Atomic layer deposited Indium oxy-sulfide on CZT(S,Se) absorbers

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:32186290</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP</td>
</tr>
</tbody>
</table>
Atomic layer deposited Indium oxy-sulfide on CZT(S,Se) absorbers

Ashwin Jayaraman, Sang Bok Kim, Roy G. Gordon
Harvard University
Cambridge, MA

Talia Gershon, Yun Song Lee, Oki Gunawan,
Richard Haight,
IBM, Yorktown, NY

MRS – APRIL 10th 2015
Outline

- Motivation
- ALD of In$_2$S$_3$ thin films
- Band alignment studies and need for In$_2$(O,S)$_3$
- ALD of In$_2$O$_3$ thin films
- Tuning S:O ratio in In$_2$(O,S)$_3$
- Summary
Relative progress of CZTS Solar Cell Efficiency

Strategies for higher efficiency:

- More stable buffer layer than CdS to avoid interdiffusion
- More reflective back contact to increase current
- Lower recombination at back contact to increase voltage

Why Replace CdS buffer with In$_2$(O,S)$_3$?

Problems with Chemical bath deposited (CBD) CdS

➤ Toxicity of Cadmium
➤ Presence of uncontrolled oxygen content
➤ In a superstrate configuration Cd$^{2+}$ ions diffuse during high-temperature anneal

Solution: Atomic Layer Deposited (ALD) S:O tunable In$_2$(O,S)$_3$

➤ Non-toxic In$_2$(O,S)$_3$ can have good band alignment with CZTS1
➤ Control over in-situ Oxygen content \Rightarrow tunable conduction band offset
➤ Diffusion of In$^{3+}$ is slower than Cd$^{2+}$, enabling a superstrate configuration with a more efficient back contact made as the last step

A new indium formamidinate precursor with H$_2$S provides **low-temperature, carbon-free** ALD of In$_2$S$_3$

Newly synthesized tris(N,N’-diisopropylformamidinato)indium precursor vaporized at 130 °C

ALD In$_2$S$_3$ films grow at 0.65 Å/cycle on substrates at 150 °C have negligible contamination by carbon, nitrogen or oxygen
ALD provides In(S,O)$_3$ with good band alignment (oxygen results from post-ALD diffusion)

CZTS, Se

0.6 eV

E$_F$

0.5 eV

B.B = 0.375 eV

V.B.

In$_x$(S,O)$_y$

0.15 eV Spike

C.B.

1.2 eV

1.95 eV

Ultraviolet Photoelectron Spec

In$_x$(S,O)$_y$/CZT(S,Se)

BB = 375 meV

1.2 eV

UV-VIS Spec Photometry

In$_x$(S,O)$_y$

Counts vs. Binding Energy (eV)

(\alpha \cdot \nu)^2 (10^5 eV/cm)^2 vs. Energy (hv)
ALD In_2O_3 from indium formamidinate and H_2O

Indium oxide ALD growth window using a newly synthesized, highly volatile indium formamidinate precursor (1).

tris(N,N'-diisopropylformamidinato)indium

- Low carbon (which contaminated $\text{In}_2(\text{acac})_3$ films), no oxygen or nitrogen contamination
- Reduced copper diffusion during ALD (in substrate configuration), because deposition time is shorter than with $\text{In}_2(\text{acac})_3$
ALD of ternary $\text{In}_2(\text{O,S)}_3$ with tunable S:O

ALD at 210 °C substrate temperature
Indium Formamidinate-H_2S cycle followed by Indium Formamidinate-H_2O
Reactivity of Indium Formamidinate with H_2S roughly twice that of H_2O

X-Ray Photoelectron Spectroscopy Results

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic % after ~ 120 sec Ar etch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1:1 In-H_2S to In-</td>
</tr>
<tr>
<td></td>
<td>H_2O Ratio</td>
</tr>
<tr>
<td>1:2 In-H_2S to In-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H_2O Ratio</td>
</tr>
<tr>
<td>In</td>
<td>43.2</td>
</tr>
<tr>
<td>S</td>
<td>36.2</td>
</tr>
<tr>
<td>O</td>
<td>20.6</td>
</tr>
<tr>
<td>C</td>
<td>< 1%</td>
</tr>
<tr>
<td>N</td>
<td>< 1%</td>
</tr>
</tbody>
</table>

Counts/sec

Counts/sec

Binding Energy (eV)

Counts/sec

Binding Energy (eV)

Counts/sec

Binding Energy (eV)
Motivation to target Superstrate v/s the Substrate Configuration for CZT(S,Se) Cells

Substrate
- Ni/Al
- ITO
- ZnO shunt protector
- CdS (0 - 25 nm, CBD)
- > 2 μm CZT(S,Se)
- Mo coated glass

Superstrate
- Reflective Back Contact => higher current
- Selective Hole transport layer => higher voltage
- Thinner CZT(S,Se)
- CZT(S,Se) anneal temperature stable- In$_2$(O,S)$_3$ buffer
- CZT(S,Se) anneal temperature stable- shunt protector
- FTO coated glass

Wang et. al. – Advanced energy Materials 2014, 4, 1301465
Summary

- ALD process conditions for pure, stoichiometric \(\text{In}_2\text{S}_3 \), \(\text{In}_2\text{O}_3 \) and \(\text{In}_2(\text{O,S})_3 \)
- \(\text{In}_2(\text{O,S})_3 \) with high sulfur content identified as a promising choice for non-toxic buffer on CZTS,Se absorber with ideal conduction band offset
- ALD process for tunable S:O in \(\text{In}_2(\text{O,S})_3 \) established
Thanks for your attention!

Acknowledgements

- We gratefully acknowledge funding support from the DoE Sunshot program under contract DE-EE-0006334

- Part of the work was carried out at Harvard University’s Center for Nanoscale Systems, supported by NSF award ECS-0335765
Blowup of band edge region

CZTS, Se

- Zn 3d
- Cu-3d
- S-3p

Binding Energy (eV) vs Counts

- BB = -170 meV

Pumped 800 nm flatband

- BB = -170 meV
- 0.54 eV
- No pump

E_f