Voc impact of orientation-dependent x in anisotropic PV absorbers

Citation

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:32186292

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
V_{OC} impact of orientation-dependent χ

in anisotropic PV absorbers

Rupak Chakraborty1
David Berney Needleman1, Kelsey Doolittle1, Niall M. Mangan1, Vera Steinmann1, Jeremy R. Poindexter1, Alex Polizzotti1, Chuanxi Yang2, Roy G. Gordon2, and Tonio Buonassisi1

1Massachusetts Institute of Technology
2Harvard University

Fall MRS 2015
Symposium NN
December 3, 2015
V_{OC} deficit in SnS

- Many PV material systems are plagued by low V_{OC}
- CZTS, WS$_2$, FeS$_2$, SnS

\[V_{OC}^{\text{deficit}} = \frac{E_g}{q} - V_{OC} \]

\[= 728 \text{ mV} \]

What causes low V_{OC}?

Band fluctuations: constant χ

- V_{OC}^{defic} significantly influenced by electrostatic potential fluctuations1,2

\[E \]
\[E_v \]
\[E_c \]
\[E_{\text{vac}} \]

\[\chi \text{ constant} \]
\[E_g \text{ constant} \]

\[\sim 10 \text{ meV} \]

1,2J.H. Werner et al., Thin Solid Films 480-481, 399 (2005).
1,2Gokmen et al., Applied Physics Letters 103 (2013)
Band fluctuations: variable χ

E vs. position:
- E_{vac}
- E_c
- E_v
- χ variable
- E_g constant
- ~ 100 meV
Surface orientation dependence of electron affinity

\[\Delta \chi = \chi_{hkl} - \chi_{h'k'l'} \]

Max measured \(\Delta \chi \) (eV)

- Si \(^1\)
- CuGaSe\(_2\) \(^2\)
- GaAs \(^3\)
- In\(_2\)O\(_3\) \(^4\)

Lateral CBO variation due to grain orientation

What is the impact of orientation-dependent electron affinity on SnS device performance?
Simple test case: two-grain model

Single stack previously modeled in SCAPS 1D

\(^1\text{Mangan et al., J. Appl. Phys. 118, 115102 (2015).}\)
Electron affinity parameter space

\[\chi_1 \text{ (eV)} \]

\[\chi_2 \text{ (eV)} \]

\[\Delta \chi = 0 \text{ eV} \]

\[\Delta \chi = 0.9 \text{ eV} \]
Efficiency impact

\[\chi_1 \text{ (eV)} \]

\[\chi_2 \text{ (eV)} \]

\[\eta \text{ (%)} \]

Optimal \(\eta \)
V_{OC} impact

χ_1 (eV) χ_2 (eV) V_{OC} (V)

Optimal η

Cliff offset

Cliff offset
J_{SC} impact

$$J_{SC} \text{ (mA/cm}^2\text{)}$$

$\chi_2 (\text{eV})$

$\chi_1 (\text{eV})$

Optimal

Spike offset

Spike offset

η
Efficiency impact

\[\eta_2 (\text{eV}) \]

\[\eta_1 (\text{eV}) \]

\[\eta \] (\%)

Optimal

1.1% absolute
22% relative loss

Current blocking
Summary

- Abrupt lateral fluctuations in χ are expected in SnS due to orientation dependence
- Current blocking is worst effect
 - Avoided by optimizing buffer layer
 - V_{OC} still reduced because of cliff offset
 - 22% relative loss in efficiency for $\Delta\chi = 0.9$ eV
Further work

- Confirm $\chi(hkl)$ in SnS experimentally
- >2 grains in parallel
Further work

- Confirm $\chi(hkl)$ in SnS experimentally
- >2 grains in parallel
- Simulation accounting for 2D carrier flow
Acknowledgments

- PVLab at MIT
- Gordon Group at Harvard
- Harvard Center for Nanoscale Systems
- Center for Materials Science and Engineering at MIT
- U.S. Dept. of Energy Grant (DE-EE0005329)
Thank you!

\[\chi_1 (eV) \]

\[\chi_2 (eV) \]

Current blocking

Optimal \(\eta \)

1.1% absolute

22% relative loss

Current blocking

\(\eta \) (%)