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ABSTRACT

In this paper, we explore Bayesian inference in models with many instrumental variables that
are potentially weakly correlated with the endogenous regressor. The prior distribution has a
hierarchical (nested) structure. We apply the methods to the Angrist-Krueger (AK, 1991) analysis
of returns to schooling using instrumental variables formed by interacting quarter of birth with
state/year dummy variables. Bound, Jacger, and Baker (1995) show that randomly generated
instrumental variables, designed to match the AK data set, give two-stage least squares results that
look similar to the results based on the actual instrumental variables. Using a hierarchical model
with the AK data, we find a posterior distribution for the parameter of interest that is tight and
plausible. Using data with randomly generated instruments, the posterior distribution is diffuse.
Most of the information in the AK data can in fact be extracted with quarter of birth as the single
instrumental variable. Using artificial data patterned on the AK data, we find that if all the
information had been in the interactions between quarter of birth and state/year dummies, then the
hierarchical model would still have led to precise inferences, whereas the single instrument model
would have suggested that there was no information in the data. We conclude that hierarchical

modeling is a conceptually straightforward way of efficiently combining many weak instrumental

variables.
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HIERARCHICAL BAYES MODELS
WITH MANY INSTRUMENTAL VARIABLES!

1. INTRODUCTION

Recently a literature has emerged focusing on models with instrumental variables that
are only weakly correlated with the enddgenous regressor. Part of the literature (Nelson
and Startz (1990), Maddala and Jeong (1992)) has focused on sampling distributions of
standard estimators such as the two-stage least squares (TSLS) estimator, and the poor
approximation of those sampling distributions by a normal distribution. A second strand
(Bound, Jaeger, and Baker (1995)), focusing on the case with multiple weak instrumental
variables, concluded that the small sample results from an older literature (Nagar (1959),
Sawa (1969)) on the bias of TSLS towards ordinary least squares (OLS) are very relevant
for this case, even with many observations. To improve inference in the case with weak
instruments, Bekker (1994) suggests an alternative asymptotic approximation to the sam-
pling distribution, based on increasing the number of instrumental variables along with the
sample size. Staiger and Stock (1994) suggest a third asymptotic approximation based on
a vanishing correlation between the instrumental variables and the endogenous regressor.
Angrist and Krueger (1995) and Angrist, Imbens, and Krueger (1995) use sample splitting
ideas to propose alternative estimators that do not have the bias towards OLS that plagues

TSLS.

In this paper, we suggest how Bayesian inference might proceed in models with many
instruments that are potentially weakly correlated with the endogenous regressor. We
develop a hierarchical model that enables us to combine many instruments. Our model is
similar in spirit to the hierarchical model used by Rossi, McCulloch, and Allenby (1995) in
an analysis of consumer behavior, although our focus is different. Our concern is with the
effect the hierarchical structure, and in particular the choice of prior distribution, has on (1)

the bias associated with the use of many instruments; and (2) the misleading appearance of
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high precision in standard large-sample approximations with many instruments. We apply
this model to an example that has motivated much of the theoretical work in this area, the
Angrist and Krueger (1991), henceforth AK, analysis of returns to schooling using quarter
of birth to form instrumental variables.

A key insight of AK was that quarter of birth might be a valid instrument for the
effect of years of schooling on earnings because of the link through compulsory schooling
laws. In addition to estimating linear regressions of earnings on schooling using only
three quarter-of-birth dummies as instruments, they investigate models with instrumental
variables formed with interactions between quarter of birth and year of birth, and between
quarter of birth and state of birth, giving 180 instrumental variables. Bound, Jaeger, and
Baker (1995) show that randomly generated instrumental variables, designed to match
the AK data set, give results that look remarkably similar to the results based on the
actual instrumental variables. In particular, inference based on a normal approximation to
the sampling distribution of the TSLS estimator misleadingly suggests that the randomly
generated instruments are powerful enough to reveal a precisely estimated relationship
between earnings and schooling. In our investigation we use even more instruments than
AK, by interacting all year of birth and state of birth pairs with quarter of birth to
generate instruments. Using a hierarchical model with the AK data, we find a posterior
distribution for the parameter of interest that is tight and plausible. Using data with
randomly generated instrumental variables, the posterior distribution is diffuse. We find
that with the AK data, most of the information can in fact be extracted by using a
single instrument. Using artificial data, patterned on the AK data, we find that if all the
information had been in the interactions between quarter of birth and state/year dummies,
then the hierarchical model would still have led to precise inferences, whereas the single
instrument model would have suggested there was no information in the data. We conclude
that hierarchical modeling is a conceptually straightforward way of efficiently combining

many weak instrumental variables.



2. THE MODEL

There is a family of probability distributions {Ps:0 € ©}, and we observe {Z;},,
where the random variables Z; are independently and identically distributed (i.i.d.) ac-
cording to Ps for some value of @ in the parameter space ©. To simplify notation, let
Z denote a random variable that is distributed according to Py. Our observed variables
consist of Z = (S,Y, R, W), and they are the the subject of the following model:

S=7R+mW+ W, (1)
Y =nR+B7nW + WV,

where the disturbances (V;, V,) are independent of (R, W) with a bivariate normal distri-

bution:

(‘V/_;:) | Ri, W; iid N(0, %) (i=1,...,n) (2)

under Ps. This gives the Py distribution for (S,Y’) conditional on (R, W), and is the
basis for our likelihood function. There are proportionality restrictions in this bivariate
regression model: the coefficients (B2) on the vector W in the regression function for Y are
proportional to the coefficients (v2) in the regression function for S. The proportionality
factor is the scalar 3, a key parameter of interest. We shall assume that the Py distribution
for (R, W) is not informative for the parameters of interest. (Let § = (8,,02), where
8y = (71.72, 73, 8, L, @, ) and the hyperparameters a and Q will be introduced below; the
P, distribution of (R, W) only depends on 6, and 8, and §; are independent under the
prior distribution on ©.)

One simple motivation for this model is based on potential outcomes. There is a
potential outcome Y* corresponding to treatment level {. The potential outcome varies

linearly with the treatment:

Yt =Y+ Bt

where YO is the potential outcome with treatment level 0, and 3 is the effect per unit of

treatment, which is the “return” to a year of schooling in our case. The potential outcome
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is only observed for one of the treatment levels. This observed treatment level is S, which

gives an observed outcome Y of
Y=Y%=Y"+45. (3)

Define X’ = (R',W’). The potential outcome Y? has a linear predictor {'X (with { =
arg min, Ep(Y°®—a’X)?); then defining the disturbance U = Y0 _¢'X gives the orthogonal
decomposition

YO=(¢X+U=CGR+GW+U, E(XU)=0. (4)

The vector W of instrumental variables satisfies the exclusion restriction (z = 0. R contains
a constant identically equal to one, so that Eg(U) = 0.
Let £'X denote the linear predictor of S given X. Defining the disturbance V; =

S — ¢'X gives the orthogonal decomposition
S=¢X+Vi=7R+¥%BW+W, E(XV)=0. (5)
Substituting (4) and (5) into (3) (with {2 = 0) gives
Y = (G + Bn) R+ BrW + (U + ).

Define 73 = 1 + Bm1, Vo = U + W4, ®y = (7, 72), and 74 = (73, f73)- Then we have the
following reduced form:
S=mX+V, Eg(XV)=0 (6)

Y =X +Vy, Ee(XV2)=0.

Adding the assumption that the distribution of (¥}, V;) conditional on X is N (0, X) gives

our model.
Our data is a subset of the data used by AK containing males born in either the
first or fourth quarters between 1930 and 1939. The outcome variable Y is the log of

weekly earnings in 1979. The treatment variable S is years of school completed. The
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predictor variables R consist of indicator variables (R;)7L, based on the individual’s state
of birth and year of birth. There are 510 state/year cells (fifty states plus the District
of Columbia and ten years); Rj = 1 if individual ¢ is from state/year cell j, and Ry =
0 otherwise. We discard state/year cells with ten or fewer observations, leaving m =
496 cells and n = 163,456 observations. (This resulted in dropping 59 observations.)
The vector of instrumental variables is formed by interacting quarter of birth with these
state/year indicators. Let Q; = 1 if individual i was born in the fourth quarter, and Q; =0
otherwise. Then W/ = (R1;Qi, ..., RmiQ;). This generalizes the models used by AK who
only interacted quarter of birth with state or year dummies. This modification increases
the effective number of instrumental variables from 180 to 496.

Given a prior distribution on the regression coefficients 71, 2, 3, 8, and covariance
matrix ¥, one can evaluate the posterior distribution for 3. With m, the dimension of v;,
large, however, it will be seen that a conventional choice for a “diffuse” prior distribution
is in fact very informative. If the prior density for 7 is constant, then the prior distri-
bution dogmatically asserts that the instrumental variables are collectively very powerful
predictors of S. In this case with large m it is important to restrict the variability of the pa-
rameters, and the importance of the choice of prior distribution reflects this. We therefore
impose a structure on the prior distribution in the form of a hierarchical (nested) model
linking the reduced-form parameters for state/year cells. Let 71 = (v1;)7=1, 72 = (Y25) w1

73 = (737)7%1, and let ¥ = (115,725, 735)» ¥ = (¥7)7,- We assume that
'yjia,Qi"i-lfi' N{a, ) (j=1...,m).

We employ improper priors for 3, £~1, and the hyperparameter c:
p(. 8, =7, 0, Q) o p(y | o, Qp()|T1*/%.

We obtain very similar results using proper, suitably diffuse, priors for 8, o1, a. We

complete the specification of the prior distribution with 2 Wishart distribution for 27!
Q! ~ W(k, H).
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A conventional diffuse, but improper, prior for Q-1 would correspond to k=0, H~! = 0.
We show in the Appendix that, for a simplified version of our model, an improper prior
for Q! results in an improper posterior, corresponding to a distribution that puts all its
mass on §2~! = oo and implying that € = 0 with posterior probability one. So we shall
use a proper prior; choices for k and H are discussed below.

The Appendix describes how to sample from the posterior distribution. We use the
structure of the model to set up a Gibbs sampling algorithm that will converge to the
posterior distribution. See Tanner and Wong (1987), Gelfand and Smith (1990), Gelman
and Rubin (1992), Chib and Greenberg (1996), and Geweke (1995) for general discussions
of Gibbs sampling, and Jacquier, Polson, and Rossi (1994), Rossi, McCulloch, and Allenby

(1995), and Geweke (1994) for recent empirical applications in economics.?
3. THE BASIC RESULTS

We shall compare the posterior distributions with inferences based on the TSLS es-
timator. First some notation: let #; and #; denote the least-squares estimates of m, and
w2 in (6), and set S = @} X;. The TSLS estimator B’I‘SLS is the coefficient on S in the
least-squares regression of (¥;)7; on (R;, 5:)2_,. (The OLS estimator of 3 is the coefficient
on § in the least-squares regression of (¥;)7, on (Ri, Si)%;.)

Let 41; and 4,; denote the coefficients on R; and W; in 7, and let 43; denote the
coefficient on R; in #2. Let 49 = (415, %24, ¥3;)" and let D., be the sample covariance matrix
of {#}7,: D, = Y (¥ - (3 — 7)'/m, where & = 37—, 47 /m. Then we specify the
Wishart W(k, H) prior for @1 to have k = 3, H™! = C - k- Dy, and C = .001. The value
k = 3 is the smallest value such that there is probability one that £ is nonsingular. The
the data dependent f)., provides a convenient normalization; its use is not essential. We
shall discuss the implications of the choice of C after presenting the main results.

We shall also compare our results with those from a nonhierarchical model that spec-

ifies an improper flat prior distribution for 7. In that case the full prior distribution has
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density
p(1,6,Z71) « TP

We shall see that a very similar posterior distribution for 8 can be obtained within the
hierarchical model by setting the parameter C to a large value such as C = 1000.

In Tables 1 and 2 we report the results for the posterior distributions. Table 1 contains
the results for our subset of the AK data. The instrumental variables are based on the
indicator for birth in the fourth quarter: Wj; = R;;Q;, where @; = 1 if individual ¢ was
born in the fourth quarter, @; = 0 otherwise. Table 2 contains the results for the same
data, but with the actual quarter of birth replaced by randomly generated indicators, with
probability .5 on the first quarter and .5 on the fourth quarter.

The first row in both tables gives summary measures of the posterior distribution
for B corresponding to an improper (flat) prior on ¥ without the hierarchical structure.
We report the mean, standard deviation, median, .025 and .975 quantiles. The real data
and the random instrument data give very similar results. With the real data, there is
posterior .95 probability that 3 lies between .058 and .089. With the random instrument
data, the .95 interval is from .047 to .081. The TSLS estimator leads to a similar inference:
the point estimate (standard error) is .073 (.008) for the real data and .063 (.009) for the
random instrument data. This is the focus of the Bound, Jaeger, and Baker (1995) study,
who argue that sampling-based inference with the random instrument data can be very
misleading. The first row shows that this issue also arises when using Bayesian methods.

The second row shows that the same phenomenon of misleading inference with many
weak instruments can be observed strictly within the hierarchical model for certain choices
of a prior distribution. When we set the parameter C for the prior distribution on
to 1000, the posterior distribution for 8 is very similar to the flat prior, nonhierarchical
results. The similarity arises because a large C implies an a priori large 2, corresponding
to an essentially flat prior distribution on . Conversely, a flat prior distribution on <y

corresponds to an a priori large .



The third row reports on the posterior distribution for 3 in the hierarchical model with
C, the parameter of the prior distribution for 2, equal to .001. In this case, substantial
differences between the real and random instrument data sets emerge. With the real
data, the posterior distribution suggests that the parameter of interest is quite precisely
estimated. With random instruments, however, the posterior distribution is diffuse, with

a standard deviation about ten times larger than with the real data.

These results suggest that the problem of misleading inference with many instrumental
variables can be viewed in terms of the choice of prior distribution in a hierarchical model.
We can consider the information content of various choices for the prior distribution and
use that to decide on a suitable choice for a specific application. Since C~! is a scale
parameter of the prior distribution of 27!, the quantiles of the prior distribution of Va2
are scaled by /C relative to a prior with C = 1. In particular, with C = 1000, the .025
and .975 quantiles of the prior distribution for /§222 are approximately 14 and 1000 for
both the real data and the random instrument data. With C = .001, these prior quantiles
are approximately .014 and 1.00. The C = 1000 specification is a very informative prior
relative to our data set. In the random instrument case, where the true value of 25 is zero
for all  and so the true value of {2, is zero, the C' = 1000 prior implies that the .025 and
.975 quantiles of the posterior distribution for /{232 are 1.47 and 1.67, which results in a
very misleading inference for 8. The choice of C = .001 appears to give a suitably diffuse
prior that avoids this problem. From the comparison of the AK data and the random
QOB data, however, we cannot judge whether C = .001 is too small. We therefore shall
set up four artificial data sets that will help us to explore the implications of various prior

distributions.

Alternatively, one can argue for small values of C on the basis of the substantive
problem. AK argue that quarter of birth affects years of schooling due to compulsory
schooling laws. Suppose that eligibility for September enrollment in the first grade requires

that the individual be born before a cutoff date. If the cutoff date is the first of January,
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then individuals born in the fourth quarter (Q = 1) would on average be three quarters
of a year younger when they start school than the individuals born in the first quarter
(Q = 0). The other extreme is a cutoff date between April first and October first, in
which case the @ = 1 individuals would be one quarter of a year older than the Q = 0
individuals. If all individuals start school in September of the first year they are eligible,
and leave school at the minimum legal age, then the coefficient (72;) on @ in the schooling
regression would vary from .75 in the state/year cells with a January cutoff to -.25 in the
state/year cells with an April-October cutoff. So the maximum variance of 4; would be
.25, or a standard deviation of .5. This is likely to be a severe overestimate of the variance
of 25, since most people do not leave school as soon as they are legally allowed to.

A value of C = 1, however, corresponds to a prior .95 probability interval for v/Qg, of
(.44, 32), which is almost entirely to the right-hand side of the plausible upper limit of .5.
The prior .95 probability interval corresponding to C = .001, equal to (.014, 1.00), appears

much more appropriate.
4. FOUR ARTIFICIAL DATA SETS

In order to investigate the properties of the posterior distribution when population
values of the parameters are close to or on the boundary of the parameter space, as well
as to replicate the results in the previous section, we generated four artificial data sets. In
each case we fixed the sample size at n = 162,000 and the number of state/year cells at
m = 500, giving 324 individuals in each cell. Within each cell, 162 individuals are born in
the fourth quarter (@ = 1) and an equal number are born in the first quarter (@ = 0). The
symmetry across the cells is for computational reasons, speeding up the Gibbs sampler.

The reduced form disturbances (Vj, V2) have covariance matrix

o (1072 -.T5
E ‘(—.75 46 )

This corresponds to the posterior mean for L based on the AK data, with the sign of
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the correlation between V; and V; reversed, so that the plim of the OLS estimate (when
4y = 0) is —.75/10.72 = -.070, in contrast to the population value of 8, which we set
at 8° = .098. This allows us to see the effect of various prior distributions on the bias
of the TSLS estimator as well as the effect on the standard error, when there are many
instrumental variables. In all cases the proportionality restrictions in (1) are imposed, so
that the coefficient on W; in the Y equation (%y2;) is 8° times the coefficient on W in
the S equation (yz;)-

The four data sets are generated from populations which differ in the choice of hyper-

parameters a, and (2; corresponding to the mean and variance of yz;:

1. Nonzero Mean, Nonzero Variance

ol = 151, /09, = .123;

2. Zero Mean, Nonzero Variance

ad =0, /0%, =.123

3. Nonzero Mean, Zero Variance
ad =151, /9% =0;
4. Zero Mean, Zero Variance

=0, /(=0

The first data set is drawn from a population that mimics the actual data. The other data
sets are created by fixing the population mean and/or variance of the slope coefficients
¥2; to zero.® In data set 2, it is essential to use many instruments because the average
value of 7,; is equal to zero. The information on A° in this data set is concentrated in the
interactions between quarter of birth and state/year dummy variables, and would be lost
if we used Q as the only instrumental variable. The last data set, with both the mean
and variance of y2; equal to zero, contains no information about (°. It corresponds to

the random instrument case. Data sets 2 and 4 represent the two dangers that are to
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be avoided by choice of prior distribution, and specifically by choice of C. If the prior
distribution of 223 puts too much mass close to zero, the posterior distribution for g in
data set 2 will be diffuse although there is information in the data. If the prior distribution
of Q22 puts too much mass on large values, the posterior distribution for 2 in data set 4

will be misleadingly tight around the OLS estimate.

The TSLS estimates (and standard errors) for the four data sets are as follows. Data
set 1: -.025 (.008); Data set 2: -.052 (.009); Data set 3: -.037 (.008); Data set 4: -.064
(.009). In all cases the TSLS estimator appears to be badly biased towards the plim of the
OLS estimator (-.070) and away from the population value of B° = .098. The standard
errors are similar in all cases, about .01. For data set 4, corresponding to the random
instrument case, the TSLS inference provides a fairly tight, and again very misleading, .95
confidence interval of -.082 to -.047. We obtain very similar inferences from the posterior

distribution of g if we set the parameter C of the prior distribution for §2 equal to 1000.

Table 3 reports the mean, standard deviation, median, .025 and .975 quantiles of the
posterior distribution for # when the parameter C of the prior for (2 is set at .001. For data
sets one and three, the posterior distribution for § is fairly concentrated around the true
value. The posterior is less concentrated for data set 2, but there is still strong evidence in
favor of a positive coefficient. This is interesting because here the population mean of 7z; is
zero, so that the information for 8° is coming solely from the interactions between quarter
of birth and state/year dummy variables. In data set 4, which contains no information

about 89, the posterior distribution is quite diffuse, with a .95 interval of -.539 to .143.

5. GAINS FROM MANY INSTRUMENTAL VARIABLES

We shall investigate whether there is a gain from using 500 instrumental variables rel-
ative to a single instrument. Is it better to ignore the potential information in the instru-
mental variables created by interacting quarter of birth with state and year of birth dummy

variables? The answer depends upon the amount of variation in vyz; across state/year cells,
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where 71; + 72;Q: is the conditional mean of education for individual ¢ in state/year cell
j. The variance of 5 18 Qao.

Table 4 reports the mean, standard deviation, median, .025 and .975 quantiles of
the posterior distribution of /€22, as well as quantiles of the prior distribution.? The
parameter C of the prior for {2 is set at .001. With the real data (row 1), the posterior
95 interval extends from .087 to .152. When the actual quarter of birth is replaced by
randomly generated indicators (row 2), the posterior distribution for /Q23 is concentrated
close to zero, with the .95 interval extending from .013 to .056. The next four rows in the
table correspond to the four artificial data sets from the previous section. The posterior
distribution clearly distinguishes between the data sets where the true value of /(37 is
123 (data sets 1 and 2) and where the true value is zero (data sets 3 and 4). In data sets
2 and 4, the population mean of 7; is zero (i.e., a9 = 0), and so there is information on 3
only when 29, > 0. We saw in Table 3 that the posterior distribution for £ is informative
in the case of data set 2 but diffuse for data set 4. This corresponds to the posterior
distribution for {32 being concentrated away from 0 for data set 2 and concentrated close
to 0 for data set 4.

We can examine the gain from using many instrumental variables by using a restricted
prior in which we constrain Q2 = 0, so that y2; = 2. Then ¥, W in (1) (which equals

E;’_‘__l 72;R;Q) reduces to a3Q, leaving us with a single instrumental variable. Define
=i — [ i Q= in 913).
7 (’Taj) ’ (931 233
The prior distribution for ¥ = (37)7L, specifies that |
Plad W N (). =1,
We employ improper priors for 27!, a:

p(%, 8,574, o, Q) (7| @, Dp() | ZI* 2p(8)-
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The prior for 4= is W(k, H), with k = 2, H™} = C - k- D,, where C = 001 and D, is
the submatrix of D., formed from the first and third rows and columns. The prior for 3
is improper (p(f) o 1) except when this gives an improper posterior for 3, with the .025
and .975 quantiles tending to —oo and +co. We found that this occurs in the real data
with quarter of birth replaced by randomly generated indicators (random QOB), and in
artificial data sets 2 and 4, where a = 0. In these cases we used a proper but diffuse prior

for B: N(0,10%).

Table 5 reports on the posterior distribution for 8 that results from the restricted
prior specification. With the real data {row 1), the standard deviation of the posterior
distribution is slightly larger for the restricted prior than for the general hierarchical prior
(with C = .001) in Table 1: .022 versus .017. With artificial data sets 1 and 3, in which ad
= .151, comparison with Table 3 shows that the posterior standard deviations are similar
whether or not the prior imposes 222 = 0. So in these cases, the tightness of the posterior
distribution is not much affected by whether we use a single instrumental variable or five

hundred.

The comparison is very different when a3 = 0, for then the population mean of 7z;
is zero and the information for B comes from the interactions of quarter of birth with the
state/year dummy variables. With data set 2, the restricted prior leads to an extremely
diffuse posterior distribution for §, whereas the posterior distribution in Table 3 (row
2) is very informative on the sign of 3. There is a tradeoff, however, because when the
population value of Qg; is zero (29, = 0), as with the random quarter of birth data and
with data set 4, the restricted prior leads to a much more diffuse posterior than is obtained
with our general hierarchical prior. The restricted prior does a better job of revealing that
there is no information for 4 in this case. More generally, we can decrease C from its value
of .001 in Table 3 to smaller, but still positive values. This will lead to better inference in

data set 4, but to worse inference in data set 2. Increasing C will have the opposite effects.

13



6. CONCLUSION

In this paper we have shown how an analysis from a Bayesian perspective might
deal with models with many, weak instruments. We develop a hierarchical model and
argue that the choice of prior distribution of the variance should reflect concern with two
cases. First is the case with no information in the instrumental variables. The prior can
guard against misleading inference in this case by putting mass close to zero. Second, the
prior distribution should reflect concern over loss of information from not using all the
instruments. This suggests that the prior distribution should put weight on large values of
the variance. In specific applications, the relative concern with both cases should govern
the choice of prior distribution. The type of calculations performed on artificial data sets

in this paper can prove useful in making such decisions.
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APPENDIX

1. EVALUATING THE POSTERIOR DISTRIBUTION

Hierarchical Prior

Let d = {}7, denote the data, that is, the observed values of the Z;, with z{ =
(55,90, vl w}). Let = = (r{,w}) and let ¢; denote the observed value of the quarter-
of-birth indicator @Q;. Define f] = (1,¢:), M; = Zizm:l fifl, and A; = £® Mj—l.
Let #,; and #; denote the least-squares estimates of m; and w2 in (6), and let F¥ =

(*ljaﬁl,m+j,ff2j,ﬁ2,m+j). Note that
77 | {zi} iy ind (T+%,A;) under Py F=1,...,m),
where

(A1)

[T T
THh o=
[ BT I e B ]

In addition, since 47 | {z;},,5,,a,80 b N(a, ),
i | {&:}pey, B, 5,0, @ N (Ta, TOT' + Aj).

We choose starting values for 8, T, and 2 as follows: 8 =10, £ = b (based on the

~ o~

least-squares residuals: & = (8; — #,2i, 4 — 73%:), & = Y iy €:€i/n), and Q = D,. Given
these starting values, we cycle through the following four steps of the Gibbs sampler.
1. Sample from the conditional distribution of {c, ) given d, 3, I, 1. First sample from

the marginal distribution of a. This distribution is normal with

m -1 m
S rrar + A,-)“T) ST T(TQT + Aj) 7N,

j=1 i=1

E{a|d,5,E,) = (

m -1
V(ald,B,Z,Q) = (ZT’(TQT’ +A_,-)“T) :

=1
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Then sample from the conditional distribution of v given . This distribution is normal

with
E(’YJ ia:dvﬁz E, Q) = Fl]’?J + F2jaa
V(¥ |a,d,B,5,Q) = (T'A;' T+ Q71) 7,
Cov(v,7|a,d, B, 2,9 =0 (Gl=1,...,m;j#l),
where

Fyj = (T'A7'T + Q)7 TA'T
Py = (T'A7'T + 1)1t
i B P s Y
¥ = (T'A;T) T/ AT 7.
2. Sample from the conditional distribution of Q~* given d,7, 8, L, .

Q~1d,7,8,%,a ~ Wk+m,(G+H™)™

where
G =32 ~a)r ~a.
Jj=1
3. Sample from the conditional distribution of 3 given d,v, I, a, Q2. Note that
#7 | {xi}?=1 e N(ﬂ-j + g;8, Aj) under Pp,
where
_ 0
7 0
a5=(0)1 gi = 0 . (A2)

Y25

Hence the conditional distribution of 8 is normal with

-1 m

E(B]d,7,Z.a,) = (Zg;A;‘g,-) > giA7HE — a5)
j=1 =1 .

m -1
V(Bld,7,2.a,0) = (E g;A;‘g,-) :
j=1

16



4. Sample from the conditional distribution of L1 given d,7, 8, , §2.

) n -1 ' ’
£l d, v, 8,0, ~ W(n, e'ef') where e;= | i~ MTi — MW
|,7. 5, ( (Z “) ) ' (yi — Y37 — Byawi J

i=1
We use a normal approximation to this Wishart distribution, with the same first and
second moments. The approximation is a very good one (n = 162,000), and it reduces the
computation time.

Cycling through these four steps of the Gibbs sampler will eventually lead to draws

that can be considered draws from the posterior distribution of (v, 8,27}, a, 2~1) given

{Zi}?=1 =d.

Restricted Prior

The results in Table 5 are obtained by modifying the previous algorithm to impose
250 = 0. Given the starting values § =10, X = 3, 0= b.,, we cycle through the following
four steps of the Gibbs sampler.
1. Sample from the conditional distribution of {(a,%) given ¢, 0, £, 1. First sample from

the marginal distribution of o. This distribution is normal with

m -1 m
E(e|d,B,Z,0) = (Z T (T T + A,-)-IT) N T(TQT + Ay) TN,

=1 i=1

m -1
Via|d,B,5,0) = (ZT’(TQ'T’ +A,-)-1T) ,

i=1

where Q* is defined to be the 3 x 3 matrix with Q}, = Q;x for j, k € {1,3} and Qj, =01if

j or k = 2. Then sample from the conditional distribution of ¥ given c. Note that

# [ {zt, ™ M(A+T57,A;) under P,

where
0 10
_ g S 0 0
A= 0 » T= 01
ﬁaz 0 0

17



So the conditional distribution of 4 is normal with
B 1o d, B 5,0) = Fuyi+ By (52,
V(¥ |, d, 8, %,Q) = (T'A7IT + Q717

Cov(#,7'|a,d, 3,5, =0  (Gil=1,...,m;j #1),

where
Py = (TA'T+ Q) \TAT
sz = (T’A;IT + ﬁ-l)—lﬁ_l

3 = (T'AFID) AT (- ).

2. Sample from the conditional distribution of -t given 4,7, 6, %, a.
Q'1d, 70,50 ~ W(k+m, (G+H 1))

where

o=y - (2 e - (2.

i=1

3. Sample from the conditional distribution of § given d,¥, %, a, Q2. This distribution is

normal with

m -1 m
E(8)d,% %, a, ) = (ZQ'AFISH"J’) S IAS(H — ay)
j=1 ji=1

m

-1
VEl2a Rl = (L oa+e)

i=1

where
Y15 0
i = 2 g= 0
7 v35 |’ 0
0 0 5]

% = 0 for the improper prior on 8, and ¥ = 108 for the A (0,10°) prior.
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4. Sample from the conditional distribution of £~* given d,%, 8, c, Q.

v - ' n -1 ’
2714, %, 8,0, ~ W(n, ( eieﬁ) where e; = ( U L
| ( Z ) ' Yi — Yari — Bogg;

i=1

Nonhierarchical Prior

Tables 1 and 2 report results for a nonhierarchical prior with p(y, 8, £71) « |Z]3/2.
Given the starting values § =0 and X = 3, we cycle through the following three steps of
the Gibbs sampler.
1. Sample from the conditional distribution of -y given d, 8, . This distribution is normal

with
E(¥d,8,5) = (T'A;'T) " T'A; 147,
V(¥ |d,8,T) = (T'A;*T) Y,

COV(’)’j,’Y‘Id,ﬁ,E)=O (J:l=11rm;.7‘-lét),

where T is defined in (A.1).
2. Sample from the conditional distribution of 3 given d,, L. This distribution is normal
with

-1 m

E(B|d,v,Z) = (Zy}f\?yﬁ) > giATH(# - aj)
=1 i=1

m -1
voldr D) = (Sante)

F=1

where a; and g; are defined in (A.2).

3. Sample from the conditional distribution of £~ given d,~, 8.

= -1 ’ Lo
7 d, 7, 8 ~ W(n, ;€] here e; = ( S — NN~ M ) )
(3,8~ Wi, (Set) ) where = (07T

i=1
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2. IMPROPER PRIOR FOR Q!

Consider the following special case of our model:
Yi=yW;+V;, Vi|W,; e N(0,1) under Py
IR N0, G=1,...,n5=1,...,m),
where v = (7;)7%, is an m x 1 vector and Y; is scalar. Define ¥ = Q! and specify
¥ ~ W(k, H). An improper prior corresponds to k = 0, H™! = 0: p(¥) o ¥~1. Suppose

that Ei:rji=l q‘2 =1 for J =1,....,m and define '73 = Ei:r‘,-.-:l qi¥%, h = Z;rl:l '?,2

The improper prior distribution results in an improper posterior distribution:
p(¥]d) o g(¥) := (¥71 +1)"™ 2 exp[— 3 (¥~ + 1) RJT Y
oo o
f g(¥)d ¥ > 9—m/2 exp(—h/2)/ U114 ¥ = 0.
1 1
Since f01 g(¥}d¥ < oo, we can interpret the improper posterior distribution as a distri-

bution that puts all its mass on ¥ = oo, implying that 2 = 0 with posterior probability

one.
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FOOTNOTES

1 The authors thank Joshua Angrist, James Powell, and Peter Rossi for helpful com-
ments, and thank Alan Krueger for making his data available to us. Financial support was
provided by the National Science Foundation.

2 Geweke {(1994) applies Gibbs sampling to a reduced-rank regression model; reduced
rank is a feature of our model.

3 For all four data sets, the other values of a® are af = 12.672 and of = 5.879.
For data sets 1 and 2, the other values of Q° are Q, = .677, 0, = —.098, 233 = .080,
QY = —.011, N33 = .013. For data sets 3 and 4, Q° is the same as for data sets 1 and 2
except that Qf, = 03, = Q3; = 0.

4 The prior distributions for /(137 differ because the data sets differ in their values of

~

b,
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TABLE 1

RETURNS T SCHOOLING USING QUARTER OF BIRTH
AS INSTRUMENTAL VARIABLES (REAL QOB DATA)

Hierarchical C Mean Median Quantile
Model (sd) .025 975
NO - .073 .073 .058 .089
(.008)
YES 1000 074 074 057 .090
(.008)
YES .001 .080 080 .046 115
(.017)
TABLE 2

RETURNS TO SCHOOLING USING QUARTER OF BIRTH
AS INSTRUMENTAL VARIABLES (RANDOM QOB DATA)

Hierarchical Cc Mean Median Quantile

Model (sd) .025 975

NO - .064 064 047 081
(.009)

YES 1000 .063 063 045 082
(.010)

YES .001 .060 062  -.253 377
(.156)
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POSTERIOR FOR 8 IN FOUR ARTIFICIAL DATA SETS (5° = .098)

TABLE 3

Data Set Mean Median Quantile
(s.d.) 025 975

1 (} = .151,4/0), = .123) .110 109 069 158
(.023)

2 (af = 0,/03, = .123) .191 181 084 .362
(.071)

3 (o = .151,,/95, =0) 104 102 055 164
(.028)

4 (e =0,/03, = 0) -.166 -.157 -.539 143
(.199)

TABLE 4

POSTERIOR AND PRIOR FOR /{3

Data Set Posterior: Prior:

Mean Median Quantile Quantile
© (sd.) 025 975 .025 500 975

Real QOB 119 119 087 .152 .014 047 997
(.017)

Random QOB .029 027 013 .056 .014 .046 .993
(.011)

1(af =.151,/03, = .123) .100 100 .074 .128 009 029 .636
(.014)

2 (a =0, /113, = .123) 2085 084 053 117 .009 029 636
(.017)

3 (af = .151,/03, = 0) 023 022 010 044 009 029 630
(.009)

4 (2 =0,/Q%, =0) 036 035 .012 .065 009 029 630
(.014)
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TABLE 5

POSTERIOR FOR g WITH RESTRICTED PRIOR (f22 = 0)

Data Set Mean Median Quantile
{s.d.) 025 975

Real QOB .096 095 054 139
(.022)

Random QOB 1.49 .076 -693 714
(311)

1{a = .151, \/ng, =.123) .090 .089 .048 141
{.024)

2 () =0, \/ﬂg, =.123) -1.22 .055 -670 656
(295)

3 (o] = .151, \/ﬂgz =0) 111 109 .060 173
(.029)

4(ad =0, \/926, =0) -1.19 -.002 -785 754
(332)
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