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26 Science for precautionary 
decision-making

Philippe Grandjean (1)

(1) The author would like to thank Mette Eriksen for conducting the searches on SciFinder. Helpful contributions on earlier versions were 
made by John Bailar, Carl Cranor, David Gee and David Kriebel.

  
The goals of academic researchers may differ from those of regulatory agencies responsible for 
protecting the environment. Thus, research must take into account issues such as feasibility, 
merit and institutional agendas, which may lead to inflexibility and inertia.

A large proportion of academic research on environmental hazards therefore seems to focus 
on a small number of well studied environmental chemicals, such as metals. Research on 
environmental hazards should therefore to a greater extent consider poorly known problems, 
especially the potential hazards about which new information is in particular need. 

Misinterpretation may occur when results published in scientific journals are expressed in hedged 
language. For example, a study that fails to document with statistical significance the presence 
of a hazard is often said to be negative, and the results may be misinterpreted as evidence that 
a hazard is absent. Such erroneous conclusions are inspired by science traditions, which demand 
meticulous and repeated examination before a hypothesis can be said to be substantiated.

For prioritising needs for action, research should instead focus on identifying the possible 
magnitude of potential hazards. Research is always affected by uncertainties and many of them 
can blur a real association between an environmental hazard and its adverse effects, thereby 
resulting in an underestimated risk. Environmental health research therefore needs to address 
the following question: are we sufficiently confident that this exposure to a potential hazard leads 
to adverse effects serious enough to initiate transparent and democratic procedures to decide on 
appropriate intervention? 

The choice of research topics must consider societal needs for information on poorly known 
and potentially dangerous risks. The research should be complementary and extend current 
knowledge, rather than being repetitive for verification purposes, as required by the traditional 
science paradigm. Research findings should be openly available and reported so that they inform 
judgements concerning the possible magnitude of suspected environmental hazards, thereby 
facilitating precautionary and timely decision-making.
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26.1 Science and the Precautionary 
Principle

The case studies in this volume illustrate that 
science can provide powerful evidence for targeted 
prevention to protect against hazards to the 
environment and public health. However, the 
chapters also shows how science can be insufficient, 
and it can be misinterpreted or ignored, so that 
appropriate intervention is deferred or abandoned. 
This chapter explores the strengths and weaknesses 
of environmental health research seen from the 
perspective of the wider needs of society and the use 
of 'Precautionary Principle' (PP). 

At the outset, societal investment in environmental 
research would seem unwise if it is irrelevant, poor, 
or difficult to access. Research support should 
favour studies that stimulate timely decision-making 
and prudent action to prevent hazards. While not 
disregarding the need for basic research, I shall 
focus primarily on the weaknesses of current 
applied research in the environmental field and the 
possible avenues for science to become more useful 
for future environmental health decision-making. 

Some researchers have raised the concern that 
the PP may potentially make further research 
redundant, given that an intervention has already 
been decided upon (Goldstein and Carruth, 2004). 
But any decision on environmental health hazards 
should be considered tentative and amenable to 
change, as justified by further research (including 
intervention studies to determine if the action 
had the intended effect). The basic problem is that 
prevention has too often been deferred due in 
part to the alleged absence of convincing scientific 
evidence, as illustrated by the case studies in this 
volume (2). The error is recognised only when 
decisive evidence has finally been gathered, and it is 
realised that action should have been initiated much 
earlier on. With time, nearly all exposure limits for 
hazardous agents have decreased as new evidence 
documented that harm occurred at lower exposure 
levels than previously believed. Thus, when 
scientific evidence is incomplete, environmental 
standards are more lenient. But can science provide 
better support for prudent decision-making, so that 
adequate protection may be decided upon from the 
beginning? 

For research to provide sufficient documentation 
for potential intervention, it has to be both reliable 
and pertinent. Thus, the quality of research has 
two sides — the methodology and the utility. One 
could also refer to these two aspects as the validity 
and the relevance. The two are of course related, 
but even research considered 'poor' from a narrow 
methodological perspective could nonetheless be 
highly relevant. Still, a study of limited validity 
is most likely also to have little impact, especially 
if the conclusions cannot be trusted. While the 
researchers should focus on securing a high 
methodological level, that should not turn them 
into sceptical ivory-tower nit-pickers preoccupied 
with methodological precision and technical 
detail. On the other hand, focusing mainly on 
environmental implications of the research can 
lead to inappropriate (or apparent) advocacy for 
particular policies or precautionary action that may 
be inspired, though perhaps not justified, by the 
research. 

Environmental health is often considered a field 
of applied research, usually multidisciplinary. 
Researchers and their employers are engaged 
in science not just for purely altruistic reasons. 
Universities and other research institutions are 
enterprises that need to fulfil the institution's 
mandates, satisfy requirements stipulated by 
funding sources, and avoid going into debt. 
Within the EU, more than half of the research and 
development activities carried out are funded by 
industry, while slightly more than one-third is 
paid for from public sources (Eurostat, 2011). The 
EU's new Horizon 2020 research programme is 
intended to increase the public financing of 'smart 
investment' in research and innovation while 
dealing with pressing societal challenges, including 
climate change and environmental health problems 
(EC, 2011). Given the substantial public investment 
in research (van den Hove et al., 2011), one would 
anticipate that environmental research, especially 
the part of it that is reported in academic journals, 
would somehow reflect priorities expressed by 
regulatory agencies and other public bodies. The 
next section of this chapter will therefore examine 
the research coverage of environmental chemicals 
and whether poorly documented and potential 
hazards receive appropriate attention. But there is 
more to it than the coverage of priority topics. 

(2) As the preface to the first volume of Late lessons from early warnings (EEA, 2001) pointed out, 'the absence of political will to take 
action to reduce hazards in the face of conflicting costs and benefits seems to be an even more important factor in these histories 
than is the availability of trusted information'. 
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Under PP-based decision-making, scientific proof 
or a very high degree of certainty are not required. 
Incomplete, but reliable evidence can be sufficient 
to justify a precautionary intervention. On the 
other hand, if extensive evidence is available, then 
a conventional risk assessment and subsequent 
prevention are indicated, and there would be little 
need to invoke the PP. However, traditional risk 
assessment is sometimes anti-precautionary when 
it demands convincing evidence and thus ignores 
emerging insight and incomplete documentation. 
Due to its focus on scientific justification, risk 
assessment may inspire continued elaboration 
of fairly well documented hazards, so that 
remaining uncertainties can be resolved to allow 
firm decisions. When decisions are PP-based, 
less extensive evidence is required, and some 
uncertainties are accepted as being inevitable or 
impossible to remove in the time available for 
preventing plausible harm. The less extensive 
requirement regarding scientific evidence can have 
significant implications for the ways that research 
is planned, performed, analysed, interpreted and 
reported (Grandjean, 2008b). 

We rely on science as evidence to help justify 
decisions on environmental hazards. But, as the 
case studies in the present and the first volume of 
Late lessons from early warnings (EEA, 2001) clearly 
demonstrate, science does not automatically 
lead to appropriate prevention or precautionary 
action. Thus, neither the quality nor the relevance 
of the science as such will necessarily translate 
into responsible and prudent decisions. Still, the 
interpretation of incomplete research data, the 
evaluation of uncertainties and misunderstandings 
of the findings can obfuscate the discussion on the 
urgency of possible environmental protection. So 
the question must therefore be asked: Can science 
somehow better serve to support better public 
policy decisions? 

I think that the answer is yes, although better 
quality and relevance in terms of PP-based 
decision-making may not be easy to achieve. This 
chapter will focus on four main issues listed below. 

Concerns regarding science as evidence for 
decisions on environmental hazards:

1) Does the research cover the societal needs for 
supporting information on suspected, poorly 
documented or potential hazards?

2) Does the research explore new and emerging 
hazards so that it could serve as an early 
warning system? 

3) Is the reporting of research findings 
appropriate to serve as evidence for reducing 
environmental hazards?

4) If the research is available, is it reliable and 
independent of vested interests?

26.2 Current research focus is on 
well-known hazards

The most appropriate and feasible way to assess 
the topics covered by environmental research 
is to carry out bibliometric analyses using 
internet-based databases on scientific publications. 
Environmental journals are usually categorised in 
the fields of toxicology, environmental sciences and 
public health (a total of 78 major journals in both 
Web of Science and the PubMed database). The 
Web of Science covers scientific literature back to 
1899, but searches are limited to chemical names 
in the titles of journal articles. However, for recent 
publications, it is possible to use the SciFinder 
database, where individual environmental 
chemicals can be identified from their Chemical 
Abstract Service (CAS) registry numbers. Using 
these internet resources, information can be 
retrieved on how often scientific publications 
have dealt with chemicals of interest from an 
environmental viewpoint (Grandjean et al., 2011). 

As a starting point, we first used Web of Science 
to examine the coverage of the seven chemical 
substances from the 14 case studies reviewed in 
Late lessons from early warnings Volume 1 (EEA, 
2001). Table 26.1 shows the number of articles 
published in the relevant journals during the 
years 2000–2009, i.e. the 10 years right after the 
completion of the report. One could have expected 
that these early warning substances would have 
faded somewhat from the science radar, given 
that their environmental impact had already been 
recognised during the 20th century and that some 
had been banned several decades ago. However, 
the number of scientific publications on these 
substances during 2000–2009 corresponded to 
about 40 % of all articles available since 1899. 
The relative coverage before and after year 2000 
differed somewhat between the substances. Both 
sulfur dioxide and DES clearly faded during 
recent years, with only about one quarter of all 
titles available in environmental and toxicological 
publications since 1899 being published during 
2000–2009. On the other hand, MTBE became more 
popular, with three-quarters of all papers available 
since 1899 having been published during the first 
decade of this century. 
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These numbers suggest that substantial research 
continued to be published on these substances, 
long after the recognition of their importance as 
environmental contaminants. However, the numbers 
extracted from the Web of Science are incomplete, 
as a research article might well address a chemical 
without the substance name appearing in the 
title. Thus, when extracting data from SciFinder, 
we obtained a greater number of articles (total of 
8 267 during 2000–2009, asbestos not included). With 
an average of over 10 scientific articles per substance 
per month, these early warnings chemicals remained 
a significant focus of research reports published since 
2000. PCBs, in particular, remained very much in 
focus, as I shall discuss shortly. 

Given the continued attention paid to these 
chemicals characterised by 'early warnings', 
what about environmental chemicals in general? 
Thousands of potentially toxic chemicals are being 
released into the environment, and there is a need 
to determine their persistence, dissemination, 
biomagnification and toxic effects, especially when 
only minimal information is available. So how does 
published research reflect the societal needs to cover a 
wide range of potential hazards?

Based on CAS number links from the science journals 
during 2000–2009, the substances can be ranked in 
accordance with their numbers of publication links 
(as SciFinder is not limited to environmental chemicals, 
we had to manually exclude radioactive isotopes, 
enzymes, metabolites, etc.). All told, 119 636 articles 
were published by the 78 scientific journals during 
the first ten years of this millennium. SciFinder 
listed a total of 760 056 CAS links from these articles 

Table 26.1 Total numbers of articles published 1899–2009 and during the most recent 
10 years (and percent of total) in environmental and toxicology journals listing 
'early warnings' substances in the title 

Note: *MBTE uses were expanded during the late 20th century, not restricted like the other substances in the table.

Source: Data from the Web of Science (Grandjean et al., 2011).

Name
Total number of articles 

1899–2009
Articles published 2000–2009

Number % of total

Polychlorinated biphenyls (PCBs) 5 809 2 738 47

Asbestos 2 735 809 30

Sulfur dioxide 2 380 548 23

Benzene 2 075 879 42

Tributyltin (TBT) 672 344 51

Diethylstilboestrol (DES) 603 147 24

Methyl-tert-butyl ether (MBTE)* 542 411 76

Total 14 816 5 876 40

(Grandjean et al., 2011). Thus, on average, each of the 
many scientific articles had six CAS links, thus not 
only describing a single substance at a time. The total 
numbers of publications and links are large and reflect 
an intense publication activity. However, the coverage 
turned out to be extremely uneven. 

We focused on the 100 most frequent environmental 
chemicals. Each of them was covered in a minimum 
of 600 articles — and up to 10 000 — during the 
10-year period. Thus, each of the top-100 substances 
would be addressed in about five to 80 articles 
every month. The total number of links to the 
top-100 environmental chemicals was 180 822. Thus, 
the vast majority of the many thousand chemicals 
listed were far less popular than the top-100. This 
finding suggests that research on environmental 
chemicals is and has been for some time fairly 
narrowly focused on a limited number of substances. 

This conclusion becomes very clear when we examine 
the 20 most commonly studied environmental 
chemicals. Each had between 2 000 and 10 000 CAS 
links during the first ten years of the millennium. The 
sum of article links corresponds to 12 % of all CAS 
number links. Assuming they also represent 12 % of 
all published articles, one or more of these substances 
would be featured in 14 264 publications during the 
10 years, or 119 articles per month, on average. To 
keep up with the literature in the top-20 substances 
only, one would have to read five or six papers every 
work day, without holiday breaks. 

All of the top-10 substances are metals (including 
arsenic, which is regarded as a semimetal). Also 
well covered are several tar chemicals (polyaromatic 
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hydrocarbons), solvents and the PCBs — already 
known from Late lessons from early warnings 
Volume 1 (EEA, 2001) and Table 26.1. For the 
top-20 substances, an average of 51 % of all articles 
available in 2009 had been published within the 
most recent 10 years. Some variation was present: 
arsenic increased in popularity (74 % during the 
most recent 10 years), while aluminium decreased 
after the year 2000 (31 %). Also, the tar chemicals 
often found in air pollution (e.g. benzo[a]pyrene 
and phenanthrene) tended to appear more often in 
recent article titles. Overall, these results show that 
the chemicals most commonly studied in recent 
years had already been extensively studied during 
the previous century. Thus, the chemicals that were 
popular during the previous century remained a 
focus (Grandjean et al., 2011). 

Two of the top-20 chemicals — lead and mercury 
— are included in the case studies, and Table 26.2 
shows the results for the main substances reviewed 
in this volume. Thus, whether or not the chemicals 
are persistent in the environment or the human 
body, some of them have clearly become persistent 
and highly prominent in the scientific literature. The 
tens of thousands of articles on lead, mercury, and 
other well recognised environmental hazards testify 
to the enormous investments in studying, reporting 
and publishing on these prominent substances. It 
would therefore seem that the choice of research 
topic in the field of environmental health greatly 
benefits the well-known chemicals.

The next question to consider is whether research 
addresses societal needs for more poorly known and 
potentially dangerous risks. Does academic research 
in environmental chemicals ignore less-well known 
compounds that need documentation? We conducted 
additional studies to examine this question. 

Table 26.2 Numbers of articles published in environmental science journals during 2000–2009 
on chemicals covered in the present volume, as determined from SciFinder links to 
the CAS numbers

Name CAS no. Number of links Rank

Lead 7439-92-1 8 926 2

Mercury 7439-97-6 4 399 9

p,p'-DDT 50-29-3 1 968 21

Bisphenol A 80-05-7 952 62

Perchlorethylene 127-18-4 898 68

Beryllium 7440-41-7 400 235

Vinylchloride 75-01-4 319 276

Dibromochloropropane (DBCP) 96-12-8 41 > 1 000

26.3 Ignoring new potential 
environmental hazards

We now focus on the other end of the spectrum, 
as many environmental chemicals have not been 
adequately tested. When the US National Research 
Council conducted a study in the 1980s on toxicity 
testing, 78 % of the industrial chemicals most 
commonly produced was found without even 
minimal test data for toxicity (NRC, 1984). Later 
follow-up showed little improvement (US EPA, 
1998). Even today, the European Chemical Agency 
complains that gaps in safety data remain and that 
little has been done to mend the problem so far 
(Gilbert, 2011). Thus, as metals and tar chemicals 
attract much research attention, are substances 
of importance to society being neglected by 
environmental researchers? 

To examine this question, we looked at the 
high-production chemicals considered in particular 
need of scientific documentation (US EPA, 2009). 
This high-priority list was first published in 
2006 and included thirteen important substances 
lacking both a robust hazard data set and exposure 
information. For the time period of 2000–2009, 
we found that these chemicals had a total of only 
352 links to scientific articles, i.e. an average of only 
three per month for the entire group (Grandjean 
et al., 2011). Five of the thirteen high-priority 
substances were not encountered at all in the 
78 journals during the ten years. One could excuse 
the lack of coverage up to 2006, when the EPA 
published its list, and perhaps 2007. However, when 
extending the search to 2010 and 2011, the result 
was pretty much the same — the priority listing had 
not inspired any increased number of publications 
in scientific journals. When compared with the 
staggering numbers for top-20 substances, the 
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publication rates for these high-priority substances 
appear tiny. 

Other substances may be considered likely emerging 
hazards, about which further information would be 
highly useful. Triclosan is a biocide often used in 
cosmetics, but releases into the environment have 
raised concern (Dann and Hontela, 2011). There 
were 259 articles on this chemical during 2000–2009, 
much better than the high-priority substances 
listed by the US EPA, but way below the popularity 
of toxic metals. Likewise, the perfluorinated 
compounds have been in use for decades, and 
concerns about their environmental fate and toxicity 
have grown (Lindstrom et al., 2011). The most 
prevalent member of this group, perfluorinated 
octanoic sulfate was covered in 271 articles, about 
the same as triclosan. Thus, each of them was 
addressed only in about two dozen scientific articles 
in the scientific journals every year. Accordingly, 
about 35 articles would focus on lead (and close 
to 20 on mercury) each time a single article would 
present evidence on one of these emerging hazards. 
But can we trust these numbers? 

Although the bibliometric data do not distinguish 
between short, descriptive reports and thorough 
reviews, the overwhelming emphasis on a small 
minority of environmental chemicals cannot be 
explained away. Also, the scientific journals may 
not reflect research activities outside academic 
institutions, but one would have to imagine huge 
numbers of reports outside the mainstream journals 
to make up for the differences. The conclusion 
therefore seems inevitable that the long-term 
prominence of substances commonly covered in 
articles in environmental journals does not match 
the societal needs or those of regulatory agencies. 
Substances that were highly popular in research 
during the previous century remained so during 
the first ten years of the present millennium, despite 
the changing needs for evidence on environmental 
impacts. 

26.4 Inertia and its reasons

An important reason for such inertia and continued 
focus on well-known substances may relate to 
the traditional science paradigm, where solid 
conclusions depend on replication and verification. 
While a single study should not be relied upon as 

firm evidence, the extent to which replication is 
needed seems to have been stretched to the extreme, 
when well-known environmental chemicals inspire 
almost 1 000 publications per year. 

It may well be that academic researchers do not 
know or contemplate the needs for environmental 
health documentation. We may question 
environmental researchers, who keep studying 
lead toxicity to obtain even more detailed or perfect 
results (3). However, individual researchers and 
their institutions may have insufficient access to 
public and private funding that would allow an 
unrestricted choice of research topics. This limitation 
would especially refer to young researchers of low 
academic rank. Further, if students are taught to 
replicate and extend their mentor's own research, 
they will later become the seniors with the same 
type of expertise and narrow focus on well-known 
environmental hazards. Existing expertise as well as 
facilities may favour a continued focus on the same 
hazards, thereby propagating long-term traditions 
and ignoring society's changing needs for early 
warning investigations. In more general terms, a 
tendency to maintain a narrow focus is likely to be 
counter-productive in regard to scientific discovery 
and innovation, as there would potentially be much 
more to learn from studying new hazards than from 
replicating studies on old ones. 

Several factors may contribute to the estrangement 
of academic research from societal needs for 
documentation on environmental hazards. Research 
institutions have an interest in maintaining highly 
qualified personnel and efficient use of costly 
infrastructure. All of the most popular chemicals 
can be inexpensively measured by instruments 
that became widely available already in the 
1970s and 1980s. Analytical methodologies are 
already established and well documented. These 
instruments (atomic absorption spectrometers 
and gas chromatographs) make it possible within 
a week or so to generate results sufficient to 
justify a scientific paper on one or more of the 
top-20 substances. Under these conditions, why 
would ambitious researchers and their students take 
on new substances that might require the purchase 
of expensive equipment and arduous development 
of new methods? 

The loyalty to established methods and research 
topics is not just a matter of convenience. In 

(3) The author has published numerous articles on lead, mercury, and other top-20 chemicals in scientific journals, thus being part 
of the inertia. However, as the chapters on lead and mercury show, real or alleged uncertainties were often used to argue against 
hazard abatement, thereby requiring more research.
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academic research, competition is fierce and each 
researcher must demonstrate his or her qualifications 
by frequently publishing articles in scholarly journals. 
By endeavouring to research the unknown, these 
researchers would face longer time periods between 
publications, if any. The mere number of publications 
is a crucial metric for academic prestige and for 
obtaining a tenured position. By using existing 
instruments and methods, a researcher can more 
effectively expand the CV, especially if the reports can 
be framed into small incremental manuscripts, each 
of them contributing an entry on the publications 
list. So-called vanity publications may contaminate 
the scientific literature, as they contain little new 
information, but primarily serve to augment the 
author's credentials. Whether they contribute new 
insight then becomes a secondary concern. Similarly, 
the budget in many research departments is tied 
to the number of scientific publications, thus also 
favouring quantity over quality. Such a focus on 
publication numbers may deny the higher societal 
goals of environmental research while promoting 
earthly aspects of personal desires and academic 
reputation. 

The pressure to complete a project on time 
(or even before the deadline) and to publish the 
findings with minimal delay also invites the use 
of short-cuts. Convenience and lack of funds may 
determine that some parameters in a study are 
not measured in appropriate detail, e.g. by relying 
on questionnaire responses rather than actual 
measurements, which may be too expensive. When 
a study claims to address an environmental hazard 
using study parameters that are unreliable or 
perhaps not representative, the results will often 
be non-informative. Worse, the results may be 
interpreted as evidence against the hazard causing 
any risk at all. Such misleading conclusions are 
sometimes referred to as Type III errors (Schwartz 
and Carpenter, 1999). I shall return to this problem 
shortly (see Section 26.5 below). 

The inertia and reliance on convenience are not 
restricted to researchers themselves, or public 
research institutions, for that matter. It also affects 
the funding agencies. If a proposed project deals 
with a known environmental problem, the principal 
investigator probably has an impressive track record, 
the protocol is feasible and easy to comprehend 
and capable reviewers are readily recruited. That 
may not be the case with poorly studied substances 
and emerging hazards. The funding agency can 
feel comfortable about the proposed time schedule 
and the anticipated outcome of the project, as the 
exposures and effects rely on established methods. 
Uncomfortable surprises are unlikely. Hence, it may 

be safer and more convenient for grant managers to 
concentrate on the known hazards. 

Scientific journals probably also play a role in 
maintaining a focus on well-known substances. 
Peer review of submitted manuscripts is rarely a 
problem with a manuscript on lead exposure. Bias 
toward publication of the report may occur when the 
reviewer finds that his or her own research has been 
cited, thus demonstrating the sound judgment of 
the authors of the manuscript. Some of the journals 
that we explored in the bibliometric databases are 
regarded as prestigious, with high citation rates. The 
possibility exists that some environmental chemicals 
may be held in higher esteem than others, thereby 
adding to their continued prominence, or publication 
persistence, no matter what the societal needs may 
be. This means that there may be an element of 
circular reasoning involved, where a substance is a 
popular research item simply because it has been 
widely studied in the past — a self-prophetic bias that 
maintains a continued prominence of a small number 
of scientists and their publications. 

The science sociologist Robert K. Merton (Merton, 
1968) dubbed this phenomenon a 'Matthew' effect, 
referring to the New Testament ('For unto every one 
that hath shall be given, and he shall have abundance: 
but from him that hath not shall be taken away even that 
which he hath'). Popularity among scientists in the past 
seems to provide justification for the importance or 
relevance of continued research in a particular field. 
The opposite strategy would appear more attractive 
from the point of view of innovation. 

However, it must be said that some conventional 
research into well-known substances have 
identified novel scientific breakthroughs that are 
not only relevant to our understanding of these 
well-characterised substances, such as mercury and 
lead, but they have also been scientifically valuable, 
via analogy, to many other substances.

Clearly, academic research has multiple purposes, 
a number of constraints and some limitations, 
when viewed from an environmental health angle. 
Societal needs for evidence on priority substances 
or emerging risks are apparently not seen as a high 
priority for academic research in general. But the 
choice of research topic is not the only problem. 

26.5 Research methodologies and 
assumptions 

Jointly with the inertia in the choice of research topics, 
traditional scientific thinking may also represent 
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an obstacle. According to the standard paradigm, 
we need to justify our conclusions by replicating 
our findings, securing the highest possible data 
quality and documenting each component of the 
anticipated causal link. Such high standards will 
protect science from making mistakes by claiming, 
e.g. that lead is toxic to the brain, unless extensive 
documentation is truly available to back this assertion. 
The links to scientific traditions extend back to 
the Leonardo da Vinci's and Galileo's writings. In 
studying environmental health hazards, the prevalent 
paradigm determines how the problem is usually 
framed as below:

'The traditional scientist will address an 
environmental research question as follows:  
Have we reliably documented through 
meticulous study and replication that this 
substance is mechanistically and causally linked 
to an adverse biological change?'

Along with the demand for replication, tradition 
calls for a narrow focus. Uncertainty is commonly 
restricted through rigorous control of the study 
setting. The advantage of a well-defined study is 
that it addresses only a single factor under specific 

circumstances and therefore more likely will lead to 
firm or indisputable conclusions. However, due to 
its limited scope, the study will at best result only 
in an incremental increase in knowledge about the 
overall issue at hand, including multiple or complex 
exposure scenarios and the significance of individual 
vulnerability. Thus, the disadvantage is that this 
approach leads to reductionism and explores only 
limited or individual aspects of each hazard. Such 
proximate and simplistic risks poorly represent the 
true complexity of environmental hazards. 

Examination of the chapters on human health 
hazards in this volume and Late lessons from early 
warnings Volume 1 (EEA, 2001) allows identification 
of several assumptions that were, at first, considered 
valid and important, but were later found to be 
misleading. Table 26.3 shows some of the most 
crucial — and erroneous — assumptions that 
were initially made in regard to one or more of the 
environmental hazards included in this volume. 
The case studies in this volume show that relying 
on these assumptions, while seemingly meaningful 
in terms of the prevailing research paradigm, led to 
proliferation of environmental hazards due to the 
substantial delay in their recognition. 

Table 26.3 Erroneous assumptions made in initial evaluations of environmental hazards and 
the subsequent scientific recognition of the true complexity

Initial assumption Late scientific lesson

1. Presence of environmental chemicals in the body can 
1. be tolerated at 'safe' or natural doses 

Delayed effects, cumulated or re-mobilised doses, or 
toxic metabolites may occur at exposures previously 
thought to be safe

2. Absence of harm in adult male workers (from routine 
1. medical data or mortality) means absence of risk to 
1. the general public

Sub-populations, such as children and the elderly,  
may be more vulnerable to the exposure

3. Acute or short-term effects also reflect chronic or 
 1. long-term effects

Dose-response relationships for acute effects may 
substantially differ from those for chronic effects

4. Biological effects may not necessarily be adverse and 
1. can be considered harmless 

Early changes can predict more serious adverse effects 
which can develop later on 

5. Dose-response relationships are consistent (and 
 1. 'monotonic'), and no risk occurs at doses below 
 1. apparent thresholds

Some substances show 'low dose' effects that are not 
readily predictable from responses to high doses

6. Short-term assessment of exposures from a single 
 1. pathway can generally be considered sensitive and 
1. valid

Most methods for exposure assessment are imprecise, 
and imprecision usually results in underestimation of the 
toxicity

7. The placenta and the blood-brain barrier amply 
 1. protect sensitive life-stages and organs from toxic 
 1. chemicals

The barriers may be bypassed, as they offer limited 
protection against industrial chemicals

8. Average findings in exposed subjects indicate the 
 1. potential for harm to the exposed population

Sensitive sub-groups may show effects that are not 
apparent from the average data 

9. Toxicity evidence from animals and wildlife is not 
1. relevant to human toxicity

Animal data have reliably predicted most known 
carcinogens and many other hazards, and humans may 
be more vulnerable than other species
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A crucial assumption was that a biological change 
may not necessarily reflect an adverse health effect 
and could therefore be ignored. Within normal 
variability, it may indicate adaptation or 'hormesis', 
therefore being innocuous. With proper justification, 
the assumption may be true, but biological changes 
should not be disregarded just because they are 
prevalent (or unwelcome, for some reason). For 
many years, researchers believed that the inhibition 
of an enzyme called ALAD due to lead exposure at 
blood-lead concentrations thought to be low, was a 
biological change that had no health implications 
(as described in the Chapter 3). That may be true in 
a strict sense, as the enzyme in red blood cells has 
no important function. However, recent research has 
shown that serious adverse effects do occur at lead 
exposures that were previously regarded as too low 
to be harmful. 

Also, habitual levels of lead exposure were called 
'natural' simply because they were normal or 
habitual. But prevalent lead exposures were the result 
of centuries of increasing lead use. Analyses of lead 
isotopes and of mummified tissues documented that 
normal lead exposure were far above what could be 
considered natural. 

For efficiency reasons, toxicology studies have aimed 
at avoiding considerations of the sex, age and strain 
of the animals used. If focusing on inbred, adult 
male rats only, important sources of variability were 
ignored while making the study more efficient and 
precise. This problem became centre stage when 
reproductive toxicology and endocrine disruption 
began to attract attention (see Chapter 13 on ethinyl 
oestradiol in the acquatic environment and Chapter 
10 on BPA, as well as PCBs, DES and TBT in Late 
lessons from early warnings Volume 1 (EEA, 2001, 
Ch. 6, 8, 13)). Also, it is only a recent discovery that 
exposures to environmental chemicals may cause 
much more toxicity if they happen during vulnerable 
developmental windows (Grandjean et al., 2008). 
However, prospective studies of birth cohorts take 
a long time and are extremely costly, and even 
multi-generation animal assays are often resisted due 
to economic burdens on industry. 

The assumptions in Table 26.3 prevailed for a 
long time due to the failure of available, though 
incomplete data to show clear evidence of a risk. 
If adverse effects were not proven to exist, the 

(4) When Joe Forman first observed the hole in the ozone layer using low technology instruments he could not believe his results as 
they conflicted with the satellite data. He returned to the Antarctica to observe the hole three times before he — under pressure 
from his funding sources — felt confident enough to report his findings. See the chapter on Halocarbons in the first volume of Late 
lessons from early warnings (EEA, 2001).

erroneous conclusion was drawn that adverse effects 
must be absent. Perhaps this is the underlying 
assumption, which represents the greatest error. It 
survived, as uncertainties were ignored, whether 
in regard to exposure assessment, sensitivity 
of outcome measures, individual vulnerability, 
statistical analysis methodology or statistical 
power of the study. Overlooking imprecisions 
and incompleteness will most often result in 
underestimation and may lead to rejection of the 
presence of a (true) risk. Also, these uncertainties 
are not likely to create spurious associations, unless 
confounding factors are present. 

26.6 Vulnerability of research to 
criticism

The downside of the traditional strategy to provide 
ample verification is that science becomes vulnerable 
to a critique that raises concerns about various 
possible sources of error or bias, particularly in regard 
to emerging insights and early warnings. The desire 
to document the truth, preferably the 'full' truth, 
makes science vulnerable to purported weaknesses. 
Thus, while careful scientists must pay meticulous 
attention to the methodological standards and 
quality assurance, some colleagues primarily exert 
these skills when judging the work of colleagues. 
Such critique may be unjust, but the halo earned 
from emphasis on the quality of scientific methods 
thrives from the collusion of admiring colleagues and 
students (e.g. at scientific conferences). 

However, harsh critique and exaggerated scepticism 
may be particularly inappropriate in regard to 
emerging insights and early warnings which are 
often innovative and necessarily tentative (4). Thus, 
the case studies illustrate that astute observations by 
clinicians, factory inspectors, workers, anglers, bee 
keepers and community members can sometimes 
provide valid hypotheses on new hazards that are 
only confirmed by in-depth research much later.

A common strategy is to disregard studies that do 
not satisfy certain methodological criteria, sometimes 
abusing 'criteria' for causality. Although such criteria 
are useful, UK statistician Austin Bradford Hill noted: 

'All scientific work is incomplete… All scientific 
work is liable to be upset or modified by 
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advancing knowledge. That does not confer 
upon us the freedom to ignore the knowledge 
we already have, or to postpone the action that 
it appears to demand at the given time' (Hill, 
1965). 

Despite Hill's prudent advice, some researchers may 
mistake the validity of their own conclusions for 
meticulousness in identifying presumed violations 
of the causal criteria or other validity requirements 
committed by their colleagues. 

The overly sceptical focus on scientific methodology 
may lead to bias and narrow-mindedness. Thus, 
special interest groups have praised what they call 
'sound science', which supports conclusions that 
are considered attractive (but, of course, is no more 
reliable than other research, and is sometimes actually 
less). In particular, so-called black-box epidemiology 
studies of health hazards have received harsh critique 
(Taubes, 1995). Some of that exaggerated critique is 
echoed in the chapters of the present volume. 

Expert committees that advise national and 
international bodies are often tempted to express 
unreasonable critiques of research results and 
stress the preponderance of uncertainties. Such 
critiques may be considered appropriate for highly 
respected experts and is in accordance with their 
high methodological standards and unrelenting 
scepticism. However, a narrow focus on scientific 
methodology may be coupled with blindness to 
environmental degradation and social injustice. 
Not surprisingly, the strategy of criticising research 
methodologies has been vigorously explored 
by vested interests, often with the purpose of 
manufacturing doubt (Michaels, 2005; Michaels, 2008; 
Oreskes and Conway, 2010). 

When a call for guidelines on 'Good Epidemiological 
Practice' was first promoted, it was at first embraced 
by researchers as a useful tool to stimulate high 
quality (and sound) science. However, strict 
interpretation of epidemiological rules could also 
be applied in order to disregard epidemiological 
findings that for other reasons were regarded 
as unwelcome. It turned out that the initiative 
originated with industry groups in order to disqualify 
unwelcome 'junk science' (as described in Chapter 7 
on tobacco) (Ong and Glantz, 2001).The scientific 

rigour that had been considered a prerequisite in the 
traditional science paradigm was now turned around 
and became an unrealistic requirement for repetitive, 
controlled studies that could furnish virtual statistical 
certainty (5). Using strict criteria, unwanted results 
could then be criticised as junk and the uncertainties 
were then erroneously interpreted as an indication 
that no hazard was present. 

26.7 Statistics and confidence limits

A key issue is the statistical data analysis. When 
analysing their results, researchers use statistical 
methods to determine whether the observed data 
were 'statistically significant', or whether they 
can be attributed to chance. The probability that 
their results are significant is usually expressed as 
p values, or probability values. The p was originally 
proposed by the UK statistician Ronald Fisher along 
with a limit of 5 % thought to be appropriate. This 
method allowed the researcher to identify findings 
that deviated significantly — unlikely due to 
random variation — so that the hypothesis that no 
difference was present would be rejected. 

From its early application to agricultural plant 
breeding test designs, the 5 % limit has since been 
applied much more widely and has become almost 
sacrosanct amongst scientists from many disciplines. 
Using Fisher's p value limit allowed researchers to 
classify research findings that — when the p value 
was above 5 % — did not reliably support the 
'null' hypothesis of no difference or no association, 
as the results could be due to random variation. 
Accordingly, the 'null' hypothesis could be rejected 
only when the p value was lower. A few studies and 
many anecdotes suggest that scientists place greater 
emphasis on results that have a p value of, say, 4.9 % 
than on results with a p value of 5.1 % (Holman 
et al., 2001). Statistically, there is no meaningful 
difference between outcomes with such similar p 
values. But if Fisher's proposed limit is applied in a 
strict sense beyond Fisher's own recommendations, 
then one set of results with a p value of 4.9 % would 
be interpreted as rejecting the hypothesis (hereby 
providing evidence of possible causality), whilst 
the other with a p value of 5.1 % would not refute 
the null hypothesis and would be considered 
non-informative. 

(5) An additional criterion often used was that only a 2-fold increased risk above background would be believable, e.g. from childhood 
leukaemia in residences close to power lines or from heart disease from environmental tobacco smoke. Apart from the much 
greater impact of a 2-fold increase in heart disease, there is no meaningful statistical difference between increases by a factor of 
1.9 and 2.1, one of which would satisfy the criterion for a hazard, the other one not.
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As commonly applied and interpreted, the p 
value is used mainly to determine the viability of 
a hypothesis. Although science in principle aims 
at falsifying hypotheses — since a definite proof 
cannot be obtained — it seems to make too little use 
of the data if we are just determining whether or 
not the p value is below 5 %. If the p value is high 
(well above 5 %), the results are rendered useless, 
as they failed the only criterion for success, namely 
to refute the hypothesis (although a hypothesis 
may theoretically be correct, even though the data 
deviate substantially from prediction). Sometimes, 
repeated attempts at falsifying a hypothesis fail, but 
a joint calculation (so-called meta-analysis) could 
result in an overall p value that perhaps finally 
reaches statistical significance with p less than 5 %, 
or some other specified level. 

In most cases, the null hypothesis is that an exposure 
has no effect. Thus, in environmental research, the 
p value is used to test a null hypothesis that may be 
unrealistic or obviously wrong. This would seem to 
be a serious limitation. Would we ever be tempted 
to conclude that lead is not toxic, just because a 
small study has resulted in a p value that is greater 
than 5 %? Of course not. But the traditional use of 
the significance limit means that scientists are very 
reluctant to draw conclusions if the p value is 5.1 %. 

The so-called frequentist tradition in statistics 
considers the data in isolation and evaluates them 
in regard to a theoretical null hypothesis, which 
may or may not be appropriate. Combined with a 
sacrosanct 5 % limit, the research results may not 
be as useful as they could be, and the conclusions 
could even be confusing and counterproductive 
(Goodman, 2008). The point is that we may be 
testing the wrong hypothesis and not making ample 
use of all of the available data. Thus, several case 
studies have shown that early warnings are often 
initially not statistically significant, such as the first 
IARC study of passive smoking, but nevertheless 
turned out to be robust.

Even if a study has reached statistical significance, 
this could still be due to chance. If we are 
conducting a large number of comparisons, then 
in all likelihood a small proportion of them could 
happen to be unusual and perhaps deviate from 
expectation at a statistically significant level. But 
such deviation is accidental and would be associated 
with a large number of comparisons. A common 
method is to adjust the p values using a procedure 
named after the Italian mathematician Bonferroni, 
thereby requiring p values to be significant only at 
lower values, the larger the number of comparisons. 
However, this technique, too, can also be used 

erroneously to disregard an unwelcome study 
(Perneger, 1998). 

The use of an alternative approach to frequentist 
statistics started back in the 18th century, when 
UK Reverend Thomas Bayes designed a formula that 
let the study results modify the prior probability of a 
hypothesis, thereby generating a posterior probability 
of the hypothesis based on the new evidence obtained 
(Greenland, 2008). Bayes allowed inclusion of any 
results, whether few or large-scale, and no matter the 
p value, to help modify our reliance on a hypothesis 
and to determine its updated plausibility. One could 
still focus on the null hypothesis, or perhaps rather 
the overall outcome of all previous studies. This 
way, each study would still be useful and would 
be utilised to modify and fine-tune the hypothesis 
under consideration. Although attractive, Bayesian 
statistics sometimes results in serious mathematical 
complications that limit their usefulness. Also, 
we may not have a good idea about the exact 
hypothesis under study, and a prior probability of 
that hypothesis may be impossible to obtain. Bayesian 
statistics has therefore been criticised for being 
subjective and overly laborious. Still, empirical use 
of Bayesian statistics is gaining support (McGrayne, 
2011). 

Some scientists and some scientific journals now 
reject the use of p values (Lang et al., 1998). But 
if we are to limit our reliance on p values, how 
can we best extract a robust statistical summary 
of a complex study? A key parameter will always 
be the point estimate of the average effect. But 
instead of calculating whether this estimate is 
'significantly' different (p less than 5 %) from no 
effect, many researchers recommend using the 
confidence interval (Thompson, 1987). It represents 
the range of values within which 95 % of averages 
would fall if a large number of similar studies 
were conducted. In other words, given the point 
estimate and the calculated variability, the study 
would be in accordance with any hypothesis that 
postulated an effect within the confidence interval. 
If zero is included in the interval, then the results do 
not deviate significantly from the null hypothesis. 
However, they also do not deviate from many other 
hypotheses, some perhaps suggesting a serious 
effect. The upper confidence limit indicates how 
large an effect that would be in agreement with 
the data. In a precautionary setting, the upper 
limit would often represent a plausible worst case 
scenario that would serve as a useful basis when 
considering intervention. 

The two studies illustrated in Figure 26.1 show the 
same average effect, though with different degrees 
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of certainty. The study on the right shows an effect 
that is statistically significant, as the no-effect 
hypothesis (zero effect) can be excluded. The study 
on the left has less precision, perhaps because it is 
smaller, and the point estimate does not deviate 
significantly from no effect (the null hypothesis). 
However, the upper confidence limit suggests that 
the study cannot exclude a large effect. In contrast, 
the significant study on the right would speak 
against the hazard being very large. Both of these 
perspectives are relevant, for both studies. A focus 
on the upper confidence limit would have the 
additional advantage that it would inspire larger 
studies with greater precision. 

From a precautionary viewpoint, the use of 
confidence intervals is highly attractive. Instead of 
concluding that we are not sure that there is an effect 
at all, we can now also say that the results do not 
contradict an effect, and that it could possibly be up 
to a certain magnitude. If a study is large, and when 
results from two or more studies are combined, the 
confidence interval will narrow due to the decrease 
in statistical uncertainty. If a small study (like the 
one on the left) is in accordance with a potentially 
large effect, it would call for extended studies to 
explore whether such a serious hazard is indeed 
realistic. However, from the 'frequentist' viewpoint, 
the small study cannot reject the null hypothesis and 
would therefore not call for any further attention. 
Hence, the two perspectives differ substantially as 
to the interpretation of research, the conclusions, 
and the priorities for further information. Both are 

Figure 26.1 The importance of confidence limits

Upper confidence limit shows 
how serious the effect could be 

Point estimate of the most 
likely magnitude of the effect 
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The point estimate is the 
same, but more certain, 
as the precision is better 

Lower confidence limit shows that 
no effect or an effect in the opposite 
direction cannot be excluded

Note: Two studies show the same average effect (horizontal line), but the vertical line suggests that the study on the left has 

useful, and a narrow focus on p values should be 
avoided (Stang et al., 2010).

The choice of statistical analysis is even more 
important in situations, where we do not have 
the option of calling for more studies. If a disease 
is serious but very rare, that number of subjects 
included will be small, and it may take a long time 
before enough information has been gathered in 
order to obtain a p value below 5 %. Perhaps most 
dramatically, in regard to endangered species, it 
is simply not possible to sample sufficiently large 
materials to reach 'significance'. Thus, wildlife 
biologists some years ago concluded: 'At least part 
of the blame for the spectacular overexploitation 
of the great whales can be placed on scientists 
being unable to agree… In certain circumstances, 
a population might go extinct before a significant 
decline could be detected' (Taylor and Gerrodette, 
1993). When the researchers examined the frequency 
and precision of recent monitoring efforts, they 
concluded that the percentage of precipitous 
declines that would not be detected as statistically 
significant would be between 72 % and 90 % for 
various whale species and 55 % for polar bears. 
Thus, more than half of the world's polar bears 
and the great majority of the whales would have to 
disappear before current studies would be able to 
conclude that the decrease is 'significant' (based on 
a one-sided p value limit of 5 %) (Taylor et al., 2007). 
Similarly, to the extent that monitoring and effect 
studies of environmental hazards are patchy, we are 
probably overlooking adverse effects, even those 
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that are serious, simply because the information is 
uncertain (like the study on the left in Figure 26.1).

To avoid inconclusive results, researchers often carry 
out power analyses to determine the sensitivity of 
a proposed study, that is, the likelihood that the 
proposed study will lead to conclusions on the 
existence of a hazard of a certain relevant magnitude. 
If the protocol is not able to ascertain with any 
confidence the presence of an important risk, then the 
statistical power is insufficient (as in the monitoring 
of polar bears). Either the study would be a waste of 
time and should be disbanded, or the protocol should 
be expanded to allow sufficient power. 

26.8 Bias in research

For the reasons listed above, the research results are 
often non-informative. Such inconclusive studies 
are sometimes called 'negative', although this term 
could suggest that an effect was in the direction 
opposite to expectation. Worse, such studies have 
sometimes been thought to represent 'no risk', rather 
than 'no information'. Such aspects of the traditional 
science paradigm involve inherent biases toward 
the null hypothesis. Based on the case studies in 
the present and the previous volume, Table 26.4 has 
been revised from previous compilations (Gee, 2009; 
Grandjean et al., 2004).

Most of the aspects listed in Table 26.4 have to do 
with the design of the research study and therefore 

Table 26.4 Key aspects of research likely to affect the outcome of a study, whether 
underestimating (false negative) or exaggerating (false positive) the possible 
existence of an environmental hazard

Methodological features and their main direction of error 

Inadequate statistical power  

False negative

Lost cases and inadequate follow-up for long-term effects

Exposure misclassification 

Insensitive or imprecise outcome measures

Adjustment for confounders with better precision than the exposure

Failure to adjust for confounder with effects in the opposite direction

Disregarding vulnerable subgroups

5 % probability level to minimize risk of false positives (Type I error)

20 % probability level to minimize risk of false negatives (Type II error)

Pressure to avoid false alarm

Incomplete adjustment for confounders with similar effects

False positivePost hoc hypothesis

Publication bias towards positive findings

refer to the methodology, rather than the relevance 
of the research. So, in that respect, greater attention 
to methodology would be beneficial. However, 
the main problem is that even though the research 
results may be less informative than desired, the 
research may well contain information that is 
more relevant than the simple claim that the null 
hypothesis of no effect cannot be excluded. As 
illustrated in Figure 26.1, we need to ask: How 
large an effect can the study have overlooked? This 
question should also take into account the possible 
existence of vulnerable subgroups, long-term effects, 
and other issues that may have been ignored.

Two entries in the table refer to the possible 
existence of publication bias. It is quite likely that 
some science journals, and more often the mass 
media, prefer to publish alleged scares rather 
than to report that there is nothing to worry 
about (Ioannidis, 2008). But the bias may also be 
in the opposite direction (Oreskes, 2004). More 
importantly, our data on publication frequencies 
(Grandjean et al., 2011) suggest the opposite. 
The journals publish extensively on well-known 
chemicals, where new scares are rare, and only 
occasionally publish on the unknown and emerging 
environmental hazards which could possibly 
represent much scarier risks, given that so little 
attention is paid to them. So the few scares that 
catch occasional headlines should be interpreted 
in light of the overwhelming background of 
environmental hazards that are and have been 
ignored, some of which could well represent 
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serious hazards. Chapter 2 on false positives shows 
that erroneous alarms are fairly rare. 

In summary, the context of justification needs 
to be balanced with the context of application 
or, in other words, the quality of the research 
must be linked with its relevance. So the focus 
on methodology issues and the preoccupation 
with verification studies should not happen at the 
expense of providing evidence on issues of major 
environmental and social relevance. While polishing 
the same stone over and over again, we should not 
ignore all the other shingles and rocks where some 
scientific gems may yet be hiding. 

26.9 The changing research paradigm

Science sociologist Robert K. Merton characterised 
traditional science by the acronym CUDOS, 
which stands for Communalism, Universalism, 
Disinterestedness, Originality and Scepticism. These 
traits are still valued and are prevalent in many 
scientific disciplines, but differences occur and the 
research paradigm within the environmental sciences 
is changing. All of these attributes for science, whether 
basic or applied, are needed to secure a meaningful 
and trustworthy research activity in society. However, 
the preoccupation with publication, credentials and 
funding that is common in academia today can lead 
to social apathy, thereby providing fertile ground for 
dependence on narrow interests that may include 
corporate money (Grandjean, 2008b). 

Of particular note, Merton characterised ideal 
science as 'disinterested', but vested interests of 
whatever origin may make research less neutral and 
less reliable. Several case chapters in this volume 
describe how industries have withheld evidence, 
lambasted whistle-blowers and promoted research 
that supported the conclusions desired (Kurland, 
2003). Especially when cover-up is included in such 
diversions, the result is that research loses credibility. 
Transparency in regard to conflicts of interest has 
been recommended, but complete elimination 
of financial ties may be the best way to secure 
trust-worthy research (Krimsky, 2003). Although 
conflicts of interest undoubtedly occur within 
academia at large, perhaps an additional problem is 
that the academic agenda is likely to differ from the 
priorities of regulatory agencies in environmental 
health. 

Another science culture has developed, as research 
contracts or privately funded research have grown. 
They differ in several respects from the CUDOS 
ideal. The results may not necessarily be published 

in scholarly journals (and would therefore be missed 
by our SciFinder searches). When the research is kept 
secret, it will not inspire further studies at public 
institutions. A particularly important chemical, 
bisphenol A (952 publications during 2000–2009), 
has enjoyed vast industrial popularity and became 
widely used in food packaging materials and 
beverage containers (see Chapter 10 on BPA). It 
was said to be safe at the very low exposures that 
consumers were likely to receive. However, after 
several decades of expanding use, independent 
research eventually uncovered evidence of health 
risks (Myers et al., 2009). The same pattern was seen 
with the perfluorinated compounds, where a major 
US producer for decades claimed that little would 
escape into the environment, and that essentially 
no toxicity occurred (Lindstrom et al., 2011). Only 
recently was it discovered that current exposures 
may be far from safe (Grandjean et al., 2012), but 
these chemicals have been disseminated into the 
global environment and cannot be recalled. 

Physics professor John Ziman characterised the 
'industrial' (or contracted) research as Proprietary, 
Local, Authoritarian, Commissioned, and Expert, 
thereby stressing that this activity builds on 
local expertise to reach specific goals. The same 
characteristics may apply to contract research 
carried out with public funding, but the initiator 
may not always be apparent. Thus, the Center for 
Indoor Air Research, the Electric Power Research 
Institute or the Chlorine Council may sound like 
charitable donors, rather than industry front 
groups. But they are in fact organisations funded by 
corporations with vested interests in the research 
outcome. However, the reader may be led to 
erroneously believe that the sponsored research 
reflects CUDOS values. 

The source of funding will also affect the choice 
of study topics. Accordingly, comparatively 
little research is devoted to the risks associated 
with pesticide exposures and the advantages of 
alternative crop protection methods (Krimsky, 2003). 
Booster biocides (see Chapter 12), such as Diuron 
(389 links to articles in 2000–2009 in SciFinder) 
and Dichlofluanid (39 links), received only a little 
attention in independent research, some of them 
much less than the organotin compounds (see 
tributyltin in Table 26.1) that have been phased out. 
SciFinder also located only 133 links to Gaucho®, 
the pesticide that endangered bee populations 
(see Chapter 16). As there are clear commercial 
interests in these compounds, the paucity of 
complementary academic research publications 
is unfortunate, although perhaps not surprising. 
Similarly, much less attention is paid to adverse 
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effects of new technology than to its advantages, 
although this has recently changed in regard to 
mobile telephony. Perhaps there is a parallel to 
physicians collaborating with the pharmaceutical 
industry in clinical trials of new drugs, which, 
with patent protection, will be capable of yielding 
great monetary returns. In contrast, older drugs no 
longer protected by patent are the subject of far less 
research, but may be as effective as modern drugs 
costing far more (Washburn, 2005). 

Because evidence is the basis upon which the 
evaluation of risks must rely, researchers publishing 
results at odds with certain vested interests have 
become targets of criticism and intimidation with 
the aim of suppressing or throwing suspicion on 
unwelcome information about health risks. Perhaps 
the best known case involves Herbert Needleman, 
who supplied the first, weighty documentation 
of prevalent lead pollution damaging brain 
development (see Chapter 3 on lead). He was 
angrily persecuted and harassed with unfounded 
accusations of dishonesty (Needleman, 2000). 

Disagreement usually focuses on the uncertainties 
and the scientific inference, not the choice of 
study topic. Harsh critique has sometimes been 
voiced, as have angry accusations of bias in 
differing interpretations of evidence (Gori, 1996). 
Research that has direct implications in regard 
to considerations of pollution abatement usually 
receives more wrath than reports on already 
recognised hazards. Perhaps this is another key as to 
why researchers favour well-known hazards. 

In order to introduce dissent into the literature, 
possible strategies involve publication in trade 
magazines disguised as scientific journals. The 
best examples are Indoor and Built Environment 
(Tong et al., 2005) and Regulatory Toxicology and 
Pharmacology (Axelson et al., 2003). These journals 
tend to publish articles that contain conclusions 
favourable to the industrial sponsors, no matter their 
scientific weaknesses. This strategy is counter to the 
Precautionary Principle, as they argue for 'no risk' 
when the evidence is uncertain or non-informative. 
In addition to the tobacco industry, other examples 
include studies supported by the pharmaceutical 
industry, which are much more likely to conclude 
that a drug is safe and efficacious than studies 
conducted without such support (Jorgensen et al., 
2006), but the same seems to happen in toxicology 
and environmental research (Myers et al., 2009). 

As a consequence, public trust is abused by deceit. 
The purpose of research seeking truth is betrayed, 
when undisclosed ties taint the research and its 
conclusions.

Under such contentious conditions, researchers 
may choose to hedge their conclusions by incessant 
use of words, such as 'maybe', 'perhaps', 'in theory' 
and similar terms (Hyland, 1998). By softening the 
conclusions and avoiding attribution of specific 
causality, the researchers protect themselves against 
critique by appearing well-balanced, unassuming 
and even sceptical toward the implications of 
one's own findings (6). However, this strategy has 
a downside. To the lay reader, who is not familiar 
with the traditions of scientific writing, the caveats 
and reservations may sound like the new results 
really do not prove anything, and that we are still 
left with the same uncertainty. To readers with a 
vested interest, the soft wording can be exploited 
through selective quotation and by emphasising 
real or alleged weaknesses (Grandjean, 2008a). 

Because of the involvement of research funders, the 
industrialised (or contracted) science can be better 
characterized by the PLACE acronym (Ziman, 
2000), although often posing like independent, basic 
research in accordance with CUDOS. If all research 
today earned CUDOS, no matter its funding, there 
would be little to worry about. But the weaknesses 
and biases outlined above suggest that PLACE 
needs to be supplemented by an additional 
research, one that better fits with the use of the PP in 
decision-making. 

In this complementary paradigm, environmental 
research in support of PP-based decision-making 
would involve stake-holders and therefore become 
Participatory, rather than Communal or Proprietary 
as in the other paradigms. It would be Accessible, 
Transparent, Inventive and Open-minded. Although 
the various attributes may perhaps not be compared 
horizontally in Table 26.5, the PATIO characteristics 
would seem to fit better the research that is needed 
in a precautionary setting. 

A key aspect is that, given the absence of final 
proof, an integrated evaluation must include 
uncertainty as a normal condition that needs to be 
explored and addressed, rather than minimised 
for the purpose of making research more efficient. 
An additional feature is the inclusion of the public 
in exploring how the uncertainty should affect 

(6) Please note how often I use the words 'may' and 'perhaps'. I do so, too, because I do not want to jump to conclusions and therefore 
present my case with understatement rather than the opposite.
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Table 26.5 Main properties of research in three different settings

Academic (normal) Industrial* Precautionary

CUDOS (a) PLACE (b) PATIO 

Communalism Proprietary Participatory

Universalism Local Accessible

Disinterestedness Authoritarian Transparent

Originality Commissioned Inventive

Skepticism Expert Open-minded

Note:  * 'Industrial' science is driven by private or other special interest and may violate some of the CUDOS norms in its pursuit of 

Source: (a): Merton, 1973; (b): Ziman, 2000.

the decision-making. As discussed above, and in 
agreement with the PATIO paradigm, both study 
designs and the reporting of research results need to 
change.

In contrast to the traditional science paradigm, 
where replication is held as a key to supporting 
conclusions on causation, the PP does not inspire 
repetitive verification. If available, replication will be 
useful, but a hypothesis may well be plausible even 
in the (temporary) absence of supportive evidence. 
Given the enormous diversity and complexity of 
environmental hazards, one implication of the PP is 
that research is primarily needed to document the 
extent of uncertainty and, when possible, to narrow 
this uncertainty to better inform decision-making and 
eventually to support more precise risk assessments 
as a basis for interventions that will no longer need 
to be precautionary. But rather than fine-tuning 
risk assessments for individual hazards, the vastly 
incomplete information on most environmental 
chemicals makes research into uncertainty a very 
urgent need. 

26.10 Precautionary science

As already discussed, the PP does not specifically 
demand testing of a null hypothesis that an 
exposure may be without a discernible effect. 
Rather, information is required whether a hazard 
could potentially be serious. This point of view 
should inspire new ways of planning, conducting, 
and reporting environmental research. So the 
research question outlined in the beginning of this 
chapter in accordance with traditional scientific 
paradigms now needs to be rephrased (Neutra, 
2002):

'PP-based question on an environmental hazard: 
Are we sufficiently confident that this exposure 
to a potential hazard leads to doses of a 

magnitude that can result in adverse effects that 
are serious enough to initiate transparent and 
democratic procedures to decide on appropriate 
intervention?'

We must pay closer attention to variability and 
uncertainty when determining their possible 
magnitude. Unfortunately, standard statistical 
methods assume that an exposure is measured 
without imprecision, which is usually not true, 
although this problem is generally ignored, thus 
resulting in underestimation of a hazard (Table 26.4). 
Assessment of the imprecision and its implications 
is therefore crucial. While uncertainties may be 
erroneously thought to cause exaggeration of alleged 
risks, most often the opposite is true (Grandjean, 
2008b). The extent of uncertainties can be expressed 
in terms of confidence limits (Figure 26.1), but the 
impact may often need to be explored by using 
sensitivity analyses. One or more worst-case scenarios 
deserve as careful scrutiny as the null hypothesis: 
How serious could the effects be; how large an effect 
can be reasonably ruled out? 

The research evidence must be considered in 
light of both strengths and weaknesses. While a 
methodological failure may weaken the support for 
a particular association, the mere occurrence of some 
scientific weakness does not prove the absence of a 
risk. Unfortunate and erroneous rejection of warning 
signals has occurred in the past because of presumed 
confounding or other biases and uncertainties. 
As illustrated by the case chapters in this volume, 
inconsistencies in some methodological aspect have 
been used to derail conclusions otherwise adopted 
by the scientific community. Likewise, statistical 
acceptance of the null hypothesis has sometimes been 
interpreted as proof of safety. Further, effects within 
normal variability have been considered irrelevant, 
although a population-wide shift in the distribution 
may represent substantial harm. Focus on average 
effects may also be misleading, as populations at risk 
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may suffer much greater harm that can be diluted by 
the results of non-vulnerable groups.

By acknowledging the limitations to the research 
evidence, a different point of view needs to 
considered, i.e. what could possibly be known, given 
the type of evidence available? Studies e.g. with 
imprecise estimates of the causative exposure and 
insensitive and nonspecific outcome measures, 
are likely to detect only the most serious risks and 
therefore should be interpreted in light of the weight 
of such evidence. The fact that the null hypothesis 
could not be rejected with confidence may be 
irrelevant in such cases. 

In general, all conclusions must be accepted as 
being provisional and temporary. While a study 
of often-cited publications in major medical 
journals found that many of the conclusions were 
subsequently found to be wrong (Ioannidis, 2008), 
this does not mean that environmental hazards 
are exaggerated. While accepting that a tentative 
conclusion based on preliminary evidence may later 
turn out to be wrong, public health responsibility 
may still demand that a serious threat be taken 
seriously, even though a final proof is not at hand. 
Any actions would then need to be adjusted later 
on, as more definite evidence emerges. At the same 
time, we should not ignore that the majority of 
environmental chemicals are poorly documented 
(Gilbert, 2011; NRC, 1984; US EPA, 1998), and 
ignoring such potential risks is likely to involve a 
very large number of false negative conclusions. 

The bibliometric analyses that we conducted 
assume, as to regulatory agencies, that research 
results are published. But the science publication 
industry has undergone substantial change 
due to the electronic potentials of the internet 
for low-cost distribution. However, the costs of 
science publication need to be covered, just like 
the subscribers paid for the print journals. Thus, 
the majority of science articles are not accessible to 
the public on the internet, unless an access toll is 
paid (although access may be free after an embargo 
period of 6–12 months). Thus, while a citizen may 
view the science journal at a public library, the 
internet favours the academic world despite the stiff 
subscription charges. Some journals are open access, 
where the author pays a fee for quality control, 
processing and maintenance of the website, and the 
published article is then free for everybody to see. 
A growing number of journals now use this model. 
The European Commission recommends that articles 
arising from EC-funded research must be available 
after no more than 12 months. Other funding 
agencies, such as the Welcome Trust, have as a 

requirement that the results of sponsored research 
must be published with open access. Groups of 
universities, e.g. in the Netherlands, have launched a 
repository, where their research publications can be 
accessed by anyone. So in regard to the Participatory 
aspect of the PATIO paradigm, access to information 
is improving.

Even preliminary data can facilitate PP-based 
decision-making. While early findings may provide 
only tentative conclusions, they can later be 
included in potential meta-analyses or provide a 
starting point for follow-up studies. This potential 
assumes that the data from previous studies are 
available, and that may not be true. Trade secrets 
may allegedly be involved, and numerous cases 
have occurred with suppression of information 
and withholding of evidence (Kurland, 2003). 
Some public funding agencies now demand that 
a data-sharing strategy be worked out for major 
projects, so that other researchers can carry out 
additional analyses, including meta-analyses. But 
there is also a risk that such further analyses are not 
entirely benevolent (Pearce and Smith, 2011). Hostile 
analyses have occurred, thus making researchers 
wary with whom they share their raw data. 

Given the discussion on coverage of environmental 
hazards, attention to the needs of regulatory 
agencies, traditions of science publication and the 
impact of other players, we can now attempt to 
answer the four questions posed in the beginning. 
Stakeholder involvement, innovation, openness 
and transparency should become new, important 
assets in environmental research to serve better 
as documentation and inspiration for PP-based 
decision-making.

Ways to improve scientific evidence for robust and 
precautionary decisions on environmental hazards: 

1) The choice of research topic should involve 
stakeholders and consider the societal needs for 
information on poorly known hazards; 

2) The research should be innovative and 
complementary with the aim of extending 
current knowledge, rather than repetitive for 
verification purposes;

3) The findings should be communicated in such 
a way as to facilitate judgements concerning the 
possible magnitude of suspected environmental 
hazards;

4) The research should be openly available and 
independent of vested interests. 
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As argued elsewhere in this volume, science does 
not provide a prescription for the right decisions 
on environmental hazards. The emphasis on 
research will be different for those whose first 
priority is scientific exactitude and those who focus 
on making policy in the context of environmental 
protection and public health. When a precautionary 
perspective mandates action to prevent foreseeable 
harms, the evidence does not have to meet the 
most rigorous demands of science. However, world 
views, political and other preferences, technical 
and economic feasibility, and alternative options 
are crucial for decision-making. As illustrated by 
the case studies in both volumes of Late lessons 
from early warnings, science does not have a good 
track record for supporting decisions on improving 
environmental health. This chapter has highlighted 
some opportunities for environmental research to 
provide more relevant results, interpretation, and 
conclusions for prudent and timely decisions on 
environmental hazards. 
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