Citation
Haight, Richard, Oki Gunawan, Talia Gershon, Yun S. Lee, Bruce Ek, Ravin Mankad Tayfun Gokeman, Brian McCandless, Doug Bishop, Mike Lloyd, Roy Gordon, Ashwin Jayaraman, Mike Vogel, Danny Chua, Andy Kummel, Kasra Sardashti, Evgueny Chagarov. 2015. Front and back contact modification as a route to increasing open circuit voltage in CZTS,Se devices. Materials Research Society Spring Meeting, San Francisco, California, April 6-10, 2015.

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:32186293

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
Front and Back Contact Modification as a Route to Increasing Open Circuit Voltage in CZTS,Se Devices

Richard Haight
IBM T.J. Watson Research Center
PO Box 218 Yorktown Hts., NY 10598

FPACE II: Driving CZTS to the SQ Limit - Solving the Open Circuit Voltage Problem
The DoE Collaboration

- IBM, Harvard, University of Delaware and UC San Diego

- IBM: Oki Gunawan, Talia Gershon, Yun S Lee (B8.09), Bruce Ek, Ravin Mankad, Tayfun Gokmen

- University of Delaware: Brian McCandless, Doug Bishop (B6.13), Mike Lloyd

- Harvard: Roy Gordon, Ashwin Jayaraman (B10.03), Mike Vogel, Danny Chua

- UC San Diego: Andy Kummel, Kasra Sardashti (B5.04), Evgueny Chagarov (B5.10)
CdS/CZTS,Se Standard Device Architecture

Surface & Interface

- Transparent conducting oxide layer and AR coating
- CdS-chemical bath deposited-front contact
- CZTS,Se- spun on from solution or vapor deposited
- Mo layer back contact
- SODA LIME GLASS

GBs

Metal wires to carry current
CdS/CZTS,Se Standard Device Architecture

- Surface & Interface
- GBs
- Mo layer back contact
- SODA LIME GLASS
- Transparent conducting oxide layer and AR coating
- Metal wires to carry current
- CdS-chemical bath deposited-front contact
- CZTS,Se- spun on from solution or vapor deposited
Surface & Interface

GBs

Transparent conducting oxide layer and AR coating

Cds-chemical bath deposited-front contact

Back contact issues

Mo layer back contact

SODA LIME GLASS

Metal wires to carry current
The Issues: 1-Bulk Defects

- CZTS,Se performance is dominated by 2 major issues:
 - Bulk defects (e.g. Cu-Zn antisites, Cu vacancies, point and cluster defects)- band tailing, band edge fluctuations\(\Rightarrow\) impact Voc and hence Efficiency
 - DFT calculations show that Cu-Zn antisite and vacancy formation has very low energy barrier- (Chagarov B5.10)
The Issues: 2-Interfaces, Grain Boundaries, Contacts

The Challenges

1. Creating an oxide-free surface
2. Oxide-free surface is Cu depleted- is this good or bad for device performance?
3. What is the charge state of the bare surface?
4. Series of experiments (etching, Cu deposition) answers question 2
5. Grain boundaries- what’s there, how do we effectively passivate and what is the impact on device performance?
6. What about the back contact- can we replace MoS,Se?
7. How can we change the contacts in order to increase performance?
Attacking the Surface, Interface and Grain Boundary Problem

- Electron Spectroscopy: femtosecond-UPS and XPS
- SIMS to look at elemental distribution of CZTS, Se, Na and O vs. depth
- Photoluminescence Imaging
- Auger Nanoprobe - image grains and boundaries with ~8nm spatial resolution and chemical specificity (Sardashti, Kummel B5.04)
- Additionally
 - SEM, SFM
 - Kelvin Probe Force Microscopy (surface potentials)
Electronic Structure-UPS + 1.55eV pump

CZTS, Se

Ionization Potential

Ionization Potential

E_{gap}

IE_{abs}

vb

cb

F_{s}

Laser System

UPS

E_F

CdS/CZTS, Se

Binding Energy (eV)

Counts

26.35 eV

1.55 eV

50 fs

50 fs
Electronic Structure-UPS +1.55eV Pump

CZTS,Se

vacuum level

CZTS,Se

Buffer

IE_{abs}

E_{gap}

VB

CB

Ionization Potential

Flat Band For CZTS,Se

26.35 eV

1.55eV

50 fs

 UPS

CdS/CZTS,Se

Counts

Binding Energy (eV)

© 2013 IBM Corporation
CdS/CZTS,Se

Flat Band

Heterojunction systems measured:
CdS, CdS+ In$_2$S$_3$, In$_2$S$_3$ CBD and ALD, ZnO, Zn(O,S), ZnS, Ga$_2$O$_3$, In$_2$O$_3$
How Do We Produce an Oxide-Free CZTS,Se Surface?

- CZTS,Se is deposited via multiple layer solution phase or vapor deposited

- A “hard bake” (HB) is performed to crystallize and coarsen grains to 1-2µ average size ~600C

- Anneal in air (AA) (375C) is then carried out
 - (improves device performance)

- To create a good CdS interface (p-n jct) remove oxide
 - dilute NH₄OH treatment (also present in CdS bath)
Oxide-Free CZTS,Se Surface

In Accumulation

Haight, Shao, Wang, Mitzi
APL 104, 033902 (2014); doi: 10.1063/1.4862791

Neg charged Cu vacancies

Negative charge at surface

IP=5.7 eV

CBM

VBM

0.54 eV

1.13 eV

170 meV

E_f

Pumped 800nm flatband

BB=-170 meV

No pump

0.54 eV

E_f

Pumped CZTS,Se

BB=-170 meV

 Blowup of band edge region

CZTS,Se

BB=170 meV, accumulation

CZTS,Se

BB=-170 meV

Cu-3d

S-3p

Zn 3d
Post hard bake in N_2 glove box, we anneal the CZTS,Se in air to increase efficiency
Photoluminescence Imaging

Hard Bake
- HB

Air Anneal
- AA

PL spectroscopy using band pass filters

Peak of PL at ~0.96 eV
Band gap 1.13 eV
O diffusing Into bulk

Concentration (10^19 a/cc)

Depth (microns)

SIMS

Cu

Depth (microns)

Zn

Depth (microns)
Auger Nanoprobe (Sardashti B5.04 yesterday)

Hard Bake + 5 min NH$_4$OH etch - no air exposure

Hard Bake + Air Anneal + 5 min NH$_4$OH etch

Sardashti et. al. Adv. En. Mat. 2015, 1402180
Key Surface and Grain Boundary Results

- Surface is Cu depleted

- SnO_x forms at surface and dresses grain boundaries \rightarrow passivation

- Selenates form at surface and grain boundaries

- Na present in oxide, removed with NH_4OH, present along grain boundaries

- Air anneal drives O into film along grain boundaries - forms SnO_x throughout the film
Is a Cu Depleted Surface Good?
Add Cu to Surface to Find Out

- Deposit Cu → changes BB from accumulation to depletion
eradicates neg surface charge

- $\text{H}_2\text{O}_2 + \text{NH}_4\text{OH}$ (Kummel, Sardashti UC San Diego)
 - H_2O_2 oxidizes and NH_4OH reduces the oxide
 thereby etching into the surface—produces a
 surface with higher Cu content
Increase Cu Content in Surface - What Happens to Device Performance?

- **Cu depleted surface extremely important**

- **H_2O_2 also removes passivating oxide near surface** → **leads to significant recombination at buffer/absorber bdry**
What we have learned about the surface and grain boundaries

- Surface is Cu depleted and exhibits upward band bending
 - result of negative charge at/near surface ➔ ionized Cu vacancies

- Air anneal results in GB passivation
 - greater PL intensity and higher device performance
 - SIMS shows O throughout film- fast diffusion along GB ➔ SnO$_x$ formation passivates GB
 - Auger nanoprobe: SnO$_x$ observed at GBs, this passivates GBs

- Cu depleted surface + passivation up to buffer/absorber interface critical for optimal device performance

- Model for P-N Jct: Chemical bath deposition of CdS, Cd$^{2+}$ occupies Cu vacancies, dopes n-type- very similar to CIGS (NREL, Rockett)
New Buffer Materials

Ga$_2$O$_3$ / CZTS,Se

In$_2$S$_3$ and In$_2$ (O$_x$S$_{3-x}$) Jayaraman, B10.03 tomorrow
How Can We Increase V_{oc} and Efficiency?
Two Possible Approaches

- We can solve the bulk defect problem
 - Ongoing work at IBM, UDel, UCSD

- We can modify back contact
 - High WF combined with thin absorber
 - The physics behind this:
How Can We Increase V_{oc} and Efficiency?

Two Possible Approaches

- We can solve the bulk defect problem
 - Ongoing work at IBM, UDel, UCSD

- We can modify back contact
 - High WF combined with thin absorber
 - The physics behind this:

Backwall Superstrate: Larsen, Simchi, Xin, Kim, Shafarman, APL 104, 033901, 2014
How Can We Increase V_{oc} and Efficiency?
Two Possible Approaches

• We can solve the bulk defect problem
 ➢ Ongoing work at IBM, UDel, UCSD

• We can modify back contact
 ➢ High WF combined with thin absorber
 ➢ The physics behind this:

![Diagram](image-url)

MoO$_3$/CZTS,Se

WF=6.5 eV
BB=-180 meV
Hall Measurements

Carrier Density: MoO$_3$

WF remains >6 eV
For all temps

$\mu = 0.1$ cm2/Vs
(Meas. at 350 C, assumed to be fixed throughout)

Gunawan and Haight
High Work Function Back Contacts

CZTSSe Thickness (µm)

Efficiency (%)

- No back reflection, Flat-band
- No back reflection, High-WF
- Perfect back reflection, Flat-band
- Perfect back reflection, High-WF

Tayfun Gokmen
WXAMPS study
AEM 2015, 1402180
Summary

- **Increased understanding of surface and grain boundaries**

- **For good efficiencies:**
 - Cu depleted surface a requirement, oxide-free surface has lots of Cu vacancies (neg. charged)
 - Passivated grain boundaries- our approach forms SnOx along GBs, inhibits e-h recombination
 - Cd diffuses into Cu vacancies at surface- similar to CIGSe-forming high quality p-n junction
 - To improve efficiency
 - address bulk defects- antisites, vacancies
 - back contact modification + film thickness optimization to achieve higher Voc
Backup Slides
The diagram shows XPS spectra for different elements and conditions:

- **a)** XPS spectra for Cu with varying binding energies and counts.
- **b)** XPS spectra for Zn with varying binding energies and counts.
- **c)** XPS spectra for Na with varying binding energies and counts.
- **d)** XPS spectra for Se with varying binding energies and counts.

Each spectrum is labeled with the corresponding element and includes three curves representing AA,Oxide, AA,Oxide Removed, and HB,Oxide Removed conditions.