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Evidence for Neural Effects of Repetition that Directly
Correlate with Behavioral Priming

Luigi Maccotta and Randy L. Buckner

Abstract

B Stimulus repetition associates with neural activity reduc-
tions during tasks that elicit behavioral priming. Here we
present direct evidence for a quantitative relation between
neural activity reductions and behavioral priming. Fifty-four
subjects performed a word classification task while being
scanned with functional MRI. Activity reductions were
found in multiple high-level cortical regions including those
within the prefrontal cortex. Importantly, activity within sev-
eral of these regions, including the prefrontal cortex, cor-

INTRODUCTION

Repeated experience with a stimulus can lead to faster
performance and more accurate identification—a behav-
ioral phenomenon known as repetition priming (for
reviews, see Roediger & McDermott, 1993; Tulving &
Schacter, 1990; Schacter, 1987). Human imaging studies
that elicit behavioral priming have consistently demon-
strated neural effects of repetition, including, but not
limited to, relative activity reductions in specific corti-
cal regions (for reviews, see Henson, 2003; Schacter &
Buckner, 1998; Wiggs & Martin, 1998). Parallel single-
unit correlates in monkeys have also been identified
(e.g., Rainer & Miller, 2000).

Considerable progress has been made in characteriz-
ing these neural repetition effects. First, these effects ap-
pear to generalize across paradigms including visual and
auditory stimuli as well as many task forms (Buckner,
Koutstaal, Schacter, & Rosen, 2000; Badgaiyan, Schacter,
& Alpert, 1999; Wagner, Desmond, Demb, Glover, &
Gabirieli, 1997; Demb et al., 1995; Raichle et al., 1994; for
a recent review, see Henson, 2003). Second, repetition-
related reductions occur in regions that are significantly
active for novel items, suggesting that such effects target
processing components normally engaged by the task.
Third, not all cortical regions significantly active during
task performance show an effect of repetition: Relative
activity reductions tend to spare, for instance, early
visual regions and regions involved in motor execution,
while producing robust effects in high-level regions such
as ones found in the late visual and frontal cortex (e.g.,
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related with behavior such that greater activity reductions
associated with faster performance. Whole-brain correlation-
al analyses confirmed the observation of anatomic overlap
between regions showing activity reductions and those show-
ing direct brain-behavioral correlations. The finding of a
quantitative relation between neural and behavioral effects
in frontal regions suggests that repetition reduces frontally
mediated processing in a manner that ultimately facilitates
behavior. W

Vuilleumier, Henson, Driver, & Dolan, 2002; Koutstaal
et al., 2001; Buckner, Goodman, et al., 1998). Repetition
does not therefore have a general effect on all regions
engaged by a task, but rather appears to influence a
specific subset, potentially targeting specific processing
components in the information processing hierarchy.

Despite these robust and reliable results, no direct
correlation between activity reductions and behavioral
priming have been reported (for an extensive review,
see Henson, 2003) prompting some to question whether
the phenomenon is epiphenomenal. Observed repeti-
tion effects may also reflect a phenomenon that is re-
lated to explicit recognition of repeated items (but
see Dehaene, Naccache, Cohen, et al., 2001; Dehaene,
Naccache, Le Clec’H, Koechlin, & Mueller, 1998). The
present event-related fMRI study used a large sample to
test for a direct relation between neural repetition
effects and behavioral priming. Fifty-four healthy young
adults performed a word classification task on novel and
repeated words while being imaged with fMRI. Neural
repetition effects were directly regressed with behavioral
facilitation effects across subjects. Results from regional
and voxelwise analyses converged to indicate that a
quantitative relation exists between neural activity re-
ductions and behavioral priming in specific regions of
the human cortex.

RESULTS

Behaviorally, repetition resulted in robust priming
(Figure 1). Response time was significantly affected by
repetition during a study phase immediately preceding

Journal of Cognitive Neuroscience 16:9, pp. 1625-1632



RESPONSE TIME (msec)

0
NEW REP1 REP2 REP3 REP4 REPS REP& REP7 REP8
BEPETITION

NEW OLD

Figure 1. Mean behavioral response time as a function of item
repetition in the study and test sessions of the experiment. Study
session repeated items are indicated as “Repl-Rep8.” Repeated items
during the test session were averaged across two functional runs

and are indicated as “Old.” Novel items are indicated as “New.” Error
bars represent standard error of the mean.

the functional imaging session [ANOVA, F(8,53) = 38.0,
b < .001]. During scanning, paired ¢ tests showed that old
words were classified significantly faster (791 msec) than
new words [915 msec; #(53) = 22.81, p < .001], with no
significant difference in accuracy [95.5% and 94.4% for
old and new words, respectively; £(53) = 1.81, ns].

The relation between behavioral priming and relative
neural activity reductions was explored systematically
beginning with an analysis using a priori regions, and
followed by exploratory mapwise and post hoc regional
analyses. In the first analysis, amplitude estimates derived
from independently defined a priori regions were used to
compute regional repetition effects. The size of the
regional neural repetition effect was then directly re-
gressed across subjects against the amount of behavioral
priming. Use of a priori regions allowed unbiased estima-
tion of repetition effects and their relation to behavioral
facilitation in each prespecified cortical region. Choice of
regions explored in the first analysis was motivated by
previous studies (e.g., Buckner, Goodman, et al., 1998),
and included an early visual region near the calcarine
cortex and a region near the motor cortex (as controls),
a late visual region near the posterior fusiform gyrus,
and a prefrontal region near the inferior frontal gyrus
(Figure 2A-D). All regions were in the left hemisphere.

Replicating previous event-related studies, repetition
resulted in significant reduction of neural activity in
high-level cortical regions, whereas early visual and mo-
tor regions did not show significant repetition effects
(Figure 2E-H). The region near calcarine cortex did not
show a significant effect of repetition, with similar activity
levels for novel and repeated items [Figure 2E; paired ¢
test, £(53) = 1.04, ns]. Conversely, the region centered
near the posterior fusiform gyrus demonstrated signifi-
cantly decreased activity for repeated items as compared
to novel items [Figure 2F; #(53) = 5.47, p < .001].
Repetition effects were also observed in the region near
the inferior frontal gyrus, with robust activity reductions
for repeated words [Figure 2G; #(53) = 7.83, p < .001].
The region near motor cortex instead did not show
significant group-level facilitation [Figure 2H; #(53) =
0.62, ns]. Thus, group-level repetition effects generally
replicated previous findings (e.g., Buckner, Goodman,
et al., 1998), showing specificity for high-level temporal
and frontal regions, while sparing regions involved in
early visual processing and response execution.

The relation between regional neural activity levels
and behavioral response time was explored next. Re-
gional neural repetition effects (computed as the dif-
ference between hemodynamic response amplitude for
novel and repeated items) were regressed against
behavioral repetition effects (computed as the differ-
ence between response times to novel and repeated
items). Results of this analysis are shown in the right
panels of Figure 2 (I-L). The visual regions showed
minimal effects (Figure 2I; » = .17, ns; and Figure 2J;
r = .17, ns). Significant correlations were observed in
the region centered near the inferior frontal gyrus
(Figure 2K; » = .31, p < .05), which had demonstrated
robust group-level activity reductions for repeated
items in the previous analysis. No correlation was ob-
served in the region near motor cortex (Figure 2L;
r = .17, ns). Results of the regression analysis thus
revealed a significant correlation between neural repe-
tition effects and behavioral priming in the a priori
region of prefrontal cortex, suggesting that behavioral
facilitation is directly linked to activity reductions in
frontal cortex. Analyses based on relative behavioral
difference, as opposed to absolute differences, yielded
highly similar results.

To further explore the relation between neural reduc-
tions and behavior, mapwise analyses were conducted
that directly compared regions of activity reduction to

Figure 2. Correlation of neural and behavioral repetition effects in a priori regions. The left panels (A-D) display regions of interest in yellow on
axial anatomical images. Regions near calcarine cortex (A), posterior fusiform gyrus (B), inferior frontal gyrus (C), and primary motor cortex (D)
examined in this analysis were obtained from Logan et al. (2002), Maccotta et al. (2001), and data from an unpublished object localizer task. Group
hemodynamic response time-courses for such regions are shown in the middle panels (E-H) for novel (red) and repeated (black) items. Percent
amplitude reduction for repeated items is indicated for each region. Correlation plots regressing neural and behavioral repetition effects across the
54 subjects in each a priori region are displayed in the right panels (I-L). Late visual and prefrontal regions demonstrated significant repetition

reductions, replicating previous results and indicating specificity of repetition effects. A quantitative relationship between neural repetition effects

and behavior was revealed in the prefrontal region (K).
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Figure 3. Frontal regions show a quantitative link between repetition reductions and behavioral priming. (A) Statistical activation maps comparing
novel items to a baseline fixation condition revealed widespread activity in several regions of the occipital, temporal, frontal, and motor cortex.
(B) Activation maps comparing repeated items to fixation revealed activation of a similar network, but with specific, robust reductions in the
frontal regions and, to a lesser extent, in the temporal regions. (C) Whole-brain maps show the overlap between a significant neural repetition
effect and a correlation with behavior. Voxels that showed both significant repetition-related activity reductions (p < .01) and a significant
correlation between neural and behavioral repetition effects (p < .01) are depicted in yellow (blue colors and red colors represent significance
only for the repetition and correlation effects, respectively). Note the overlap of repetition reduction and correlation in the prefrontal, SMA, and

thalamic regions.

those showing brain—behavior correlation. Statistical
activation maps were computed first by comparing
amplitude levels for novel and repeated words to a
baseline fixation condition, providing an estimate of
those regions showing activity during the task, as has
been explored in previous studies (Figure 3A and B).
Processing of novel items led to activation of several
cortical regions, including regions in occipital, temporal,
frontal, and motor cortex (Figure 3A). When items were
repeated, qualitative inspection revealed activation of
similar regions of the cortex, albeit with reduced activity
in specific regions, including portions of the frontal and
temporal cortex (Figure 3B).

Maps were then constructed showing the voxelwise
magnitude of the correlation between behavioral and
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neural facilitation effects. Results are shown in Figure 3C,
which superimposes voxels demonstrating significant
repetition-related activity reductions and significant cor-
relation between neural and behavioral priming. Specific
regions of the cortex that showed repetition-related
activity reductions also showed a significant correlation
between neural and behavioral priming, including re-
gions of prefrontal cortex near BA 44 and pre-SMA,
consistent with results of the previous analyses. Not all
regions showing repetition-related activity reductions
also showed a correlation between neural and behavioral
priming. However, it is possible that threshold effects
contribute to the appearance of specificity, concealing a
weaker correlation in these regions. Consistent with this
possibility, those regions showing the greatest activity
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reductions showed the most robust brain-behavior
correlations.

Motivated by the prominent effects in frontal cortex
along the inferior frontal gyrus, prefrontal subregions
were explored that have functionally dissociated in past
studies. Specifically, three separate regions were interro-
gated post hoc based on Gold and Buckner (2002),
including regions near (1) BA 44, (2) BA 6, and (3) BA
45/47. These three regions are reported as exploratory
correlations as they were not intended for analysis prior
to data collection. Regression plots appear in Figure 4.
Of the three regions, BA 44 showed the strongest cor-
relation (Figure 4A; » = .40, p < .005), whereas BA 45/47
and BA 6 showed weaker effects (Figure 4B-C; BA 6:
r = 21,ns; BA45/47. v = .25, p = .07).

Taken together, the results of these analyses suggest
a direct relation between neural activity reductions and
behavioral priming in specific regions of the cortex,
such as portions of frontal cortex (e.g., BA 44) and
pre-SMA, which have been implicated in controlled
processing.

DISCUSSION

The frequent observation of repetition resulting in re-
duced neural activity concurrent with behavioral facili-
tation suggests a link between neural repetition effects
and behavioral priming (Henson, 2003; Schacter & Buck-
ner, 1998; Wiggs & Martin, 1998). In the present study,
the commonly observed pattern of activity reductions
following item repetition was replicated, with the most
prominent reductions observed in late visual cortex
extending into inferior temporal cortex and frontal
cortex. Moreover, a significant correlation between ac-
tivity reductions and behavioral priming was observed
in prefrontal cortex. Exploratory mapwise correlations
further suggested that regions showing correlation over-
lapped with those demonstrating repetition-related
reductions, involving the prefrontal regions and sup-
plementary motor area. These results provide direct
evidence that neural activity reductions associate with
repetition priming. For these reasons, repetition-related
activity reductions might be appropriately termed ‘“‘neu-
ral priming,” reflecting their direct link to certain be-
havioral priming effects that have long been studied
in the behavioral literature (for reviews, see Roediger
& McDermott, 1993; Tulving & Schacter, 1990; Schacter,
1987). Moreover, the quantitative relationship between
behavioral and neural priming observed here across sub-
jects is consistent with previous reports linking within-
subject levels of behavioral priming to corresponding
changes in levels of neural priming across conditions
(Simons, Koutstaal, Prince, Wagner, & Schacter, 2003;
van Turennout, Bielamowicz, & Martin, 2003; Koutstaal
et al., 2001; Henson, Shallice, & Dolan, 2000; van
Turennout, Ellmore, & Martin, 2000; Wagner, Koutstaal,
Maril, Schacter, & Buckner, 2000).
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Figure 4. Correlation of neural and behavioral repetition effects in
post hoc frontal regions. (A, B, C) The region at or near BA 44 (A)
showed the strongest correlation between neural and behavioral
priming (p < .005), whereas the two other frontal regions showed at
best a trend for a correlation (BA 6: #zs; BA 45/47: p = .07). Regions are
derived from Gold and Buckner (2002).

The correlation observed in frontal regions, in partic-
ular, along the inferior frontal gyrus including a region at
or near BA 44 and to a lesser extent a region near BA 45/
47, suggests that a significant influence of repetition on
behavior was through facilitation of frontally mediated
processes. The finding of nonsignificant correlations in
the other regions does not preclude their contribution

Maccotta and Buckner 1629



in the processing facilitation evident at the behavioral
level, as such apparent specificity may be due to a
threshold effect, or a suboptimal definition of the
region of interest. Nonetheless, anterior regions along
the inferior frontal gyrus have consistently been impli-
cated in controlled processing (Gold & Buckner, 2002;
Mesulam, 2002; Duncan, 2001; Wagner, Pare-Blagoev,
Clark, & Poldrack, 2001; Fletcher, Shallice, & Dolan,
2000; Thompson-Schill, D’Esposito, Aguirre, & Farah,
1997; Raichle et al., 1994) and also showed robust effects
in the present study. Lesions to the frontal cortex can
impair controlled task performance (Janowsky, Shima-
mura, Kritchevsky, & Squire, 1989; Shallice, 1988; Nor-
man & Shallice, 1986; Stuss & Benson, 1984; Petrides
& Milner, 1982; Milner, 1963, 1964). Repetition may af-
fect these prefrontal regions by reducing their contribu-
tion to task performance as direct stimulus-response
mappings form (Buckner, Koutstaal, et al., 2000; Raichle
et al., 1994).

METHODS
Subjects

Fifty-four volunteers (28 women, mean age: 22.0, range:
18-37) were recruited from the Washington University
community in return for payment or course credit.
All were right-handed, native English speakers, had
normal or corrected-to-normal vision, and reported no
history of significant neurological problems. Subjects pro-
vided informed consent in accordance with the guide-
lines set by the Washington University Human Studies
Committee.

Task and Stimuli

During an initial study phase, which took place during
the initial structural imaging, subjects were presented
with 30 English words (repeated over five nonconsecu-
tive repetitions) and made living/nonliving decisions (cf.
Kapur et al., 1994), indicating their choice with a right
index/middle finger keypress. Two scanned test func-
tional runs followed. Each functional run consisted of
124 image acquisitions, in which 50 old words (25 words
repeated twice per run) and 50 new words were pseu-
dorandomly intermixed with 50 trials of fixation base-
line. The test task was identical to the study task. Stimuli
were presented for 1600 msec (288 msec ISI of fixa-
tion). By using an interstimulus interval (1888 msec
total) that was different from the image acquisition time
(2360 msec), the hemodynamic response was sampled
with a greater temporal resolution than would be
achieved by a fixed locking between trial presentation
and image acquisition (Maccotta, Zacks, & Buckner, 2001;
Miezin, Maccotta, Ollinger, Petersen, & Buckner, 2000;
Josephs, Turner, & Friston, 1997). Specifically, oversam-
pling occurred such that five trials were presented every
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four image acquisitions. Stimuli were abstract and con-
crete words (Demb et al., 1995) that appeared in Geneva
24-size font with each letter subtending approximately
1.2° horizontal. Lists were equated for length (mean =
6.56) and frequency (mean = 29.54), with equal numbers
of living and nonliving words.

Image Acquisition Procedures

Scans were conducted on a 1.5-T Vision scanner (Sie-
mens, Erlangen, Germany) with a standard circularly
polarized head coil. Foam cushions and a thermoplas-
tic face mask were used to minimize head movement.
Headphones decreased scanner noise and allowed ver-
bal communication. Subjects made responses with a
hand-held fiber-optic keypress connected to a Psyscope
button box and a Power Macintosh computer (Apple,
Cupertino, CA). Stimuli were projected (AmPro LCD150)
onto a screen at the head of the bore. Subjects viewed
the screen via a mirror attached to the head coil.

Structural images were acquired using a T1-weighted
high-resolution sagittal MP-RAGE sequence (TR =
9.7 msec, TE = 4 msec, flip angle = 10°, TI = 20 msec,
TD = 200 msec, 1.25 x 1 x 1 mm). Functional images
followed using an asymmetric spin-echo echo-planar
sequence sensitive to blood oxygenation level-depen-
dent (BOLD) contrast (whole-brain TR = 2.36 sec, TE =
37 msec, flip angle = 90°, 3.75 x 3.75 mm in-plane
resolution). Whole-brain coverage was achieved by ac-
quiring sets of 16 contiguous, 8-mm-thick axial images
parallel to the anterior—posterior commissural plane,
with one set acquired every 2.36 sec. Hereafter, we refer
to each 16-slice image set as an “image acquisition” and
its position in time as a “timepoint.” The first four image
acquisitions in each functional run were discarded to
allow stabilization of longitudinal magnetization.

MR Data Preprocessing

Functional data were first corrected for odd/even slice
intensity differences, and for motion using a rigid-body
rotation and translation algorithm (Snyder, 1996). Differ-
ences in timing between slices due to acquisition order
were adjusted with sinc interpolation. Voxelwise linear
slope was removed, and whole-brain intensity was nor-
malized to 1000 for each functional run. Structural and
functional volumes were then transformed into stereo-
taxic atlas space (Tailarach & Tournoux, 1988) using
procedures described previously (Maccotta et al., 2001).
Transformed images used 2-mm isotropic voxels.

Regional Analyses

Regional analyses explored signal magnitude estimates
within a set of a priori regions that spanned early visual
cortex, late visual cortex, prefrontal cortex, and the

Volume 16, Number 9



motor cortex. Regional analyses afford considerable
power by reducing the number of multiple comparisons
and averaging multiple voxels within each region, there-
by increasing signal-to-noise. Moreover, because regions
were derived a priori, their signal estimates represent
unbiased estimates of the effects. Regions were derived
from three sources. First, regions involved in early and
late stages of visual processing were defined using data
from an object localizer experiment performed in a
separate experiment in an independent group of sub-
jects (n = 30 subjects; similar to Malach et al., 1995).
Regions were defined based on specific blocked-task
comparisons contrasting intact with scrambled object
stimuli, and both intact and scrambled stimuli with a
low-level reference fixation condition. Voxelwise activa-
tion maps were calculated for each comparison of
interest with an implementation of the general linear
model (analyses identical to Gold & Buckner, 2002;
Logan, Sanders, Snyder, Morris, & Buckner, 2002).
Three-dimensional regions of interest were defined
to include all suprathreshold voxels (p < .001) within
12 mm of an activation peak. Regions near the calca-
rine cortex (peak location near —17, —93, —17, based
on Tailarach & Tournoux, 1988) and the posterior fusi-
form gyrus (peak: —36, —73, —13) were defined in this
fashion. Second, regions in the frontal cortex associated
with controlled processing of verbal stimuli were taken
directly from Logan et al. (2002) (based on data from
Konishi, Donaldson, & Buckner, 2001, 7z = 39 subjects;
and Gold & Buckner, 2002, # = 24 subjects). These
regions used the same statistical criteria, but were
defined based on a contrast comparing semantic and
letter tasks involving verbal stimuli to a reference fixa-
tion. Regions near the inferior frontal gyrus (peak: —43,
3, 32), BA 44 (peak: —47, 17, 24), BA 6 (peak: —55, —1,
28), and BA 45/47 (peak: —45, 35, —4) were constructed
using this dataset. Finally, a region near the motor
cortex involved in response execution was taken directly
from Maccotta et al. (2001) (z = 17 subjects), again with
the same statistical criteria applied to a contrast com-
paring right and left index finger responses during a
mental rotation task (peak: —37, —25, 50).

Regional estimation of hemodynamic response am-
plitude was achieved using an implementation of the
general linear model (Miezin et al., 2000). Amplitude
estimates for each subject, for each condition, were de-
rived by computing the difference between the average
signal magnitude at the third and fourth timepoint
(roughly corresponding to the peak of the hemody-
namic response in most regions) and the average signal
magnitude at the first and eighth timepoint (cor-
responding to the baseline of the hemodynamic re-
sponse) (Wheeler, Petersen, & Buckner, 2000). Regional
amplitude estimates were entered into statistical analy-
ses (repeated-measures ANOVA and paired ¢ test) using
a mixed-effects model treating subjects as a between-
subject effect.

Whole-Brain Analyses

Exploratory whole-brain statistical maps for event-related
experiments were also generated to confirm and extend
the results obtained from a priori regional analyses. For
each comparison of interest, a mixed effect statistical
model ¢ test was computed at each voxel. Estimates for
each condition were based on a delayed boxcar con-
volved with a gamma function (Boynton, Engel, Glover,
& Heeger, 1996), excluding linear trend and constant
effects, and averaged across all voxels within a given
region. Resulting ¢ statistics were converted to 2z statistics
by mapping p values obtained to equivalent p values on
a normal distribution. Whole-brain activation maps were
then constructed by plotting the z-score of each voxel.
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