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Abstract — It is well accepted that age is an important contrib-
uting factor to poor cartilage repair following injury, and to the 
development of osteoarthritis. Cellular senescence, the loss of the 
ability of cells to divide, has been noted as the major factor con-
tributing to age-related changes in cartilage homeostasis, func-
tion, and response to injury. The underlying mechanisms of cel-
lular senescence, while not fully understood, have been associated 
with telomere erosion, DNA damage, oxidative stress, and infl am-
mation. In this review, we discuss the causes and consequences 
of cellular senescence, and the associated biological challenges in 
cartilage repair. In addition, we present novel strategies for mod-
ulation of cellular senescence that may help to improve cartilage 
regeneration in an aging population.

■

Articular cartilage undergoes substantial changes in matrix 
structure, molecular composition, metabolic activity, and 
mechanical properties—and hence functions—with aging. 
These changes include fi brillation, alteration of proteogly-
can structure and composition, decreased anabolic activity, 
increased collagen cross-linking, and reduced tensile strength 
and stiffness (Martin and Buckwalter 2001, 2003). These age-
related changes can result in impaired effi cacy of cartilage 
repair, with current treatments such as microfracture (Stein-
wachs et al. 2008, Miller et al. 2010), mosaicplasty (Marcacci 
et al. 2005), and cell-based therapies (Kon et al. 2011, Kim 
et al. 2015), and also contribute to an increased incidence 
of osteoarthritis (OA) (Roos et al. 1995). Studies of OA fol-
lowing joint injuries have shown that the risk of developing 

posttraumatic OA following an intra-articular fracture of the 
knee increases by 3–4 fold after 50 years of age (Volpin et 
al. 1990, Honkonen 1995). The clinical outcomes of current 
treatment modalities are generally unsatisfactory for most, but 
not all, older patients. Recent studies have suggested that with 
advancing age, there is an increasing risk of poor repair and/
or treatment failure (Krishnan et al. 2006, Kim et al. 2015). 

The incidence of OA rises dramatically with every passing 
decade (Buckwalter et al. 2001), yet the disease does not affect 
every individual. Indeed, several studies have suggested that 
aging increases the risk of OA by compromising the ability 
of articular cartilage to maintain or restore tissue functioning 
after injury (Buckwalter et al. 2001). Cell senescence, the loss 
of the ability of cells to divide, has been noted as the major 
factor in contributing to aging changes in cartilage homeosta-
sis and function. Cell senescence, which develops during long-
term culture of chondrocytes or tissue-derived mesenchymal 
stem cells (MSCs), is also a major problem in cellular trans-
plantation for cartilage repair (Li and Pei 2012). The underly-
ing mechanisms of cell senescence are not fully understood, 
but have been increasingly associated with telomere erosion, 
DNA damage, oxidative stress, and infl ammation.       

While the cumulative changes over time are by defi nition 
“age-related,” chronologic age itself may be less important 
than genetically determined factors modifi ed by additional 
risk factors ranging from joint alignment to injury, to activity 
level, to obesity. Given the anticipated “aging epidemic”, it is 
important to address the causes and effects of aging on carti-
lage degeneration.     
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Aging and cellular senescence 

First described by Hayfl ick and Moorhead (1961), cellular 
senescence is a phenomenon of irreversible cell growth arrest 
after a characteristic number of cell doublings. Both intrinsic 
and extrinsic mechanisms/pathways are known. Replicative 
senescence is associated with the replication limit (Hayfl ick 
limit) of the cell, and is triggered as a result of exhausted 
replicative capacity caused by telomere shortening. The other 
senescence pathway, known as stress-induced premature 
senescence (SIPS), may be induced by extrinsic stressors 
such as DNA damage and oxidative stress, giving premature 
cell cycle arrest. Typical hallmarks of cellular senescence 
include enlarged cell morphology, reduced telomere length, 
upregulated p21, p16, and p53 expression, heightened reactive 
oxygen species (ROS) levels, and elevated senescence-
associated β-galactosidase (SA-β-Gal) activity. In addition, 
senescent cells show altered intracellular protein expression, 
altered responses to growth factors, and altered secretion 
profi les such as elevated levels of ROS and pro-infl ammatory 
cytokine production, which contribute further to overall aging 
and progression of age-related diseases (Loeser 2009, Ashraf 
et al. 2016).          

Age-dependent changes
Accumulation of senescent cells with age has been observed 
in most tissues, including cartilage and bone (Campisi 
2011). Cell yields of chondrocytes from articular cartilage 
were found to be 2-fold lower in older human donors (> 40 
years of age) than in younger donors (Barbero et al. 2004). 
Cell proliferation rates and matrix biosynthetic activities 
(aggrecan and type-II collagen) of chondrocytes also appear 
to decline after the age of 20 (Pestka et al. 2011). Similarly, 
Adkisson et al. (2010) reported a dramatic difference in 
chondrogenic potential between chondrocytes from juvenile 
donors (< 13 years old) and those from adult donors, with 
100 times more proteoglycan in neocartilage produced by 
juvenile chondrocytes. Recently, Liu et al. (2013) compared 
the biological properties of juvenile and adult bovine 
articular cartilage. In that study, juvenile bovine cartilage 
showed a greater cell density, a higher cell proliferation rate, 
increased cell outgrowth, elevated glycosaminoglycan (GAG) 
content, and enhanced matrix metalloproteinase (MMP)-2 
activity. These physiological age-dependent changes may 
partly explain the inferior clinical outcomes of autologous 
chondrocyte implantation (ACI) and mosaicplasty performed 
in older patients (Marcacci et al. 2005, Kon et al. 2011). 
MSCs are a source of chondrocytes and osteoblasts that make 
up cartilage and bone. MSCs are emerging as a promising 
alternative source of cells for treatment of cartilage defects 
(Nejadnik et al. 2010) and OA (Kim et al. 2015). A number of 
studies that have examined the differences in proliferation and 
differentiation potentials of animal and human MSCs isolated 
from young and aged donors have given confl icting results 

(Stolzing et al. 2008, Zhou et al. 2008, Choudhery et al. 2014), 
which may be attributable to the different sources of MSCs 
and culture conditions used.  

Unlike bone marrow MSCs from young donors, bone 
marrow MSC cultures from aged donors have been found 
to consist mainly of cells showing signs of cellular aging—
including enlarged cell morphology, accumulation of ROS 
levels, upregulated p21 and p53 expression, and increased 
SA-β-Gal activity (Stolzing et al. 2008, Zhou et al. 2008). 
Accordingly, there was an age-dependent decrease in func-
tional colony forming ability, viability, proliferation, and dif-
ferentiation capabilities, revealing intrinsic alterations in bone 
marrow MSCs with aging and also their contribution to the 
overall process of skeletal aging (Baxter et al. 2004, Zhou 
et al. 2008). These age-dependent changes have important 
implications when using autologous MSCs for treatment of 
cartilage lesions and OA. In a recent study, Kim et al. (2015) 
evaluated the effi cacy of autologous adipose MSC therapy in 
treatment of OA in 49 patients (55 knees), with a mean follow-
up period of 2 years. They found that adipose MSC treatment 
led to promising clinical outcomes. However, age was identi-
fi ed as a major independent predictor of clinical failure after 
MSC implantation, with the age of 60 years being the cutoff 
value for obtaining encouraging outcomes after implantation. 

Collectively, age-related changes not only affect the struc-
tural and matrix composition of articular cartilage but also 
the properties and functions of chondrocytes and MSCs, with 
serious implications for the success of an autologous cellular 
treatment and for the clinical outcome in the elderly popula-
tion.                            

              
Senescent cells and cartilage degeneration   
The age-dependent differences observed in chondrocytes and 
MSCs harvested from young and aged donors raise concerns 
that senescent cells including chondrocytes and MSCs 
accumulate in vivo with age, and that they may contribute to 
alterations in cartilage maintenance and homeostasis, leading 
to cartilage degeneration (Martin and Buckwalter 2001). 
In a seminal study in mice, Baker et al. (2011) showed that 
the onset of age-related pathologies of at least the adipose 
tissue, skeletal muscle, and eye could be delayed by selective 
clearance of p16INK4a-positive senescent cells, a typical marker 
for cellular senescence. Importantly, this study suggested that 
senescent cells have a role in aging and progression of age-
related diseases. 

Molecular mechanisms of cellular senescence 

In recent years, we have begun to understand the molecular 
mechanisms underlying the contribution of cell senescence 
to the initiation and progression of OA. However, the 
causal relationship is often diffi cult to establish, and many 
questions remain. Does aging induce oxidative stress and/
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or infl ammation, or does some other factor induce oxidative 
stress and/or infl ammation, which in turn drive aging? What 
are the underlying mechanisms that determine normal (i.e. 
disease- and injury-free) articular cartilage aging as opposed 
to articular cartilage degeneration that leads to OA? There 
are as yet no defi nitive answers to these questions. Here, we 
will summarize our current understanding of the mediators of 
cellular senescence and their implications for aging and OA 
development.        

         
Telomeres 
Several attempts have been made to investigate the roles of 
telomeres in chondrocyte and MSC senescence (Martin and 
Buckwalter 2003, Baxter et al. 2004). Primitive cell sources 
such as human embryonic and fetal MSCs have been reported 
to have longer telomeres and telomerase activity, and senesce 
later in culture than their adult counterparts (Guillot et al. 
2007). The telomere length of articular chondrocytes in 1- to 
72-year-old donors ranges from 9 to 11 kbp in > 55-year-old 
individuals to 12 kbp in individuals less than 20 years old 
(Martin and Buckwalter 2003). Similarly, the telomere length 
of human MSCs ranges from 10 to 11 kbp in fetal sources to as 
low as 7 kbp in adult bone marrow MSCs (Guillot et al. 2007). 
Baxter et al. (2004) further confi rmed that telomeres shorten in 
vivo by an average of 17 bp per year in postnatal human bone 
marrow MSCs. In a study by Parsch et al. (2004), the telomere 
length of expanded human bone marrow MSCs was found to 
be shorter than those from expanded chondrocytes from the 
same donor (11 kbp as opposed to 13 kbp), and it tended to 
remain shorter after differentiation in chondrogenic spheroids. 
These subtle inconsistencies regarding telomere length could, 
however, be attributed to the different techniques used in 
measurement of telomere length. Even so, it is commonly 
agreed that cells undergo gradual erosion/shortening of the 
telomeres as a function of replication during aging—both in 
vitro and in vivo (Harley et al 1990).     

Telomere shortening may be induced and accelerated by 
oxidative stress and DNA damage. Recent studies have found 
accelerated telomere attrition and senescence in human chon-
drocytes (Brandl et al. 2011a) and MSCs (Brandl et al 2011b) 
when they were cultured under sub-lethal and prolonged treat-
ment with low doses of oxidative stress. Furthermore, telomere 
dysfunction is linked to a decline in mitochondrial biogenesis/
function through activation of p53 and repression of PGC-1α/β 
(peroxisome proliferator-activated receptor gamma, coactiva-
tor 1 alpha and beta), and a consequent decrease in mitochon-
drial mass and energy production (Sahin et al. 2011).

The role of telomere shortening in OA is less clear. Harbo 
et al. (2012) reported an association between the presence of 
ultra-short telomeres and mean telomere length on the one 
hand and proximity to the lesion, severity of OA, and the level 
of senescence on the other. However, in another study by Rose 
et al. (2012), OA cartilage and normal cartilage from autopsies 
were compared. In that study, a higher degree of genomic DNA 

damage was detected in OA compared to normal chondrocytes, 
but there was no evidence of critical telomere shortening.    
p53, p16, and p21 
The expression of senescence-related genes including p53, p21, 
and p16 increases in senescent cells, and results in cell cycle 
arrest through inhibition of several cyclin-dependent kinases. 
Quantifi cation of these cell cycle inhibitors in chondrocytes 
(Loeser 2009) and MSCs (Stewart et al. 2003, Park et al. 2005) 
revealed a concomitant increase in expression of p53, p16INK4a, 
and p21Cip1 proteins with cell senescence, and a positive 
correlation with the presence of SA-β-Gal. Accordingly, these 
senescence-related proteins mediate cellular senescence by 
phosphorylation of retinoblastoma (Rb) through the p53-p21-
pRb pathway and/or the p16-pRB pathway (Takahashi et al. 
2006). It has been reported that oxidative stress induced by 
treatment with hydrogen peroxide and infl ammation induced 
by treatment with IL-1β mediate chondrocyte senescence via 
the p53-p21-pRb pathway, with induction of caveolin 1 and 
activation of p38 mitogen-activated protein kinase (MAPK), 
resulting in cell senescence and apoptosis. Caveolin 1 is the 
principal structural component of caveolae, and has been 
positively associated with articular cartilage degeneration 
in human and rat OA (Dai et al. 2006). Furthermore, 
overexpression of caveolin 1 induced p38 MAPK activation and 
impaired the ability of chondrocytes to produce type-II collagen 
and aggrecan (Dai et al. 2006).    

To date, p16INK4a appears to be the most prominent marker 
and mediator of cell senescence via the p16-pRB pathway 
in both chondrocytes (Zhou et al. 2004) and MSCs (Shibata 
et al. 2007), and knockdown of the gene has been shown to 
rescue OA chondrocytes (Zhou et al. 2004) and MSCs (Shi-
bata et al. 2007) to normal functioning. Interestingly, Philipot 
et al. (2014) showed that p16INK4a accumulates not only in 
response to infl ammatory stimuli but also during MSC chon-
drogenesis. Similarly, it has been established that the decline 
in anabolic functions of articular chondrocytes is associated 
with the accumulation of p16INK4a-positive chondrocytes with 
short telomeres and features of hypertrophy (Loeser 2009). 
Furthermore, p16INK4a has been found at higher levels in OA 
chondrocytes relative to levels in age-matched normal tissue, 
which in turn had higher levels than in fetal tissue (Zhou et 
al. 2004).            

Oxidative stress
Oxidative stress is commonly believed to be the major inducer 
of DNA damage and cell senescence (Loeser 2011). Studies 
have found that increased oxidative stress with aging reduces 
chondrocyte survival and the response to growth factors (Carlo 
and Loeser 2003, Loeser et al. 2014). This has subsequently 
been linked to the development of OA, where OA cartilage 
showed extensive staining of a marker of oxidative damage—
nitrotyrosine—in the degenerating regions of OA cartilage as 
compared to the intact regions of the same explants (Yudoh 
et al. 2005). Interestingly, the degree of nitrotyrosine staining 
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paralleled the severity of histological changes in OA cartilage, 
suggesting a correlation between oxidative damage and 
articular cartilage degeneration (Yudoh et al. 2005). 

Further studies have confi rmed that ROS activates several 
genes and downstream signaling pathways that induce senes-
cence, dysfunction, and apoptosis (Ashraf et al. 2016). Oxida-
tive stress induces chondrocyte senescence mainly by upregu-
lating expression of p53 and p21, and also by activating p38 
MAPK and phosphatidylinositol 3-kinase/Akt (PI3K/Akt) 
signaling pathways (Dai et al. 2006, Yu and Kim 2013). In 
addition, ROS results in telomere-related genomic instability, 
matrix loss, premature senescence, mitochondrial dysfunc-
tion, and apoptosis of chondrocytes and MSCs (Martin et al. 
2004b, Yudoh et al. 2005, Estrada et al. 2013, Li et al. 2015a, 
2015b, Sakata et al. 2015). 

The involvement of ROS in MSC senescence is further sup-
ported by studies that have shown marked improvements in 
cell proliferation and replicative lifespan upon treatment with 
antioxidants such as N-acetylcysteine (NAC) (Lin et al. 2005) 
and ascorbic acid (Lin et al. 2005, Choi et al. 2008). Indirect 
evidence from other studies has also demonstrated enhanced 
proliferation and/or differentiation capacities of chondrocytes 
(Foldager et al. 2011) and MSCs (Estrada et al. 2013, Munir et 
al. 2014) when cultured under physiological oxygen concen-
trations (3–5%) instead of the oxygen concentration of ~20% 
in ambient air usually used in laboratory practice.        

      
Pro-infl ammatory cytokines
With aging, it has been observed that there is a systemic increase 
in levels of pro-infl ammatory cytokines including C-reactive 
protein (CRP), IL-6, and tumor necrosis factor (TNF)-α, 
resulting in a chronic low-grade state of infl ammation that has 
been implicated in the development of several chronic diseases 
of aging including OA (Greene and Loeser 2015). Franceschi 
et al. (2000) coined the term “infl amm-aging” to describe 
the pro-infl ammatory state that occurs with increasing age. 
Indeed, epidemiological studies have indicated that there 
are strong links between infl ammation and OA, as elevated 
levels of CRP, IL-6, and TNF-α were detected in people 
with knee OA, and levels of these pro-infl ammatory markers 
were found to correlate with risk of disease progression 
(Spector et al. 1997, Livshits et al. 2009) as well as pain and 
joint dysfunction (Stannus et al. 2013). Locally in the joint, 
chondrocytes, meniscal cells, and infrapatellar fat pad-derived 
cells can be the local source of infl ammatory mediators that 
increase with aging and contribute to OA (Greene and Loeser 
2015). Senescent cells not only show features of growth 
arrest but also of senescence-associated secretory phenotype 
(SASP), which produces pro-infl ammatory cytokines and 
matrix-degrading enzymes involved in joint tissue destruction 
(Loeser 2011, Philipot et al. 2014). Freund et al. (2010) 
composed a list of SASP factors implicated as inducers 
of cellular senescence; many of these are produced at high 
levels and are also present in OA tissues and/or synovial fl uid. 

These include granulocyte macrophage colony stimulating 
factor (GM-CSF), growth regulated oncogene (GRO)α,β,γ,   
insulin-like growth factor-binding protein (IGFBP)-7, IL-1α, 
IL-6, IL-7, IL-8, monocyte chemoattractant protein (MCP)-
1, MCP-2, macrophage infl ammatory protein (MIP)1α, 
MMP-1, MMP-10, and MMP-3 (Greene and Loeser 2015). 
These fi ndings agree with the results of early studies in which 
human articular chondrocytes from older donors were found to 
secrete elevated amounts of catabolic MMPs such as MMP-13 
(Forsyth et al. 2005) and cytokines including interleukin (IL)-1 
and IL-7, with the ability to induce more MMP production 
(Long et al. 2008)—resulting in cartilage degeneration. The 
underlying mechanisms for SASP in cell senescence are 
still being elucidated, but have been associated with DNA 
damage (Freund et al. 2011) and oxidative stress (Salminen 
et al. 2012). Furthermore, infl ammation stimulated by IL-1β 
treatment has been shown to induce p16INK4a expression, 
which in turn induces the production of MMPs (MMP-1 and 
MMP-13), thus linking infl ammation to senescence and OA 
pathogenesis (Philipot et al. 2014).   

Possible anti-aging strategies for cartilage 
regeneration   

Emerging cartilage regeneration strategies aim for long-lasting 
replacement of damaged tissue, with functional improvements 
in pain and mobility. With the aging population, effective 
strategies for cartilage regeneration would need to address 
and overcome the pertinent issues of cellular senescence and 
attendant age-related changes, so as to bring about long-lasting 
functional cartilage regeneration. Most of these alternative/
adjuvant strategies are still in the realm of laboratory-based in 
vitro experimentation and pre-clinical evaluation in animals, 
but they offer exciting insights and perspectives for future 
treatment in the aging population (Diagram).    

Sources of cells
Various cell sources have been studied for cartilage tissue 
engineering and regeneration, including juvenile or adult 
chondrocytes (Brittberg et al. 1994, Adkisson et al. 2010) 
and adult stem cells (Lee et al. 2007, Toh et al. 2010). Several 
studies have found that the primitive sources of chondrocytes 
(Adkisson et al. 2010, Choi et al. 2014) and MSCs (Guillot 
et al. 2007) have greater proliferation and differentiation 
capabilities. In a recent study by Choi et al. (2016), 
chondrocytes harvested from fetal cartilage at 12 weeks 
post-gestation showed better proliferation and differentiation 
potential than chondrocytes and MSCs harvested from 
young donors (8–25 years old). Similarly, it has been 
shown that the primitive human umbilical cord MSCs have 
better proliferation and differentiation capacities than adult 
adipose and bone marrow MSCs (Zhang et al. 2011, Jin et al. 
2013). These differences are probably related to the intrinsic 
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expression of cell senescence markers, telomerase activity, 
and pluripotency genes. The potency of cells in relation to 
their developmental origin has been further demonstrated in 
overexpression studies (Liu et al. 2009, Huang et al. 2014), 
where adult MSCs overexpressing pluripotency genes 
including OCT4 and NANOG showed marked improvements 
in proliferation, colony formation, and chondrogenesis. Apart 
from differences in proliferation and differentiation potential, 
the growth factor responsiveness, secretion of growth factors, 
and signaling pathways during chondrogenesis most likely 
differ depending on the anatomical locus (Afi zah et al. 2007) 
and the developmental origin of these cells (Zhang et al. 2011, 
Brady et al. 2014, Toh et al. 2014a). 

Secretome and growth factors 
It is well established that TGF-β/Smad signaling has important 
roles in various stages of chondrogenesis, from mesenchymal 
condensation and chondrocyte proliferation to extracellular 
matrix (ECM) deposition—and fi nally terminal differentiation 
(van der Kraan et al. 2009). However, it also appeared that 
during TGF-β3-induced chondrogenic differentiation of bone 
marrow MSCs, there was upregulation of p16INK4a—which 
was concomitant with expression of both type-IIB collagen 
and MMP13, a terminal differentiation marker (Philipot et 
al. 2014). This implicates the role of TGF-β/Smad signaling 
in cellular senescence during chondrogenesis and OA 
development, although the underlying mechanisms remain to 
be fully determined.

Chondrogenesis is regulated at various stages by several 
different growth factors. As mentioned, MSCs derived from 
different tissue sources are likely to express distinct ranges 
of growth factors and receptors that determine differentia-
tion capabilities and growth factor responsiveness (Toh et al. 
2014a). Several groups have explored the combination or 

sequential addition of growth factors and small molecules to 
steer chondrogenesis towards stable cartilage formation (Yang 
et al. 2011, Handorf and Li 2014). Others have started to look 
into the factors secreted by cells as a means of understand-
ing the paracrine functions of chondrocytes and MSCs in 
chondrogenesis and cartilage regeneration (Gelse et al. 2009, 
Wu et al. 2011, Zhang et al. 2016a, 2016b). These secretome 
factors—including growth factors, cytokines, and microvesi-
cles—have diverse functions that have yet to be fully uncov-
ered (da Silva et al. 2009, Toh et al. 2014a, Zhang et al. 2016a, 
2016b). The secretome is complex in composition and may 
differ among different cell types, depending on their somatic 
function, developmental origin, and differentiation (Bara et al. 
2013, Toh et al. 2014a). 

In recent years, there has been a surge of interest in explor-
ing the use of conditioned medium (CM) from embryonic 
stem cells (ESCs) and its related secretome as an aging inter-
vention to inhibit cellular senescence (Conboy et al. 2011, Bae 
et al. 2016). Bae et al. (2016) found that treatment of senes-
cent human dermal fi broblasts with CM from mouse ESCs 
showed an altered senescence phenotype, including reduced 
SA-β-Gal activity and reduced expression of both p53 and 
p21. In that study, platelet-derived growth factor (PDGF)-BB 
in the ESC-CM was found to play a critical role in anti-senes-
cence through upregulation of fi broblast growth factor (FGF)-
2. Collectively, secretome research is likely to shed light on 
the mechanisms of cartilage repair and offer opportunities for 
development of possible anti-aging strategies for effective car-
tilage regeneration.                       

Antioxidants 
Several antioxidants have been reported to have protective 
effects on chondrocytes and MSCs against oxidative stress 
and infl ammation-induced cellular senescence and apoptosis 
(Dave et al. 2008, Li et al. 2015a, 2015b, Sakata et al. 2015). 
For instance, NAC has been reported to protect chondrocytes 
(Yu and Kim 2013) and MSCs (Li et al. 2015a) from oxidative 
stress-induced apoptosis, and has been shown to enhance 
the proliferation and replicative lifespan of MSCs (Lin et al. 
2005). Other studies have demonstrated the potent antioxidant 
and anti-infl ammatory effects of plant-derived polyphenol 
resveratrol against IL-1-induced infl ammation in human OA 
chondrocytes (Liu et al. 2014), and in reducing progression 
of OA in a mouse model (Li et al. 2015b). There is also 
interest in developing biomaterial scaffolds to incorporate 
these antioxidants, for their benefi cial antioxidant and 
anti-infl ammatory properties in cartilage repair (Toh et al. 
2014b). In a recent study, Wang et al. (2014) demonstrated 
the effi cacy of a collagen/resveratrol (Col/Res) hydrogel in 
treating osteochondral defects in a rabbit model. The cell-free 
Col/Res scaffold was able to downregulate the expression of 
infl ammation-related genes including IL-1β, MMP13, and 
COX-2, while promoting complete cartilage regeneration by 
the end of 12 weeks. It would be of interest to investigate the 

Diagram summarizing the strategies that may be used to overcome the 
problem of cellular senescence. 
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effects of aging on the reparative response to these therapeutic 
antioxidants, to further confi rm the anti-aging benefi ts of this 
strategy.              

Hypoxia
It is well-established that chondrocytes and MSCs reside under 
physiological oxygen concentrations (hypoxic conditions). 
Early studies found that an oxygen concentration of 21% 
attenuated the growth of human articular chondrocytes and 
MSCs, and this was associated with oxidative damage as a 
result of increased oxidant production (Moussavi-Harami et 
al. 2004, Martin et al. 2004b). Subsequently, it was found that 
hypoxia during cell expansion was effective in maintaining 
the chondrogenic potential of human articular chondrocytes 
(Egli et al. 2008). However, hypoxia during cell expansion 
was ineffective in enhancing the chondrogenic potential 
of osteoarthritic (OA) human chondrocytes for subsequent 
cartilage formation in vitro (Schrobback et al. 2012).      

Human MSCs cultured under hypoxic conditions have 
been reported to maintain their stemness properties and delay 
senescence better than cells cultured under normoxia (Choi 
et al. 2014). The molecular mechanisms by which hypoxia 
regulates premature senescence are not fully understood, but 
hypoxia has been associated with activation of AKT signaling 
(Palumbo et al. 2013), expression of TWIST (Tsai et al. 2011), 
and downregulation of extracellular signal-regulated kinase 
(ERK) signaling (Jin et al. 2010), which inhibited senescence-
associated upregulation of the p16 and p21 genes (Jin et al. 
2010, Tsai et al. 2011, Palumbo et al. 2013). More importantly, 
human MSCs expanded under hypoxic conditions showed 
enhanced proliferative capacity with intact genomic integrity 
(Tsai et al. 2011) and improved chondrogenic potential (Xu et 
al. 2007, Adesida et al. 2012).    

Extracellular matrix 
The ECM is a complex network of proteins and 
glycosaminoglycans (GAGs) that surrounds the cells and is 
critical in directing cell fate and functions (Toh et al. 2015). 
It is becoming clear that there are changes to ECM structure 
and composition during development, aging, and/or disease 
that suggest that the ECM has an important role in various 
cellular processes including proliferation and differentiation, 
and in overall cartilage hemostasis (Kvist et al. 2008, Toh 
et al. 2013). During OA, cartilage tissues not only show 
selective loss of territorial matrix proteins including type-II 
collagen and GAGs, but also changes in distribution of the 
pericellular matrix proteins including type-VI collagen, 
perlecan, type-IV collagen, laminins, nidogens, and 
matrilins (Söder et al. 2002, Kruegel et al. 2008, Zhang et 
al. 2014, Foldager et al. 2014, 2016). For example, levels of 
matrilin-2/3 have been reported to be highly expressed in OA 
tissues (Pullig et al. 2002, Zhang et al. 2014), while nidogen-1 
but not nidogen-2 was found to be reduced in amount 
around diseased chondrocytes (Kruegel et al. 2008). Other 

studies on type-VI collagen (Peters et al. 2011), perlecan 
(Srinivasan et al. 2012), and laminin (Schminke et al. 2016) 
have also suggested some potential of these pericellular 
matrix proteins as therapeutic candidates for engineering 
and repair of cartilage tissue. Type-VI collagen has been 
demonstrated in in vitro studies to enhance the growth of 
adult and osteoarthritic chondrocytes (Smeriglio et al. 2015), 
and to protect chondrocytes from monoiodoacetate-induced 
cell death (Peters et al. 2011).              

In recent years, there has been a surge of interest in explor-
ing the use of decellularized stem cell ECMs to recapitulate 
the stem cell “niche”, not only to infl uence the fate and func-
tions of stem cells, but also to rejuvenate and enhance the 
replicative lifespans and differentiation capacities of MSCs 
and chondrocytes (Pei and He 2012, He and Pei 2013, Ng et 
al. 2014). Notably, decellularized stem cell matrices derived 
from synovium MSCs have been demonstrated to enhance the 
growth and replicative lifespan of chondrocytes, with better 
maintenance of phenotype and subsequent (re)differentiation 
capacity (Pei and He 2012). When cultured on decellular-
ized stem cell matrices from either adipose tissue MSCs or 
synovium MSCs, adipose tissue MSCs showed improved pro-
liferation and a lower level of intracellular ROS compared to 
those grown on non-coated fl asks (He and Pei 2013). 

Conclusion

With an increase in the aging world population, the number 
of cases of OA can be expected to increase globally. The 
underlying mechanisms that determine normal (disease- and 
injury-free) articular cartilage aging—rather than articular 
cartilage degeneration leading to OA—are unclear. A better 
understanding of the basic mechanisms underlying cellular 
senescence and how this process could be modifi ed would 
possibly provide new strategies for treatment of cartilage 
lesions and OA in an increasingly aging population. Current 
efforts in cell sourcing and in using hypoxia, growth factors, 
secretome, and ECM proteins have shown promise in 
alleviating cellular senescence, but they require further studies 
in order to translate into clinical applications.   
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