Evaluating performance limiting defects in novel thin-film materials for solar cells

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:32186289

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
Evaluating performance limiting defects in novel thin-film materials for solar cells

V. Steinmann1, R. Chakraborty1, A. Polizzotti1, A. Akin1, K. Hartman1, N. M. Mangan1, C. Yang2, R. G. Gordon2, and T. Buonassisi1

1Massachusetts Institute of Technology, Cambridge, MA (USA)
2Harvard University, Cambridge, MA (USA)
Many inorganic thin-film materials are underperforming (< 10% laboratory efficiency) despite decades of R&D.

High bulk carrier lifetime for high-performance devices

- High bulk carrier lifetime (> 1–10 ns): a pre-requisite for high conversion efficiencies (≥ 10%).

R. Jaramillo et al., submitted (2015).

[Graph showing scatter plot with markers for CdTe, CIGS, CZTS, Pb halide perovskites, and SnS]
Bulk carrier lifetime in SnS

efficiency [%] entitlement assuming ideal buffer layer

Range of current devices
What defects limit the SnS device performance?

- We perform cross-sectional SEM and electron-beam-induced current (EBIC) to study the thin-film morphology and electronic activity.
- Intragraniular recombination appears to limit bulk carrier lifetime/diffusion lengths, caused by:
 - Extrinsic defects (impurities)
 - Extended structural defects (stacking folds, dislocations).

V. Steinmann et. al., under preparation.
Extended structural defects in SnS

- Transmission electron microscopy (TEM) reveals high density of intragranular extended structural defects at $T_{\text{substrate}} \sim 0.5 T_{\text{melt}} (< 450^\circ \text{C})$.

- Hypothesis: higher temperature growth may help to reduce the extended structural defect density and improve charge carrier diffusion length.

Growth temperature $< 300^\circ \text{C}$, annealing temperature $< 450^\circ \text{C}$

SnS melting point at $T_{\text{melt}} = 882^\circ \text{C}$.
First results show increase in diffusion length

- Explored range of growth temperatures from 150–285°C, annealed at 400°C in 4% H₂S ambient.
- Diffusion length increases with higher growth temperature.

Diffusion length calculated from long-/l portion of IQE

High-temperature processing causes cracks

- locally unfavorable surface energetics and/or coefficients of thermal expansion make polycrystalline SnS with many different grain orientations especially prone to through-thickness voids.

V. Steinmann et. al., under preparation.

LT: low-temperature, HT: high-temperature
High-temperature processing causes cracks

- Cross-sectional electron-beam-induced current (EBIC):
- Cracks can become current pathways vertically across SnS absorber layer → leading to shunts in devices.

V. Steinmann et. al., under preparation.
Shunting in SnS solar cells

- Cracks across the SnS bulk contribute to low shunt resistance in devices.

\[V_{OC} = 334.1 \text{ mV}, \quad J_{SC} = 20.6 \text{ mA/cm}^2, \quad \text{FF} = 65.28\%, \quad \text{PCE} = 3.88\% \]

\[R_{\text{shunt}} = 74 \text{ } \Omega \text{ cm}^2 \]
\[R_{\text{series}} = 0.66 \text{ } \Omega \text{ cm}^2 \]

Evidence of shunting in \(J-V \) characteristics.
Two step deposition approach to avoid shunts

- Apply continuous thin absorber coverage at low-temp. to reduce number of shunted devices.
- High-temp. anneal at 400° C + low-temp. deposition at 240° C.

V. Steinmann et. al., under preparation.
Shunt reduction by two step deposition approach

- Improved fill factor and open-circuit voltage due to improved shunt resistance R_{Sh}.

V. Steinmann et. al., under preparation.
Take-aways

- High bulk carrier lifetime is necessary (but not sufficient) for high-efficiency solar cells.

- Lifetime in SnS thin-films is limited by intragranular recombination.
 - Extrinsic defects
 - Extended structural defects

- High-temperature processing can reduce extended structural defect density and improve SnS bulk carrier lifetime.

- High-temperature processing causes cracks in SnS thin-film, leading to shunts in devices.
- Two step absorber deposition approach successfully “plugs holes” and improves shunt resistance in devices.
Acknowledgments

- PVLab at MIT
- Gordon Lab at Harvard
- Harvard Center for Nanoscale Systems
- Center for Materials Science and Engineering at MIT