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Abstract

Genome-wide association studies have identified several risk associations for ovarian carcinomas 

(OC) but not for mucinous ovarian carcinomas (MOC). Genotypes from OC cases and controls 

were imputed into the 1000 Genomes Project reference panel. Analysis of 1,644 MOC cases and 

21,693 controls identified three novel risk associations: rs752590 at 2q13 (P = 3.3 × 10−8), 

rs711830 at 2q31.1 (P = 7.5 × 10−12) and rs688187 at 19q13.2 (P = 6.8 × 10−13). Expression 

Quantitative Trait Locus (eQTL) analysis in ovarian and colorectal tumors (which are 

histologically similar to MOC) identified significant eQTL associations for HOXD9 at 2q31.1 in 

ovarian (P = 4.95 × 10−4, FDR = 0.003) and colorectal (P = 0.01, FDR = 0.09) tumors, and for 

PAX8 at 2q13 in colorectal tumors (P = 0.03, FDR = 0.09). Chromosome conformation capture 

analysis identified interactions between the HOXD9 promoter and risk SNPs at 2q31.1. 

Overexpressing HOXD9 in MOC cells augmented the neoplastic phenotype. These findings 

provide the first evidence for MOC susceptibility variants and insights into the underlying biology 

of the disease.

Ovarian carcinomas (OC) caused approximately 140,000 cancer deaths globally in 20081. 

Germline mutations in genes conferring high (BRCA1 and BRCA2)2 and more moderate risk 

(e.g., TP53, BRIP1, RAD51D, RAD51C, MLH1, MSH2, PMS1, PMS2 and MSH6)3-56 of 

OCs are among the best-defined genetic risk factors but explain only 10-15 percent of all 

OCs6-8. More recently, genome-wide association studies (GWAS) have identified multiple 

regions of the genome harboring common variants (minor allele frequency [MAF] > 0.05) 

conferring low risk (odds ratios [OR] < 1.5) of invasive OC9-17. However, it is increasingly 
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recognized that OCs encompass multiple distinct disease histotypes18 that vary in 

epidemiologic19-21 and genetic22 risk factors, somatic alterations23,24 and clinical response 

to platinum-taxane based therapy18. Most of the known common risk alleles for OC confer 

susceptibility to the most common histotype, high grade serous (HGSOC), with one region 

also associated with the clear cell histotype at genome-wide significance12. There are as yet 

no reports of confirmed genome-wide significant susceptibility loci for the other main 

histotypes, mucinous and endometrioid OCs.

Mucinous ovarian carcinomas (MOCs) are characterized by multicystic tumors with 

conspicious amounts of intracellular mucin (usually ≥ 50 percent of the cytoplasm) in more 

than 90 percent of the tumor cells25. Historically, MOCs have been estimated to account for 

about 12 percent of all OCs but recent refinements in the morphologic assessment indicate 

that primary invasive MOCs comprise approximately 3 percent of all OCs26. This lower 

prevalence is due to several reasons including consensus by pathologists to separate benign 

mucinous tumors from invasive MOCs27 and from pathology guidelines26,28-30 that aim to 

distinguish primary invasive MOCs from metastatic carcinomas involving the ovary, in 

which the majority derive from organs of the gastrointestinal system26,31. These criteria, 

along with the frequent inability to find a non-ovarian primary cancer, suggest that true 

MOCs develop de novo at the ovary and cannot be explained by metastatic lesions. This low 

incidence has made it challenging to study the etiology and pathogenesis of these tumors.

At the genetic level, MOCs are not associated with germline BRCA1/BRCA2 mutations. 

Unlike other OC histotypes, invasive MOCs usually harbor foci of benign or atypical (low 

malignant potential [LMP]) epithelium, with identical KRAS mutations frequently 

present32-34, suggesting that this is an early somatic event in a multistep progression model. 

Normal mucin-secreting cells are not present in the ovary raising uncertainty regarding the 

cell at risk of transformation. It has been hypothesized that some MOCs originate from foci 

of benign endocervical-subtype Müllerian metaplasia of the surface epithelium or cortical 

inclusion cysts35. This subtype, however, may be less frequently associated with fully 

invasive MOCs, which comprise mostly the intestinal subtype35. To complicate further the 

etiology of MOCs, expression analysis of small numbers of MOCs (N = 3–9) associated 

these tumors more closely to colonic epithelium or colorectal carcinomas (CRC) than to 

ovarian surface epithelium36,37, suggesting the pathogenesis of MOCs may be similar to 

colorectal carcinomas38. The current study reports the identification of genetic susceptibility 

alleles for MOCs, which may help to elucidate genes and biological pathways that are 

disregulated during MOC development.

Results

Genetic association analyses

We used genotypes from 16,038 ovarian cancer cases and 30,816 controls from various 

genotyping arrays providing genome-wide coverage (Table 1). Participating studies are 

listed in Supplementary Table 110,12,39. We imputed these genotypes into a reference panel 

from the 1000 Genomes Project to provide observed or imputed genotypes at 15,504,273 

variants (Online Methods, Supplementary Table 2). Genotype re-imputation without pre-

phasing was carried out for regions of interest to improve accuracy (see Supplementary 

Kelemen et al. Page 2

Nat Genet. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Note). The primary association analyses reported in this paper were based on OCAC-COGS 

participants of European ancestry and those with invasive or LMP MOC, comprising 1,644 

cases (1,003 invasive, 641 LMP) and 21,693 controls (Table 1). We identified SNPs in three 

different regions that were associated with MOC at genome-wide significance (Table 2, Fig. 
1 a–c). Two regions (2q13 and 19q13.2) have not been previously associated with risk for 

other OC histotypes; the third region (2q31.1) has been reported to be associated with 

HGSOC10.

At 2q13, the most strongly associated SNP, rs752590, was imputed (imputation r2 = 0.66, 

effect allele frequency, EAF = 0.21). It is located 347 bases upstream of PAX8 (paired box 

8) and the effect allele was associated with increased risk for all MOC (OR = 1.34, 95% CI 

= 1.21–1.49, P = 3.3 × 10−8) (Table 2). The risk was similar for invasive and LMP cases 

(data not shown). At 19q13.2, the most strongly associated SNP, rs688187, was also 

imputed (imputation r2 = 0.55, EAF = 0.32). It lies approximately 489kb downstream of 

IFNL3 (interferon, lambda 3) and the effect allele was associated with decreased risk for all 

MOC (OR = 0.67, 95% CI = 0. 0.60–0.75, P = 6.8 × 10−13). Again there was little 

difference in risk between invasive and LMP cases (data not shown).

At 2q31.1, the most significantly associated SNP, rs711830 (EAF = 0.32), is located 

downstream of the 3' region of HOXD3 (homeobox D3). The effect allele was associated 

with increased risk for all MOC (OR = 1.30, 95% CI = 1.20–1.40, P = 7.5 × 10−12) (Table 
2) with similar risk for invasive and LMP MOC (data not shown). This SNP was also 

associated with invasive HGSOC (OR = 1.14, P = 1.9 × 10−13) (Supplementary Table 3). 

It is highly correlated (r2 = 0.99) with rs2072590, the variant previously reported for 

HGSOC10.

MOCs of extra-ovarian origin are more likely to be stage 3 tumors26. In our dataset, only 

146/1,644 (8.9 %) MOC cases were stage 3 suggesting that the majority of diagnoses in this 

study are likely to be true primary ovarian MOCs. Risk estimates were also similar or larger 

(farther from the null) in women diagnosed with early-stage mucinous tumors compared to 

stage 3 tumors: OR = 1.39 (95% CI = 1.22–1.58, P = 5.4 × 10−7) for rs752590 at 2q13; OR 

= 1.28 (95% CI = 1.17–1.41, P = 6.7 × 10−8) for rs711830 at 2q31.1 and OR = 0.65 (95% 

CI = 0.56–0.75, P = 5.9 × 10−9) for rs688187 at 19q13.2, supporting our initial findings.

Assessment of imputation quality

We assessed the imputation accuracy between the SNPs achieving genome-wide 

significance by comparing the correlation between observed genotypes with estimated 

genotype doses from the imputation without pre-phasing for 2,739 OCAC cases of European 

ancestry (Online Methods). SNPs were selected for genotyping based on pre-phased 

imputation results. Where primer design failed and the original risk SNP could not be 

genotyped, a highly correlated (r2 = 1) alternate SNP was selected (Supplementary Table 
4). The correlation between observed and imputed genotypes was 0.59 for rs6542125 and 

rs6758928 (proxy SNPs for rs72831838, the top SNP at 2q13 for pre-phased imputed data) 

and 0.51 for rs35963157 (top SNP at 19q13.2 for pre-phased imputed data). These were 

close to the expected correlations based on the imputation r2 (0.64 and 0.55, respectively), 
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and the similarity of the empirical to the imputation r2 indicates the results are unlikely to be 

false positives.

Risk associations based on observed genotypes for 2,739 cases could not be evaluated, as we 

did not genotype any control samples. However, SNPs at MOC risk regions at 2q13 and 

19q13.2 were not associated with other histotypes of OC (Supplementary Table 3). We, 

therefore, compared the results of a case-only analysis for 151 MOC cases and 2,588 cases 

with other invasive OC histotypes using imputed genotype doses and observed genotypes 

(Supplementary Table 5). We confirmed associations for the two alternate genotyped 

SNPs at 2q13, rs6542125 (case-only OR = 1.42, 95% CI = 1.07–1.90, P = 0.01) and 

rs6758928 (case-only OR = 1.41, 95% CI = 1.06–1.88, P = 0.02). While the ORs from 

genotyped samples were somewhat attenuated compared to the results for the imputed data, 

the P-values were smaller suggesting that the imputed association was robust. However, for 

rs35963157, there was no case-only association using imputed data in this subset of 

genotyped cases (case-only OR = 0.98, 95% CI = 0.69–1.39, P = 0.93). For the same 

samples, the association using observed genotypes was in the direction expected based on 

the full dataset, although not significant (case-only OR = 0.88, 95% CI = 0.67–1.14, P = 

0.33). The association was somewhat stronger when an additional 1,274 cases (59 MOC 

cases and 1,215 other OC histotypes) without imputed data were included (case-only OR = 

0.80, 95% CI = 0.64–1.00, P = 0.05) suggesting the observed association for the imputed 

data is not due to artifacts of imputation.

Functional annotation of variants in risk regions

At each of the three risk regions we identified all SNPs with a 1:100 or greater statistical 

odds of being the disease-causing variant (Supplementary Tables 6, 7 and 8). We 

annotated these SNPs with respect to exons, introns and untranslated regions (UTR) and 

epigenetic marks from two ovarian epithelial cell lines and two OC cell lines. Given the 

biological similarities between some MOC and CRC40, we also annotated these SNPs for 

epigenetic marks profiled in a CRC cell line (HCT-116) and normal colonic tissues. The vast 

majority of the variants lie within non-coding DNA, suggesting they influence the function 

of non-coding regulatory elements.

At 2q13, there were 55 candidate SNPs spanning a 78.6 kb region encompassing most of 

PAX8 and part of PSD4 (pleckstrin and Sec7 domain containing 4) (Fig. 2). Most risk-

associated variants were in PAX8 introns, but the most statistically significant SNP 

(rs752590) and a moderately correlated variant (rs4849174, r2 = 0.73) in an RNA 

polymerase II binding site lie within the PAX8 proximal promoter. Three SNPs (rs874898, 

rs1478 and rs1479) lie within the 3' UTR of PAX8 and so could influence RNA stability. 

Two SNPs (rs6734610 and rs7585510) lie within the sequence of the PAX8-AS1 (PAX8 

antisense RNA 1) long non-coding (lnc) transcript and so may impact its stability or 

function (Supplementary Table 8). Eleven (20 percent) and 13 (24 percent) of SNPs lie in 

enhancer elements detected in ovarian and colonic cells, respectively. Of these, rs2305132, 

lies within a CTCF binding site detected in multiple cell types, suggesting this variant may 

be involved in the repression of PAX8 and/or PSD4 expression during MOC development.
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At 19q13.2, there are 14 candidate SNPs located in and around IFNL3 and IFNL4 

(Supplementary Table 8). Rs11882871 lies within the 3' UTR in IFNL3 and rs4803222 lies 

within the 5' UTR in IFNL4 suggesting they may influence RNA stability41. Rs11322783 is 

a coding SNP and predicted to cause a frameshift change in IFNL4, while rs8103142 

encodes a missense change (lysine to arginine) in IFNL3. Rs8103142 is predicted to be non-

deleterious by PolyPhen v2 and SIFT. There were no overlaps between these 14 risk SNPs 

and regulatory DNA elements.

At 2q31.1, there were 19 candidate causal variants spanning ~27 kb encompassing HOXD3 

and the lnc RNA HAGLR (HOXD antisense growth-associated long non-coding RNA) (Fig. 
2 and Supplementary Table 8). There was extensive overlap between SNPs and regulatory 

elements in this region. Eleven and eight SNPs, respectively, coincided with putative 

enhancers in ovarian and colonic cells. Rs1051929 encodes a synonymous change in 

HOXD3 and five SNPs lie within transcribed regions of the HAGLR and HAGLR-OS lnc 

RNA genes.

eQTL analysis

We evaluated associations between risk SNPs and transcript expression for all genes within 

a 100 kb window centered on the most risk-associated SNP in each region using publicly 

available data for 339 HGSOCs and 121 CRCs from The Cancer Genome Atlas 

(TCGA)42,43. No data were available for primary MOCs in TCGA. Where genotyping data 

were not available for a risk-associated SNP, correlated proxies (r2 > 0.7) were evaluated. At 

2q13, we detected a significant eQTL association between rs6542127, a variant highly 

correlated (r2 > 0.9) with 6 risk-associated SNPs, and PAX8 expression in CRCs (P = 0.03, 

FDR = 0.09) (Fig. 3). Rs6542127 was associated with MOC risk (OR = 1.20, P = 8.81 × 

10−6). The most significant eQTL association with PAX8 expression at this locus was for 

rs2863243 (P = 2.2 × 10−6) but this SNP was not associated with MOC risk. However, the 

third most significant eQTL SNP (rs3748916, P = 3.1 × 10−4) was associated with MOC 

risk (OR = 0.84, P = 9.37 × 10−6). There were no statistically significant eQTL associations 

with PAX8 expression in HGSOCs.

At 2q31.1, the most significant risk SNP (rs711830) in HOXD3 was significantly associated 

with HOXD3 expression in CRCs (P = 0.01, FDR = 0.09) but there was no eQTL 

association for HOXD3 in HGSOCs. HOXD9, approximately 49 kb upstream of rs711830, is 

a candidate susceptibility gene for HGSOCs (K. Lawrenson et al, unpublished data). 

Rs711830 genotype was significantly associated with HOXD9 expression in both HGSOCs 

(P = 4.95 × 10−4, FDR = 0.003) and CRCs (P = 0.01, FDR = 0.09) (Fig. 3). Another SNP in 

the region, rs10188827 (r2 = 0.59 with rs711830), showed a slightly stronger eQTL 

association in HGSOC (P = 2.05 × 10−4) but a slightly weaker association with MOC risk 

(OR = 1.29, P = 3.41 × 10−10 for all mucinous cases). There was also a stronger association 

between rs10188827 and HOXD9 expression in CRCs (P = 0.003), although the strongest 

eQTL association in CRCs was for another SNP, rs973456 (P = 5.30 × 10−5), which had not 

been imputed. There were no eQTL associations for genes in the 19q13.2 region in either the 

HGSOC or CRC tumor datasets.
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Functional characterization using in vitro models of MOC

The eQTL analyses in HGSOCs and CRCs suggested HOXD9 is a candidate susceptibility 

gene and target of MOC risk SNPs. We therefore evaluated the role of HOXD9 in MOC 

development. We used chromosome conformation capture (3C) to establish if any of the risk 

SNPs at 2q31 interacted physically with the HOXD9 promoter in MOC EFO-27 cell lines . 

We found interactions for DNA fragments containing rs2072590, rs2857532 and rs4972504. 

These interactions spanned 31–55kb of genomic DNA and were confirmed by sequencing 

(Fig. 4). These genotyped variants were highly correlated with rs711830 (r2 = 1, 0.98 and 

0.89, respectively), the most significant risk SNP in the region. Of the three SNPs, 

rs2072590 showed the greatest overlap with epigenetic marks, coinciding with enhancer 

marks in OC cell lines, colon cancer cells and colonic crypts (Supplementary Table 8). 

Taken together, the results of eQTL and 3C analyses indicated that DNA regions at 2q31.1 

harboring MOC risk SNPs are involved in the regulation of HOXD9 expression. Future 

studies using genome-editing approaches to manipulate the different alleles of rs2072590 

will be needed to evaluate the effects on both regulatory activity and HOXD9 expression and 

confirm the role of this SNP and HOXD9 in MOC development.

We also evaluated the effects of overexpressing HOXD9 in two MOC cell lines (EFO-27 

and GTFR230) using lentiviral transduction of a full length HOXD9 GFP fusion construct. 

Overexpression of HOXD9 was confirmed by qPCR and immunofluorescence microscopy 

(Fig. 5a). HOXD9 expression was only detected in the nucleus, whereas in control cells 

expressing GFP only, GFP signal was detected throughout the cell. HOXD9 overexpression 

induced a significant increase in anchorage-independent growth in both MOC cell lines (P = 

0.02 in EFO-27 and P = 0.04 in GTFR230, Fig. 5b) indicating a role in neoplastic 

transformation. We observed no effect on cellular invasion and migration (data not shown).

Discussion

GWAS have identified common low-penetrance genetic susceptibility alleles for a multitude 

of common traits and diseases. As the size and scope of GWAS increase, so the power to 

identify risk alleles for rare disease subtypes has also increased. For OCs, the vast majority 

of confirmed risk associations from GWAS were for HGSOC, which accounts for almost 

two-thirds of all invasive OCs24. We report, for the first time, genome-wide significant risk 

associations for the rarer MOC histotype, identified as part of the largest genetic association 

study yet performed for OC.

Two of the three susceptibility regions identified for MOCs (2q13 and 19q13.2) are specific 

to this histotype, which may not be surprising given that MOCs are clinically and 

biologically distinct from the other OC histotypes. The third region associated with MOC 

risk (2q31.1) was previously reported as a susceptibility locus for HGSOC10. Similarly, the 

17q12 risk region encompassing HNF1B was reported to be associated with HGSOC and the 

clear cell OC histotype12 suggesting that the different OC histotypes have some degree of 

shared germline genetic etiology despite differences in somatic genetic alterations22-24, 

epidemiologic risk factors19-21 and response to standard chemotherapy18. This may reflect 

the influence of the site of tumor development (i.e., the ovary) and the possible functional 
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role of risk alleles interacting with common processes involved in malignancy, such as the 

ovarian microenvironment.

We identified PAX8 at 2q13 and HOXD9 at 2q31.1 as candidate MOC susceptibility genes 

using eQTL analysis of primary HGSOCs and CRCs. CRCs share some molecular and 

histologic characteristics with MOC40; however, gene expression and the functional 

mechanisms of risk-associated SNPs may be tissue specific44. We were unable to perform 

eQTL analyses in normal tissues or primary MOCs due to the lack of publicly available 

datasets for this tumor histotype and uncertainty of the likely cell(s) of origin of MOCs. 

While the eQTL associations we identified were statistically significant, it is possible that 

eQTLs exist between MOC risk SNPs and other genes, either within these regions or 

regulated more distally. For example at 2q13 we also observed regional associations of 

similar statistical significance to PAX8 for PSD4 and a PAX8-antisense transcript 

LOC654433, although neither gene has been previously implicated in MOC development. 

We also found evidence of stronger eQTL associations for SNPs with weaker risk 

associations at both loci. In addition to disease heterogeneity, eQTL analyses are 

complicated by intra-tumor heterogeneity due to variation in copy number, methylation and 

gene expression. Thus, caution needs to be applied when interpreting eQTL data. Additional 

analyses in larger sample sizes and in tissues more relevant to MOC etiology will be needed 

to confirm the significance of HOXD9 and PAX8 as likely susceptibility genes for MOC at 

these loci.

Functional studies suggest that HOXD9 is the target MOC susceptibility gene at 2q31.1, 

through its interaction with three different regions harboring MOC risk SNPs and its ability 

to enhance neoplastic phenotypes when overexpressed in MOC cells. HOXD9 is also a 

candidate susceptibility gene for HGSOC (K. Lawrenson et al, unpublished data). The 

results from 3C analysis showed that one of the three HOXD9 interacting regions in MOC 

cells (containing rs4972404) also interacts with HOXD9 in HGSOC cells. This suggests that 

similar functional mechanisms regulating HOXD9 expression are acting in both MOC and 

HGSOC, but that the other two interacting regions were tissue-specific to MOCs, indicating 

regions that control regulation of HOXD9 in MOCs but not in HGSOCs. HOXD9 is a 

member of the HOX family of transcription factors that are only expressed during 

embryonic development to control patterning and differentiation. HOXD9 has not been well 

characterized in the context of cancer development, although the gene was aberrantly 

expressed in cervical cancer45 and has been implicated as a marker of cancer stem cells in 

glioma46.

The 2q13 MOC risk region has not previously been associated with risk of other diseases or 

traits. PAX8 is a plausible candidate susceptibility gene target at this locus. It encodes a 

transcription factor important in the development of the Müllerian duct47 and may be a cell-

type lineage marker that distinguishes carcinomas of gynecologic origin (e.g., ovary, uterus, 

peritoneum and fallopian) from other sites such as the gastrointestinal tract23,47,48. PAX8 is 

overexpressed in the majority of HGSOCs compared to normal ovarian epithelial cells23, 

due partly from gene amplification49, but is expressed in 10 percent23 to 25 percent (L.E. 

Kelemen et al, unpublished data) of LMP and invasive MOCs and is not expressed in CRC 

cell lines49. Although the precise role of PAX8 in cancer development is unclear, PAX8 
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expression may be important for acquiring characteristics that maintain a malignant state, 

including repression of differentiation programs for specific tissue lineages49-51.

The 19q13.2 risk region has been associated with impaired clearance of hepatitis C virus52 

and variation in response to hepatitis C therapy in Asians involving IFNL3 (also known as 

IL-28B)53. The most likely functioning risk SNP in this region is upstream of IFNL3 in the 

coding region of IFNL4: rs11322783 (also annotated as rs368234815 in dbSNP 141) is a 

predicted truncating variant, suggesting it has a loss-of-function role. The insertion allele 

turns IFNL4 into a polymorphic pseudogene and abolishes its activity54. The variant 

rs8103142 causes a nonsynonymous coding change (Arg70Lys) in IFNL3 but this change 

was predicted to be non-deleterious in vitro55. There are no reports implicating IFNL4 or 

IFNL3 specifically in the development of OCs or CRCs, although multiple reports have 

indicated a role for interleukins more broadly in OC. The 19q13 region has also been 

associated with structural rearrangements in OCs56.

The novel risk associations we found at 2q13 and 19q13.2 were identified using imputed 

genotypes and were based on an estimated imputation r2 that was moderate for both SNPs. 

The imputation r2 is an estimation of the expected correlation between imputed genotypes 

and actual genotypes. Confirmation genotyping of imputed SNPs in a subset of the samples 

showed that the estimated imputation correlation was similar to the correlation between 

imputed and observed genotypes. Furthermore, case-only associations for these SNPs based 

on observed genotypes were associated with smaller P-values, providing support for the 

imputed genotype associations. While it is possible that imputation may be sensitive to small 

genotyping errors and differential with respect to case-control status, we would expect this 

bias to apply equally to all cases and not specifically to MOC cases. Since we did not 

observe significant associations with the other histotypes, the collective findings suggest that 

the associations with MOC were not due to biases of the imputation process.

The relatively large number of invasive and LMP MOCs in this study represents a 

significant strength. We combined genotyping data from patients diagnosed with invasive 

and LMP MOCs because these tumors are thought to evolve along a morphologic 

continuum32-34. In the three risk regions, the statistical significance of the risk associations 

was stronger in the combined analysis compared to the LMP dataset alone. However, 

molecular epidemiologic studies are limited by access to details on clinical presentation and 

by the difficulty to perform centralized histologic review. Although it is reasonable to 

assume that most LMP tumors arose primarily in the ovary, review of the histology and 

clinical records of the cancers might have led to exclusion of some cases that were 

metastases to the ovaries from non-ovarian primary cancers. To address this, we evaluated 

risk associations for early-stage MOCs separately and observed similar or larger effect 

estimates. However, even when all the relevant clinical information is available and 

immunohistochemistry is performed, it is sometimes impossible to be certain whether an 

MOC arose in the ovary or elsewhere40. Notably, we found no overlap between the risk 

associations we reported for MOC and those discovered in GWAS of gastrointestinal 

cancers57 suggesting that the invasive MOCs in this study were mostly primary OCs rather 

than metastases.
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In summary, we reported the first genome-wide significant alleles to be identified for MOC. 

The power to detect risk associations for MOCs has so far been limited by the small 

numbers of MOC cases collected through OCAC. The experiences of GWAS for more 

common cancers (e.g., breast58 and prostate59) indicate that with larger number of MOC 

cases, we would expect to identify additional susceptibility alleles for MOC. The functional 

evaluation that we performed for the MOC risk-associated regions also suggests that future 

studies are likely to provide new insights into the understanding of the biology of MOC. 

Finally, because MOC and HGSOC are distinct OC histotypes and can be considered 

separate diseases23,24, the identification of HOXD9 as a potential gene target showing 

oncogenic characteristics in both MOC and HGSOC can be considered independent 

evidence for the general role of this gene in oncogenesis.

Online Methods

Genetic association studies

We used genotypes from samples of European ancestry available from several Ovarian 

Cancer Association Consortium (OCAC) genotyping projects. Data were available for five 

population-based GWAS of ovarian carcinoma. These included 1,785 cases (206 MOC) and 

6,118 controls from a UK-based GWAS (“UK GWAS”)9, 2,166 cases (116 MOC) and 2,564 

controls from a GWAS from North America (“US GWAS”)61 including two smaller GWAS 

from New England-Brigham and Women’s Hospital (“NEC/BWH”) and the National 

Cancer Institute-Polish study (“NCI-POL”), and 467 cases (36 MOC) and 441 controls from 

another GWAS from North America (“Mayo GWAS”)17. An additional 11,620 cases (1,286 

MOC) and 21,693 controls from 41 OCAC studies were genotyped using the COGS array 

(“OCAC-COGS”)12. The UK and US GWAS comprised several independent case-control 

studies, and samples from some of these studies were also subsequently genotyped using the 

COGS array. After removing duplicate samples, remaining samples represented 43 studies 

from 11 countries including 16,038 women diagnosed with invasive ovarian carcinoma, 

1,644 of whom were diagnosed with MOC, and 30,816 controls from the general population. 

Informed consent was obtained in each of the individual studies and local human research 

investigations committees approved each study. Details of the genotyping design for each 

dataset are shown in Table 1. Further details of the component studies are found in 

Supplementary Table 1.

Genotyping and quality control

The final sample sizes for each of the five GWAS and OCAC-COGS are shown in Table 1. 

Details for genotyping and quality control for each dataset are found in the Supplementary 
Note.

Imputation

To impute unobserved genotypes of common variation across the entire genome, we 

performed imputation separately for OCAC-COGS samples and each of the OCAC GWAS 

samples that passed QC (Table 1 and Supplementary Table 1). We imputed variants from 

the 1000 Genomes Project reference panel (Integrated Phase 1, version 3, March 2012 

release). To improve computation efficiency we initially used a two-step procedure, which 

Kelemen et al. Page 9

Nat Genet. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



involved pre-phasing in the first step and imputation of the phased data in the second. We 

carried out pre-phasing using the SHAPEIT software62. Unobserved genotypes were 

inferred probabilistically with IMPUTE2 version 263. To perform the imputation we divided 

the data into nonoverlapping segments of approximately 5Mb each. We excluded SNPs from 

the association analysis if their imputation accuracy was r2 < 0.25 or their MAF was < 

0.005. In total, of 15,504,273 SNPs were imputed successfully (Supplementary Table 2).

Re-imputation without pre-phasing

Following detection of a genome-wide significant association, we re-imputed regions of 1 

Mb surrounding the SNP using IMPUTE2 software63 without pre-phasing and the most 

recent 1000 Genomes Project reference panel (June 2014 data release) to improve accuracy. 

To increase the imputation accuracy even further, we changed some of the default 

parameters in the imputation procedure. These included an increase of the Markov Chain 

Monte Carlo iterations to 90 (out of which the first 15 were used as burn-in), an increase of 

the buffer region to 500 Mb and an increase of the number of haplotypes used as templates 

when phasing observed genotypes to 100. These changes were applied consistently for all 

datasets. This two-stage process resulted in different SNPs achieving the most significant P 

value between pre-phased and re-imputed data. The main findings focus on the associations 

obtained from re-imputation.

Imputation quality

Lymphocyte DNA from 4,013 OCAC cases of European ancestry, of which 2,739 were 

represented in COGS, was genotyped using the iPLEX Gold assay (Sequenom, Inc) in order 

to compare the accuracy of imputed and actual genotype doses. SNPs showing genome-wide 

significance were selected for genotyping from the pre-phased imputed results. Where 

primer design failed for the imputed pre-phased GWAS SNP, an alternate SNP was selected 

for genotyping within a region of high linkage disequilibrium (LD). Using the r2 coefficient, 

we compared the imputation accuracy between genotype doses derived from imputation 

using both the pre-phased and re-imputed results and those derived from actual genotyping.

Statistical analysis

Association testing was restricted to OCAC-COGS participants of European ancestry and 

those with invasive or LMP MOC, resulting in 1,644 cases (1,003 invasive-only and 641 

LMP) and 21,693 controls. Genotypes (both typed and imputed) for each SNP were used to 

estimate allele frequencies and pair-wise LD between two variants was estimated with r2 

values based on the 1000 Genomes Project reference panel using an online program (see 

URLs).

We estimated per-allele log odds ratios (OR) and 95% confidence intervals (CI) between 

each SNP and MOC risk using unconditional logistic regression, where number of variant 

alleles carried was treated as an ordinal variable (log-additive, co-dominant model). The 

likelihood ratio statistic was used to examine association; this statistic has been shown to 

have greater power for rare variants than alternatives such as the Wald test or the score 

test 64. The logistic regression model was adjusted for study stratum and population 

substructure by including the first five eigenvalues from principal components analyses (see 
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ref. 12). Analyses were performed separately for combined invasive and LMP MOC and 

invasive-only MOC. Statistical P-values were two-sided and, unless stated otherwise, were 

implemented with STATA version 13.0 (StataCorp LP) and SAS version 9 (SAS Institute). 

P-values < 5 × 10−8 were considered to be genome-wide significant.

Molecular and functional analyses

Analysis of epigenetic biofeatures—We used in-house FAIREseq and H3K27ac plus 

H3K3me1 ChIPseq data for “normal” ovarian epithelial cell lines and serous ovarian cancer 

cell lines (G. Coetzee et al, unpublished data). HCT116 and primary tissue data (colon and 

ovarian) were downloaded as BED files from Hnisz et al60. CTCF data were obtained from 

ENCODE using the UCSC Genome Browser (see URLs).

Expression quantitative trait locus (eQTL) analyses—For each MOC SNP, we first 

identified correlated variants (r2 > 0.7) in the 1000 Genomes European ancestry population. 

Germline genotypes of 339 high grade serous ovarian cystadenocarcinoma and 121 

colorectal cancer samples were downloaded from The Cancer Genome Atlas (TCGA) data 

portal and samples were selected for inclusion in the eQTL analyses using EIGENSTRAT65. 

For each sample, tumor gene expression profiles, somatic copy number and CpG 

methylation data were downloaded from TCGA portal (see URLs). Expression profiles were 

adjusted for somatic copy number and CpG methylation variation as previously 

described66,67. For each SNP we evaluated the correlation between the genotype and 

adjusted expression levels of candidate genes. A false-discovery-rate (FDR) below 0.1 was 

considered to be a significant cis-association.

Cell culture—The EFO-27 cell line is commercially available and was originally derived 

from a solid metastasis of a mucinous papillary ovarian carcinoma68. The GTFR230 

mucinous ovarian cancer cell line was created in house and derived from a stage IC low 

grade primary mucinous ovarian cancer collected as part of the Gynecological Tissue and 

Fluid Repository (GTFR) at the University of Southern California (USC). We routinely 

profile cell lines using STR profiling (using the Powerplex 16 panel) at the University of 

Arizona Genetics Core facility and screen for mycoplasma using a mycoplasma-specific 

PCR. A piece of the tissue removed during surgery was transferred to the cell culture 

laboratory, minced into small pieces (1–2 mm diameter) and placed into NOSE-CM69 which 

consists of Medium 199 mixed in a 1:1 ratio with MCDB105 (Sigma), 15% fetal bovine 

serum (FBS, Hyclone), 10 ng/ml epidermal growth factor (EGF), 34 μg/ml bovine pituitary 

extract (Life Technologies), 500ng/ml hydrocortisone and 5 μg/ml insulin (Sigma). Cells 

were confirmed to be epithelial in origin by staining for cytokeratin.

Chromosome conformation capture (3C)—3C was performed as previously 

described70. A sample of 10 million EFO-27 cells was fixed with 1% formaldehyde, then 

lysed in 10 mM Tris-HCl pH 8, 10 mM NaCl, 0.2% Nonidet P-40. Nuclei were pelleted and 

then resuspended in 1X restriction enzyme buffer with 0.1% SDS and 1.6% Triton-X. 

Fifteen hundred units of Csp6i (Fermentas) enzyme were added. Samples were incubated at 

37 °C overnight to digest after which 1.5% SDS was added before de-crosslinking samples 

by incubating at 65 °C for 30 minutes. Digested genomic DNA was then ligated by 
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incubating samples in ligation buffer plus 4000U T4 DNA ligase (NEB) for 24 hr at 16°C. 

Control samples received no ligase. Following ligation, samples were de-crosslinked by 

overnight incubation at 65 °C with proteinase K. Chromosome conformation capture 

libraries were extracted using phenol/chloroform, the DNA precipitated using ethanol, and 

desalted using Microcon Ultra Cell YM –100 columns. Two primers were designed at the 

HOXD9 promoter and one primer for each restriction fragment of interest (Supplementary 

Table 9). PCR was performed using HotStar Taq polymerase (Qiagen), using the following 

conditions: 5 min at 94 °C, 42 cycles of (20s at 94 °C, 20s at 57–59 °C, and 30s at 72 °C), 

then 10 min at 72 °C. PCR products were run on a 1.2% agarose gel. PCR products were 

either cleaned up using the QIAgen QIAquick PCR Purification kit or were gel purified 

using the QIAgen QIAquick Gel Extraction kit. Cleaned products were sequenced from both 

ends by Genewiz.

In vitro modeling of HOXD9 overexpression—HOXD9-GFP and GFP lentiviral 

vectors were purchased from Genecopeia. Lentiviral supernatants were produced by co-

transfecting HEK293T cells with vectors of interest, plus lentiviral packaging vectors. 

Supernatants were snap frozen and stored at –80°C until use. EFO-27 and GTFR230 cells 

were transduced with HOXD9-GFP and GFP viral supernatants in the presence of 4 g/ml 

polybrene (Sigma). Cells expressing GFP alone were controls. RNA was extracted from 

selected cells using the Zymo Quick-RNA kit, reverse transcribed using the MMLV enzyme 

(Promega) and gene expression analysis performed using TaqMan probes (Life 

Technologies). Gene expression for HOXD9 was normalized to expression of GAPDH and 

beta-actin using the delta-delta Ct method. For immunofluorescence, cells were fixed on 

glass coverslips using 4% paraformaldehdye and nuclei stained using Hoechst. Cells were 

imaged using a Zeiss Axio Imager Z1 fluorescent microscope. Positive stained cells were 

selected with puromycin at concentrations of 1 mg/ml (EFO-27) and 400 ng/ml (GTFR230). 

Anchorage-independent growth assays were performed in 6-well plates by re-suspending 

20,000 cells per well in media containing 0.33% Noble agar and 1 mg/ml bacto-peptone 

(both Sigma) and plating atop 3 ml of media containing 0.6% Noble agar and 1 mg/ml 

bacto-peptone. Assays were incubated at 37 °C for 28 days before fixing and staining with 1 

mg/ml p-iodo tetrazolium violet (Sigma) dissolved in 100% methanol (VWR). For invasion 

and migration assays, Cultrex 96-well invasion and migration kits were used according to 

the manufacturer’s instructions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Manhattan plots showing association between risk of MOC and the genotypes of SNPs in a 

1Mb region of re-imputation surrounding the most significantly associated SNP at (a) 2q13 

(top SNP: rs752590), (b) 2q31.1 (top SNP: rs711830) and (c) 19q13.2 (top SNP: rs688187). 

Sample size is 1,644 cases and 21,693 controls. Red dots indicate a genotyped SNP in 

COGS, progressively darker grey dots indicate SNPs with pre-phased imputation r2 values 

between 0.30 and 0.60, 0.60 and 0.80 and 0.80 to 0.95, respectively, and black dots indicate 

SNPs with pre-phased imputation r2 values between 0.95 and 1.0.
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Figure 2. 
The epigenetic landscape of MOC risk regions. All candidate causal SNPs are shown, the 

most significantly associated risk SNP is indicated in red. Data for normal immortalized 

ovarian epithelial (IOE) cells, serous ovarian cancer cells (CaOV3, UWB1.289, used in the 

absence of analogous data for mucinous ovarian cancer cells) colon cancer cells (HCT-116) 

and normal tissue from Hniez et al60 (colonic crypts, sigmoid colon and ovary). At both (a) 

2q31.1 and (b) 2q13 there is extensive overlap between regulatory biofeatures and risk 

SNPs. We also included collated ENCODE ChIPseq data for CTCF at 2q13, since PAX8 is 

rarely expressed in invasive mucinous ovarian cancer, SNPs that coincide with repressor 

marks could be the most relevant for this disease subtype.
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Figure 3. 
Expression quantitative trait locus (eQTL) at MOC risk regions. Boxplots show the median 

(horizontal line), 1st to 3rd quartiles of expression (box) and 1.5 × the interquartile range 

(whiskers) in arbitrary units (a.u.). Tumor data are from The Cancer Genome Atlas for 339 

high grade serous ovarian cancers (HGSOC) and 121 colorectal cancers (CRC). Significant 

associations were found between HOXD9 gene expression at the 2q31.1 region and 

genotypes of the risk SNP rs711830 in (a) CRC (P = 0.01) and (b) HGSOC (P = 4.95 × 

10−4). (c) A significant association was found between PAX8 gene expression at the 2q13 

region and genotypes of the risk SNP rs6542127 in CRC (P = 0.03). P-values are corrected 

for false-discovery-rate and considered to be a significant below 0.1.
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Figure 4. 
Chromosome conformation capture (3C) at the 2q31.1 region containing HOXD9 performed 

in the EFO27 mucinous ovarian cancer cell line. Csp6i restriction enzyme fragments 

containing the MOC risk SNPs rs4972504 (T2 fragment), rs2857532 (T10 fragment) and 

rs2072590 (T16 fragment) show evidence of interaction with the HOXD9 promoter region, 

defined as 1.5 kb upstream of the transcription start site. (a) Schematic showing the locus, 

all SNPs with a 1:100 chance of being the causal variant, the locations of the interacting 

fragments (horizontal red bars), the risk SNPs located within each interacting region 

(vertical red bars) and the HOXD9 promoter bait region (blue bar). (b) PCR confirmation of 

bait-target interactions (+ lanes) of the predicted size (L=ladder) and absence in controls (– 

lanes) without the addition of ligase. DNA sequencing chromatograms show interactions 

between the bait region (blue sequence) ligated to the target region (red sequence) and the 

intervening Csp6i restriction enzyme site (black box).
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Figure 5. 
Modeling the effects of HOXD9 overexpression in two in vitro models of MOC. 

Overexpression of HOXD9 was confirmed by (a) qPCR in arbitrary units (a.u.), error bars 

are standard deviation (SD) and represent two independent experiments and (b) 

immunofluorescence microscopy (200 × magnification). Overexpression of HOXD9 is 

associated with increased anchorage independent growth. (c) Data shown are mean relative 

colony numbers from three independent experiments ± SD. Two-tailed paired t-test. (d) 

Phase-contrast images of colony growth. Examples of colonies are indicated with 

arrowheads.

Kelemen et al. Page 25

Nat Genet. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kelemen et al. Page 26

Table 1

Summary of genotyping datasets used for imputation*, European samples

Study

Set
†

Controls, N All Ovarian
Cases, N

Mucinous Cases
All (Invasive-only)

Genotyping Platform Genotyping Center Number SNPs
passing QC

U.K.
GWAS

6,118 1,785 206 (184) Illumina 610K (cases)
Illumina 1.2M and 550K
(controls)

Illumina Corporation
Sanger Centre

507,094
507,094

U.S.
GWAS

1,867 1,813 100 (99) Illumina 610K Mayo Clinic Medical
Genome Facility

556,480

NEC/BWH
GWAS

142 132 0 Illumina 317K National Cancer
Institute

305,690

NCI-POL
GWAS

555 221 16 (13) Illumina 550K National Cancer
Institute

527,435

Mayo
GWAS

441 467 36 (11) HumanOmni 2.5
BeadChip

Mayo Clinic Medical
Genome Facility

1,587,042

OCAC-
COGS

21,693‡ 11,620‡ 1,286 (696)‡ Illumina custom iSelect
~211K

McGill University and
Gέnome Quέbec
Innovation Centre and
Mayo Clinic Medical
Genome Facility

199,570

Total 30,816 16,038 1,644 (1,003)

*
All datasets were used for imputation; however, association analysis was based on all mucinous ovarian cancer cases (N=1,644) and controls 

genotyped in OCAC-COGS (N=21,693)

†
See Supplementary Table 1 for details of individual studies

‡
Number of unique samples after exclusion of duplicates also genotyped in the other five GWAS
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