SnS as a solar absorber

- Tin (Sn) and sulfur (S) are non-toxic and abundant in nature
- SnS is conducive to thermal evaporation (TE), which has potential for high-throughput manufacturing
- Strong optical absorption (> 10^4 cm^-1 above 1.4 eV)

SnS carrier collection deficit

- Recently achieved 3.88% conversion efficiency with TE SnS-based solar cell
- Leading loss mechanism is recombination at long wavelengths
- Increasing SnS growth temperature T_g may improve charge-carrier collection

Goal of this work

- Determine the effect of T_g on structural and electrical properties of SnS films, and on long-wavelength internal quantum efficiency (IQE) of devices
- Explain the variation in long-wavelength IQE as a function of T_g through optoelectronic modeling
- Determine a path toward higher-current SnS devices

SnS growth conditions & device stack

- Substrate temperature was varied while deposition rate and thickness were kept constant at 1 Å/s and 1 µm, respectively
- Used a previously reported device stack

<table>
<thead>
<tr>
<th>SnS growth temperature (°C)</th>
<th>SnS (n-type absorber, thermally evaporated)</th>
<th>SnO_2 (36 nm, n-type buffer layer, ALD)</th>
<th>ZnO (18 nm, ALD)</th>
<th>ITO (250 nm, sputtered)</th>
<th>Ag (500 nm, evap)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>240</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>285</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References


Electronic properties

- Lower p and higher L_diff necessary to achieve maximum IQE
- Decreasing p has more limited improvement capacity than increasing L_diff in current parameter space

Conclusions

- Grain size, μ, and p increase with T_g
- Increasing p leads to decreasing drift-assisted collection
- At the highest T_g of 285°C, carrier collection recovers due to an increase in diffusive minority-carrier transport
- Higher carrier collection may be achievable by simultaneously decreasing carrier concentration while increasing diffusion length

Future directions

- Higher T_g with optimized deposition geometry (CSS-like)
- Co-optimization of growth conditions with post-deposition annealing

Acknowledgements

The authors are thankful to Mario Luis Castillo for helping with substrate preparation. The authors also thank Luka Barrena and Kelsey Doddridge for helping with the grain size analysis and anisotropy calculations, respectively. This work is supported by the U.S. Department of Energy through the SunShot Initiative under contract DE-DE-0005129, and by Robert Bosch LLC through the Bosch Energy Research Network under grant 02.20.AMC11. V. Steinmann, R. Jaramillo, K. Hartman, and R.E. Brandt acknowledge the support of the Alexander von Humboldt Foundation, a DOE EERE Postdoctoral Research Award, an Intel PhD Fellowship, and an NSF GRFP Fellowship respectively. This work made use of the MRSEC Shared Experimental Facilities at MIT which is supported by the National Science Foundation (NSF) under award DMR-1928628, and the Center for Nanoscale Systems that is supported by the NSF under award ECS-1961151.