a natural 

constraint in many political and economic settings, it is not always a reasonable 

assumption.  For example, there are cases in which we may wish to treat the status quo 

differently from other alternatives.  For that reason, it is of some interest to investigate 

which voting rule works best when neutrality is replaced by the weaker assumption of 

independence of irrelevant alternatives. 

 Our second major finding (Theorem 2) establishes that, in this modified scenario 

(where we also impose a mild tie-break consistency requirement), unanimity rule with an 

order of precedence is uniquely the most robust voting rule.  To define this rule, fix an 

ordering of the alternatives, interpreted as the “order of precedence.”  Then, between two 

alternatives, the rule will choose the one earlier in the ordering unless voters unanimously 

prefer the other alternative.  Unanimity rule with an order of precedence thus corresponds 
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to the sequential protocol that a committee might follow were it not willing to replace the 

status quo with another alternative except by consensus. 

 We proceed as follows.  In section 2, we set up the model.  In section 3, we define 

our four properties, Pareto, anonymity, neutrality, and generic transitivity formally.  We 

also characterize when rank-order voting—a major “competitor” of majority rule—

satisfies all these properties.  In section 4, we establish a lemma, closely related to a 

result of Sen and Pattanaik (1969) that characterizes when majority rule is generically 

transitive.  We use this lemma in section 5 to establish our main result on majority rule.  

Finally, we prove the corresponding result for unanimity rule in section 5. 

2. The Model 

 Our model is in most respects a standard social-choice framework.  Let X be the 

set of social alternatives.  For technical convenience, we take X to be finite with 

cardinality ( )3m ≥ .  The possibility of individual indifference often makes technical 

arguments in the social-choice literature a great deal messier (see for example, Sen and 

Pattanaik, 1969).  We shall simply rule it out by assuming that individual voters’ 

preferences are drawn from a set ℜ  of strict orderings, where ℜ  is a subset of Xℜ , the 

set of all logically possible strict orderings of X.  For any ordering XR ∈ℜ  and any 

alternatives ,x y X∈ , the notation xRy  denotes “x is preferred to y in ordering R.”  For 

example, if we can arrange the social alternatives from “least” to “greatest,” i.e., 

1 2 ,mx x x< < <… 7 then ℜ  consists of single-peaked preferences (relative to this 

                                            
7 We are using the terms “least” and “greatest” figuratively.  All we mean is that there is some linear order 
of the alternatives, e.g., how they line up on the left-right ideological spectrum. 
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arrangement) if, for all R∈ℜ , whenever 1i ixRx +  for some i, then 1j jx Rx +  for all j i> , 

and whenever 1i ix Rx+  for some i, then 1j jx Rx+  for all j i< . 

 For the reason mentioned in the introduction (and elaborated on below), we shall 

suppose that there is a continuum of voters indexed by points in the unit interval [ ]0,1 .  A 

profile  on ℜR  is a mapping 

 [ ]: 0,1 →ℜR , 

where ( )iR  is voter i’s preference ordering.  Hence, profile R is a specification of the 

preferences of all voters. 

 We shall use Lebesgue measure µ  as our measure of the size of voting blocs. 

Given alternatives x and y and profile R, let 

 ( ) ( ){ },q x y i x i yµ=R R| . 

Then ( ),q x yR  is the fraction of the population preferring x to y in profile R. 

 Let C  be the set of complete, binary relations (not necessarily transitive or strict) 

on X.  A voting rule F is a mapping that, for each profile R, assigns a relation ( )F ∈CR .  

F(R) can be interpreted as the “social preference relation” corresponding to R under F.  

More specifically, for any profile R and any alternatives ,x y X∈ , the notation 

“ ( )xF yR ” denotes that x is socially weakly preferred to y under ( )F R .  This means that 

if y is chosen and x is also available, then x is chosen too. 

 For example, suppose that mF  is simple majority rule.  Then, 

 ( ) ( ) ( )    if and only if   , , .mxF y q x y q y x≥R RR  
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As another example, consider rank-order voting.  Given (strict) ordering R of X, let 

( )Rv x  be m if x is the top-ranked alternative of R, 1m −  if x is second-ranked, and so on.  

That is, a voter with preference ordering R assigns m points to her favorite alternative, 

1m −  points to her next favorite, etc.  Thus, given profile ( ) ( ) ( )
1

0
,  iv x d iµ∫ RR  is 

alternative x’s rank-order score (the total number of points assigned to x) or Borda count.  

If ROF  is rank-order voting, then 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

0 0
 if and only if .RO

i ixF y v x d i v y d iµ µ≥∫ ∫R RR  

 The notation ( )" "xF y∼ R  denotes that x is not socially weakly preferred to y, 

given F and R.  Hence, if ( )xF yR  and ( )yF x∼ R , we shall say that x is socially strictly 

preferred to y under ( )F R , which we will usually denote by 

( )F
x
y

R
 . 

And if both ( )xF yR  and ( )yF xR , we shall say that x is socially indifferent to y and 

denote this by  

( )F
x y−

R
. 

3. The Properties 

 We are interested in four standard properties that one may wish a voting rule to 

satisfy. 

Pareto Property on ℜ : For all R on ℜ  and all ,x y X∈ , if, for all ( ),  i x i yR , then 

( )xF yR  and ( )yF x∼ R , i.e., 
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( )F
x
y

R
. 

 In words, the Pareto property requires that if all voters prefer x to y, then society 

should also (strictly) prefer x to y.  Virtually all voting rules used in practice satisfy this 

property.  In particular, majority rule and rank-order voting satisfy it on the unrestricted 

domain Xℜ . 

Anonymity on ℜ :  Suppose that [ ] [ ]: 0,1 0,1π →  is a measure-preserving permutation of 

[ ]0,1  (by “measure-preserving” we mean that, for all [ ] ( ) ( )( )0,1 ,  T T Tµ µ π⊂ = ).  If, 

for all R, πR  is the profile such that ( ) ( )( )i iπ π=R R  for all i, then ( ) ( )F Fπ =R R . 

In words, anonymity says that social preferences should depend only on the distribution 

of voters’ preferences and not on who has those preferences.  Thus if we permute the 

assignment of voters’ preferences by π , social preferences should remain the same. The 

reason for requiring that π  be measure-preserving is to ensure that the fraction of voters 

preferring x to y be the same for πR  as it is for R. 

Anonymity embodies the principle that everybody’s vote should count equally.  It is 

obviously satisfied on Xℜ  by both majority rule and rank-order voting. 

Neutrality on ℜ : For all profiles  and on ′ ℜR R   and all alternatives x, y, w, z, if 

 ( ) ( ) if and only if  for all x i y w i z i′R R  

then 
  

 ( ) ( ) if and only if xF y wF y′R R  

and 
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 ( ) ( ) if and only if yF x yF xR R . 

In words, neutrality requires that the social preference between x and y should depend 

only on the proportions of voters preferring x and preferring y, and not on what the 

alternatives x and y actually are. 

 As noted in the introduction, this (standard) version of neutrality embodies 

independence of irrelevant alternatives, the principle that the social preference between x 

and y should depend only on voters’ preferences between x and y, and not on preferences 

entailing any other alternative: 

Independence of Irrelevant Alternatives (IIA) on ℜ : For all profiles  and on ′ ℜR R  and 

all alternatives x and y, if  

 ( ) ( ) if and only if y for all x i y x i i′R R , 

then 
 ( ) ( ) if and only if xF y xF y′R R . 

 Clearly, majority rule satisfies neutrality on the unrestricted domain Xℜ .  Rank-

order voting violates neutrality on Xℜ  because, as is well known, it violates IIA on that 

domain.  However, it satisfies neutrality on any domain ℜ  on which “quasi-agreement” 

holds. 

Quasi-agreement on ℜ : Within each triple { }, ,   x y z X⊆ , there exists an 

alternative, say x , such that either (a) for all ,  and R xRy xRz∈ℜ ; or (b) for all 

,  and R yRx zRx∈ℜ ; or (c) for all R∈ℜ , either  or yRxRz zRxRy . 
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In other words, quasi-agreement holds on domain ℜ  if, for any triple { }, ,x y z , 

anybody with preference in ℜ  either agrees, that, say, x is best among the triple, or that x 

is worst, or that x is in the middle. 

Lemma 1:  ROF  satisfies neutrality on ℜ  if and only quasi-agreement holds on ℜ . 

Proof:  See appendix. 

 An ordering R is transitive if for all , , ,  x y z X xRy∈  and yRz  imply that xRz . 

Transitivity demands that if x is weakly preferred to y and y is weakly preferred to z, then 

x should be weakly preferred to z.   

Transitivity on ℜ :  ( )F R  is transitive for all profiles R on ℜ . 

 For our results on majority rule we will, in fact, not require transitivity for all 

profiles in ℜ  but only for almost all.  To motivate this weaker requirement, let us first 

observe that, as mentioned in the introduction, single-peaked preferences do not 

guarantee that majority rule is transitive for all profiles.  Specifically, suppose that 

x y z< <  and consider the profile  

 
[ ) [ ]1 1

2 20, ,1
       

x y
y z
z x

 

That is, we are supposing that half the voters (those from 0 to 1
2 ) prefer x to y to z and 

that the other half (those from 1
2  to 1) prefer y to z to x.  Note that these preferences are 

certainly single-peaked relative to the linear arrangement, x y z< < .  However, the social 

preference relation under majority rule for this profile is not transitive: x is socially 

indifferent to y, y is socially strictly preferred to z, yet z is socially indifferent to x.  We 

can denote the relation by: 



 11 

       
x y

z x
−

−  . 

 Nevertheless, this intransitivity is a knife-edge phenomenon - - it requires that 

exactly as many voters prefer x to y as y to x, and exactly as many prefer x to z as prefer z 

to x.  Thus, there is good reason for us to “overlook” it as pathological or irregular.  And, 

because we are working with a continuum of voters, there is a formal way in which we 

can do so, as follows. 

 Let S be a subset of (0, 1).  A profile R on ℜ  is regular with respect to S (which 

we call an exceptional set) if, for all alternatives x and y, 

 ( ), .q x y S∉R  

That is, a regular profile is one for which the proportions of voters preferring one 

alternative to another all fall outside the specified exceptional set. 

Generic Transitivity on ℜ :  There exists a finite exceptional set S such that, for all 

profiles R on ℜ  that are regular with respect to S, ( )F R is transitive. 

 In other words, generic transitivity requires only that social preferences be 

transitive for regular profiles, ones where the preference proportions do not fall into some 

finite exceptional set.  For example, majority rule is generically transitive on a domain of 

single-peaked preferences because if the exceptional set consists of the single point 1
2 —

i.e., { }1
2S = —social preferences are then transitive for all regular profiles. 

 In view of the Condorcet paradox, majority rule is not generically transitive on 

domain Xℜ .  By contrast, rank-order voting is not only generically transitive on Xℜ  but 

fully transitive (i.e., generically transitive with exceptional set S φ= ). 
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 We shall say that a voting rule works well on a domain ℜ  if it satisfies the Pareto 

property, anonymity, neutrality, and generic transitivity on that domain.  Thus, in view of 

our previous discussion, majority rule works well on a domain of single-peaked 

preferences, whereas rank-order voting works well on a domain with quasi-agreement. 

4. Generic Transitivity and Majority Rule 

 We will show below (Theorem 1) that majority rule works well on or more 

domains than (essentially) any other voting rule.  To establish this result, it will be useful 

to have a characterization of precisely when majority rule works well, which amounts to 

asking when majority rule is generically transitive.  We have already seen in the previous 

section that a single-peaked domain ensures generic transitivity.  And we noted in the 

introduction that the same is true when the domain satisfies limited agreement.  But 

single-peakedness and limited agreement are only sufficient conditions for generic 

transitivity; what we want is a condition that is both sufficient and necessary. 

 To obtain that condition, note that, for any three alternatives x, y, z, there are six 

logically possible strict orderings, which can be sorted into two Condorcet “cycles”8: 

 

   cycle 1        cycle 2

x y z x z y
y z x z y x
z x y y x z

|
|
|  

We shall say that a domain ℜ  satisfies the no-Condorcet-cycle property 9 if it contains no 

Condorcet cycles.  That is, for each triple of alternatives at least one ordering is missing 

                                            
8 We call these Condorcet cycles because they constitute preferences that give rise to the Condorcet 
paradox 
9 Sen and Pattanaik (1969) refer to this condition as extremal restriction. 
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from each of cycles 1 and 2 (more precisely for each triple { }, ,x y z , there do not exist 

orderings { }R, R,R′ ′′ in ℜ  that, when restricted to { }, ,x y z , generate cycle 1 or cycle 2). 

Lemma 2:  Majority rule is generically transitive on domain ℜ  if and only if ℜ  satisfies 

the no-Condorcet-cycle property.10 

Proof:  If there existed a Condorcet cycle in ℜ , then we could reproduce the Condorcet 

paradox.  Hence, the no-Condorcet-cycle property is clearly necessary. 

 To show that it is sufficient, we must demonstrate, in effect, that the Condorcet 

paradox is the only thing that can interfere with majority rule’s generic transitivity.  To do 

this, let us suppose that mF  is not generically transitive on domain ℜ .  Then, in 

particular, if we let { }1
2S =  there must exist a profile R on ℜ  that is regular with respect 

to { }1
2  but for which ( )mF R  is intransitive.  That is, there exist , ,x y z X∈  such that 

( ) ( ) ( )m m mxF yF zF xR R R , with at least one strict preference.  But because R is regular 

with respect to { }1
2 , ( )mxF yR  implies that 

(1)  ( ) 1
2,q x y >R , 

that is, over half the voters prefer x to y.  Similarly, ( )myF zR  implies that 

(2)  ( ) 1
2,q y z >R , 

meaning that over half the voters prefer y to z.  Combining (1) and (2), we conclude that 

there must be some voters in R who prefer x to y to z, i.e., 

(3)  
x
y
z

∈ℜ .11 

                                            
10 For the case of an odd and finite number of voters, Sen and Pattanaik (1969) establish that the no-
Condorcet-cycle property is necessary and sufficient for majority rule to be transitive. 
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By similar argument, it follows that 

 
   
 ,  
   

y z
z x
x y

∈ℜ . 

Hence, ℜ contains a Condorcet cycle, as was to be shown. 
 Q.E.D. 
 
5. The Robustness of Majority Rule 

 To establish our main finding about majority rule, we need one final concept. 

Given profile R and ordering R let ( ) ( ){ };w R U i i R= =R R| .  That is, ( );w R R  is the 

proportion of voters in profile R with ordering R.  For 0ε > , let the ε -neighborhood of 

R —which we will denote by ( )Nε R —be the set of profiles ′R whose proportions differ 

from those of R by less than ε : 

 ( ) ( ) ( ){ }; ;  for all N w R w R Rε ε′ ′= − <R R R R| | . 

Theorem 1:  Suppose that voting rule F works well on domain ℜ .  Then, majority rule 

mF  works well on ℜ  too.  Conversely, suppose that F differs from mF  on some open 

neighborhood.  More precisely, assume that there exist a profile ∗R  (on a domain mℜ  on 

which mF  works well) and 0ε >  such that 

(4) ( ) ( ) ( ) for all mF F Nε
∗≠ ∈R R R R . 

Then, there exists a domain ′ℜ  on which mF  works well, but F does not. 

Remark:  Without the requirement that ∗R  belong to a domain on which majority rule 

works well, the converse assertion above would be false.  In particular, consider a voting 

                                                                                                                                  
11 To be precise, formula (3) says that there exists an ordering in ℜ  in which x is preferred to y and y is 

preferred to z.  However, because mF  satisfies IIA we can ignore the alternatives other than , ,x y z .  
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rule that coincides with majority except for profiles that contain a Condorcet cycle.  It is 

easy to see that such a rule works well on any domain for which majority rule does. 

Proof:  Suppose first that F works well on ℜ .  If, contrary to the theorem, mF  does not 

work well on ℜ , then, from Lemma 2, there exists a Condorcet cycle in ℜ : 

(5)  
         
 ,    ,   
         

x y z
y z x
z x y

∈ ℜ . 

Let S be the exceptional set for F on ℜ .  Because S is finite (by assumption), we can find 

an integer n such that, if we divide the population into n equal groups, any profile for 

which all the voters in each particular group have the same ordering in ℜ  must be regular 

with respect to S. 

 Let 10, n    be group 1, ( 1 2,n n   be group 2, …, and ( 1 ,1n
n
−   be group n.  Consider a 

profile 1R on ℜ  such that all voters in group 1 prefer y to x and all voters in the other 

groups prefer x to y.  That is, the profile is 

(7)   1 2 n
y x x
x y y

L   . 

From (5), such a profile exists on ℜ .  From neutrality (implying IIA), the social 

preferences ( )1F R  do not depend on voter’s preferences over other alternatives. 

 There are three cases either (i) x is socially strictly preferred to y under 

( )1 ; ( )F ii xR  is socially indifferent to y under ( )1 ; or ( )F iii yR  is socially strictly 

preferred to x under ( )1F R . 

Case (i): 
( )1F
x
y

R
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 Consider a profile 1
∗R  on ℜ  in which all voters in group 1 prefer x to y to z; all 

voters in group z prefer y to z to x; and all voters in the remaining groups prefer z to x to 

y.  That is, 

                12 

(8)   1
1 2 3

   
n

x y z z
y z x x
z x y y

∗ = LR  

Notice that, in profile 1
∗R , voters in group 1 prefer x to z and that all other voters prefer z 

to x.  Hence, neutrality and the case (i) hypothesis imply that z must be socially strictly 

preferred to x under ( )1F ∗R , i.e., 

(9)   
( )1F

z
x

∗R
 

 Observe also that, in 1
∗R , voters in group 2 prefer y to x and all other voters prefer 

x to y.  Hence from anonymity and neutrality and the case (i) hypothesis, we conclude 

that x must be socially strictly preferred to y under ( )1F ∗R , i.e., 

(10)    
( )1F

x
y

∗R
. 

Now (9), (10), and generic transitivity imply that z is socially strictly preferred to y under 

( )1F ∗R , i.e., 

(11)    
( )1F

y
z

∗R
 

                                            
12 This is not quite right because we are not specifying how voters rank alternatives other than x, y, and z.  
But from IIA, these other alternatives do not matter. 
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But (8), (11), and neutrality imply for any profile such that  

 1 2 3 n
y y z z
z z y y

L , 

z must be socially strictly preferred to y.  Hence, from neutrality, for any profile 2R  on 

ℜ such that  

(12) 1 2 3 n
y y x x
x x y y

L , 

x must be socially strictly preferred to y, i.e., 

(13) 
( )2F
x
y

R
 

That is, we have shown that if x is socially strictly preferred to y when just one out of n 

groups prefers y to x (as in (7)), then x is again socially strictly preferred to y when two 

groups out of n prefer y to x (as in (12)). 

 Now choose 2
∗R  on ℜ  so that 

(14)   2
1 2 3 4 n
x y y z z
y z z x x
z x x y y

∗ = LR   . 

Arguing as above, we can use (12) – (14) to show that x is socially strictly preferred to y 

if three groups out of n prefer y to x.  Continuing iteratively, we conclude that x is 

socially preferred to y even if 1n −  groups out of n prefer y to x, which, in view of 

neutrality, violates the case (i) hypothesis.  Hence case (i) is impossible. 

Case (ii): 
( )1F
y
x

R
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But from the case (i) argument, case (ii) leads to the same contradiction as before.  Hence 

we are left with 

Case (iii): 
( )1F

x y−
R

 

 Consider a profile R̂  on ℜ  such that 

1 1ˆ n n
x x y
y y z
z z x

−LR =   . 

From anonymity, neutrality and the case (iii) hypothesis, we conclude that x is socially 

indifferent to y and y is socially indifferent to z under ( )ˆF R , i.e., 

(15) 
( )ˆF

x y−

R
    . 

and 

(16) 
( )ˆF

y z−

R
    . 

But the Pareto property implies that y is socially strictly preferred to z under ( )ˆF R , 

which together with (15) and (16) contradicts generic transitivity.  We conclude that case 

(iii) is impossible too, and so mF  must work well on ℜ  after all, as claimed. 

 Turning to the converse, suppose that there exist domain mℜ , profile ∗R  on mℜ , 

and 0ε >  such that mF  works well on mℜ  and (4) holds.  From (4), we can partition 

voters into n equal group and assign everyone within a group the same ordering in such a 

way that the resulting profile  on mℜoR  is regular and ( ) ( )mF F≠o oR R .  Furthermore, 

because mF  is assumed to work well on mℜ , we can assume that F does too (otherwise, 
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we can take m′ℜ ℜ= ).  Hence, from neutrality of F, we can assume that oR  consists of 

just two orderings  and R R′ ′′ .  More formally, there exist integers n and k with 

(17)   n k k− >  , 

alternatives ,  and orderings ,x y X R R′ ′′∈ ∈ℜ  with 

(18)    and y R x x R y′ ′′  

such that if we take 

(19)   1 1
,

k k n
R R R R

+
=

′ ′ ′′ ′′
o L LR  

then y is weakly socially preferred to x under ( )F oR , i.e., 

(20)   ( )y F xoR   . 

Notice that ( ) ( )mF F≠o oR R . 

To give the idea of the proof, let us assume for the time being that F satisfies the 

Pareto property, anonymity, and neutrality on the unrestricted domain Xℜ .  Consider 

{ },z x y∉  and profile ooR  such that 

(21)  1 1 1
.

k k n k n k n
z z z z x x
y y x x z z
x x y y y y

+ − − +
=oo L L LR 13 

Then from (18)-(21), anonymity, and neutrality, we have 

(22)  ( ) ( ) and .yF x xF zoo ooR R  

From the Pareto property, we have 

                                            
13 We have again left out the alternatives other than , ,x y z , which we are entitled to do by IIA.  To make 

matters simple, assume that the orderings of ooR  are all the same for these other alternatives.  Suppose 

furthermore that, in these orderings, , ,x y z , are each preferred to any alternative not in { }, ,x y z . 
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(23)  
( )

.
F

z
y

ooR
 

But, by construction, ooR is regular with respect to F’s exceptional set.  Thus, (22) and 

(23) together imply that F violates generic transitivity on 
  
, ,

z z x
y x z
x y y

  ′ℜ =  
  

.  Yet, from 

Lemma 2 (see also footnote 11), mF  is generically transitive on ′ℜ , which implies that 

′ℜ  is a domain on which mF  works well but F does not.  Thus, we are done in the case 

in which F always satisfies the Pareto property, anonymity and neutrality. 

 However, if F does not always satisfy these properties, then we can no longer 

infer (22) from (18)-(21), and so must argue less directly (although we shall still make 

use of the same basic idea). 

 Consider  and R R′ ′′  of (18).  Suppose first that there exists alternative z X∈  such 

that 

(24)           and          .zRy zR x′ ′′  

Let w be the alternative immediately below z in ordering R′′ .  If w x≠ , let R∗′′  be the 

strict ordering that is identical to R′′  except that w and z are now interchanged (so that 

w R z∗′′ ).  By construction of { }, the domain , ,R R R R∗ ∗′′ ′ ′′ ′′ does not contain a Condorcet 

cycle, and so, from Lemma 2, mF  works well on this domain.  Hence, we can assume 

that F works well on this domain too (otherwise, we are done).  Notice that neutrality of 

F and (20) then imply that if we replace  by  in profile R R∗′′ ′′ oR  (to obtain profile ∗
oR ) we 

must have 

(25)   ( ) .yF x∗
oR  
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Now, if w∗  is the alternative immediately below z in R∗′′ and w x∗ ≠ , we can perform the 

same sort of interchange as above to obtain  and R∗∗ ∗∗′′ oR and so conclude that mF  and F 

work well on { }, ,R R R∗ ∗∗′ ′′ ′′  

and that 

(26)  ( )yF x∗∗
oR . 

By such a succession of interchanges, we can, in effect, move z “downward” 

while still ensuring that F and mF  work well on the corresponding domains and that the 

counterparts to (20), (25) and (26) holds.  The process comes to end, however, once the 

alternative immediately below z in  (or , , etc.)R R R∗ ∗∗′′ ′′ ′′  is x.  Furthermore, this must 

happen after finitely many interchanges (since X is finite).  Hence, we can assume 

without loss of generality that w x=  (i.e., that x is immediately below z in R′′ ). 

Let R′′′  be the strict ordering that is identical to R′′  except that x and z (which we 

are assuming are adjacent in R′′ ) are now interchanged.  From the above argument, 

{ } works well on , ,mF R R R′ ′ ′′ ′′′ℜ =  and we can suppose that F does too.  Hence, from the 

same argument we used for ooR above, we can conclude that 

(27)   ( ) ( ) and yF x xF∗ ∗
oo ooR R  

and 

(28)   
( )F

z
y

∗
ooR

, 

where ∗
ooR  is the profile 

 1 1 1k k n k n k n
R R R R R R

+ − − +
′ ′ ′′ ′′ ′′′ ′′′
L L L . 
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But (27) and (28) generate the same contradiction we obtained following (23).  Thus, we 

are done in the case where (24) holds. 

 Next, suppose that there exists z X∈  such that 

(29)         and        xRz yR x′ ′′ . 

But this case is the mirror image of the case where (24) holds.  That is, just as in the 

previous case we generated R′′′  with 

(30)  xR zR y′′′ ′′′  

through a finite succession of interchanges in which z moves downwards in R′′ , so we 

can now generate R′′′  satisfying (30) through a finite succession of interchanges in which 

z moves upwards in R′′ .  If we then take { }, ,R R R′ ′ ′′ ′′′ℜ = , we can furthermore conclude, 

as when (24) holds, that mF  and F work well on ′ℜ .  But, paralleling the argument for 

∗
ooR , we can show that 

  ( ) ( )      and      yF z zF y∗∗ ∗∗
oo ooR R  

and 

  
( )

,
F

x
z

∗∗
ooR

 

where ∗∗
ooR  is the profile 

 1 1 1k k n k n k n
R R R R R R

+ − − +
′ ′ ′′ ′′ ′′′ ′′′
L L L , 

implying that ( )F ∗∗
ooR is intransitive.  This contradicts the conclusion that F works well 

on ′ℜ , and so again we are done. 

 Finally, suppose that there exists z X∈  
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such that 

(31)          and       zRy xR z R y′ ′′ ′′ . 

As in the preceding case, we move z upwards in R′′  through a succession of 

interchanges.  Only this time, the process when z and x are interchanged to generate R̂′′  

such that 

(32)   ˆ ˆzR xR y′′ ′′ . 

As in the previous cases, we can conclude that F and mF  work well on { }ˆ, ,R R R′ ′′ ′′ .  

Take ˆ ooR  such that 

1 1 1ˆ
ˆ ˆ

k k n k n k n
R R R RR R

+ − − +
=

′ ′ ′′ ′′′′ ′′
oo L L LR . 

Then, as in the arguments about  and ∗ ∗∗
oo ooR R , we infer that ( )ˆF ooR  is intransitive, a 

contradiction of the conclusion that F works well on { }ˆ, ,R R R′ ′′ ′′ .  This completes the 

proof when (31) holds.  The remaining possible cases involving z are all repetitions of 

one or another of the cases already treated. 

 Q.E.D. 

 We have already mentioned May’s (1952) characterization of majority rule (see 

footnote 2).  In view of Theorem 1, we can provide an alternative characterization.  

Specifically, call two voting rules F and F′  generically the same on domain ℜ  if the set 

of profiles  on ℜR  for which ( ) ( )F F ′=R R  is open and dense (put another way, we are 

requiring that if ( ) ( )F F∗ ∗′≠R R  then there should not exist 0ε > , such that 

( ) ( ) ( ) for all F F R N Rε
∗′≠ ∈R R ).  Call F maximally robust if there exists no voting 
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rule that (i) works well on every domain on which F works well and (ii) works well on 

some domain on which F does not work well.  Theorem 1 implies: 

Corollary: Any maximally robust voting rule is generically the same as majority rule. 

6. Unanimity Rule 

 The symmetry inherent in neutrality is often a reasonable and desirable property-- 

we would presumably want to treat all candidates in a presidential election the same.  

However, there are also many circumstances in which it is natural to favor certain 

alternatives.  The rules for changing the U.S. Constitution are a case in point.  They have 

been deliberately devised so that, at any time, the current version of the Constitution—the 

status quo—is difficult to revise. 

 Accordingly, let us relax neutrality and just impose IIA.  We will require the 

following additional weak condition on voting rules: 

Tie-break Consistency: Given voting rule F, there exists an ordering FR  such that, for all 

,  and all  on x y X∈ ℜR  for which ( ) ( ), ,q x y q y x=R R , we have 

( ) if and only if .FxR y xF y∗ ∗R  

 Tie-break consistency requires that in situations where the population splits 50-50 

between two alternatives, the “tie” be broken (or not broken as the case may be) 

consistently in the sense that it be done transitively (note that, given IIA, the only aspect 

of the condition that is restrictive is the stipulation that FR  be an ordering—which entails 

transitivity).  That is, if x is chosen over y when the population splits between x and y, 

and y is chosen over z when the population splits between y and z, then x should be 

chosen over z when the population splits between x and z.  Observe that because the 
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likelihood that the population will split exactly is very low, tie-break consistency is not a 

terribly demanding condition. 

 Let R∗  be a strict ordering of X.  We shall denote unanimity rule with order of 

precedence R∗  by U
RF ∗ and define it so that, for all profiles R  and all alternatives x and y, 

( )U
RxF y∗ R  if and only if either ( ) [ ] for all 0,1x i y i∈R  or else there exist j such that 

( ) ( ) and U
Rx j y xF y∗R R .  That is, between x and y, the alternative earlier in the order of 

precedence R∗  will be chosen unless voters unanimously prefer the other alternative.  

U
RF ∗  can be implemented by the following procedure.  Begin with alternative 1x  as 

the status quo (where 1 2 mx R x R x∗ ∗L ).  At each stage (there are 1m −  in all), compare the 

current status quo with the next alternative in the order R∗ .  If everyone prefers this next 

alternative, then it becomes the new status quo; otherwise, the old status quo remains in 

place. 

We shall say that a voting rule works satisfactorily on a domain ℜ  if it satisfies 

the Pareto property, anonymity, IIA, and transitivity on ℜ .14  

 Just as Lemmas 1 and 2 characterize when rank-order voting and majority rule 

work well, Lemma 3 tells us when unanimity rule with an order of precedence works 

satisfactorily: 

Lemma 3:  Unanimity rule with order of precedence R∗  works satisfactorily on domain 

ℜ  if and only if, for all triples { }, ,x y z  with 

                                            
14 There is an obvious sense in which to work satisfactorily is a less demanding requirement than to work 
well, since the former imposes only IIA rather than the stronger condition, neutrality.  Note, however, that 
working satisfactorily requires exact transitivity, whereas working well only generic transitivity. 
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(33)   R
x
y
z

∗     , 

there do not exist both  and  in R R′ ′′ ℜ  such that  

(34)   R R
y z
z x
x y

′ ′′
    . 

Proof:  Suppose that, for some triple { }, ,x y z satisfying (33), there exist  and  in R R′ ′′ ℜ  

satisfying (34).  Consider profile R̂  such that 

   
[ ) [ ]1 1

2 20, ,1ˆ
y z
z x
x y

=R     . 

Because xR y∗  and voters from 1
2  to 1 prefer x to y, 

we have 

(35)   
( )ˆU

RF

x
y

∗
R

    . 

Similarly, we have 

(36)   
( )ˆU

RF

y
z

∗
R

    . 

But because everyone prefers z to x, we have 

   
( )ˆU

RF

z
x

∗
R

 , 
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which together with (35) and (36) contradicts transitivity.  We conclude that if (34) holds, 

then a necessary condition for U
RF ∗  to work satisfactorily on ℜ  is that either  or R R′ ′′  be 

missing from ℜ . 

 Conversely, suppose that U
RF

∗
 does not work satisfactorily on ℜ .  Because this 

voting rule always satisfies Pareto, anonymity, and IIA, there must exist { }, ,x y z  

satisfying (33) and a profile ∗R   such that either  

(37)   
( )U

RF

x
y
z
x

∗

∗R
 

or 

(38)   
( )U

RF

x
z
y
x

∗

∗R
    . 

 Suppose first that (38) holds.  Then, from (33), we must have 

   ( ) ( ) [ ] for all 0,1z i y i x i∗ ∗ ∈R R , 

which contradicts the hypothesis that ( )U
RxF z

∗

∗R .  Hence, (37) must hold.  Then because, 

by assumption, xR z∗ , we infer that 

(39)   ( ) [ ] for all 0,1z i x i∗ ∈R . 

Because ( ) ( ) and U U
R RxF y yF z

∗ ∗

∗ ∗R R , there must exist  and i i′ ′′  such that 

(40)   ( ) ( ) and x i y y i z∗ ∗′ ′′R R . 

But (39) and (40) imply: 
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( ) ( )

and
i i

z y
x z
y x

∗ ∗′ ′′R R
 

Hence, when (37) holds, that not both  and  belong to R R′ ′′ ℜ  is also a sufficient 

condition for U
RF

∗
 to work satisfactorily on ℜ .   

 Q.E.D. 

We can now establish our second major result: 

Theorem 2: Suppose that F satisfies tie-break consistency.  There exists a strict ordering 

R∗  such that for all domains ℜ  on which F works satisfactorily, U
RF

∗
 works satisfactorily 

on ℜ  too.  Furthermore, if there exist a domain Uℜ on which U
RF

∗
 works satisfactorily 

and profile R on Uℜ such that ( ) ( )U
RF F

∗
≠R R , then there exists a domain ′ℜ  on which 

U
RF

∗
works satisfactorily but F does not. 

Proof:  Given voting rule F, let FR  be the corresponding “tie-break” ordering prescribed 

by tie-break consistency.  Choose a strict ordering R∗  consistent with FR , i.e., let R∗  be a 

strict ordering such that, for all ,x y X∈  

(41)  if  then FxR y xR y∗  . 

Consider { }, ,x y z  with 

(42)  R
x
y
z

∗      

and suppose that F works satisfactorily on domain ℜ .  From Lemma 3, U
RF

∗
 works 

satisfactorily on ℜ  provided that whenever  and R R′ ′′  are two strict orderings such that 
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(43)  and
R R
y z
z x
x y

′ ′′
    , 

then not both  and R R′ ′′  can belong to ℜ .  Thus, to establish the first assertion of the 

Theorem, it suffices to show that if (43) holds, either  and R R′ ′′  must be missing from 

ℜ . 

 Suppose to the contrary that ,R R′ ′′∈ℜ . Consider the profile ˆ  on ℜR  such that 

(44)  
[ ) [ ]1 1

2 20, ,1ˆ
R R

=
′ ′′

R  

From (41) and (42) we have  

(45)  F FxR yR z  

(although the rankings in (45) may not be strict). 

Hence, from (44) and (45), tie-break consistency implies that 

(46)  ( ) ( )ˆ ˆxF yF zR R     . 

But because everyone in R̂  prefers z to x, the Pareto property gives us 

  
( )ˆF

z
x

R
    , 

which, together with (46), means that ( )ˆF R  is not transitive, a contradiction.  Thus the 

first assertion of the theorem is indeed established. 

 To prove the converse, consider profile R  and domain Uℜ such that 

(47)  R  is on Uℜ  

(48)  U
RF

∗
 works satisfactorily on Uℜ  
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and 

(49)  ( ) ( )U
RF F

∗
≠R R   . 

If there are multiple such  and UℜR  choose a pair ( ), U
F FℜR  and alternatives ,F Fx y  to 

solve 

(50)  ( )max ,q x yR  

subject to (47) - (49) and 

(51)  ( ) ( ) and U
RxF y yF x

∗
R R   . 

From (51), we have 

(52)  F Fx R y∗    . 

Let R∗∗  be the opposite of R∗ , i.e., for all x, y 

 if and only if xR y yR x∗ ∗∗   . 

Let Fz  be the alternative just below Fy  in ordering R∗  (if Fy  is the lowest alternative in 

R∗ , the argument is very similar).  Let R∗  be the ordering that coincides with R∗  except 

that  and F Fy z  are interchanged.  Finally, let R̂∗  be the ordering that coincides with R∗  

except that  and F Fx y  are interchanged. 

 It is a matter of straightforward verification to check that, for all { }ˆ, ,R R R∗∗ ∗ ∗∈ R  

and all , ,x y z  if 

   R
x
y
z

∗    , 

then we have neither 
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(53)   R
y
z
x

 

nor 

(54)   R
z
x
y

   , 

which, from Lemma 3, implies that U
RF

∗
 is transitive on { }, ,U U

F F R R R∗ ∗∗ ∗ℜ = ℜ ∪ . 

 We know, from (41) and (52), that F F Fx R y .  There are two cases. 

Case I:   F

F F

R
x y−

 

Because F Fx R z∗ , (41) implies that 

(55)   F F Fx R z    . 

Consider the profile 

   
[ ) [ ]1 1

2 21 0, ,1
R R∗ ∗∗

=R  

From (55), we have 

(56)   ( )1
F Fx F zR    . 

From the Pareto property, we have 

   
( )1

F
F

F

z
y

R
   . 

Finally, from the Case I hypothesis, we have 

(57)   
( )1

F F

F

x y−
R

   . 
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But combining (55) – (57) we conclude that ( )1F R  is intransitive, and so, if Case I 

holds, we can take U
F′ℜ = ℜ  to complete the proof. 

 

Case II:  F

F
F

R
x
y

 

Recall from our choice of ( ) that F FFR R  and ( )U
RF

∗
R  rank  and F Fx y  differently.  

Thus, in view of (52) and the Case II hypothesis, we cannot have 

( ) ( ) 1
2, ,

F FF F F Fq x y q y x= =R R .  We must therefore have either 

(58)  ( ) ( ), ,
F FF F F Fq x y q y x>R R  

or 

(59)  ( ) ( ), ,
F FF F F Fq x y q y x<R R    . 

Suppose first that (58) holds.  Because U
RF

∗
 works satisfactorily on U

R∗
ℜ , we can assume 

that F does too (otherwise, we can take U
F′ℜ = ℜ  and we are done). 

Hence, if R is a profile on U
Fℜ  such that 

(60)  ( ) ( )
F

, ,F F F Fq x y q x y=R R , 

anonymity and neutrality of F imply that 

(61)  ( )F Fy F xR    . 

 Let R∗∗  be the ordering that coincides with ∗∗ℜ  except that  and F Fx y  are 

interchanged.  One can verify mechanically that for all { }ˆ, , ,R R R R R∗∗ ∗ ∗ ∗∗∈  and all 

, ,x y z , if 



 33 

   R
x
y
z

∗  

then we do not have 

(62)   R
y
z
x

   . 

Hence, from Lemma 3, U
RF

∗
 works satisfactorily on { }ˆ ˆ, , , ,U

R R R R R R
∗ ∗ ∗∗ ∗ ∗ ∗∗ℜ = , and so we 

can assume that the same is true of F.  Hence, if R is a profile on ˆ U
R∗

ℜ  satisfying (60), we 

can infer (61). Consider 2R  such that  

  
[ ) ( )) ( )

F

11
222
, , , ,10, F F F F Fq x y q x y

R R R∗ ∗∗ ∗∗

    =
R R

R  

Because ( ) ( )2 , ,F F F Fq x y q x y=
FRR , the above argument implies that 

(63)  ( )2
F Fy F xR    . 

From the Pareto property  

(64)  
( )2

F
F

F

z
y

R
   . 

Furthermore, because ( )2
1
2,F Fq x z =R , (41) and the fact that F Fx R z∗  imply that 

(65)  ( )2
F Fx F zR    . 

But (63) – (65) contradict the transitivity of ( )2F R  , and so we can take ˆ U
R∗

′ℜ = ℜ  when 

(58) holds. 
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 Finally, assume that (59) holds.  If there exists 1
2β <  and a profile ˆ on U

R∗
ℜR  such 

that  

(66)  ( ),F Fq y z β=R  

and 

(67)  ( )F Fz F yR  , 

consider profile 3R  such that 

 
( )) ( ) ( ) ) ( )3 0, , , , , , ,1

ˆ
F F F FF F F F F F F Fq x y q x y q x y q x y

R RR

β β

∗ ∗∗∗

   + +   =
R R R R

R  

Because ( )3 ,F Fq y z β=R , (66) and (67) imply 

that 

(68)  ( )3
F Fz F yR    . 

Because ( ) ( )3 , ,
FF F F Fq x y q x y= RR , we have 

(69)  ( )3
F Fy F xR    . 

Now, ( ) ( )3 , ,
FF F F Fq x z q x y β= +RR  and so from the choices of , , and F F Fx y R  and the 

fact that 

   
( )3U

R

F
F

F

x
z

∗
R

  , 

we must have 

(70)   
( )3

F
F

F

x
z

R
   . 

But (68) – (70) contradict the transitivity of ( )3F R . 
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 Thus assume that, for all 1
2β <  and profiles ˆ on U

R∗
ℜR with 

(71)   ( ),F Fq y z β=R   , 

we have 

(72)   ( )F Fy F zR    . 

 If there exists ( )1
20,δ ∈  and profile ˆ on U

R∗
′ ℜR  such that 

(73)   ( ),F Fq x z δ′ =R  

and 

(74)   ( )F Fz F x′R , 

then consider profile 4R  such that 

  
[ ) [ ]4 0, ,1

R R

δ δ

∗ ∗∗

=R    . 

From the Pareto property, 

(75)  
( )4

F
F

F

x
y

R
 

From (71) and (72), we have 

(76)  ( )4
F Fy F zR   . 

From (73) and (74), we have 

(77)  ( )4
F Fz F xR   . 

But (75) – (77) contradict the transitivity of ( )4F R .  So we conclude that, for all 

( )1
20,δ ∈ , if ˆ on U

R∗
′ ℜR  satisfies (73), 

then 
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(78)   
( )

F
F

F
x
y

′R
   . 

 Finally, consider profile 5R  such that 

  
( )) ( )5

0, , , ,1
F FF F F Fq x y q x y

R R∗ ∗∗

    =
R R

R    . 

From the Pareto property, we have 

(79)   
( )5

F
F

F

z
y

R
   . 

Because ( ) ( )5 , ,
FF F F Fq x y q x y= RR , we have 

(80)   ( )5
F Fy F xR    . 

Finally, because ( )5
1
2,F Fq x z <R , (73) and (75) imply 

(81)   
( )5

F
F

F

x
z

R
   . 

Now, (79) – (81) contradict the transitivity of ( )5F R , and so we can take ˆ U
R∗

′ℜ = ℜ . 

 Q.E.D. 
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