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NONPARAMETRIC APPLICATIONS OF
BAYESIAN INFERENCE!

1. INTRODUCTION

The paper evaluates the usefulness of a nonparametric approach to Bayesian inference
by presenting two applications. The approach is due to Ferguson (1973, 1974) and Rubin
(1981). It stays within the framework of evaluating expected utility with respect to a
posterior distribution, but it does not use a tightly parameterized likelihood function based,
for example, on a normal distribution. At the same time, it avoids pitfalls arising from
using high-dimensional parameter spaces with flat or other conventional prior distributions.

Our first application considers an educational choice problem. We focus on obtaining
a predictive distribution for earnings corresponding to various levels of schooling. This
predictive distribution incorporates the parameter uncertainty, so that it is relevant for
decision making under uncertainty in the expected utility framework of microeconomics.
Specifically, we look at an individual’s decision on the level of schooling when the individual
is uncertain about the return to schooling.

The second application is to quantile regression. Qur point here is to examine the po-
tential of the nonparametric framework to provide inferences without making asymptotic
approximations. Unlike in the first application, the standard asymptotic normal approxi-
mation turns out to not be a good guide. We also consider a comparison with a bootstrap

approach.

2. THEORY

Our aim is to present a concise review of the basic theory that is sufficient to follow
the applications. For more details, see Ferguson (1973, 1974), Rubin (1981}, and Cham-
berlain and Imbens (1995). There is a family of probability distributions {Ps:60 € O},

and we observe {Z;}"_,, where the random variables Z; are independently and identically
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distributed according to Ps for some unknown value of & in the parameter space 0. To
simplify notation, let Z denote a random variable that is distributed according to Py. We

assume that the distributions Pp have a common, finite support:
PB(Z:"aj):ej (j=1:--':J)n

where 8; denotes the #t component of § and we take © to be the unit simplex in R”.
Since J can be arbitrarily large, and our data are measured with finite precision, the finite
support assumption need not be restrictive.

We limit ourselves to prior distributions in the Dirichlet family with density

J
p(@) o [] 67" for 60  (b5>0)
j=1
which, with J free parameters, is arguably not very restrictive. Let d = {zi}?, denote
the data, that is, the observed values of the Z;. The posterior density is proportional to

the product of the prior density and the likelihood function:

J
pa(0]d) o [ O3+, (1
j=1

where n; = Y1, 1{zi = a;) is the number of sample observations equal to a;. This is the
standard result that the posterior distribution is also Dirichlet.

The Dirichlet distribution has a very convenient representation.? Let {U; }JJ=1 be in-
dependent random variables with U; distributed according to a gamma distribution with
shape parameter b; and scale parameter 1: U; ~ G(b;,1). Then (Uh,-.-,U5)/ E}’=1 U;
is distributed Dirichlet with parameters {b;}7_,. This representation is correct even if
some (but not all) of the b; equal 0, if we interpret the G(0,1) distribution to assign unit
probability to 0. If b; > 0 for § < K and b; = 0 for j > K, the Dirichlet distribution for
8 = (0,,...,0;) has 8; = 0 for j > K with probability one and (8,,-..,0%) has a Dirichlet

distribution with (positive) parameters by,...,bx.
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Suppose that we are interested in some function of 8: 8 = g(8), where the function
g(-) may depend upon the points of support {a;} 3-’=1. The representation for the Dirichlet
posterior distribution can be used to simulate the posterior distribution of 3 by taking
independent draws from a gamma distribution. Given L independent draws Y
from pn(6|d), we can set B0 = g(6¥)) to obtain independent draws from the posterior
distribution of 8. We define g(-) implicitly through moment functions. Either we will be

solving a set of moment conditions:

Eg$(Z,8) = 0, (2)

where 9 is a given function and there is a unique solution for all € ©; or we shall be

minimizing a moment function:

B=agminEalo(Z,8), (3)

where p is a given function and there is a unique solution for all § € ©. Note that the
dimension of ¥ in (2) equals the dimension of 8, so that no restrictions are being imposed
on the P distribution.

There is a potential pitfall in using the Dirichlet prior with large J and all of the b;
bounded away from zero. To see this, let ¢ denote the probability that Z is in some set

B: ¢ =3;.4,ep 05 Then the posterior distribution for ¢ is a beta distribution with

J
Bold)= 3 (ny+by) [ Yol +b)

j:a;€B

J
Var(¢|d) = E(¢|d)[1 - E(¢|d)]/ (X + D _(n; +b;)).

=1

Suppose that b; = ¢ > 0 for all j, and consider increasing the number of support points
while keeping the data d fixed. Let the fraction of support points in B approach a limit r:
5Z;=1 1(a; € B) = r as J — oco. Then E(¢|d) — r, Var(¢|d) = 0, and the posterior
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distribution of ¢ becomes concentrated on r, regardless of the data. This argument covers
a flat prior for # (b; = 1), suggesting that a flat prior distribution does not capture a l.ack
of prior information very well when J is large. Therefore, we focus on the improper prior
distribution with all the b; — 0.

The algorithm for evaluation of § ='g(6) defined through moment functions takes a
particularly simple form for the limiting posterior distribution that results from letting
all the b; — 0 in (1). Then the 8; corresponding to the support points a; not observed
in the sample are all zero with posterior probability one. Let {V;}7., be independently
distributed according to a standard exponential distribution (i.e., the gamma distribution
G(1,1)). Then for a given function A(-), the posterior distribution of E4[A(Z)) is the same
as the distribution of Y 7., Mz)Vi/ Yoi, Vi since

;A(Zi)"i/gVi= Z /\(a,-)U,-/ Z U;,

imn;>0 ;>0
where U; =3 ., . Vi ~ G(nj,1), using the fact that a sum of independent exponential
random variables has a gamma distribution. So to simulate the posterior distribution of £

based on (2), we draw sets of i.i.d. exponential random variables {V,-(‘)},?‘z‘ and solve

Yoz AW =0, (4)
i=1
and for 8 based on (3) we solve
ﬁ(f) = arg m‘in Z p(z‘-, t)V;(l)- (5)
=1

Repeating this for ! = 1,..., L gives us L independent draws from the posterior distribution
of B. Note that there is no need to divide by the sum of the exponential draws. Rubin
(1981) developed this simulation algorithm, and it has been applied by Lancaster (1994)

in the analysis of choice-based samples.?



The improper prior distribution for  does not imply a unique prior distribution for the
parameter of interest.* So in order to measure the informativeness of the prior distribut{on,
we calculate the expected posterior distribution given a smali number m of observations,
where we take the expectation over the empirical distribution. Let F,, denote the empir-
ical distribution of our sample: F,(B) = 2" 1{(z € B). Let n8(-|{t:},) denote
the posterior distribution for 8 based on the m observations Z; = t; (and assume for
a moment that this posterior distribution is proper). The expected posterior distribu-
tion for 3 based on a random sample (with replacement) of size m from F, is given by
#8.() = [ 7l (-1 {t:}21) [Ti2, dF.(t:). In order to allow for the possibility of an improper

posterior distribution, we modify this formula as follows:
()= (6)
[ciamnem e e[l e | 1z e cm L ame,
i=1 i=1

where the set C,, consists of the points {¢;}1%, such that #& (- [ {t;}}~,) is a proper distri-
bution. (We shall choose m large enough so that the probability in the denominator of (6)
is nonzero.) We can simulate this distribution as follows. In order to obtain the draw pa,
draw random samples of size m from the empirical distribution F,, until we obtain a sample
{tm} %, in Cp; then draw a single A" from the posterior distribution w8, (- l{tm} ")
Repeating this process L times gives a random sample (AW}, from #E,.

For an example of #, in a simple parametric case, consider sampling from a bivariate
normal distribution with unknown mean @ = (6, 8;) and known covariance matrix L. The
standard diffuse prior has density p(f) oc 1. It can be obtained as the limit as s —+ oo
of a N (0,sD) prior, where D may be any 2 x 2 positive-definite matrix. Suppose that
the parameter of interest is § = 6,/6,. Then the implied prior for § is the distribution of
W1 /W2, where (W}, Wa) ~ N(0, D). So the implied prior for # depends upon the choice of
D. Given a sample of size m with mean f,,, the posterior distribution for ¢ is N(tm, £T),

which does not depend upon D. In order to sample from the 78 distribution, draw a
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random sample {t;}, from F,, draw @ from M(im, 2 £), and then set B = 0:/6;. 1f
m = 1, this reduces to drawing 8 from the convolution of F, and N(0, X}, and sett.ing
B=6,/8,.

Qur framework of combining a multinomial likelihood with a Dirichlet prior makes it
difficult to impose restrictions on the family of probability distributions {Ps, 8 € ©}. That
is why we are not treating the generalized method-of-moments case where the dimension
of the moment function 9 in (2) may exceed the dimension of the parameter 4 (as in
Hansen (1982))3. It is also difficult to impose smoothness restrictions. The improper prior
distribution for @ results in a posterior distribution that assigns zero probability to the
support points a; that are not observed in the sample. More generally, consider a proper
prior in which the sum of the prior parameters Z;:; b; is small relative to the sample
size n, so that the prior does not dominate the sample. If J >> n, then most of the b;
will be very small. Consider two support points, a; and ag, with b; and bx very small.
If a; is observed in the sample and ay is not, then the ratio P(Z = a;|d)/P(Z = ax|d)
will be large even if a; and ax are close together. So our framework is not well suited for
imposing smoothness on the {Py,8 € ©} family. See Diaconis and Freedman (1986) for

more discussion of this issue.
3. INSTRUMENTAL VARIABLES

We shall use a very simple model with a constant, additive treatment effect, linear in

years of schooling. The potential outcome with treatment level s is
Yo=Yo+1s,

where Y} is the potential outcome with treatment level 0, and 7 is the unknown return to

schooling. The actual treatment level is X, which gives an actual outcome Y of

Y=Yo+'yX.
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The potential outcome Yy has a linear predictor o'R based on the observed regressors R
(with a = argmin Eg(Yo — t'R)?); then defining the disturbance U = Yy — 'R gives the

orthogonal decomposition
Yo =a'R+ U, Eg(RU)=0.

Here the first component of R is a constant identically equal to one, so that Ee(U) = 0.
The instrumental variable W satisfies Eg(WU) = 0 and Cove(W, X) # 0.

Let Z = (Y,X,R,W) and §' = (a',7). Then J satisfies the moment condition
Ee$(Z, 8) = 0 with

Wzm = ~aR=1%) ().

We shall use the improper Dirichlet prior (with all the b; — 0 in (1)), and the posterior
distribution of B can beA simulated as in (4).

Our data is a subset of the data uséd by Angrist and Krueger (1991) containing
males born in either the first or fourth quarters between 1930 and 1939. The sample size is
n = 162, 515. The outcome variable Y is the log of weekly earnings in 1979. The treatment
X is years of schooling completed, and the instrumental variable W is an indicator equal
to one if t.he‘ individual was born in the fourth quarter and equal to zero otherwise. The
regressor R is simply a constant.®

In order to evaluate the information content of the prior distribution for the parameter
of interest (), we shall calculate the expected posterior distribution #, as in (6), with
m = 3 and m = 10 observations. We shall compare these expected posteriors with the
actual posterior distribution based on the full sample with n = 162,515 observations. Here
are some of the quantiles for the -y distributions:

quantile: .025 .05 .25 .50 .75 95 .975

7: -1.82 -82 -07 .07 .22 1.02 1.89

#l,: -2.43 -1.02 -.09 .07 .23 1.22 2.5
n1(-|d): .047 .054 .075 .089 .104 .124 132
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It appears that the prior distribution is reasonably uninformative for -y, so that the poste-
rior distribution is mainly reflecting the sample information.”

The instrumental-variables estimate % (i.e., the solution to 3., (2, 3) = 0, where
B = (&', %)) is .089. An asymptotic approximation to its sampling distribution (allowing
for heteroskedasticity of unknown form) gives a normal distribution with mean -y and
standard deviation .021. A normal distribution with mean .089 and standard deviation
.021 provides a good approximation to our posterior distribution. But if the objective
is a posterior distribution for -y, then our procedure is more direct than having to first
approximate a sampling distribution and then argue that the sampling distribution can be
used to approximate a posterior distribution. See Sims and Uhlig (1991) for a discussioﬁ
of the distinction between a sampling distribution and a posterior distribution, in a case
where the two need not coincide even asymptotically.

Suppose that the individual knows Yy = yp and wants to value the potential earnings
distribution for various levels of s, as a first step in choosing the optimal level of education.
The standard way to do this based on the microeconomics of decision making under un-
certainty is to specify a utility function and evaluate the expected utility corresponding to

various values of 5. Suppose that utility is the following function of earnings and education:
u(earn, s) = wlearn/q(s)) — c(s),

where w(-) has the constant relative risk aversion form w(t) = t(3=4) /(1 — A) for A # 1

and w(t) = log(t) for A = 1. The individual chooses s to
max E[u(e®+7?) 3)|d].

We can define a certainty equivalent rate of return, which depends on s but not on yp:
E(e'ys(l—‘A) I d) — e"le-(-’)’(l""q) =5
Yee(s) = log[E(e™ "D d)}/(s(1 - 4))  (A#1),
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with 7ce(s) = E(vy|d) if A = 1. Then the optimal level of education can be obtained from
ma_xu(e(lfu+’fte(3)’), S).
8

To calculate vc.(s) requires a distribution for v, and we shall use the posterior distribution
corresponding to the improper Dirichlet prior and the Angrist-Krueger data.
We find the following certainty equivalent values corresponding to s = 8, 12, 16 and

various values for the coefficient (A) of relative risk aversion:

Certainty Equivalent ¢

A
E 0 1 5 10 15 20
8 091 .089 .082 .073 065 .057
12 .092 .089 .078 .066 .055  .047
16 093 .089 .075 0589 047 .040

This calculation clearly requires a posterior distribution for -y, not a sampling distribution
for 5. More generally, a posterior distribution ia called for in order to include parameter
uncertainty in the decision making formulation; see, for example, Rossi, McCulloch, and

Allenby (1994), Kandel and Stambaugh (1995), and Barberis (1996).

4. QUANTILE REGRESSION

Let Z = (X,Y), where Y is scalar and X is K x 1. We can define a linear predictor

corresponding to the 7P quantile as follows: Eg(Y | X = z) = 'z, where

B= argmlin Esle, (Y — t' X))

cr (8) = {1 — 7)1t < 0) + T1(t 2 0}].

(8 in general depends upon 7, but this should be clear from the context.) If 7 = .5, then
this reduces to minimizing the mean absolute error: ming Eg(|Y —t'X]). By weighting the
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absolute error differently for positive and negative values, the “check” function ¢, extends
this notion of linear predictor to other quantiles. The role of the check function in quantile
regression was developed by Koenker and Bassett (1978, 1982).

Our simulation procedure produces independent draws {81}, from the posterior
distribution of 8. To obtain B®), first take i.i.d. draws {'i/i(‘)}?__,1 from a standard expo-

nential distribution (G(1,1)). Then solve

M — - (1) . o
B argmtmEV, er(yi — t'zi)
(where the observed value of Z; is zi = (%;,1;)). The computations are simplified by
exploiting the fact that re, (¢) = ¢, (rt) if r > 0. So define Y.-U) = V,-(‘)y,- and X,-(‘) = V,-U):n,-.
Then
B = arg mgian,(Yi(') —tx.

i=1

This is a linear programming problem, and we use the Barrodale-Roberts (1973) modifi-
cation of the standard simplex algorithm. |

Our application is based on “Workers’ Compensation and Injury Duration: Evidence
from a Natural Experiment,” by Meyer, Viscusi, and Durbin (1995). The authors (MVD)
obtained data for two states, Kentucky and Michigan, on a random sample of indemnity
claims. We shall focus on Kentucky. The claims were filed by workers seeking compensation
for work-related injury or illness. MVD concentrate on temporary total disability claims.
Such a claim is filed when the person is unable to work but is expected to recover fully and
return to work. The data include date injured, duration of temporary total benefits, total
medical costs, previous wage, weekly benefit amount, type of injury (body part affected
and the type of damage), age, sex, marital status, and an industry code.

The amount of the weekly benefit is based on a schedule that determines the benefit

as a function of previous earnings. The schedule has a ceiling, with earnings levels above a
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threshold corresponding to the same weekly benefit. Kentucky raised the maximum bengfit
from $131 to $217 per week on July 15, 1980.

MVD work with claims that have injury dates during the year before or the year after
the change in the benefit schedule. They also limit the sample to a high earnings group and
a low earnings group. The weekly benefit amount for the high earnings group was affected
by the increase in the benefit ceiling, whereas the benefit amount for the low earnings
group was not affected. So the low earnings group can provide a control for period effects.

The basic specification in MVD is
Eo(Y | X = z) = By + Baz2 - T3 + Paz2 + Pazs. N

(z1 = 1 denotes a constant.) Here Y = log of duration, with duration measured by weeks of
temporary total benefits paid; x2 = 1 if injured after the benefit increase, z; = 0 otherwise;
z3 = 1 if high earnings group, z3 = 0 otherwise. The key coefficient is 32, measuring the
effect of the benefit increase on time out of work, with controls for period and for the

earnings group:

Bo=[Ee(Y|z2=1,23=1)— Eg(Y |12 = 0,23 = 1)]

- [Ea(Yl:Ez =1,z3=0) - Eg(Y |22 =0,z3 = 0)].

An appealing aspect of the MVD analysis is that it is plausible to regard the injury date,
and hence the benefit schedule, as if it were randomly assigned.

To account for possible changes in the composition of the sample after the benefit
increase, MVD also include regression controls for attributes of the individual, the job,
and the injury—sixteen regressors in addition to the four in (7). The last column of
Table 1 presents least-squares estimates (and conventional standard errors) corresponding
to Table 6 in MVD. The first five columns of Table 1 present estimates of the linear
predictor coefficients corresponding to the .10, .25, .50, .75, and .90 quantiles. These

estimates are based on the simulation procedure described above. The point estimates are
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posterior medians and the “standard errors” in parentheses are constructed so that fshe
point estimate plus or minus 1.96 standard errors gives an interval with a .95 posterior
probability. The key coefficients (corresponding to B; in (7)) are in the second row. The
effect of the benefit increase is fairly constant across the quantiles, suggesting a location
model in which the distribution of log duration shifts rigidly in response to the benefit
increase.

Table 2 presents results using duration out of work (in weeks) instead of its loga-
rithm. Now the estimates show a substantial increase as we go from low to high quantiles,
suggesting that the effect of the benefit increase is concentrated on the upper half of the
duration distribution. The estimated effect on the median of the distribution is .87 weeks,
with a standard error of .23. In contrast, the least-squares estimate of the effect on the
mean of the distribution is quite imprecise, with a point estimate of 1.66 and a standard
error of 1.04. -

The histogram of the draws from the posterior distribution of 85 is shown in Figure 1
for 7 = .5, using duration in weeks. The posterior mean is .87, and the posterior standard
deviation is .23. So assuming the posterior distribution is normal and using .87 + 1.96x.23
gives a probébility interval close to the one we constructed without assuming normality.

We shall examine the influence of the prior distribution by calculating the expected
posterior distribution #2, as in (6), for m = 21 observations, and comparing this distri-
bution with the posterior distribution 72(-{d) based on the full sample with n = 5349
observations. Here are some of the quantiles of the B, distributions for = .5, using

duration in weeks:

quantilee 025 05 .25 50 .75 .95 .975
79, 290 -157 -20.4 1.01 24.3 184 323
B (.|d): 41 49 .71 .87 1.03 1.25 1.32

The prior distribution is dominated by the sample information.
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Now consider dropping all the predictor variables except for the four that appear in
(7): 1, z2 - 23, T2, 3. We shall compare the expected posterior distribution for m =5
observations with the posterior distribution based on the full sample. Here are quantiles

of these distributions for 82 with r = .5, using duration in weeks:

quantile: 025 .05 .25 .50 .75 .95 .975
1. 121 36 -6 1 9 59 110
wba(|d: 0 0 1 1 2 2 2

The posterior histogram for f; is in Figure 2. It is concentrated on just four points: -1,
0, 1, and 2 weeks, with posterior probabilities of .01, .14, .55, and .30. This reflects the
discr:zteness of the duration distribution. The upper tail of that distribution is somewhat
continuous, but 56% of the distribution is concentrated on the integers from 0 to 4 weeks.
The (.5,.75,.9,.95,.975) quantiles are (4,8,15,25,49) weeks. Including the long list of
predictor variables smoothes out this discreteness, in the sense of producing a residual
distribution (for ¥ — 'X) that is much closer to being continuous.

Here are the quantiles of the 3, distributions for 7 = .9, using just the four regressors

in (7) and dvration in weeks:

_quantile: .025 .05 .25 .50 .75 .95 .975
79 145 41 7 1 10 72 124
nfa(-|d: 2 3 5 7 8 11 12

The posterior histogram for B, is in Figure 3. This is closer to a normal distribution,
corresponding to the continuity in the upper tail of the duration distribution.

The standard asymptotic distribution theory for quantile regression requires that the
distribution of ¥ — 'z (conditional on @ and on X = z) should be absolutely continuous
with a positive density in a neighborhood of zero. This theory may be a reasonable
guide when we include the long list of predictor variables. It is certainly not a reasonable

guide when we just use the two indicator variables and their interaction. In contrast,
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our posterior distributions provide straightforward inferences that do not rely upon the
approximate normality of a sampling distribution. ‘
Efron’s {(1979) bootstrap method suggests an alternative approach to inference. 1t
provides an approximate sampling distribution for an estimator by treating the empirical
distribution of the sample as if it were the population distribution. We can obtain a draw
B9 from the bootstrap distribution for 3 as follows. Draw a random sample of size n,
{(X '.('), f’im)};;l, from the empirical distribution F,, of the sample (with replacement), and

then solve

n
~ . - e l
g(l) = arg mtmz c,.(Y'.m _ tIXi( ))'

i=1

Rubin (1981) argued that the bootstrap distribution will tend to be similar to the
posterior distribution corresponding to an improper Dirichlet prior, and he labeled the
simulation procedure in (4) and (5) the “Bayesian bootstrap.’: This similarity is apparent
in our application. Using the long list of regressors (and duration in weeks), the histogram
of the draws from the bootstrap distribution for B, with 7 = .5 is very similar to Figure 1.
The mean is .87 weeks with a standard deviation of .23, matching the posterior distribu‘tion.
With the short list of regressors, the bootstrap distributions for 7 = .5 and .9 closely
resemble the posterior distributions in Figures 2 and 3. With 7 = .5, the bootstrap

distribution is concentrated on -1, 0, 1, and 2 weeks with probabilities of .01, .14, .57, and

.28. With 7 = .9, the quantiles of the bootstrap distribution are

quantile: .025 .05 .25 .50 .75 .95 .975
Bootstrap: 2 3 5 7 8 11 12

The only available justification for the Efron bootstrap in quantile regression relies
on an asymptotic distribution theory that requires Eglc,(Y ~ ¢ X)] to have a nonsingular
second derivative at t = f—see Hahn (1995). This is not a plausible condition when we use
the short list of regressors. Nevertheless, we can interpret the Efron bootstrap as providing

a close approximation to the posterior distribution based on the improper Dirichlet prior.
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5. CONCLUSION

The Bayesian approach to inference provides an attractive conceptual framework due
to its connection with optimization concepts in decision theory and its lack of reliance on
large-sample approximations. In practice, its use has been limited by the requirement of a
fully specified parametric model since many econometric models are only partly specified.
In this paper we have presented two applications of a less parametric Bayes approach,
due to Ferguson (1973, 1974) and Rubin (1981). In the first application, the decision-
theoretic nature of the underlying question forces the use of posterior distributions rather
than sampling distributions. In the second application, the assumptions underlying the
asymptotic normality of the sampling distributions are clearly violated, but inference based
on g)osterior distributions is straightforward.

We hope that future work will extend this approach to allow for restrictions on the
{Ps,0 € O} family of distributions. The restrictions could arise from having more mo-
ment conditions than para;meters (dim(¥) > dim(B) in (2)), or there could be smoothness
restrictions. There has been recent progress in developing related approaches in mixture
models, density estimation, and binary response models that might be useful in this re-
spect; see, for example, Doss (1994), Kong, Liu, and Wong (1994), Escobar and West
(1995), and Newton, Czado, and Chappell (1996).
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FOOTNOTES

1 The authors thank David Cox, Jinyong Hahn, and Neil Shephard for helpful com-
ments, and thank Alan Krueger and Bruce Meyer for making their data available to us.
The National Science Foundation provided financial support.

2 See Wilks (1962) and Ferguson (1973).

3 The simulation procedure in Rubin (1981) is based on the V;/3 i, Vi having an
alternative representation as the gaps between the order statistics formed from a random
sample of size n — 1 from a uniform (0, 1) distribution.

4 Consider letting S = Z;=1 b; — 0 with (b1/S,...,bs/S) held fixed at ¢, where {
is some point in © (the unit simplex in R7). Let Z = {ay,...,as} denote the sample
space. The results of Sethuraman and Tiwari (1982) and Sethuraman (1994), specialized
to a finite sample space, show that there is a limiting prior distribﬁtion on O: if  is a draw
from that distribution, then Pp is a point mass at z € Z, where 2 is a draw from FP;. Then
the moment condition (2) defining B becomes ¥(z, 8) = 0—see Florens and Rolin (1994).
So the implied prior distribution for  depends upon {; i.e., it depends upon the precise
way in which the b; =+ 0. Furthermore, the condition ¥(z, B) = 0 may not uniquely define
B even given ¢. For example, consider the linear predictor problem where Z = (X,Y) and
¥(z,8) = z(y — #'z). Then (2, B) = 0 does not have a unique solution when X includes
more than one regressor. A similar lack of uniqueness arises in our instrumental variables
application and in our quantile regression application.

5 See Chamberlain and Imbens {1995) for an approach to this over-identified case.

6 The results are similar when R consists of 509 dummy variables obtained from inter-
acting state-of-birth dummy variables with year-of-birth dummy variables—see footnote
7. (There are fifty states plus the District of Columbia and ten years, 1930-39; there are
no observations for Alaska in 1931.)

7 Note that 7], is more dispersed than #7; 7o is similar to 7], when R = 1. When R
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consists of interactions of state-of-birth and year-of-birth dummy variables, the quantiles

for the -y distributions are

quantile: .025 .05 .25 .50 .75 .95 .975
7loor -1.91 -99 -11 07 .25 1.19 2.35
x1(-|d): .056 .062 .084 .097 .112 .132 .141

(In simulating the expected posterior distribution 7], when R consists of 509 dummy
variables, we take random samples of size m = 100 from the empirical distribution F,;
84 of the 509 state-year cells are nonempty on average for the samples that give proper
posterior distributions for ~.)

1}
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TABLE 1

Quantile Regression Coefficients for Log of Duration, Kentucky
High and Low Earnings Groups Pooled

Quantile

Variables .10 .25 .50 .75 .90 OLS
Intercept -5.555 -3.067 -1.749 -0.811 -1.239 -1.994

(0.817) (0.497) (0.403) (0.490) (0.692) (0.410)
After increase 0.136 0.141 0.164 0.170 0.137 0.145
sHigh earnings group (0.102} {0.057) (0.053) (0.060) {(0.088) (0.051)
After increase -0.008 -0.039 -0.029 0.013 0.074 0.000

(0.073) (0.042) {0.034) (0.040) {0.057) (0.033)
High earnings group 1.755 0.525 0.024 -0.792 -3.191 -0.696

(1.352) (0.931) (0.771) (1.014) (1.692) {0.806)

Note: The dependent variable is In(.5 + duration). The sample size is 5349. The addi-
tional regressors are Ln{previous wage), Ln(previous wage)+High earnings group, Male, Married,
Ln(age), Ln(total medical costs), Hospital stay indicator; Industry indicators: Manufacturing,
Construction; Injury type indicators: Head, Neck, Upper extremities: Trunk, Low back, Lower
extremities, Occupational diseases. The omitted industry is other industries, and the omitted

injury is other injuries.

TABLE 2

Quantile Regression Coefficients for Duration, Kentucky

High and Low Earnings Groups Pooled

Quantile

Variables 10 25 .50 .75 .90 OLS
Intercept -6.199 -7.258 -8.972 -11.566 -10.848 -25.886

(1157)  (1.441)  (L.779)  (3.310)  (7.254) (8.412)
After increase 0.229 0.302 0.873 1.351 2.661 1.665
+High earnings group (0.143) (0.165) {0.230) {0.554) {1.339) (1.043)
After increase -0.052 -0.032 -0.116 0.122 0.408 0.457

(0.085)  (0.097)  (0.138)  (0.289)  (0.629) (0.674)
High earnings group 0.051 -0.356 -1.655 -11.541 -56.802 -41.783

(2.546)  (2.848)  (3.528) (0.200)  (27.400) (16.539)

Note: The dependent variable is duration (in weeks). The sample size is 5349. The additional
regressors are the same as in Table 1. The omitted industry is other industries, and the omitted

injury is other injuries.
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Figure 1. Posterior Histogram, q = .5 (long list for x)
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Figure 2. Posterior Histogram, g = .5 (short list for x)
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Figure 3. Posterior Histogram, q = .8 (shor list for x)
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