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ABSTRACT

This paper derives and estimates an equilibrium model of stock price

behavior in which exogenous "noise traders" interact with risk-averse

"smart money" investors. The model assumes that changes in exponentially

detrended dividends and prices are normslly distributed, and that smart

money investors have constant absolute risk aversion. In equilibrium, the

stock price is the present value of expected dividends, discounted at the

riskless interest rate, less a constant risk premium, plus a term which is

due to noise trading. The model expresses both stock prices and dividends

as sums of unobserved components in continuous time.

The model is able to explain the volatility and predictability of U.S.

stock returns in the period 1871-1986 in either of two ways. Either the

discount rste is 4% or below, and the constant risk premium is large; or

the discount rate is 5% or above, and noise trading, correlated with

fundamentals, increases the volatility of stock prices. The data are not

well able to distinguish between these explanations.
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1. Introduction

Recently there has been a great deal of interest in explaining the

behavior of aggregate stock prices. The simplest model of stock market

movements, which was generally accepted at least as an approximation until

a few years ago, is that the stock price equals the present value of

expected future dividends, discounted at a constant rate. This model

attributes stock price movements to news about future dividends, and

implies that percentage stock returns are unpredictable.

Recent mpirical work has convincingly rejected this model. It appears

to be inadequate even as a first approximation: Fama and French [1987] and

Campbell and Shiller [1988a,b], for example, show that dividend-price

ratios are powerful predictors of percentage stock returns when these

returns are measured over periods of several years. Campbell and Shiller

[1988b] relate this finding to the earlier literature on "excess

volatility" of stock prices (LeRoy and Porter [1981], Shiller [1981]).

While that literature encountered some econometric difficulties (Flavin

[1983], Kleidon [1986], Marsh and Merton [1986]), recent work which

corrects these problems upholds the conclusion that stock returns are too

volatile to be explained by the simple present value model with a constant

discount rate (Mankiw, Roiner and Shapiro [l985[, West [l988a,b], Campbell

and Shiller [l988a,b]).

If this model cannot account for stock price variation, what can? Some

people have suggested that time variation in discount rates is important

for stock prices, but simple models of observable discount rate variation

have met with little success (Hansen and Singleton [1982,1983], Campbell

and Shiller [l988a]). Of course discount rates may change in an
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unobservable manner, but this possibility is indistinguishable from the

presence of serially correlated noise or measurement error in the stock

price.

In this paper we take a somewhat different tack. We explicitly consider

the possibility that stock prices are influenced by exogenous serially

correlated noise. While this noise may be interpreted in several ways, we

present a theoretical derivation in which it arises from the competitive

interaction of 'noise traders' and "smart money" investors. The exogenous

actions of the noise traders are able to influence the stock price because

the smart money investors are risk averse. This is in the spirit of Black

[1986] , and provides an equilibrium foundation for the model of Shiller

[1984] . (See also DeLong, Shleifer, Summers and Waldmann [1987] Fama and

French [1988], Miller [1977], Poterba and Summers [1987] and Summers

[1986]).

Our model has several other important features. First, we assume that

after exponential detrending, changes in the levels of dividends and stock

prices have constant variance and are normally distributed. A more

conventional approach (Kleidon [1986] , LeRoy and Parke [1987] , Campbell and

Shiller [1988a,b]) would assume that changes in dividends and prices

are normal with constant variance. This would imply a constant volatility

of percentage returns and percentage dividend changes. Our approach forces

the variance of percentage returns and dividend growth rates to increase as

the level of prices and dividends falls. This is a phenomenon which has

been noted in U.S. stock market data (Black [1976], Nelson [1987], Schwert

[1987]), although our modelling assumption probably overstates the effect.

Negative prices or dividends are a theoretical possibility in our model,
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which must be assumed to break down as prices and dividends approach zero1.

Secondly, we assume that the smart money investors have constant

absolute risk aversion (exponential utility), as opposed to the constant

relative risk aversion (power utility) assumed in much recent work (e.g.

Hansen and Singleton [1982,1983]). When stock prices and dividends are

normally distributed, this means that the equilibrium stock price discounts

expected future dividends at the riskiess rate of interest. Risk aversion

increases the expected return on stock by subtracting a constant or

exogenously time-varying term from the price, rather than by increasing the

discount rate. Put another way, investors demand a risk premium per share

of stock rather than per dollar invested.

This implication of our model turns out to be helpful in explaining

stock price behavior. It means that when stock prices are low, expected

percentage returns on stock are high because the volatility of percentage

returns is high. This effect can account for at least some of the ability

of dividend-price ratios to predict percentage stock returns. Also, the

discounting of expected future dividends at a relatively low riskless

interest rate helps to explain the high volatility of the stock market2.

A third feature of our model is that it expresses the relationship

I Stock markets in other countries, such as Russia, have lost all
their value in the past. Thus a zero value for U.S. stocks is not
inherently impossible. Below we calculate the probability of negative
dividends within our sample period, conditional on the estimated parameters
of our model.

2 Much of the literature on "excess volatility" (e.g. Campbell and
Shiller [1987], LeRoy and Porter [1981], Mankiw, Romer, and Shapiro [1985],
Shiller [1981], and West [l988a]) also assumes that dividends and prices
follow a linear process in levels. But that literature does not allow for
a-constant risk premium per share of stock, with discounting at the
riskless interest rate.
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between dividends and stock prices as an unobserved components model in

continuous time. Once we have estimates of the model's parameters, we are

able to decompose stock prices into several components which are not

directly observed: information about future dividends contained in the

history of dividends, other information about future dividends, and noise.

This explicit approach to modelling information is in the spirit of a large

literature in accounting.

While our model is set in continuous time, we have to estimate it, of

course, using discrete-time data. But we are careful to compute the true

likelihood function of the data, given the continuous-time model, rather

than using an approximate discrete-time model. This approach avoids

potential difficulties to do with time aggregation. (For work in a similar

spirit, see Christiano, Eichenbaum and Marshall (1987) and Grossman, Melino

and Shiller fl987]).

The structure of the paper is as follows. In section 2, we outline the

continuous-time econometric framework. Section 3 provides the theoretical

justification for it. Section 4 confronts the econometric model with the

data, and Section 5 concludes. Technical decails are given in several

Appendices.

Engle and Watson [1985] also estimate an unobserved components model
on stock market data, but their model is set in discrete rather than
continuous time.
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2. Stock Prices. Dividends, and Noise

Let D°(t) and P°(t) denote observed real dividends and stock prices,

respectively, and let e denote an exponential growth trend. We will write

detrended dividends as D(t) and detrended prices as P(t): thus we have

(2.01) D(t) — D°(t)exp(-Et), P(t) P°(t)exp(-t).

As discussed above, we will assume that changes in D(t) and P(t) are

homoskedastic and normally distributed. We will also assume that dividends

and prices need to be first differenced to make them stationary (that is,

they are first-order integrated), but that there is a particular linear

combination of levels of dividends and prices which is stationary (that is,

dividends and prices are cointegrated, sharing a common unit root). As

Campbell and Shiller [1987] point out, cointegration follows naturally from

the notion that dividends are first-order integrated and stock prices

forecast future dividends. Finally, we will model D(t) and P(t) as sums of

unobserved components, each of which follows a first-order autoregression

(perhaps with a unit root) in continuous time.

Let r denote the time-invariant riskless rate of interest. In our model

the particular linesr combination of prices and dividends which is

stationary is D(t) - (r-E)P(t). The unconditional mean of this variable is

(2.02) E[D(t)-(r-E)P(t)] —A,

where A is the unconditional expected excess return per detrended share of

stock. Note that the units of A are (real) dollars per share, not dollars
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per dollar invested as would be the case for a percentage return.

This section proposes several specific models for the relationship

between stock prices and dividends, all of which allow prices to be

decomposed into the sum of "fundamental value" V(t) and "noise" Y(t). We

thus write

(2.03) P(t) — V(t) - A/(r-e) + Y(t).

The quantity V(t) measures the expected present value of future dividends

conditional on information available to smart money investors, discounted

at rate r with no risk adjustment. Since V(t) is calculated by discounting

anticipated dividends at the riskiess rate r, it is the price which would

prevail if smart money investors were risk neutral. The rational

expectation V(t) incorporates all information about future dividends

contained in past dividends as well as contemporaneous non-dividend

information available to smart money investors, but not available to

economists with a dataset limited to prices and dividends. Because smart

money investors are risk averse, the stock price P(t) deviates from V(t) by

a constant term A/(r-e) (the capitalized value of the unconditional

expected excess return per share) and a zero-mean random variable Y(t)

which represents noise. The noise makes expected returns per share

fluctuate randomly through time, and in fact does nothing more than this.

The differences in the various models considered involve differences in

the relationship between fundamentals V(t) and dividends D(t). If V(t)

incorporates non-dividend information, then increases in V(t) not related

to increases in past dividends should anticipate increases in future



dividends. The models discussed below allow different specifications of

the way in which V(t) anticipates future dividends and different

specifications of the univariate dividend process to accommodate both a

unit root and some degree of mean reversion in dividends.

The rest of this section describes two models (A and B) of the

relationship between V(t) and D(t), discusses a generalization (model C),

and describes formally how noise is incorporated into the generalized

model.

Model A.

According to model A, the actual dividend is the sum of two components,

(2.04) D(t) — D0(t) + D1(t),

both of which are observed by smart money investors. The first component,

D0(t), follows a Brownian motion while the second component, D1(t) follows

a continuous-time AR(l) ("Ornstein-Uhlenbeck") process. The two components

are independently distributed. Thus we have

(2.05) dDo aoo' l — -1D1dt +
a1dz1.

Here dz0(t) and d.z1(t) are zero-mean, unit-variance (i.e. standard)

Brownian motions which are independently distributed, a0 and a1 are the

standard deviations of innovations in the two components of the dividend,

and the parameter a1 measures the speed of mean reversion in the second

dividend component. The innovation variance of the dividend itself is just

2 2
a0 + a1.
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Expected future dividends conditional on the information set of a smart

money investor observing both components are given by

(2.06) E(D(t+s) I history of D0, D1 to t) — D0(t) ÷ exp(-a1s)D1(t).

The fundamental value of the stock, V(t), was defined as the discounted

value of expected future dividends, conditional on the information of the

smart money investor:

V(t) — Et e5 D°(t+s) ds —
Et

s—0

D(t+s) ds.

In Model A this becomes

(2.07) V(t) — D(t) + r - +
a1

D1(t).

It is not possible for economists, who observe only the history of the

total dividend D(t) — D0(t) + D1(t), to infer the values of D0(t) and

D1(t) exactly. However it is possible to estimate these values. Let

D0(t) and D1(t) denote, respectively, the expectations of the permanent

and transitory components conditional on the history of the dividend

process but not conditional on separate observation of the two components.

Since the current dividend is observed, these expectations sum to the

current dividend:

(2.08) D(t) — D0(t) + D1(t) — D0(t) + D1(t).

Let 1(t) denote the error on the transitory component. It satisfies
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(2.09) 1(t) D1(t) - D1(t)
-

D0(t)
-

D0(t).

The values D0(t) and D1(t) measure "dividend information". Similarly,

1(t) measures "non-dividend information, i.e., it captures what would be

known if both components were observed.

Now the expectations of future dividends D(t+s) and the fundamental

value V(t), which were given in (2.06) and (2.07) respectively, can be

decomposed into dividend information and non-dividend information as

follows:

(2.10) E(D(t+s) history of D0 and D1 to t)

—
D0(t) + exp(-a1s)D1(t) + [l-exp(-a1s)]I(t),

(2.11) V(t) —

[
D(t) + r - + °l D1(t) ]

+

[re - r -

11(t).

It can be shown using a Kalman filter argument that 1(t) follows a

univariate AR(l) process which cannot be forecast from D0(t) and D1(t).

Model 5.

Model B is based on the assumption that the fundamental valuation V(t)

can be written as a linear combination of the dividend D(t) and a non-

dividend information variable 1(t) such that the following three properties

hold:

1. The vector <D,I> process is linear, i.e. , it is a continuous-time

first-order vector autoregression.
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2. Current and future values of 1(t) are independent of current and

past values of D(t).

3. The univariate D process is a Brownian motion, and the univariate I

process is stationary.

Model A does not have the first or third of these properties. In

Appendix A it is shown that these three assumptions imply that 1(t) is a

univariate AR(l) process. Thus, there exist constants c0, a, such

that we can write

(2.12) dD0(t) — odz0(t),
(2.13) dI(t) — -a11(t) + a1dz1(t),

where dz0(t) and dz1(t) are standard Brownian motions, but are not

independently distributed.

It is also shown in Appendix A that any bivariate process satisfying the

assumptions of model B also satisfies the following:

(2.14) dD. —
D

dt +
2 1/2

dz
dl 0

-a1
I -p10 [2p1 - p1] dz1

* * .Here dz0(t) and dz1(t) are standard Brownian motions which

independently distributed. The covariance between dD0 and dl is now

captured by the off-diagonal elements of the matrices in (2.14). (See

(2.17) and (2.18) below for an explicit statement of the relation between

* *
dz0, dz1, dz0 and dz1.)
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For the purposes of discussion equation (2.14) can be abbreviated

(2.14)' dy — Aydt + Cdz.

The matrices A and C contain three exogenous parameters: a, ao and
p1.

The parameters a and a0 are the same as those describing the univariate

processes followed by dividends and prices in (2.12) and (2.13) above. The

parameter p1 is proportional to o:

(2.15) p1 — a/2a.

The parameter p1 is the regression coefficient obtained when dl is

regressed on •dD0. It satisfies the constraint

(2.16) 0
p1

2.

This inequality, together with the restrictions in (2.14), places a

"variance bound" on innovations in V(t) relative to innovations in

dividends. It is generally true, as West [1988a1 has shown, that extra

information reduces the innovation variance of an asset price. The form of

(2.14) ensures that the innovation variance of V(t) is no greater than it

would be in the absence of superior information 1(t) (i.e. , it is no

greater than the innovation variance of D(t)/(r-e)). The restriction

(2.16) ensures that the covariance of V(t) and D(t) is no greater in

absolute value than it would be in the absence of superior information.

Since it takes eight parameters to specify two arbitrary 2 x 2 matrices
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A and C, our three-parameter model evidently incorporates five restrictions

- relative to a model in which A and C are completely unrestricted. A

precise derivation of these five restrictions is given in Appendix A, but a

brief intuitive discussion is given here. One restriction follows from our

assumption that D(t) is not mean-reverting (is a Brownian motion), two of

the restrictions are "normalizing conventions" and two are substantive

implications of the assumption that the history of D cannot predict future

I. In the 2 x 2 matrix A, the upper left corner is zero because the

Brownian motion 0 is not mean-reverting. The lower left corner is zero

because of the assumption that dividends cannot predict non-dividend

information. The parameter a in the lower right corner is the univariate

autoregressive parameter for 1(t). The fact that m appears again in the

upper right corner is a normalizing convention which (as described in

Appendix A) scales the units in which non-dividend information 1(t) is

measured.

In the 2 x 2 matrix C, the zero in the upper right corner is a

normalizing convention based on the fact that it takes only three

parameters to specify the relevant covariance structure implicit in C. The

bottom row of C incorporates a restriction on the covariance of innovations

in 1(t) necessary to make it impossible to use past dividends to forecast

future values of 1(t). The term -p1a0 in the lower left gives a negative

correlation between changes in dividends and non-dividend information

because when anticipated changes occur, the future changes expected from

the same information are reduced. Note that is the sum of the squares

of the elements in the bottom row of C.

Since the specification in (2.15) involves three parameters equivalent
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to the three parameters describing the two univariate processes, model B is

the most parsimonious way to model non-dividend information such that both

dividends and non-dividend information follow AR(l) processes, with a unit

root in the dividend.

It is clear from comparing (2.12) and (2.13) with (2.14) that the

various Brownian motions must satisfy

(2.17) a0dz0 — n1ldt + a0dz,

* 21/2 *
(2.18) c1dz1 — -p1a0dz0

÷ (2p1 - p1] c0dz1

Equation (2.18) merely states that the sum of two Brownian motions is a

Brownian motion, and that the variance is consistent with (2.15). The fact

that the right-hand-side of (2.17) is a Brownian motion is one of those

surprising properties of Brownian motions which follows from the fact that

I is not anticipated by past changes in D (see Davis [1977]).

It is an implication of the discussion in Appendix A that

(2.19) E(D(t+s) history of D, I to t) — D0(t) ÷ [1-exp(-a1s)]I(t).

The expected discounted value of the flow of dividends is therefore

(2.20) V(t) — —1--i D0(t) +

[
- r -

I
]

1(t).
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Differences between Models A and B.

Consider first the manner in which non-dividend information affects

V(t). In both models, the non-dividend information term 1(t) follows sn

AR(l) process (unforecastable from dividends) which captures an expectation

that dividends will drift, at a rate proportional to 1(t), to a level

eventually 1(t) units higher than that forecast from dividends alone (see

(2.10) and (2.19)). In this sense, non-dividend information behaves

similarly in both models.

Consider next differences in the univariate dividend process. In model

B, dividends follow a random walk. In model A, dividends are the sum of a

random-walk term and a mean-reverting term. Thus model A, but not model B,

can accommodate some degree of mean reversion even when a unit root is

present in the dividend process. In model A, however, the degree of mean

reversion in the dividend process is linked inflexibly to the amount of

non-dividend information incorporated into V(t).

Generalizations and Model C.

In order to make it possible to measure independently the presence of

both non-dividend information and partial mean reversion in dividends,

something more general than either model A or model B is needed. One

generalization, which combines both models, allows the dividend to be the

sum of two independent components, one of which is mean-reverting and each

of which is forecast by stock market participants in the manner of model B.

There are then two dividend components (D0 and D1) and two information

terms (1o and 11). Specifying such a model requires seven parameters.

Non-dividend information arises from observing both components, as well as

from observing separate signals about each component. Model B is obtained
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as a special case when D1 and are zeroed out, and model A is obtained as

a special case when 10 and I are zeroed out.

Since this model contains more parameters than the data would make it

possible to estimate accurately, model C is defined as the special case in

which there is no special non-dividend information about the mean-reverting

component of dividends. We then have two dividend components D0(t) and

D1(t), together with extra information 1(t) — 10(t) about the random walk

component. The model has five parameters.

In comparison with model B, model C makes it possible for dividends to

have a mean-reverting component, and in comparison with model A, the

importance of this component is not tied inflexibly to the amount of non-

dividend information in prices. In model C, the fundamental value V(t) is

defined by

(2.21) V(t) — __ D(t) + [ —-- - r - ai ]

1(t) + r - +
a1 D1(t).

The coefficients multiplying 1(t) and D1(t) are determined by separate

parameters a1 and a1.

Specification of Model C with Noise.

The noise process Y(t) is modelled in the same way as the components of

fundamental value, as a continuous-time AR(l) process. This implies that

although prices are continuously perturbed by noise, the perturbed prices

are continuously pulled back towards their fundamental value at a rate

proportional to how far they are from this fundamental. Returns tend to be

high when prices are below fundamentals and low when prices are above

fundamentals. If the noise process were to have a unit root, there would
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be no tendency for prices to return to their fundamental value, but this

would not be the same as a rational speculative bubble because there is no

compounding of returns on the noise component of prices.

The innovations in the noise term are allowed to be either independent

of innovations in the components of fundamental value V(t), or correlated

with them. This makes it possible to model explicitly the hypothesis that

prices "Overreact" to new information, as well as the hypothesis that price

noise is independent of fundamentals.

Including noise, there are four underlying components in model C: D0, I,

D1, and Y. The observables D and P are the linear combinations

(2.22) D —
D0

+
D1,

P — -A/(r-) + V + Y — -A/(r-) + + ir1I + + Y,

where the coefficients ,r., ir1, and are defined by the expression (2.21)

for V. That is, — l/(r-), ,r — l/(r-) - l/(r-+a1), and

w1 — l/(r-+a1). The four components satisfy the following vector process:

(2.23)

0
a1

0 0
Co

0 0 0 dz
21/2 *

dl 0
-a1

0 0 I -p1c0 (2p1-p1) c 0 0 dz1
— dt+ *

0 0
-a1 0 D1 0 0

a1 0 dz1

dY 0 0 0 -a Y 9y0 8y1 °1 Oy dz

The parameters 6, 8i and 8. are endogenous constants defined by

16



2 1/2
(2.24) 80 o-,r1p1o, 8 — l —

8,1, — + + 82)1/2

The reduced form specified in (2.21)-(2.24) is the basic structure

examined empirically below. It is an unobserved components model with

various restrictions imposed. Note that there are ten parameters, five

describing the "fundamentals" (ar, , 'o '1 a1) and five describing

noise '
The three parameters and measure three kinds of overreaction,

and the parameter measures the intensity of noise which is independent

from fundamentals. The scaling parameters 9, O, and are defined so

that price innovations can be written

(2.25)

dp - Edp — 9o ÷ i0)dz + 9i(l + 71)dz + 8i(l + 1)dz + 8.1d4.

Thus, the overreaction parameters and measure the multiple by

which prices overreact to fundamentals. For example, — 2 implies that

in response to an innovation in the permanent dividend component dz0,

prices go up three times as much as the fundamental valuation V(t). If one

imposes the constraint — — l (as we shall do in our empirical work

below), this says that prices overreact to innovations in V(t) with the

same degree of intensity, regardless of which component of V(t) induces the

innovation. The parameter 8, scales the independent noise parameter - so

that it measures the standard deviation of innovations in independent noise
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as a multiple of the standard deviation of innovations in V(t). Thus,

— 2 implies that the innovations in independent noise have a standard

deviation which is twice as great (and a variance four times as great) as

the innovations in fundamental value.

The reduced form (2.23) can be abbreviated as dy — Aydt + Cdz. The

first two zeros in the third rows and columns of both A and C make the

dividend component D0 independent from D1. The zeros in the fourth column

of A say that fundamentals are not affected by noise. The zeros in the

fourth row of A are a modelling assumption which says that noise does not

react systematically to past levels of the fundamental components. All

elements above the diagonal in the matrix C are zero because they are not

necessary to specify the relevant covariance matrix.

Within model C are nested many special cases of particular interest.

Model A is obtained from (2.23) by zeroing out I (setting p1 — = 0;

becomes unidentified) and by dropping the second row and column of all

matrices. Similarly, model B is obtained by zeroing out D1 (setting

— l — 0; 01 becomes unidentified) and by dropping the third row and

column of all matrices. If prices are not affected by noise, Y can be

zeroed Out entirely (setting O — — l — — 0; becomes

unidentified), and the fourth row and column can be dropped. If there is

independent noise" but no overreaction, we zero out only the three

overreaction parameters (setting i — — — 0). In our empirical work

we shall assume that there is the same degree of overreaction to

innovations in V(t) regardless of the source of the innovation, so we shall

constrain the overreaction parameters to be the same (setting

yo
— —
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3. An Equilibrium Model of Smart Money and Noise Tradin

In this section we show that the reduced form given in (2.21)-(2.24) is

implied by an equilibrium model of stock market trading with the following

assumptions:

1. Smart money investors are infinitely lived, have exponential

utility, and form expectations rationally based on observing the D0(t),

1(t), and P(t) processes.

2. Noise traders trade randomly and their aggregate stock position

follows an Ornstein-Uhlenbeck process. In the resulting equilibrium, this

process is perfectly correlated with the price-noise process Y(t) and

perfectly negatively correlated with the risk premium on stocks.

3. The number of smart money investors and the number of noise traders

grows through time at the exogenous rate .

The discussion in this section is divided into three parts. First, the

investment opportunity set implied by the reduced form (2.24) is described.

Second, the corresponding optimal portfolio and consumption rules of an

infinitely lived smart money investor with exponential utility are

calculated. Third, assumptions about noise trading and population growth

which make markets clear at all times are obtained.

Investment ODportunities.

Traders can invest in two assets: a riskless asset yielding constant

real return r and a risky stock whose returns can be deduced from the

system (2.21)-(2.24). In describing stock returns it is useful to make the

notational assumption that "stock dividends" are paid continuously at rate

. y normalizing the number of shares at time zero to unity, the number

of shares outstanding at time t becomes et. This notational convention
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makes the capita number of shares outstanding constant in an

equilibrium with investor population growth at rate , and makes returns

per share stationary, because the price of one share of stock is P(t).

To describe investment opportunities in the stock market, let M(t)

denote the undjscounted cumulative cash flow from a zero-wealth portfolio

long one share of stock (financed fully by borrowing at the riskiess rate

of interest). The process M(t) satisfies the stochastic differential

equation

(3.01) dN(t) — et[D0(t)dt + dP°(t) - rP°(t)dt],

where the three terms in brackets are, respectively, the dividends on the

stock market, the capital gains on the stock market, and the financing cost

of holding the stock market. The term et deflates quantities to per-

share units. Note that sales of stock at rate to keep investment at one

share do not generate cash flows which affect the value of the portfolio

because the proceeds are used to retire the debt which finances the

position.

Define the process N(t) by

(3.02) N(t) — -(r - + a)Y(t).

Note that N(t) is perfectly negatively correlated with Y(t). Now we show

that 'H(t),N(t)> has a simple bivariate representation:
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TBEOPII( 3.1. There exists a vector Brownian motion <zM(t),zN(t)> with

univariate innovation variances normalized to unity and with correlation

dzMdzN — cdt , such that the vector process N(t),N(t)> satisfies

(3.03) dM(t) [A + N(t)]dt + UMdzM,

(3.04) dN(t) -ciN(t)dt + CNdZN.

The variances and and the correlation ç are given by

2 1 12 1 21/2 12(3.05) aM — Loao p1a0+ O00j + [(21.o1) a0+91-i1]

+ + 8111)2 + (8y)2

2 2122 22 22 22
aN — (r - + i9x + + ll + 9yy

c -(r-E+ay)[(ir0a0
-

p1a0 ÷e + [C2pip1'2a0+ai.yi)9i1i

+ + /aa.

The proof of this theorem is given in Appendix B.

Equations (3.03)-(3.05) describe succinctly the investment opportunity

set of an investor, and it is only this structure which is relevant in the

rest of this section. Investment opportunities have the following

properties.
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1. Expected returns on a share of stock (whose price is P(t)) are

rP(t) + A + N(t). Investment opportunities are not constant through time,

because the risk premium -A + N(t) on stocks at time t deviates from its

long-run mean A by a random amount N(t). Thus, the random variable N(t),

which follows an Ornstein-Uhlenbeck process, is a State variable

characterizing the investment opportunities available at time t.

2. The quantity is the variance of returns on a share of stock.

When is nonzero or or -y1 are positive, then the variance of stock

prices is increased relative to the "fundamental variance" which would

prevail if —
11

— — — 0. In this sense, noise increases the

volatility of prices. It is conceptually possible, however, for the

volatility of prices to be reduced by virtue of noise if any of

are negative, i.e. , if prices "under-react" to new information about

fundamentals.

3. When and y are non-negative (and ' and are not

all zero), the parameter ç is negative, making innovations in prices

negatively correlated with innovations in expected returns. Intuitively,

this occurs because innovations in the noise process Y(t), which push

prices up temporarily, must be accompanied by lower expected returns in the

future in order for prices to drift back towards their fundamental value in

the long run. Thus, even when the noise process Y(t) is independent from

the fundamental processes D(t) and 1(t), innovations in expected risk

premiums are negatively correlated with price innovations.

Intertemooral Ootimization by a Smart MoneY Investor.

Let X(t) denote the number of shares of the speculative asset held by a

smart money investor, and let C(t) denote the investor's continuous
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consumption stream. Then the investor's wealth W(t) satisfies

(3.06) dW(t) rW(t)dt + X(t)d24(t) - C(t)dt

— rW(t)dt + X(t)[(A + N(t))dt + cMdzM(t)]
- C(t)dt.

We assume the smart money investor is infinitely lived, has exponential

utility, and observes both P(t) and N(t). The value function is

(3.07) V(W,N) — max E0 10 -e
-(pt + C)

dt,

where p is the time preference parameter and the measure of risk

aversion.

This formulation allows a tractable solution to the investor's

optimization problem:

ThEOREX 3.2. The investor's value function is given by

(3.08) V(W,N) — i + + + 2N2/2)

where • and 2 are the unique constants which solve the equations

(3.09) (r/2+a)2 + - (1 - 2awN)2/2 — 0, > 0

(r+a-2a)1 - (A - lM'N - — 0,

r0 — -r + - ('' - 2W2 + -
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The investor's optimal consumption and portfolio rules are

(3.10) C(t) — rW(t) + (l/b)[o + 1N(t) +

+ N(t) - + 2N(t)]coMaN
(3.11) X(t) —

2

)raM

The proof of this theorem is in Appendix B.

Before proceeding further, it is useful to take a closer look at the

investor's optimal portfolio and consumption rules. Because of the

exponential utility assumption, the smart money investor's demand for the

risky asset does not depend on wealth. (This is one of the features of the

model which makes it tractable, since we do not need to analyze the

evolution of the smart money investor's wealth.) In the demand function

(3.11), the term involving l and 2 represents what is usually called

"hedging demand" (against changes in future investment opportunities). In

the presumed case where ç is negative (and because ''2 is positive), the

investor responds more elastically to changes in expected returns than if

his demand were "myopic". The demand function for a myopic investor who

ignored the fact that changes in future expected returns are correlated

with returits would be obtained by setting l — — 0 in the forward-

looking demand function (3.11). Intuitively, when price fluctuations have

a temporary component due to noise, the infinitely-lived investor is

willing to expand demand because he realizes that some of the risk he bears

today is reversed in the long run.

Now consider the consumption function (3.10). The exponential utility

assumption implies that if the investor obtains a gift which is added to

24



his wealth, his optimal consumption policy is to invest the gift in a

perpetuity and consume the interest payments, while following with the rest

of his wealth the consumption and portfolio policy optimal in the absence

of the gift. Changes in the state variable N(t) also affect consumption.

Market Clearing with Noise Trading.

For the smart money investor's optimization problem described above to

be part of a general equilibrium, it is merely necessary to specify an

exogenous noise trading process such that noise traders each period sell

what smart money investors buy, and smart money investors and noise traders

together hold the aggregate outstanding supply of stock. To do this let us

assume that the number of smart money investors and the number of noise

traders crow at rate . Normalizing the initial population of each group

to unity, the number of each type of investor at time t is et. This

normalization makes the per capita supply of stock equal to one share per

smart money investor (or noise trader). Thus, markets clear (and the

aggregate supply of stock is held) if the representative noise trader's

demand for stock at time t is 1 X(t) shares, where X(t) is the demand of

a smart money investor in (3.11). According to this assumption, the

holdings of noise traders consist of a constant plus an amount which is a

linear function of N(t) (or Y(t)). Since the holdings of smart money

investors are increasing in N(t) (or decreasing in Y(t)), the holdings of

noise traders are decreasing in N(t) (or increasing in Y(t)). Thus, there

is a direct proportionality between price noise Y(t) and the deviation of

holdings by noise traders from their mean.

These assumptions about noise trading and growth in the number of

investors give a general equilibrium model which implies (2.21)-(2.24).
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4. Econometric Methods and Empirical Results

In this section we estimate the reduced form (2.21)-(2.24) on annual

U.S. time series data for real stock prices and dividends. The data are

taken from Campbell and Shiller [1987] , and are similar to data used in

other studies such as Engle and Watson [1985] , Mankiw, Romer and Shapiro

[1985] , Shiller [1981] and West [1988a] . Our real stock price is the

Standard and Poors Composite Stock Price Index for January, measured in

each year from 1871 to 1986, divided by the January producer price index.

(Before 1900 an annual average producer price index is used. Data from

before 1926 are from Cowles [1939].) Our real dividend series is the

corresponding dividend per share adjusted to index, measured each year from

1871 to 1985, divided by the annual average producer price index. Our

econometric methods will take account of the fact that the price data are

point-sampled, while the dividend data are time-averaged.

We write the raw discrete-time data as D and P. We will use the

notational convention that D is the dividend paid during year t, and P is

the stock price at the of year t. This convention differs from that in

Campbell and Shiller [1987,1988a,1988b] because it is helpful for us to

define backward rather than forward time averages. The first step in our

analysis is to transform the raw data in the manner of equation (2.01),

dividing by an exponential trend exp(Et). We choose E to equal the mean

dividend growth rate over the sample, 0.013, and write the transformed

discrete-time data as D and P. We also normalize 0 and P so that the

sample mean of P equals one.

This transformation has two important effects. First, it removes

exponential growth from the ex-ante mean of the data; this effect may be
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called "detrending" although it is important to note that the

transformation does not force the data to revert to a trend line. Indeed,

we will assume that there is a unit root in the detrended series.

Secondly, the transformation removes exponential growth from the variance

of the data; this may be called "scaling", and is similar to the effect of

a log transformation.

Preliminary data analysis.

Before we estimate the system (2.2l)-(2.24) and restricted versions of

it, it is important to confirm that the data are not grossly at variance

with this system. As a preliminary therefore, we plot the exponentially

detrended price and dividend series in Figure 1 (the dividend is multiplied

by 10 in the figure), and we summarize some of the main features of the

data in Tables 1 and 2.

Table 1 presents Dickey-Fuller tests of the null hypotheses that the

series D, P, D and P have unit roots in their univariate time series

representations. For comparison, we also carry out the tests for ln(D)

and ln(P). The test statistics are formed from a regression of the change

in the series on a constant, time trend and lagged level. We report both

straight Dickey-Fuller test statistics, and statistics adjusted for fourth-

order serial correlation as proposed by Phillips (1987) and Phillips and

Perron [1986).

The results of the tests are rather mixed. The null hypothesis of a

unit root in dividends is not rejected for D, but is rejected at the 10%

level for D. This rejection is not just due to detrending by the sample

mean growth rate of dividends; the null is rejected even more strongly, at

the 5% level, for ln(D). However there is no evidence against the null
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hypothesis for stock prices.

Similsrly mixed results were obtained in Campbell and Shiller [198],

1988a}. As in those papers, we proceed to assume that there is in fact a

unit root in stock prices and dividends. We do this because in the present

context it is the most conservative assumption. A unit root in dividends

will tend to reduce the role of noise in explaining stock price volatility,

by giving a greater role to movements in expected future dividends (Kleidon

[1986], Marsh and Merton (1986]).

Our model assumes not only that prices and dividends are integrated

processes, but also that they are cointegrated. At the bottom of Table 1

we estimate the "cointegrating regression" of Dt on As Stock [19871

has ahown, the coefficient in this regression converges rapidly (at a rate

proportional to the sample size) to the true parameter which defines the

cointegrating vector, the unique stationary linear combination of and

Engle and Cranger (1987] show how one can test the null hypothesis

that two series are cointegrated by running Dickey-Fuller or Augmented

Dickey-Fuller tests on the residual from the cointegrating regression, and

we also perform these tests. We find fairly strong evidence that Dt and

are cointegrated.

A striking feature of the cointegrating regression results is the low

interest rate which they imply. Having normalized the data so that the

sample mean of — 1, we estimate Dt — 0.030 + O.Ol6P. Thus about two

thirds of the sample mean of Dt is attributed to the constant term. In our

model, the coefficient on P equals (r-E), the interest rate less the trend

growth rate (0.013), so the implied interest rate is 0.029. The constant

term equals A, the unconditional expected excess return per share of stock
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demanded by risk-averse smart money investors4. It is important to note

that the coefficient (r-E) can be so low in this regression, only because A

is high. If we impose A — 0, we estimate (r-) — 0.050, the ratio of the

sample mean dividend to the sample mean price5, implying r 0.063.

It is known that in finite samples the coefficient in the cointegrating

regression is seriously biased downwards (Banerjee, Dolado, Hendry and

Smith [1986], Stock [1987]). Indeed, when we reverse the direction of the

regression, making P the dependent variable, we estimate l/(r-) — 23.7,

implying (r-) — 0.042 and r — 0.055. This interest rate is closer to

conventional estimates of the discount rate on stock, although it is still

considerably less than the mean rate of return on our stock index (0.082).

Since the cointegrating regression does not yield a reliable estimate of

the interest rate r, we estimate our model under several different

assumptions about the interest rate. We fix it a priori at 4% and 6%,

allowing a free coefficient A; we estimate r as part of our model, but

impose A — 0; and we allow the data to estimate both r and A freely.

In Table 2 we summarize some of the other time-series properties of our

data. The table reports the sample standard deviations of and and

the sample correlations between Dt, and their lags. The stock price

Recall that because stock prices and dividends are normally
distributed, and smart money investors have constant absolute risk
aversion, they demand compensation for risk in the form of a constant

discount on the stock price (or premium on the dividend), rather than by
discounting expected future dividends at a higher interest rate.

Campbell and Shiller [1987] ran a similar cointegrating regression
on the raw levels (rather than the detrended levels) of stock prices and
dividends. They found a similar constant term and low implied interest
rate-. In their model, the constant term was supposed to be related to
linear trend growth in dividends; but it had the wrong sign for this
interpretation. Their model did not allow for any equivalent of our risk
adjustment term A.
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series is very noisy relative to the dividend series; the standard

deviation of AD is only 0.032 times the standard deviation of APt. This

is of course the well-known "volatility" of stock returns. We shall see

that our model can fit this feature of the data only by combining a highly

persistent dividend process with a very low interest rate, or by attaching

considerable importance to noise in the stock price.

The sample correlations of the series are also of interest. The first

autocorrelation of AD is 0.17, and the next four autocorrelacions are all

negative. Since is a time-averaged series, one would expect the first

autocorrelation of AD to be positive. Indeed, if the continuous-time

process D(t) were a random walk, the first autocorrelation of AD would be

0.25 and the higher autocorrelations would all be zero (Working [1960]).

The data therefore suggest that there is some mean-reverting componenc in

the dividend (which is presumably also responsible for the rejection of the

unit root hypothesis for dividends in Table 1).

The autocorrelations of the change in the stock price are generally

smaller in absolute value (although the second autocorrelation is large at

-0.22), and more erratic; there is less evidence of mean-reversion in che

first few autocorrelations of this series. Finally, there is a

surprisingly low contemporaneous correlation of 0.08 between AD and AP

but a high correlation of 0.57 between AD and AP1. The correlation

between AD and AP2 is also quite high at 0.21. We shall see that our

model has some trouble matching these cross-correlations; "superior

information" 1(t) is one element which helps it to do

6
In interpreting these numbers, it is important to keep in mind the

timing of the data. The correlation of 0.08 is between the price change
from the end of one year to the end of the next, and the dividend change
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Estimatin our model.

The next step in our analysis is to estimate the reduced form model

(2.2l)-(2.24) from our discrete-time detrended data. The method we use to

do this is discussed in Appendix C. There we start from a continuous-time

vector first-order process, of which our model is a special case. We show

that a stacked vector of point-sampled and time-averaged transformations of

the continuous-time variables follows a discrete-time vector AR(l), and we

show how the discrete-time transition and variance-covariance matrices are

related to the underlying continuous-time parameters.

Of course, we do not observe point-sampled and time-averaged

transformations of all the variables in our model. Instead, we observe one

point-sampled variable, P — -A/(r-) + ,r0D0 + I + + Y, and one time-

averaged variable, D — D0
+

D1.
However we can still estimate the system

by using a Kalman filter to construct a likelihood function for any set of

parameter values7.

Our approach is somewhat different from that of Grossman, Melino and

Shiller l987], who also estimate a continuous-time model from discrete-

time data. Grossman, Melino and Shiller start with a mix of point-sampled

from one year to the next. The dividend is time-averaged over the period
preceding the price measurement.

The Kalman filter is described in Harvey [1981] and elsewhere. Our
application is standard, but two details are worth mentioning. First, our
state vector is nonstationary so we initialize the filter using the
variance-covariance matrix of the system when it is perturbed slightly to
make it stationary. We then drop the first element of the vector which
makes up the likelihood function (that is, we condition our estimation on
the first observation). Secondly, we can drop two of the time-averaged
state variables, the time-average of I and the time-average of Y, from the
state vector in estimation. This is because they are neither observed, nor
do they play any role in forecasting the state of the system if the point-
sampled I and Y are included.
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and time-averaged data, but they time-average their point-aampled data and

work with a vector of time-averaged variables alone. Thia vector follows a

discrete-time ARMA(l,l) process, which can be technically difficult to

estimate. (For further details, see Melino [1985]). Harvey and Stock

(1985,1986] have also developed estimation methods for continuous-time

models like ours.

Model A.

In Table 3 we report the maximized log likelihoods for several different

variants of Model A. Each row of the table corresponds to a different

assumption about the interest rate r. As discussed above, we estimate the

model fixing r equal to 4% and 6%, with a free r but imposing A equal to

zero, and with a free r and A. In the latter two cases we report the

estimated r in parentheses below the log likelihood for the model.

Each column of the table corresponds to a different assumption about the

role of noise. In the first column, we assume that there is no noise at

all (-y.1 — — i — 0). In the second column we allow for noise which is

independent of fundamentals (free — 'y — 0). In the third column we

allow for "overreaction" noise which is correlated with fundamentals, but

no independent noise (ly — 0, free — In the last column we allow

for both types of noise (free -y1,, free — Throughout we impose the

restriction that the stock price overreacts to innovations in fundamentals

in the same way, regardless of the source of the innovation —
11)

In Table 3 it is clear that exogenous serially correlated noise helps

Model A to fit the data. But it is more helpful for some interest rate

8 We experimented with relaxing this restriction, and found that it
could never be rejected. In some cases our maximum likelihood algorithm

had difficulty estimating the two parameters m and ii separately.
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specifications than others. When a higher interest rate is imposed

(directly by fixing r — 6% or indirectly by fixing A — 0), the noise

columns have dramatically higher likelihoods than the no-noise column. But

when a low interest rate of 4% is imposed, the difference in likelihood is

much smaller. Finally, when r and A are estimated freely, low estimates of

r are obtained (in the range 2.9-3.4%), and the role of noise is smaller

still. (Even in this column, however, "overreaction" noise is significant

2 - 9at the 4.7% level if one uses a x teat with 2 degrees of freedom.)

The reason for this pattern of results is that the data show an

important mean-reverting component in the dividend, but a volatile stock

price. The model can fit these characteristics of the data without giving

an important role to noise, only if the interest rate ia very low. And a

low interest rate is consistent with the mean relative levels of and 0,

only if A is fairly large and positive.

Table 4 gives more details for two of the models estimated in Table 3,

those with free r and A, and either no noise or full noise. (In fact the

full noise model converged almost to the overreaction model.) The table

gives parameter estimates with asymptotic standard errors, and the implied

values of and x1. Below this is a "normalized innovations variance-

covariance matrix". This is the implied variance-covariance matrix of

innovations in F, Y, V, roDo ,r1D1, and ,r11, where each element has been

divided by the innovations variance of V. Thus the [1,1] element is the

ratio of the variance of stock price innovations to the variance of

A test of a "no-noise" null against an alternative with noise runs
into the difficulty that one of the parameters under the alternative,
is unidentified under the null. This causes well-known problems with
atatistica]. inference. However a x (2) test should be conservative.
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innovations in fundamentals, i.e.' the excess volatility of stock price

innovations. The [4,4] element is the ratio of the innovations variance of

the random walk dividend component in fundamentals, to the total

innovations variance of fundamentals. That is, it measures the

contribution of the random walk dividend term to the innovations variance

of fundamentals; similarly, the [5,5) element measures the contribution of

the transitory dividend term.

Finally, the table reports some of the implied moments of the observable

-lata, so that one can see which features of the data are well fit by the

model and which are not. The table gives the implied standard deviations

of tDt and and the correlations of AD and their lags. These can

be compared directly with the sample moments given in Table 2.

The first part of Table 4 summarizes the model with free r and A, and no

noise. In explaining dividend movements, the parameter estimates give an

important role to the transitory component of the dividend. But this

component does not have much effect on the stock price because it dies out

quickly so its expected present value is small. (Thus — 60.4 while it1
—

2.2). The innovations variance of the stock price exactly equals the

innovations variance of fundamentals (since there is no noise), and almost

exactly equals the innovations variance of the random walk dividend

component.

This model fits some moments of the data quite well, notably the

relative standard deviations of Dt and aP (by picking a low interest

rate) and the autocorrelations of But it fits other moments poorly;

the implied correlation of ADt and aPt is 0.30, equal to the implied

correlation of aD and t-l' whereas in the data these correlations are
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0.08 and 0.57 reapectively. In the data stock pricea anticipate dividend

changes but are not highly correlated with them contemporaneously; Model A

without noise has no good way to fit this.

The aecond part of the table gives details for the model with noise.

The parameter is estimated at 1.1, implying that the stock price reacts

twice as much as it should do to a dividend innovation. Accordingly the

innovations variance of the stock price is four times the innovations

variance of fundamentals. But the noise is highly transitory; a is

estimaced at 5.6, implying that the noise disappears almost completely

within a year. (The fraction of the noise remaining after a year is

exp(-a) — 0.36%.) The effect of this type of noise is to reduce the

correlation of ADt and to 0.20, and to increase the correlation of Dt

and t-l to 0.35.

Model B.

Table 5 reports the maximized log likelihoods for alternative versions

of Model B. The results are similar to those in Table 3, in that noise

makes a bigger difference to the likelihood when a relatively high interest

rate is imposed. However in Table S the no-noise models can always be

rejected in favor of the noise models at very high levels of confidence.

In the final row, for example, with a free r and A, the no-noise model can

be rejected against the full noise model at the 0.04% level with a test

with 3 degrees of freedom.

Table 6 gives detailed results for the versions of Model B with free r

and A, and either no noise or full noise. In the model with no noise, the

stock price innovations variance of course equals the fundamentals

innovation variance. But the innovations variance of r0D0 is 16% higher
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because the presence of superior information reduces the innovations

variance of fundamentals in the manner analyzed by West [1988a]

Model 8, with or without noise, is unable to capture the negative

higher-order autocorrelations of dividends. The implied first-order

autocorrelation is 0.25, and all higher-order autocorrelations are zero.

(As Working [19601 showed, this must always be true for a time-averaged

Erownian motion.) Without noise, Model B also has difficulty with the

correlations of and and Dt and t-l (implied equal to 0.25 and

0.39 respectively). When noise is added to the model, it is able to fit

these correlations much more accurately (0.17 and 0.57 respectively). It

does so by lowering the interest rate estimate from 0.047 to 0.037, and

estimating that the stock price underreacts to dividend innovations. This

is a rather anomalous result which disappears when one fixes the interest

rate or allows for a transitory component in the dividend.

Model C.

Finally, in Tables 7 and 8 we give empirical results for our most

general specification, Model C. Once again there is a critical interaction

betweeiitiie level of the interest rate and the role of noise. With a low

intereàt rate of 4% or below, quite high likelihoods can be achieved

without noise. With an interest rate of 5% or 6%, however, noise is

essential to the fit of the model. When the interest rate r and the

parameter A are freely estimated, a low interest rate of 3.5% is chosen in

the no-noise specification and a high interest rate of 9.6% is chosen in

the specifications which allow for overreaction noise. The no-noise model

can be rejected against the overreaction model at the 10.3% level using a

test with 2 degrees of freedom.
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In Table 8 we present detailed results for three specifications. These

have a free r and A with no noise (r is estimated at 3.5%), a free r and A

with full noise (r is estimated at 9.6% and the noise is estimated to be

pure overreaction) and a fixed r of 6% with full noise (again the noise is

estimated to be pure overreaction). The last specification is included to

illustrate the effect of the interest rate on the quantitative importance

of noise.

The specifications in Table 8 all imply roughly the same decomposition

of the dividend D into a random walk component D0 and a stationary

component D1. This decomposition is illustrated in Figure 2 for the model

with a free r and A and full noise. The major movements in D are matched

by movements in D0, but there are some high-frequency movements in D which

are attributed to temporary fluctuations in D1. The latter have little

effect on stock prices, since l is small relative to 1r0.

The decomposition of the stock price into fundamental value V and noise

Y is much more sensitive to model specification. The noise always has the

effect of amplifying movements in fundamental value, but its variability

depends on the interest rate assumed. In Figure 3 we plot V and P for the

free r and A noise model with r — 9.6%; in Figure 4 we plot V and P for the

r — 6% noise model. In the r — 9.6% model the parameter y0 is estimated at

3.3, implying that the stock price moves 4.3 times too much in response to

an innovation in V, and that its innovations variance is 18.5 times that of

fundamentals. The noise is also quite persistent; the parameter a, is

estimated at only 0.05, which implies that 95% of the noise remains after 1

year. In the r — 6% model the parameter is estimated at 1.4, implying

that the stock price moves 2.4 times too much in response to an innovation
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in V, and that its innovations variance is 5.8 times that of fundamentals.

The noise is again persistent, with an estimate of 0.03 implying that

97% of the noise remains after 1 year.

It is apparent from Table 8 that Model C, in any of its variants, is

much better able than Models A or B to fit the autocorrelations of dividend

changes and the correlations of dividend changes with current and lagged

price changes. In comparing the theoretical autocorrelations with the

actual ones in Table 2, the only major phenomenon which is not fit by the

model is the large negative second autocorre].ation of the stock price

change.

How likely are nesative dividends and stock rices?

Table 8 can also be used to gain insight into one possible problem with

our approach. As we noted above, it is theoretically possible in our model

for dividends and stock prices to become negative. This is not

particularly bothersome if the parameter estimates imply that negative

dividends are unlikely to occur. (After all, the normal distribution was

originally proposed to describe the distribution of human heights.) But if

negative dividends have a substantial probability, this reduces the

plausibility of our results.

To study this issue, we consider the parameter estimates reported in

Table 8 for the model with free r and .). and no noise. (Other models

estimated in Table 8 are similar.) The random walk component of the

dividend has a 1-year conditional variance of o, and a t-year conditional

variance of The stationary component of the dividend has a 1-year

conditional variance of o, and a t-year conditional variance which

approaches c/2a1 as t increases. For simplicity, we will ignore this
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term, which becomes asymptotically negligible relative to the conditional

variance of the random walk component.

As t increases, of course, the conditional variance of the random walk

component of the dividend grows without limit and the probability of

observing a negative dividend approaches unity. But over 115 years (the

length of our sample), the conditional variance is 0.0017 and the

conditional standard deviation is 0.0411. The probability that the random

walk is negative after 115 years, given the initial dividend value of

0.0400, is 0.16. The probability that it is negative at some point during

the 115 years is twice the probability that it is negative at the end

(Ingersoll [1987), p.353). Thus our parameter estimates do imply a one-

third probability of negative dividends at some point during the sample

period.

How robust are the results to changes in specification?

All of the models estimated so far have a sample period 1871-1986, and a

fixed trend growth rate — 0.013. As a check on the robustness of our

results, we estimated Model C over subsamples 1871-1925 and 1926-1986 with

— 0.013, and over 1871-1986 with set to 0.01, 0.015 and 0.02.

When Model C is estimated over the first and second halves of the sample

separately, we find qualitatively similar results in both subperiods but

stronger evidence for noise in the 1926-1986 period. Thus in 1871-1925

Model C with a free r and A and no noise estimates r — 4.1%; with full

noise, the r estimate rises to 8.6%, but the difference in log likelihood

is only 0.16. In 1926-1986 the no-noise r estimate is 3.2%, while the

full-noise r estimate is 6.1%. The difference in log likelihood is now

2.1. In both subsamples the models with free r and A and full noise imply
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that stock prices move from 2.5 to 3 times too much in response to an

innovation in fundamentals.

When we vary the trend growth rate , we again have qualitatively

similar results. The evidence for noise is weakest when we fix at a low

value of 0.01, and allow a free value of r and A. The interest rate is

then estimated at 2.9%, and adding noise increases the log likelihood by

only 0.04. 8ut with a fixed interest rate of 6%, there is strong evidence

for "overreaction' noise regardless of the trend growth rate assumed.

Some tests for misspecification

As a final check on our results, we examined the normalized forecast

errors from the Kalman filter estimation of our most general model in Table

8. If our model is well specified, these errors should be homoskedastic

and independently and normally distributed (with zero mean and unit

variance). We test the errors for skewness, excess kurtosis, and serial

correlation, all of which should be zero if the model is well specified.

These tests do yield some evidence of specification error. The

normalized forecast error for the dividend has skewness of -0.08 (with

standard error 0.23) and excess kurtosis of 1.00 (with standard error

0.46). The normalized forecast error for the stock price has skewness of

-0.52 and excess kurtosis of 0.88, with the same standard errors as above.

Thus both dividend and price errors have excessively fat tails, and price

errors are also negatively skewed.

In addition, we find that the price forecast error has a significant

negative second autocorrelation of -0.21. This should not be surprising,

since we noted above that none of our models were able to fit the second

autocorrelation of the stock price change.
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5. Conclusion

In this paper we have tried to account for the predictability and

volatility of stock returns in two ways. First, we suppose that the

exponentially detrended levels of stock prices and dividends are normally

distributed with constant variance, and that utility-maximizing investors

have constant absolute risk aversion. This implies that the percentage

stock return required by utility-maximizing investors as a reward for

bearing risk declines as the stock market rises, and that in equilibrium

stock prices discount dividends at a relatively low riskless rate so they

will react strongly to news about dividends.

Secondly, we suppose that stock prices are influenced by the presence of

some investors who do not maximize utility but instead trade exogenously.

These "noise traders" can affect stock prices because the utility-

maximizing or "smart money" investors are risk-averse.

Both aspects of our approach are helpful in explaining U.S. stock market

movements over the last century. It turns Out that the importance of noise

depends sensitively on the interest rate assumed. If one believes that the

stock market discounts dividends at a very low rate (roughly, 4% or below),

then one can account for stock price movements fairly well without

appealing to noise. On the other hand if one believes that the discount

rate is 5% or above, one must also believe that noise is extremely

important in moving the stock market. The data on dividends and prices are

not well able to discriminate between these two views.

The type of noise which appears to be empirically important is highly

correlated with fundamental value. We have called this "overreaction",

since it makes the stock price respond more to news about fundamentals than
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it otherwise would do. One way to think about this overreaction is that it

represents the rational behavior of investors whose absolute risk aversion

is declining with wealth rather than constant. In our model, where

absolute risk is constant, a rise in the stock market which increases

investor wealth will stimulate the demand for stocks by investora with

declining absolute risk aversion. These investors could be responsible for

the observed overreaction of stock prices to dividends10.

We conclude with two points which need to be kept in mind when

interpreting our results. First, our assumption that detrended stock price

and dividend changes are homoskedastic and normally distributed is not

literally accurate. Specification tests reveal some evidence of

nonnormality in the distribution of our forecast errors. We believe,

however, that the model is still of interest as an approximation to the

true process which generates the data.

Secondly, we note that even if one believes in a low interest rate and a

relatively small role for noise, this does not rehabilitate the view that

the stock price equals the expected present value of future dividends and

that percentage stock returns are unpredictable. A low interest rate is

only consistent with the data if investors demand a large fixed discount

from the expected present value of future dividends, a discount which makes

percentage stock returns predictable.

10 In our model investors with declining absolute risk aversion follow
"portfolio insurance" strategies, increasing their demand for risky assets
when their wealth increases, i.e., when the prices of risky assets rise.
It has been argued that investment strategies of this sort contributed to
the October 1987 stock market crash and the volatility of the stock market
in general.
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APPENDIX A

In this appendix we first summarize (without proof) some results about

linear continuous-time stochastic processes. For proofs and extensions,

the reader is referred to Davis [1977] and Bergstrom [19841. Then we

derive the structure of Model B given in section 2 of the paper.

Forecasting Observable Continuous-Time Processes. Let y(t) be a

continuous vector stochastic process which satisfies the linear stochastic

differential equation

(AOl) dy(t) — Ay(t)dt + Cdz(t),

where y is an n-vector, A is an n x n matrix, C is an n x k matrix and

z(t) is a k-dimensional normalized Brownian motion. The initial

observation y(O) is normally distributed and independent from the z(t)

process. The process y(t) can be represented in integral form by

(A.02) y(t + s) — eA5y(t) + Je5T)c dz(t+r),

Here, the exponential notation eAt denotes the n x n "transition" matrix

i + tA + t2A2,'2! + t3A3/3! + . . . . The matrix eAt is positive definite, it

commutes with A, and its derivative with respect to t is AeAt. It follows

from (A.O2) that the conditional variance of y(t+s) given y(t) can be

written
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(A.03) var {Y(t+s) I Y(t)}
—

J_0e
S cceVT) d.

Let Q(t) denote the unconditional variance of y(t) given by

(A.04) Q(t) — var{y(t)} — eAtvar(y(O)) eA t + var(y(t) I y(O)).

The matrix Q(t) satisfies the differential equation

(A.O5) — AQ(t) + Q(t)A' + CC'

This result can be derived intuitively by writing

(A.06) Q + dQ — var(y + dy) — var((I + Adt)y + Cdz)

— (I + Adt)Q(I + Adt)' + CC'dt — Q + (AQ + QA' + CC')dt + AQA'dt2,

then subtracting Q from both sides, throwing away the dt2-term, and

dividing by dt. (A more theoretically precise derivation is obtained by

differentiating (A.03)).

If the process y(t) has the stationarity property that Q(t) does not

vary with t, then the time invariant matrix Q — Q(t) solves the equation

(A.07) AQ + QA' + CC' — 0.

In this case one can evaluate explicitly the integral in (A.03), yielding

(A.08) var(y(t+s) I y(t)) — Q - eA5Q eAS
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Model B. Model B is based upon three assumptions.

The first assumption states that D0 and I follow a linear process. This

means that for appropriate constants and C1 we can write

d[0] [Aoo Aol] [Do] dt + [oo Coi] [

or, more briefly, dy — Aydt + Cdz. Here, dz and dz are i.i.d. unit-

variance Brownian motions.

The second assumption says that the history of D0 Cannot forecast the

future of I. This means

(A.lO) E{I(t+s)ID0[-o — 0 for all s 0.

The third assumption says that the univariate D0 process is a Brownian

motion and the univariate I process is stationary.

Here we show that these three assumptions imply that the univariate I

process is AR(l) and the vector D0, I process satisfies the constrained

version of (A.09) given by (2.14) in the text.

Begin by writing exp(As) as

B(s) B01(s)
(A.ll) exp(As)

B10(s) B11(s)

It follows from (A.02) that
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(A.12) E{DO(t+s)IDO[, t), I[-c, t]} — B00(s) D0(t) + 801(s) 1(t)

(A.13) E{I(t+s)IDO[-oo, t], I[-, t]} — B10(s) D0(t) + B11(s) 1(t).

Taking conditional expectations of both sides of (A.13) with respect to the

information set D0[-c, t) and applying the assumption (A.lO) that D0 does

not anticipate I to eliminate the 1(t) term on the right-hand side yields

(A.14) E{I(t+s)1D0[-oo t} — B10(s) D0(t).

But the assumption that D0 does not anticipate I in (A.lO) implies that the

right-hand side of this equation is zero. Since D0(t) is not identically

zero, we must have

(A.l5) B10(s) — 0 for all s 0.

Nov expand the derivative d/ds exp(As) — A exp(As) and use

B10(s) — d/ds B10(s) — 0 to obtain

d/ds B,0(s) d/ds B01(s) A00B00(s) A00B01(s) + A01B11(s)
(A.16) 0 d/ds 811(s)

—
A10B00(s) A10801(s) + A11B11(s)

Equating terms in the lover left corner yields A10B00(s) — 0 for all s 0.

Thus, either A10 — 0, or B00(s) — 0 for all s. Since the exponent of any

matrix is nonsingular, B00(s) cannot be zero for any s, since this,
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combined with B10(s) — 0 as shown above, would make exp(As) singular for

some s. We conclude A10 — 0.

Solving the three differential equations in (A.16) subject to the

initial conditions B(0) — 611(0)
— 1 and Soi(0) — 0 yields (with A10 0)

(A.17) 800(s) — exp(A00s) (A.18) 611(s) — exp(A11s)

exp(A00s) - exp(A11s)
(A.19)

A11 - A00
A01 if A11 A00,

0 ifA11—A00

This result can also be obtained from a power series expansion of exp(As)

with A10 — 0. The three initial conditions are obtained by setting s 0

in (A.12) and (A.l3).

Now take conditional expectations of both sides of (A.12) with respect

to D0[-, t], take conditional expectations of both sides of (A.13) with

respect to I[-, t], and apply (A.lO), (A.15), (A.l7), and (A.18) to obtain

(A.20) E{D0(t+s)D0[ t]} — exp(A00s) D0(t),

(A.21) E{I(t+s)tI[-, t} — exp(A11s) 1(t)

Our third assumption - - that D0(t) is a 8rownian motion and 1(t) is

stationary - - implies that exp(A00s) on the right side of (A.20) equals one

and exp(A11s) on the right side of (A.21) does not explode as a • . It
follows that
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(A.22) A00 — 0, A11 — -a1,

where a1 is a positive constant. Furthermore, the stationarity of 1(t)

together with (A.21) imply that 1(t) is a univariate continuous-time AR(l)l

with "mean reversion parameter" a.

We have now pinned down all of the elements of A except A01. To obtain

a value for A01, observe that the assumptions underlying model E imply

nothing about the units in terms of which I is scaled. If I is rescaled by

multiplying by some constant K0, the vector y is changed to Ky, where K is

the matrix

23 11 0
(A. ) K—

L° K0

Since Ky satisfies d(Ky) — KAK(Ky)dt + KCdz, the rescaling changes A to

KAK1 where

1
0

A01/K0
(A.24) —

0 -

It is apparent that rescaling I changes only the upper right element of

this matrix. Thus, the initial choice of A01 is equivalent to a choice of

units in which I is scaled. To simplify formulas, the scaling convention

adopted here is A01 — a1. This, combined with previous results, yields
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o
a1

1 1 - exp(-a1s)
(A.25) A — exp(As) —

o
-a1

0
exp(-a1s)

We have thus characterized the matrix A completely. Equations (A.12) and

(A.26) become

(A.26) E{D0(t+s)D0[ t], 1o[ —
D0(t) + (leIJ 1(t)

t], 'oHm, t]}
— e'I(t)

-a1s
Note since e -. 0 as s • m, we have scaled the units of I so that 1(t)

measures how much D0(t) is expected to increase in the distant future.

Now consider the 2x2 matrix C. Since it takes only three scalars to

specify a bivariate covariance structure, let the upper right element of C

be zero by convention, i.e., C01 — 0.

Let Q(t) denote the unconditional covariance matrix of [D(t), 1(t)].

Our second assumption that D does not forecast I implies that 0(t) and 1(t)

are independently distributed. Thus, the matrix Q(t) is diagonal.

Now consider the diagonal elements of Q(t). Following (2.12) and (2.13)

in the text, let denote the innovations variance of D0 and let denote

the innovations variance of I. Since I is stationary, its unconditional

variance is the scalar constant a/2a1 (which can be obtained by solving

the scalar version of (A.07) for Q). Since D follows a Brownian motion,

its unconditional variance is Q00(Q) + ct (obtained from the scalar

version of (A.05)). Thus, the matrix Q(t) is given by
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Q00(O) + ct
0

(A.27) — 2
0 i/2i

Now recall that (A.05) implies dQ/dt — AQ(t) + Q(t)A' + CC,. Using the

specific expression for A in (A.25) and imposing the constraint C01 — 0 on

C, this becomes -

(A.28)
0

—
C0 o/2 +

C00C10

0 0 c/2 + C00C10 + C0 + C1

Since these matrices are symmetric, we have three equations in the three

unknowns C00, C0, C11.

If we define p1 — o/2a, the solution can be written

(A.29) C00 — a0, C10 — -p1a0, C11 —
{2p1

-

2]l/2

This solution adopts the innocous convention C00 > 0; any solution requires

0 < p1 2. Thus, the general linear formulation (A.09) becomes the same

as (2.14) in the text.

It remains to show that the constrained system (2.14) actually satisfies

all three assumptions. The only assumption not already verified is that

the history of D cannot forecast future I. To prove this, it suffices (see

Davis) to show that I(t+s) is uncorrelated with D(t) for all a � 0, and

this follows from (A.14) and (A.l5).
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APPENDIX B

This Appendix Contains proofs of Theorem 3.1 and Theorem 3.2.

Proof of Theorem 3,1. Using (2.01), equation (3.01) Can be written

(8.01) dN(t) — D(t)dt + P(t)dt + dP(t) - rP(t)dt

This says the excess return on a fully levered portfolio long one share of

stock Consists of a Cash dividend, plus a stock dividend, plus a capital

gain, minus a financing cost. Recall from (2.03) that P(t) can be

expressed as the sum of a fundamental value, a noise term, and a risk

discount: P(t) — V(t) - A/(r-e) + '1(t). Thus (B.01) can be written

(8.02) dM(t) — [D(t)-(r-e)V(t)]dt + dV(t) + dY(t) - (r-e) Y(t)dt + Adt.

Of the five terms on the right side, the first two terms,

[D(t)-(r-e)V(t)]dt + dV(t), give the returns which would prevail if stocks

were valued in a risk neutral manner; the next two terms, dY(t) -

(r-)Y(t)dt, adjust returns for noise; and the last term Adt is an expected

risk premium. Since the first two terms represent risk-neutral returns,

they must have a ntartingale property. To verify this, it can be shown that

when the first two terms are expanded using V(t) — + + from

(2.21) and (2.22), then the reduced form (2.23) implies

(8.03) [0(t) - (r-E)V(t)]dt + dV(t)

* 21/2 * *
—

(,c0-p1)i0dz0 + (2p1-p1) c0dz1 + ir1a1dz1,
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with all dt-terms involving ire, and ir cancelling. A similar expansior

for the two terms involving Y(t) yields

(B.04) dY(t) - (r-)Y(t)dt —

+
80i0dz + 9171d + 171d4+ 8-rd4

Thus, dM(t) satisfies

(B.05) dM —
[A

-

(r+a.1)Y]dt + (iru0- p1a0 + O0-y0)dz

1 21/2 1 * * *
+

aO
+ + + 91-y1)dz1 + Oidz.

Now define the process N(t) by

(B.06) N(t) — -(r - + Y(t).

The process N(t), which is perfectly negatively correlated with Y(t),

satisfies

(B.07) dN(t) — -N(t) - (r--a,1)(O0i0dz + 81-11d4 + 9171dz + 87d4).

Equations (B.05) and (B.07) imply equations (3.03)-(3.05).
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Proof of Theorem 3.2. This kind of optimization problem is considered

by Merton [1971] and our proof follows his analysis.

Begin with the Bellman equation

(B.08) 0 — max {e - aV + [rW + X(A+N) -
C]VW

+ - OYNVN + aV/2 + caMaxv]

Make the conjecture that the value function V(.) is given by (3.08).

Then the Bellman equation becomes (upon dividing through by V)

(B.09) 0 — max
[-

- r(rW-C) + [(-44N)2 - 2W2 -

+ a(1+42N)N - +
(*rX)2u/2]

Notice how the maximization problems for C and X can be solved

separately. The first order condition for C is

(B.l0) eC — -rV

Taking logs of both sides and substituting from (3.08) yields the

consumption function

(B.ll) C — -log(-rV) — 'rW + + 1N + 2N2/2.

We thus obtain
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(B.12) max [ - r(rW -

C)]
— r(l + + •1N + •2N2/2)

The first order condition for X generates the demand function (3.11).

Plugging (B.12) and (3.11) into the Bellman equation (B.09) yields

(B.14) 0 — r(l + + •1N + 2N2/2
- + + 2N)N +

2+ 2 - - (A + N - (L + •2N)caMoN) hIM

The desired equations (3.09) are now obtained by equating coefficients

on the N2-term, the N-term, and the constant term. The first equation of

(3.09) is quadratic in with a positive and a negative root, but the

positive root is economically relevant, because it generates a value

function with higher expected utility. Values of and l are

obtained from the other two equations of (3.09) which are linear. As

discussed by Merton (1971], the values of , and 2 actually

characterize a solution to the smart-money investor's problem.
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APPENDIX C

Discrete Processes from Point Observations and Time Averages. Let y1'

denote the discrete process obtained by taking point observations of the

continuous process defined in Appendix A, equation (A.Ol), at evenly spaced

points t ,t t . . . , with t — t - t . Then y' satisfies the0 1 n n n-i n

stochastic difference equation

P AtP P
(C.Ol) — e y + u1,

where u1' is a normally and independently distributed sequence of

innovations (independent from yP, . . . ) given (from (A.02)) by

(C.O2) u1 — eA tr)c dz(t+r).

We have from (A.03)

(C.03) var {+1} — teAtr)CCeAtr)dr

and when Q(t) is time invariant, we have from (A.O8)

(C.04) var {+1} — Q - eMtQ eA't

Now let yA be the discrete process obtained by taking continuously

compounded time averages of the continuous process y(t) over the interval

(t ,tJ ,i.e.n-i n
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(C.05) ' ey(t l+1) dr

An explicit evaluation of this integral yields

(C.06) y — rt err'{eAT'yPl
+ jr eT'c dz(t+r)] dr'

— (rI+A) [eIt - 1]P
+ (IA)lJt[(rI+A)t

- Ar
-

erlt]Cdz

Thus, yA÷1 satisfies the linear stochastic difference equation

(C.07) — (rI-i-A,
L[e(rI+A)t i]y + u

The innovations uA are serially independent and are also independent from

past values of both the point process y and the time averages y

This makes yP ,A jointly a vector AR1 process, even though the time

averages y alone are not. We have

IA(C.08) varju1

—

(rI+A)4[
Jt{(rI+A)t - Ar

e
')t-A'r

enIT]dr]
(rI+A')1

(C.09)
cov{uA,uP}

— (rI+A) r[et - Ar
et]CCeA'tT)dr

Evaluation of these expressions is a messy exercise with the following
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solution when Q(t) is time invariant and rI+A and rI-A are both

invertible: Define

(rI +A) t(C.lO) S — e , T — 2rItte

-l 1
H1 — TS - SQS' , — CC(T - S')(rI - A) , M3

— - I)CC'

Thenwehave -- -

(Cli) var{uA} — (rI +
A)'[M1

-

H2
- M +

M3](rI
+ A'),

(A P1 -l
(C.12) covlu ,u — Cr1 + A)

-rtI
]

e
[H1 -M2

If Q(t) is not time invariant, then the above formulas are valid when

is replaced by

* (rI+A)t 1At ATCC,A'rd 1 (rI+A')te Ii e(C.13) H1
—

_0 J e

The stacked vector of discrete points and time averages thus satisfies

[ Mt 1 11 [P 1lu
(C.14) I I —

I

e 0

j [n
I n+ii

I A I I l1 (rI+A)At

]
0 A j

+
A I

y u I

LYn+1]
[e

- I
[ n+lj

I Pl
{P

I (p Al1coviulu I varu
I n+ll n+lJ' I fl+l''n+lJ' I

(C.15) var1 A I

- I ( A )
{

A

} j
lu I I covIu 1,u1 var u÷i
[n+1]

The terms in (C.15) are explicitly evaluated in (C.03), (Cli), and (C.12).
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TABLE 1

UNIVARIATE TESTS FOR UNIT ROOTS

AND TESTS FOR COINTEGRATION

Variable Test Statistics

ta Zta

-2.77 -3.08

P -2.37 -2.51

-3.40 (10%) -3.70 (5%)

-2.68 -2.80

ln(D)
-3.43 (5%) -3.69 (2.5%)

ln(P)
-2.68 -2.85

Cointesratina regression:

— 0.030 + 0.016 Pt + u. Implied value of r — 0.029.

Engle-Granger [1987] tests for cointegration:
Dickey-Fuller 4.68 (1%), Augmented Dickey-Fuller 3.56 (5%).

Other estimates of r:

Reverse cointegrating regression: implied value of r — 0.055.

(Mean of D)/(Mean of — 0.050: implied value of r — 0.063.

Mean stock return — 0.082.
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TABLE 2

TIME-SERIES PROPERTIES OF THE DATA

a(D) — 0.006, c(P) 0.174, 0.032

Correlations:

Pt Pt

1.00 0.08 0.08 1.00

0.17 -0.12 -i 0.57 0.04

D2 -0.14 0.03 t-2 0.21 -0.22

ADt3 -0.09 -0.11 t-3 0.04 0.09

Dt4 -0.15 0.02 t4 -0.05 0.07

t-5 -0.04 0.08 t-5 -0.04 -0.06
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TABLE3 -

MAPPING THE LIKELIHOOD FUNCTION, MODEL A

Interest rate No noise Independent Overreaction Full

assumption noise noise

4% 485.15 490.66 491.41 491.71

6% 451.22 488.35 490.94 491.35

Free r, A—O 474.11 488.66 491.15 491.46

(estimated r) (1.5%) (5.6%) (5.6%) (5.7%)

Free r and A 491.36 491.83 494.40 494.40

(estimated r) (3.0%) (3.1%) (3.4%) (3.4%)
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TABLE 4

IMPLICATIONS OF MODEL A ESTIMATES

1) Free r and A. no noise. Log likelihood — 491.35.

r — 0.029 (0.004)
a.,

—

A — 0.029 (0.004) . —

a0
— 0.003 (0.001)

a1
—

P1 — — 60.357

a1 — 0.441 (0.126) —

01
— 0.007 (0.001) — 2.185

Normalized innovations variance-covariance matrix:

P Y V
,r1D1 ,r11

1.00 0.00 1.00 0.99 0.01 0.00
0.00 0.00 0.00 0.00 0.00

1.00 0.99 0.01 0.00
0.99 0.00 0.00

0.01 0.00
0.00

o(D) — 0.005, a(P) — 0.174

Correlations:

Pt tD
1.00 0.30 0.30 1.00

ADi 0.08 -0.01 0.30 -0.00

-0.16 -0.01 -0.01 -0.00

-0.10 -0.01 t-3 •oo -0.00

-0.07 .0.00 AP4 -0.01 -0.00

-0.04 -0.00 at-S 0.00 .0.00
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2) Free r and A. full

r — 0.034 (0.005)

A —b.025 (0.005)

00 0.003 (0.001)

a1 —

p1
—

a1
— 0.374 (0.141)

Cl — 0.006 (0.001)

Normalized innovations

P Y

4.22 2.16
1.11

Log likelihood — 494.40.

5.624 (20.9)

— 0.001 (*)

— 1.054 (2.767)

— 48.534

— 2.535

variance - covariance matrix:

v 'o°o II
2.05 2.03 0.03 0.00
1.05 1.04 0.01 0.00
1.00 0.99 0.01 0.00

0.99 0.00 0.00
0.01 0.00

0.00

— 0.005, r(P) — 0.179

Correlations:

1.00 0.20 0.20 1.00

t-1 0.11 -0.03 P1 0.35 -0.18

Dt2 -0.14 -0.01 -0.01 -0.00

Dt3 -0.10 -0.01 AP3 -0.01 -0.00

D4 -0.07 -0.00 -0.01 -0.00

-0.05 -0.00 t-5 -0.00 -0.00

(*): parameter converged almost to the boundary of the admissible region.
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Notes:

a. This model failed to converge.
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TABLE 5

MAPPING THE LIKELIHOOD FUNCTION, MODEL

Interest rate

assumption

No noise Independent
noise

Overreaction Full
noise

4% 487.65 489.46 495.86 500.73

6% 481.64 499.57 492.87 499.82

Free r, A—O

(estimated r)

486.25

(5.4%)

499.84

(5.7%)

492.28

(5.4%)

499.87

(5.8%)

Free r and A

(estimated r)

491.74
(4.7%)

499.96

(5.5%)

a
(----)

500.77

(3.7%)



1) Free r and A. no

r — 0.047 (0.002)

A — 0.012 (0.003)

— 0.007 (0.000)

a1 — 0.300 (0.088)

p1
— 0.768 (0.135)

a1 —

Cl
—

TABLE 6

IMPLICATIONS OF MODEL B ESTIMATES

noice Log likelihood — 491.74.

—

—

— 29.715

— 26.718

variance -covariance matrix:

V W0D

1.00 0.36 0.00
0.00 0.00 0.00
1.00 0.36 0.00

1.16 0.00
0.00

Normalized

P

1.00

innovations

Y

0.00
0.00

In I

0.64
0.00
0.64
-0.80
0.00
1.44

— 0.005, — 0.181

Correlations:

Dt Pt

Dt 1.00 0.25 0.25 1.00

Dtl 0.25 -0.00 0.39 0.02

D2 -0.00 -0.00 EPt2 0.17 0.01

D3 -0.00 -0.00 0.13 0.01

0t-4 -0.00 -0.00 0.10 0.01

DtS -0.00 -0.00 P5 0.07 0.01
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2) Free r and A. full noise. Log likelihood — 500.77.

r — 0.037 (0.009) ay
— 0.089 (0.056)

A — 0.021 (0.009) — 0.315 (0.172)

ao
— 0.007 (0.000) y0

— -0.435 (0.207)

a1 — 1.103 (0.336)

p1
— 1.126 (0.214) 41.031

— 40.144

C1_

Normalized innovations variance-covariance matrix:

P Y V
,r0D0 SIX

0.42 -0.15 0.57 -0.06 0.00 0.63
0.29 -0.43 0.05 0.00 -0.48

1.00 -0.11 0.00 1.11
1.05 0.00 -1.16

0.00 0.00
2.26

— 0.006, a(P) — 0.182

Correlations:

AD 1.00 0.17
APt

0.17 1.00

ADt1 0.25 0.06 APt1 0.57 0.07

-0.00 0.05 t-2 0.30 0.05

ADt3 -0.00 0.05 A- 0.10 0.05

AD4 -0.00 0.04 APt4 0.03 0.04

AD5 -0.00 0.04 AP5 0.01 0.04
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TABLE 7

MAPPING THE LIKELIHOOD FtJNCTION, MODEL C

Interest rate No noise Independent Overreaction Full

assumption noise noise

4% 502.25 50225a 50314b 50314b

6% 481.64c 50459b 50459b

Free r, A.—O 500.34 50438b 50438b
(estimated r) (5.4%) (5.4%) (5.5%) (5.5%)

Free r and A 502.81 503.13 505•08b 50508b
(estimated r) (3.5%) (3.6%) (9.6%) (9.6%)

Notes:

a. This model converged to the no-noise model.

b. This model converged with p at its maximum allowable value of 2. The
full-noise model converged to he overreaction model.

c. This model converged to the equivalent version of model B.
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TABLE 8

IMPLICATIONS OF MODEL C ESTIMATES

1) Free r and A. no noise. Log likelihood — 502.81.

r — 0.035 (0.004) a1, —

A — 0.024 (0.005) y —

— 0.004 (0.001)

— 2.285 (0.815)

p1
— 1.776 (0.557) w0 — 46.049

a1 — 0.341 (0.127) — 45.615

— 0.006 (0.001) — 2.756

Normalized innovations variance-covariance matrix:

P Y V 0D0 ,r1D1 ,r11

1.00 0.00 1.00 -0.78 0.01 1.77

0.00 0.00 0.00 0.00 0.00

1.00 -0.78 0.01 1.77

1.02 0.00 -1.80

0.01 0.00
3.57

a(D) — 0.005, c(P) — 0.173

Correlations:

1.00 0.06 0.06 1.00

0.14 -0.01 t-l 0.54 0.00

-0.11 -0.01 0.16 -0.00

-0.08 -0.01 0.01 -0.00

-0.06 -0.00 Pt4 -0.00 -0.00

-0.04 -0.00 APtS -0.00 -0.00
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Normalized innovations

P Y

18.51 14.20
10.90

variance -covariance

V

4.30 -4.24
3.30 -3.26
1.00 -0.99

1.08

matrix:

w1D1

0.43
0.33
0.10
0.00
0.10

2) Free r and A. full

r — 0.096 (0.O5)

noise. Log

0.050

likelihood — 505.08.

(0.034)—

A — -0.043 (0.061) y, 0.000 (*)

a0 — 0.003 (02001) — 3.302 (2.737)

a1 — 1.796 (0.575)

p1 — 2.000 (*) — 12.006

— 0.383 (0.185) — 11.474

ai — 0.006 (0.000) — 2.145

711 I

8.11
6.22
1.89
-2.07
0.00
3.95

a(D) — 0.005, a(P) — 0.171

Correlations:

Dt 1
1.00 0.08 0.08 1.00

0.12 -0.03 0.53 -0.02

-0.12 -0.03 Pt2 0.16 -0.02

Dt3 -0.08 -0.03 -0.01 -0.02

-0.06 -0.02 - -0.02 -0.02

-0.04 -0.02 -0.02 -0.02

(*): parameter converged to the boundary of the admissible region.
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3) r — 6%. full noise. Log likelihood — 504.59.

r — 0.060 ( ) a — 0.034 (0.035)

A — -0.006 (0.008) — 0.000 (*)

00 — 0.003 (0.001) — 1.402 (0.356)

— 2.210 (0.590)

p1
— 2.000 (*) '0 — 21.236

a1 — 0.406 (0.159) — 20.793

01 — 0.006 (0.000) — 2.205

Normalized innovations variance-covariance matrix:

P Y V 0D0 w1D1

5.77 3.37 2.40 -2.42 0.09 4.73
1.96 1.40 -1.41 0.05 2.76

1.00 -1.01 0.04 1.97
1.05 0.00 -2.06

0.04 0.00
4.03

o(D) — 0.005, a(AP) — 0.172

Correlations:

ADt
1.00 0.05

APt
0.05 1.00

ADr1 0.12 -0.02 A-i 0.53 -0.01

-0.13 -0.02 t-2 0.15 -0.01

AD3 -0.09 -0.02 A- -0.00 -0.01

ADt4 -0.06 -0.01 A- -0.01 -0.01

AD5 -0.04 -0.01 AP5 -0.01 -0.01

(*): parameter converged to the boundary of the admissible region.
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Note; Model estimated has free r and 1, and full noise.
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