Political Behavior in the Coffee Agreement

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1086/451607</td>
</tr>
<tr>
<td>Accessed</td>
<td>February 22, 2018 10:00:13 PM EST</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:3208647</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>

(Article begins on next page)
Political Behavior in the Coffee Agreement*

Da-Hsiang Donald Lien
University of Kansas

Robert H. Bates
Duke University

Introduction

In recent decades, international commodity agreements have been proposed as a way of promoting "development." Behrman, McNicol, and others have analyzed them from a purely economic point of view.\(^1\) Fisher, Krasner, and others have adopted a more political perspective.\(^2\) In this article, we seek to advance the political analysis of such agreements. We do so by studying the allocation of export entitlements in the International Coffee Organization (ICO).

In the ICO, as in other international organizations, political processes replace markets in the allocation of scarce resources. In the case of the ICO, allocational decisions are made by majority rule. Given the possibility of strategic behavior in such political environments, game theory should provide a useful set of tools for the analysis of such institutions. A particular interest of this article is the appropriateness of a specific solution concept—the Shapley value—to the analysis of politically contrived allocations under the ICO.\(^3\)

The Institution

The International Coffee Organization was formed under the terms of the International Coffee Agreement ratified in 1962. Its members include the major consumer nations (which account for 85% of annual world consumption) and the major producer nations (which account for 98% of annual world exports). The agreement represents an attempt to stabilize the price of coffee. To achieve this goal, the ICO imposes quota restrictions on its members. Each producer agrees not to export more than his assigned quota. Adherence to the quota is enforced through a system of stamps and certificates. Producers that have filled their quotas can make further sales on the nonquota market; prices on
that market, however, commonly average less than one-half of those on the quota market.

Formally, decisions concerning the allocation of the quota are taken by vote. Consumer nations receive 1,000 votes; so, too, do producer nations; and a two-thirds majority of each "house" is required to establish a binding allocation. Despite the rules, interviews reveal that, while producer and consumer nations do negotiate the overall price and quantity levels, consumer nations refuse to get involved in the subdivision of the overall quota into national quotas. For purposes of analyzing the allocation of quotas, then, we may concentrate solely on the producer nations.

The data we shall analyze concern the two proposals for quota allocations advanced after the reimposition of export restrictions in 1982. One, proposed in June 1982, failed to secure adoption by the member states; another was proposed in September 1982 and was ratified.

The Analysis
The above rules define a weighted majority voting game. A variety of approaches are available for predicting allocations within the context of an institution possessing such a structure, but most are extremely difficult to apply in "real world" cases, for example, where the number of actors is large. There is one solution concept for which a computational algorithm exists that makes such applications possible: the Shapley value.

The Shapley value can be thought of as a measure of the power of players to influence outcomes, given the rules of an institution. In an institution that allows weighted votes, the Shapley value can be thought of as a measure of the ability to turn coalitions into electoral majorities. Its measure is the proportion of all possible coalitions that a player can convert into winning (i.e., majority) coalitions. The ability of the player to be pivotal in that sense defines the player's value or power in the "game." The Shapley value, therefore, defines as well the share of the payoffs that each player can expect to get, given its ability to exploit its strategic opportunities to make (or to refuse to make) coalitions into winning coalitions. It therefore suggests the allocational outcome of the game in terms of the payoffs that should be expected to go to each player.

While we agree with many of the criticisms of the Shapley value, we have calculated the Owen approximation of it and sought to determine whether it allows us to account for the allocation of the coffee quota and the votes of individual nations in 1982.

Mathematically, for our problem, the Shapley value for the \(i \)th player \((S_i) \) is defined as:

\[
S_i = \sum_{T \subseteq I, i \in T} \frac{(t - 1)!(N - t)!}{N!},
\]
Table 1

The Data

<table>
<thead>
<tr>
<th>Nation</th>
<th>Shapley Value (%)</th>
<th>Successful Proposal (% of quota)</th>
<th>Failed Proposal (% of quota)</th>
<th>80/81 Adjusted Export Share (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>25.35</td>
<td>30.83</td>
<td>30.00</td>
<td>27.80</td>
</tr>
<tr>
<td>Colombia</td>
<td>18.72</td>
<td>16.28</td>
<td>14.03†</td>
<td>16.30</td>
</tr>
<tr>
<td>OAMCAF</td>
<td>11.01</td>
<td>11.96</td>
<td>12.00</td>
<td>11.87</td>
</tr>
<tr>
<td>Indonesia</td>
<td>7.48†</td>
<td>4.55‡</td>
<td>4.75†</td>
<td>6.84</td>
</tr>
<tr>
<td>El Salvador</td>
<td>4.81</td>
<td>4.48</td>
<td>5.24</td>
<td>4.30</td>
</tr>
<tr>
<td>Mexico</td>
<td>3.95</td>
<td>3.65</td>
<td>3.93</td>
<td>3.45</td>
</tr>
<tr>
<td>Guatemala</td>
<td>3.81</td>
<td>3.47</td>
<td>4.16</td>
<td>3.31</td>
</tr>
<tr>
<td>Uganda</td>
<td>3.53</td>
<td>4.44</td>
<td>4.64</td>
<td>3.49</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>2.39</td>
<td>2.16‡</td>
<td>2.24</td>
<td>2.76</td>
</tr>
<tr>
<td>Kenya</td>
<td>2.29</td>
<td>2.48</td>
<td>2.46†</td>
<td>2.13</td>
</tr>
<tr>
<td>Ecuador</td>
<td>2.18</td>
<td>2.17</td>
<td>2.28</td>
<td>1.83</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>1.95</td>
<td>2.62</td>
<td>2.42</td>
<td>2.52</td>
</tr>
<tr>
<td>Zaire</td>
<td>1.95</td>
<td>2.12</td>
<td>2.20</td>
<td>1.80</td>
</tr>
<tr>
<td>Honduras</td>
<td>1.88</td>
<td>1.49‡</td>
<td>1.62</td>
<td>1.80</td>
</tr>
<tr>
<td>Peru</td>
<td>1.68</td>
<td>1.31‡</td>
<td>1.55</td>
<td>1.61</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>1.59</td>
<td>1.28</td>
<td>1.53</td>
<td>1.49</td>
</tr>
<tr>
<td>Papua New Guinea</td>
<td>1.48</td>
<td>1.16‡</td>
<td>1.47†</td>
<td>1.52</td>
</tr>
<tr>
<td>Tanzania</td>
<td>1.48</td>
<td>1.36</td>
<td>1.51†</td>
<td>1.69</td>
</tr>
<tr>
<td>India</td>
<td>1.35</td>
<td>1.24‡</td>
<td>.99†</td>
<td>2.62</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>1.10</td>
<td>.95</td>
<td>1.00</td>
<td>.87</td>
</tr>
</tbody>
</table>

* The adjusted export share is defined as the export share divided by 98.84 (i.e., the aggregate export share for ICO members).
† The nations voting against the failed proposal.
‡ The nations voting against the successful proposal.

where the summation is taken over all winning coalitions (i.e., a collection of members for which the summation of votes exceed two-thirds of the total votes) T such that $T - \{i\}$ is not winning. The number of members in T is t, and N is the number of players. Table 1 exhibits the Owen approximation of the Shapley value for each player, along with other important data.

The Votes of Individual Nations

Colombia, Indonesia, Kenya, Papua New Guinea, Tanzania, and India voted against the proposal of June 1982, while Indonesia, Costa Rica, Honduras, Peru, Papua New Guinea, and India voted against the proposal of September 1982.

We are in a position to investigate two possible explanations for the voting behavior of member nations of the ICO. One is that they would evaluate a proposal in terms of what they had been securing in the international coffee market. Another is that they would evaluate a
proposal in terms of what they could expect to get from negotiations with other member nations. The first leads to a definition of an explanatory variable, \(Z_{i} \), where \(Z_{i} \) is the difference between the quota assigned in the proposal \((q_{i}) \) and the nation's previous year's (i.e., in our problem, 1980/81) export share \((e_{i}) \). That is, \(Z_{i} = q_{i} - e_{i} \). The second leads to the definition of an alternative explanatory variable, \(X_{i} \). \(X_{i} \) is measured in terms of the difference between the quota assigned in the proposal and the nation's Shapley value \((S_{i}) \). That is, \(X_{i} = q_{i} - S_{i} \). All variables are measured in percentage terms and "..." stands for either 1 or 2, that is, (1) the proposal of June 1982 which failed, or (2) the second proposal, made in September, which passed.

To test these explanations of voting behavior, we adopted probit procedures. Specifically, let \(Y_{ji} \) be a dichotomous variable such that \(Y_{ji} = 1 \) if producer \(i \) voted for proposal \(j \); \(Y_{ji} = 0 \) otherwise. The models can be stated as:

\[
\text{Prob} \left(Y_{ji} = 1 \right) = \Phi(\alpha + \beta X_{ji} + \gamma Z_{ji}),
\]

where \(\text{Prob} \left(Y_{ji} = 1 \right) \) denotes the probability that \(Y_{ji} = 1 \); \(\Phi(u) \) denotes the cumulative density of a standard normal variable evaluated at \(u \); \(\alpha, \beta, \gamma \) are scalars which we will estimate. In other words, the models predict that producer \(i \) voted for \(j \) proposal if \(\alpha + \beta X_{ji} + \gamma Z_{ji} \geq 0 \) and otherwise voted against \(j \).

In these and other areas of this investigation, we have found it useful and necessary to treat the Colombian milds—Kenya, Tanzania, and Colombia—as a bloc. More specifically, the data suggest and interviews confirm that the three nations act as a bloc led by Colombia, wherein Colombia evaluates proposals in terms of their effect on its own quota, whereas Kenya and Tanzania evaluate the proposals in terms of their impact on the share of Colombian milds in the allocation as a whole.\(^7\) In the models that follow, we therefore replace \(X_{ji} \) and \(Z_{ji} \) by \(\bar{X}_{ji} \) and \(\bar{Z}_{ji} \), where \(\bar{X}_{ji} \) is \(X_{ji} \) if \(i \in \{ \text{Kenya, Tanzania} \} \); \(\bar{X}_{ji} \) is the summation of \(X_{ji} \) over \(i \in \{ \text{Colombia, Kenya, Tanzania} \} \) if \(i \) is Kenya or Tanzania. A similar definition applies to \(\bar{Z}_{ji} \).

With these modifications, the results of these estimations are:\(^8\)

The proposal that failed

\[
\text{Prob} \left(Y_{1i} = 1 \right) = \Phi(1.2348 + 3.5834 \bar{X}_{1i})
\]

(1)

\[
(0.5903) \quad (3.0535)
\]

log-likelihood = \(-4.4115\);

\[
\text{Prob} \left(Y_{1i} = 1 \right) = \Phi(1.3402 + 1.9128 \bar{Z}_{1i})
\]

(2)

\[
(1.0134) \quad (0.5671)
\]

log-likelihood = \(-3.4103\);
Prob \((Y_{1i} = 1) = \Phi(1.3125 + 0.4353 \bar{X}_{1i} + 1.6752 \bar{Z}_{1i}) \) \hspace{1cm} (3)

\[
\begin{pmatrix}
0.5710 \\
(1.3332)
\end{pmatrix} \begin{pmatrix}
(2.0525)
\end{pmatrix}
\]

log-likelihood = \(-3.3738\).

The successful proposal

Prob \((Y_{2i} = 1) = \Phi(0.6 + 0.1837 \bar{X}_{2i}) \) \hspace{1cm} (4)

\[
\begin{pmatrix}
0.3207 \\
(0.2212)
\end{pmatrix} \begin{pmatrix}
(0.2212)
\end{pmatrix}
\]

log-likelihood = \(-11.8122\);

Prob \((Y_{2i} = 1) = \Phi(1.0951 + 6.3769 \bar{Z}_{2i}) \) \hspace{1cm} (5)

\[
\begin{pmatrix}
0.5863 \\
(2.8622)
\end{pmatrix} \begin{pmatrix}
(2.8622)
\end{pmatrix}
\]

log-likelihood = \(-2.2835\);

Prob \((Y_{2i} = 1) = \Phi(1.2671 - 0.1591 \bar{X}_{2i} + 6.5049 \bar{Z}_{2i}) \) \hspace{1cm} (6)

\[
\begin{pmatrix}
0.7933 \\
(0.5981)
\end{pmatrix} \begin{pmatrix}
(3.0281)
\end{pmatrix}
\]

log-likelihood = \(-1.90355\).

Except in equation (6), all the coefficients associated with \(\bar{X}_{ji} \) and \(\bar{Z}_{ji} \) have the expected positive sign. That is, if a proposal assigned an individual nation a quota larger than its Shapley value or its previous year’s export share, the nation was more likely to vote for that proposal.

On calculating the \(t \)-statistics (the numbers within the parentheses denote standard deviations), we find that all the constant terms are significant at 90% confidence level. None of the coefficients associated with \(\bar{X}_{ji} \) is significant at 80% confidence level. The coefficients associated with \(\bar{Z}_{ji} \) differ across the equations: they are significant at the 95% confidence level for equations (5) and (6); at the 90% confidence level in equation (2); and insignificant for equation (3).

These results may be interpreted as indicating:

1. There is a general tendency to vote for proposals. Interviews suggest that the origins of this tendency lie in a fear that, without an agreement on quotas, the regulation of the international market will break down. Each nation would then be faced with unrestricted competition.

2. The Shapley value is not a significant determinant of the voting behavior of individual nations.

3. Consideration of the impact of a quota proposal on existing market shares is a significant determinant of an individual nation’s voting behavior (although the results are not as clear-cut as one would like in the case of votes on the proposal that failed).
The Allocation of the Quota

Given the failure of "Shapley entitlements" to determine voting decisions by individual nations, it is paradoxical to discover that the final allocation of the quota tended to conform to the Shapley value.

The rules of the organization allocate indicative quotas—that is, claims as to what a nation's quota might justifiably be. Under the rules prevailing in 1982 (specifically, Article 30), nations could base claims for quotas on their average exports for the period 1968/69 to 1971/72 or for the period 1976/77 to 1979/80. The rules also allocate votes. Under Article 13, votes were apportioned on the basis of the average volume of exports to importing members over the previous 4 years (i.e., 1976/77 to 1979/80).

These rules can be modeled and estimated as a system of equations:

By Article 13,

\[W_i = 0.3783 + 0.9242 \, P_{1i}; \]
\[0.0161 \]
\[0.0021 \]

By assumption of rational behavior,

\[S_i = 0.8227 \, W_i + 0.0156 \, W_i^2; \]
\[(0.0031) \]
\[(0.0018) \]

By Article 30 and prediction,

\[q_{1i} = 0.1354 + 0.9410 \, P_{2i} + 0.0322 \, S_i; \]
\[(0.1232) \]
\[(0.0684) \]
\[(0.0758) \]

By Article 30 and prediction,

\[q_{2i} = -0.2279 + 0.8281 \, P_{2i} + 0.2175 \, S_i; \]
\[(0.1214) \]
\[(0.0674) \]
\[(0.0746) \]

where \(W_i \) is the proportion of votes held by voter \(i \); \(P_{1i} \) is the producer \(i \)'s average export share from 1976/77 to 1979/80; \(P_{2i} \) is the maximum of the producer \(i \)'s average export share for the period 1968/69 to 1971/72 or for the period from 1976/77 to 1979/80. All the variables are measured in percentages. The system was estimated by two-stage least squares, using the constant term, \(P_1 \) and \(P_2 \) as instrumental variables, to eliminate the relationship between \(S_i \) and \(q_{1i}, \) \(q_{2i} \) that was indirectly produced through their association with export performance.

As shown in equations (9) and (10), the coefficient of the Shapley
value is insignificant in the case of the quota that failed; but it is significant in the case of the quota that passed. In other words, the proposal that accommodated strategic power as measured by the Shapley value succeeded, while the proposal that did not fail.

Conclusion
We thus encounter a paradox. Consideration of the Shapley value does not appear to influence a nation's votes on a proposed quota. But proposed quotas pass when they conform to the Shapley value and fail when they do not.

The resolution of this paradox may lie in the following: quotas are established in stages. In the ICO, a proposal is first negotiated, then proposed, and then voted on. It is during the period of negotiations that each nation exercises its bargaining power to shape the proposed allocation. When the proposal is subsequently voted on, however, the nations then appear simply to determine whether they do better or worse under the proposed quota than under the status quo.

Notes
* Research for this paper was supported by the National Science Foundation (grant no. SE582-1680) and the Social Science Research Foundation. It was written while Bates was a Fellow at the Center for Advanced Study in the Behavioral Sciences, where he was supported by the National Science Foundation (grant no. BNS-801 1495), the Exxon Foundation, the John S. Guggenheim Foundation, and Duke University. Support was also given by the California Institute of Technology. None of these institutions bears any responsibility for the contents of this article.

3. As discussed in Riker and Ordeshook and elsewhere, the Shapley value makes several assumptions that are not intuitively appealing. Unlike many other solution concepts, however, it does possess an algorithm that allows it to be calculated even when the number of players is large. We have therefore employed it to explore the impact of the political rules of the commodity agreement on the voting behavior of its members and the allocation of export entitlements. See William H. Riker and Peter C. Ordeshook, *An Introduction to Positive Political Theory* (Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1973).

5. Riker and Ordeshook. See also R. Duncan Luce and Howard Raiffa, *Games and Decisions* (New York: John Wiley & Sons, 1957), chap. 11.

7. Bates served as a technical advisor to the 1985 meetings of the ICO and made extensive observations during the negotiations.

8. We employed maximum likelihood estimation and the model selection criteria proposed by H. Akaike, "Information Theory and an Extension of the Likelihood Ratio Principle," *Proceedings of the Second International Symposium of Information Theory*, ed. B. N. Petrov and F. Csáki (Budapest: Akadémiai Kiadó, 1973), pp. 257–81. The Akaike criteria were imposed here to select the explanatory variables (i.e., X_{ji} and Z_{ji} over X_{j} and Z_{j}). The estimation results with X_{ji} and Z_{ji} being explanatory variables are as follows:

$$\text{Prob (} Y_{1j} = 1 \text{)} = \Phi(0.6074 + 1.7778 \ X_{1j})$$
$$\ (0.3571) \quad (1.4983) \quad (1')$$

log-likelihood = -8.1767;

$$\text{Prob (} Y_{1j} = 1 \text{)} = \Phi(0.6806 + 1.3552 \ Z_{1j})$$
$$\ (0.3710) \quad (0.6964) \quad (2')$$

log-likelihood = -7.4169;

$$\text{Prob (} Y_{1j} = 1 \text{)} = \Phi(0.6586 + 0.4320 \ X_{1j} + 1.1218 \ Z_{1j})$$
$$\ (0.3793) \quad (1.3521) \quad (0.9421)$$

log-likelihood = -7.3482;

$$\text{Prob (} Y_{2j} = 1 \text{)} = \Phi(0.6513 + 0.4769 \ X_{2j})$$
$$\ (0.3370) \quad (0.3471) \quad (4')$$

log-likelihood = -10.8518;

$$\text{Prob (} Y_{2j} = 1 \text{)} = \Phi(4.6040 + 16.0237 \ Z_{2j})$$
$$\ (4.8099) \quad (15.4748) \quad (5')$$

log-likelihood = -2.6297;

$$\text{Prob (} Y_{2j} = 1 \text{)} = \Phi(-0.4679 \ X_{2j} + 3.9399 \ Z_{2j})$$
$$\ (0.5630) \quad (1.6029) \quad (6')$$

log-likelihood = -7.0644.

Comparing the log-likelihood for eqn. (1')–(6') to that of eqn. (1)–(6), respectively, we find that X_{ji} and Z_{ji} are better explanatory variables than X_{j} and Z_{j}.