Front and back contact modification as a route to increasing open circuit voltage in CZTS,Se devices

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

Haight, Richard, Oki Gunawan, Talia Gershon, Yun S. Lee, Bruce Ek, Ravin Mankad Tayfun Gokeman, Brian McCandless, Doug Bishop, Mike Lloyd, Roy Gordon, Ashwin Jayaraman, Mike Vogel, Danny Chua, Andy Kummel, Kasra Sardashti, Evgueny Chagarov. 2015. Front and back contact modification as a route to increasing open circuit voltage in CZTS,Se devices. Materials Research Society Spring Meeting, San Francisco, California, April 6-10, 2015.

Accessed

April 27, 2017 1:31:38 PM EDT

Citable Link

http://nrs.harvard.edu/urn-3:HUL.InstRepos:32186293
Front and Back Contact Modification as a Route to Increasing Open Circuit Voltage in CZTS,Se Devices

Richard Haight
IBM T.J. Watson Research Center
PO Box 218 Yorktown Hts., NY 10598

FPACEII: Driving CZTS to the SQ Limit- Solving the Open Circuit Voltage Problem

© 2012 IBM Corporation
The DoE Collaboration

- **IBM, Harvard, University of Delaware and UC San Diego**

 - **IBM**: Oki Gunawan, Talia Gershon, Yun S Lee (B8.09), Bruce Ek, Ravin Mankad Tayfun Gokmen

 - **University of Delaware**: Brian McCandless, Doug Bishop (B6.13), Mike Lloyd

 - **Harvard**: Roy Gordon, Ashwin Jayaraman (B10.03), Mike Vogel, Danny Chua

 - **UC San Diego**: Andy Kummel, Kasra Sardashti (B5.04), Evgueny Chagarov (B5.10)
CdS/CZTS,Se Standard Device Architecture

Surface & Interface

GBs

Transparent conducting oxide layer and AR coating

CdS-chemical bath deposited-front contact

Mo layer back contact

CZTS,Se- spun on from solution
Or vapor deposited

Metal wires to carry current

SODA LIME GLASS
CdS/CZTS,Se Standard Device Architecture

Surface & Interface

GBs

Metal wires to carry current

Transparent conducting oxide layer and AR coating

Cds-chemical bath deposited-front contact

CZTS,Se- spun on from solution
Or vapor deposited

Mo layer back contact

SODA LIME GLASS
Surface & Interface

GBs

Transparent conducting oxide layer and AR coating

CdS-chemical bath deposited-front contact

Metal wires to carry current

Back contact issues

Mo layer back contact

SODA LIME GLASS
The Issues: 1-Bulk Defects

- CZTS,Se performance is dominated by 2 major issues:
 - Bulk defects (e.g. Cu-Zn antisites, Cu vacancies, point and cluster defects)- band tailing, band edge fluctuations ➞ impact Voc and hence Efficiency
 - DFT calculations show that Cu-Zn antisite and vacancy formation has very low energy barrier- (Chagarov B5.10)
The Issues: 2-Interfaces, Grain Boundaries, Contacts

The Challenges

1. Creating an oxide-free surface
2. Oxide-free surface is Cu depleted- is this good or bad for device performance?
3. What is the charge state of the bare surface?
4. Series of experiments (etching, Cu deposition) answers question 2
5. Grain boundaries- what’s there, how do we effectively passivate and what is the impact on device performance?
6. What about the back contact- can we replace MoS,Se?
7. How can we change the contacts in order to increase performance?
Attacking the Surface, Interface and Grain Boundary Problem

- Electron Spectroscopy: femtosecond-UPS and XPS
- SIMS to look at elemental distribution of CZTS,Se, Na and O vs. depth
- Photoluminescence Imaging
- Auger Nanoprobe - image grains and boundaries with ~8nm spatial resolution and chemical specificity (Sardashti, Kummel B5.04)
- Additionally
 - SEM, SFM
 - Kelvin Probe Force Microscopy (surface potentials)
Electronic Structure-UPS

CZTS,Se

vacuum level

Depletion region

Buffer (e.g. CdS)

E_{gap}

IE_{abs}

VB

CB

UPS

CdS/CZTS,Se

26.35 eV

50 fs

C

o

u

n

ts

Binding Energy (eV)

Counts

14 12 10 8 6 4 2 0 0 4 8 10 12 14

© 2013 IBM Corporation
Electronic Structure-UPS + 1.55eV pump

[Diagram showing electronic structure with UPS and binding energy graph]

CZTS,Se

Buffer

vacuum level

Ionization Potential

IE_{abs}

E_{gap}

VB

CB

e

h

UPS

CdS/CZTS,Se

E_F

Binding Energy (eV)

Counts

26.35 eV

1.55 eV

50 fs

2.65 eV

F s-Laser System

© 2013 IBM Corporation
Electronic Structure-UPS +1.55eV Pump

Flattening Band
For CZTS,Se

Ionization Potential

E_{gap}

E_{abs}

Vacuum Level

CZTS,Se

Buffer

26.35 eV

$1.55eV$

50 fs

FS-Laser System

CdS/CZTS,Se

Counts

Binding Energy (eV)
CdS/CZTS,Se

Flat Band

Heterojunction systems measured:
CdS, CdS+ In$_2$S$_3$, In$_2$S$_3$ CBD and ALD, ZnO, Zn(O,S), ZnS, Ga$_2$O$_3$, In$_2$O$_3$

APL 100, 193904 (2012)
APL 98, 253502 (2011)
MRS Bulletin dx.doi.org/10.1557/opl.2014.196
How Do We Produce an Oxide-Free CZTS,Se Surface?

• CZTS,Se is deposited via multiple layer solution phase or vapor deposited

• A “hard bake” (HB) is performed to crystallize and coarsen grains to 1-2µ average size ~600C

• Anneal in air (AA) (375C) is then carried out
 ➢ (improves device performance)

• To create a good CdS interface (p-n jct) remove oxide
 ➢ dilute NH$_4$OH treatment (also present in CdS bath)
Oxide-Free CZTS,Se Surface

In Accumulation

Haight, Shao, Wang, Mitzi
APL 104, 033902 (2014);
doi: 10.1063/1.4862791

Neg charged Cu vacancies
Post hard bake in N_2 glove box, we anneal the CZTS,Se in air to increase efficiency
Photoluminescence Imaging

Hard Bake
HB

Air Anneal
AA

PL spectroscopy using band pass filters

Peak of PL at ~0.96 eV
Band gap 1.13 eV

Band gap 1.13 eV

APL 104, 033902 (2014)
O diffusing Into bulk

Figure c:
- Concentration (10^{19} \text{a/cc}) vs. Depth (microns)
- AA and HB curves for Na

Figure d:
- Depth (microns) vs. intensity (a.u.)
- AA and HB curves for Zn

Figure b:
- Depth (microns) vs. intensity (a.u.)
- AA and HB curves for Cu

Figure a:
- Depth (microns) vs. Concentration (10^{19} \text{a/cc})
- AA and HB curves for SIMS data
Auger Nanoprobe (Sardashti B5.04 yesterday)

Hard Bake + 5 min NH$_4$OH etch - no air exposure

Sardashti et. al. Adv. En. Mat. 2015, 1402180

Hard Bake + Air Anneal + 5 min NH$_4$OH etch
Key Surface and Grain Boundary Results

- Surface is Cu depleted
- SnO_x forms at surface and dresses grain boundaries \Rightarrow passivation
- Selenates form at surface and grain boundaries
- Na present in oxide, removed with NH_4OH, present along grain boundaries
- Air anneal drives O into film along grain boundaries - forms SnO_x throughout the film
Is a Cu Depleted Surface Good?
Add Cu to Surface to Find Out

- Deposit Cu \(\rightarrow \) changes BB from accumulation to depletion
eradicates neg surface charge

- \(\text{H}_2\text{O}_2 + \text{NH}_4\text{OH} \) (Kummel, Sardashti UC San Diego)
 - \(\text{H}_2\text{O}_2 \) oxidizes and \(\text{NH}_4\text{OH} \) reduces the oxide
 thereby etching into the surface- produces a surface with higher Cu content
Increase Cu Content in Surface- What Happens to Device Performance?

- **Cu depleted surface extremely important**
- **H₂O₂ also removes passivating oxide near surface** → leads to significant recombination at buffer/absorber bndry
What we have learned about the surface and grain boundaries

- Surface is **Cu depleted** and exhibits upward band bending
 - result of negative charge at/near surface ➔ ionized Cu vacancies

- Air anneal results in GB passivation
 - greater PL intensity and higher device performance
 - SIMS shows O throughout film- fast diffusion along GB ➔ SnOₓ formation passivates GB
 - *Auger nanoprobe: SnOₓ observed at GBs, this passivates GBs*

- Cu depleted surface + passivation up to buffer/absorber interface critical for optimal device performance

- **Model for P-N Jct:** Chemical bath deposition of CdS, Cd²⁺ occupies Cu vacancies, dopes n-type- very similar to CIGS (NREL, Rockett)
New Buffer Materials

Ga$_2$O$_3$/CZTS,Se

In$_2$S$_3$ and In$_2$ (O_xS_{3-x}) Jayaraman, B10.03 tomorrow
How Can We Increase V_{oc} and Efficiency? Two Possible Approaches

- We can solve the bulk defect problem
 - Ongoing work at IBM, UDel, UCSD

- We can modify back contact
 - High WF combined with thin absorber
 - The physics behind this:
How Can We Increase V_{oc} and Efficiency?

Two Possible Approaches

- We can solve the bulk defect problem
 - Ongoing work at IBM, UDel, UCSD

- We can modify back contact
 - High WF combined with thin absorber
 - The physics behind this:

Backwall Superstrate: Larsen, Simchi, Xin, Kim, Shafarman, APL 104, 033901, 2014
How Can We Increase V_{oc} and Efficiency?
Two Possible Approaches

- We can solve the bulk defect problem
 - Ongoing work at IBM, UDel, UCSD

- We can modify back contact
 - High WF combined with thin absorber
 - The physics behind this:
Hall Measurements

Carrier Density; MoO_3

$\mu = 0.1 \text{ cm}^2/\text{Vs}$
(Meas. at 350 C, assumed to be fixed throughout)

WF remains >6 eV
For all temps

Gunawan and Haight
High Work Function Back Contacts

Tayfun Gokmen
WXAMPS study
AEM 2015, 1402180
Summary

- Increased understanding of surface and grain boundaries

- For good efficiencies:
 - Cu depleted surface a requirement, oxide-free surface has lots of Cu vacancies (neg. charged)
 - Passivated grain boundaries- our approach forms SnOx along GBs, inhibits e-h recombination
 - Cd diffuses into Cu vacancies at surface- similar to CIGSe-forming high quality p-n junction
 - To improve efficiency
 - address bulk defects- antisites, vacancies
 - back contact modification + film thickness optimization to achieve higher Voc
Backup Slides
Tin Oxide

- AA, Oxide
- AA, Oxide Removed
- HB, Oxide Removed

Sn 4d

Counts

Binding Energy (eV)

APL 104, 033902 (2014)