Multiple Non-Equivalent Interfaces Mediate Direct Activation of GABAA Receptors by Propofol

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

Published Version
doi:10.2174/1570159X14666160202121319

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:32630532

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Multiple Non-Equivalent Interfaces Mediate Direct Activation of GABA\textsubscript{A} Receptors by Propofol

Megan M. Eatona, Allison L. Germanna, Ruby Aroraa, Lily Q. Caoa, Xiaoyi Gaoa, Daniel J. Shina, Albert Wua, David C. Chiarab, Jonathan B. Cohenb, Joe Henry Steinbachb,c, Alex S. Eversa,c and Gustav Akka,c,*

aDepartment of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA; bDepartment of Neurobiology, Harvard Medical School, Boston, MA, USA; cTaylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA

Abstract: Background: Propofol is a sedative agent that at clinical concentrations acts by allosterically activating or potentiating the \(\gamma\)-aminobutyric acid type A (GABA\textsubscript{A}) receptor. Mutational, modeling, and photolabeling studies with propofol and its analogues have identified potential interaction sites in the transmembrane domain of the receptor. At the "+" of the \(\beta\) subunit, in the \(\beta-\alpha\) interface, \textit{meta-azipropofol} labels the M286 residue in the third transmembrane domain. Substitution of this residue with tryptophan results in loss of potentiation by propofol. At the "+" side of the \(\beta\) subunit, in the \(\alpha-\beta\) interface (or \(\beta-\beta\) interface, in the case of homomeric \(\beta\) receptors), \textit{ortho-propofol} diazirine labels the H267 residue in the second transmembrane domain. Structural modeling indicates that the \(\beta\)(H267) residue lines a cavity that docks propofol with favorable interaction energy.

Method: We used two-electrode voltage clamp to determine the functional effects of mutations to the "+" and "+" sides of the \(\beta\) subunit on activation of the \(\alpha\beta3\) GABA\textsubscript{A} receptor by propofol.

Results: We found that while the individual mutations had a small effect, the combination of the M286W mutation with tryptophan mutations of selected residues at the \(\alpha-\beta\) interface leads to strong reduction in gating efficacy for propofol.

Conclusion: We conclude that \(\alpha\beta3\) GABA\textsubscript{A} receptors can be activated by propofol interactions with the \(\beta-\beta\), \(\alpha-\beta\), and \(\beta-\alpha\) interfaces, where distinct, non-equivalent regions control channel gating. Any interface can mediate activation, hence substitutions at all interfaces are required for loss of activation by propofol.

Keywords: Activation, binding site, GABA\textsubscript{A} receptor, mutation, propofol, structure.

INTRODUCTION

The \(\gamma\)-aminobutyric acid type A (GABA\textsubscript{A}) receptor is the major inhibitory transmitter-gated ion channel in the brain. In mature neurons, activation of the GABA\textsubscript{A} receptor results in increased membrane conductance for CI− leading to hyperpolarization of the cell or reduction of the effects of excitatory channels, thereby having an inhibitory effect on overall brain activity. Drugs capable of augmenting GABA\textsubscript{A} receptor activity can be clinically useful as sedatives or anticonvulsants.

The GABA\textsubscript{A} receptor is a pentameric membrane protein. Each of the five homologous subunits contains a large aminoterminal extracellular domain followed by four transmembrane domains and a short carboxyterminal end at the extracellular side of the membrane. The two transmitter binding sites are located in the extracellular domain, at the interfaces between the \(\beta\) and \(\alpha\) subunits. Heteromeric GABA\textsubscript{A} receptors, consisting of two \(\alpha\) subunits, two \(\beta\) subunits, and a fifth subunit, e.g., a \(\gamma\) or \(\delta\) subunit can be gated by the transmitter GABA, and directly activated and modulated by several allosteric ligands (e.g., neuroactive steroids, propofol, etomidate, barbiturates) [1, 2]. Homomeric GABA\textsubscript{A} receptors containing five \(\beta\) subunits do not respond to GABA but are functional in the presence of some allosteric activators, e.g., propofol and barbiturates [3, 4]. The allosteric activators exert their effects via interactions with allosteric binding sites, distinct from binding sites for the transmitter, GABA [5].

Propofol (2,6-diisopropylphenol) is widely used clinically to induce and maintain general anesthesia. The major advantage of propofol is its favorable pharmacokinetics, \textit{i.e.}, rapid onset and offset of the effect. While its hepatic elimination half-life is in hours, its sedative effects after a single dose terminate in minutes, due to redistribution of the drug to peripheral tissue.
The sedative effects of propofol are mediated by actions on the GABA_{\text{A}} receptor. Mice harboring a single point mutation (N265M) in the GABA_{\text{A}} receptor β₃ subunit are resistant to suppression of noxious-evoked movements by propofol and display a drastic reduction in the duration of loss-of-righting reflex following administration of propofol [6].

Current responses from native and heterologously-expressed GABA_{\text{A}} receptors are potentiated when micromolar concentrations of propofol are coapplied with a subsaturating concentration of transmitter [7, 8]. Miniature inhibitory postsynaptic currents are prolonged in the presence of micromolar concentrations of propofol [9]. Propofol, especially at higher concentrations, is also an efficacious agonist of the GABA_{\text{A}} receptor. It is considered that the same sites in the receptor mediate direct gating and potentiation [10].

Here, we discuss the structural aspects of propofol interaction with the GABA_{\text{A}} receptor. We focus on published mutational, functional, and modeling studies, and introduce novel data from our laboratories. The major conclusion is that non-equivalent interaction sites at the various intrasubunit interfaces control GABA_{\text{A}} receptor activation by propofol.

COMPARATIVE MOLECULAR PHARMACOLOGICAL STUDIES

Mutational studies based on comparing the effects of propofol and other general anesthetics on mammalian GABA_{\text{A}} vs. glycine and Drosophila GABA receptors that are not modulated by these drugs have revealed the involvement of the transmembrane domains in the actions of propofol (reviewed in [11]). Of interest, it was shown that α2β1 and α2β2γ2 receptors containing the β1(M286W) mutation in the third transmembrane domain are not potentiated by propofol [12]. A later work finding that small amino acid substitutions at β(M286) are permissive for potentiation by propofol while the tryptophan substitution does not eliminate the ability of smaller analogues, e.g., 2,6-dimethylphenol, to potentiate the receptor, proposed that the β(M286W) mutation decreases the volume of the putative binding cavity below propofol cutoff [13, 14].

Direct involvement of the β(M286) residue in the binding of propofol was later demonstrated through the substituted-cysteine accessibility method (SCAM). This approach is based on examining the functional effect of modification of a cysteine residue introduced to the region of interest with a sulphydryl-specific reagent [15]. Bali and Akabas [16] demonstrated that propofol sterically protects the cysteine residue substituted for β(M286) from modification by the sulphydryl-modifying agent p-chloromercuribenzenesulfonate.

An observation that β3, but not β1, homomeric GABA_{\text{A}} receptors are directly activated by propofol led to the discovery that activation by propofol critically depends on the nature of the amino acid residue in the second transmembrane domain, at position 265 [17]. The β3 subunit contains an asparagine while the β1 subunit contains a serine residue at this position. A substitution of asparagine with serine in β3 generates a receptor that is insensitive to propofol whereas the opposite mutation, S265N, in β1 produces a receptor that can be activated by propofol [17]. In α1β2γ2 and α2β3γ2 heteromeric GABA_{\text{A}} receptors, an asparagine-to-methionine switch at position 265 leads to drastic reduction in potentiation and a loss of direct activation by propofol [18, 19]. It is, however, unlikely that the N265 residue directly interacts with propofol, because SCAM studies have shown that propofol does not protect modification of the N265C residue by p-chloromercuribenzenesulfonate [16]. Furthermore, in β3 homomeric receptors, the N265S mutation has a dominant-negative effect, i.e., the presence of a single mutation in the homopentameric receptor is sufficient to render the receptor nonresponsive to propofol [17].

PHOTOLABELING STUDIES CONFIRM THE INVOLVEMENT OF TRANSMEMBRANE DOMAINS

Recent studies employing photoactivatable analogues of propofol support the idea that propofol binds in the transmembrane region of the GABA_{\text{A}} receptor. In α1β3 receptors, a photoreactive propofol analogue 2-isopropyl-5-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenol (meta-azipropofol) labels the β3(M286) and α1(M236) residues at the β-α interface [20]. Labeling of these residues is inhibited by propofol, as well as etomidate and a photoactivatable analogue of barbiturate. And conversely, photolabeling of homologous residues at the β-α and γ-β interfaces by etomidate and barbiturate analogues is inhibited by propofol, albeit at relatively high concentrations (IC₅₀ in tens of micromolar). A binding model emerges from these findings where various anesthetic compounds interact with equivalent sites at the α-β, β-β, and β-α interfaces, although the binding affinities and selectivity of a compound for each of the interfaces can be different [20]. As expected, meta-azipropofol retains the anesthetic potency of the parent compound propofol in the Xenopus tadpole loss-of-righting reflex assay, although it exhibits a somewhat smaller degree of potentiation of heterologously-expressed α1β2γ2L GABA_{\text{A}} receptors [21].

In another study, Yip and coworkers [22] employed a propofol photoactivatable analogue ortho-propofol diazirine, labeling the β3(H267) residue in β3 homomeric and α1β3 heteromeric GABA_{\text{A}} receptors. The β3(H267) residue resides in a hydrophobic cleft near the interface between the extracellular and transmembrane domains. The cavity lies in a triangular structure formed by the first and second transmembrane domains at the “-” side of a β subunit and the second transmembrane domain at the “+” side of the neighboring subunit (an α subunit in α1β3 receptors or another β subunit in β3 homomeric receptors).

Substitution of the 2-isopropyl group in the propofol molecule with trifluoromethyl diazirine in ortho-propofol diazirine had a relatively benign effect on the compound's biological activity, including inhibition of [³⁵Si]butylbicyclo[4.1.0]hept-2-en-5-ylphosphorothionate binding to β3 GABA_{\text{A}} receptors, potentiation of GABA-elicited currents from heterologously-expressed α1β3 receptors, and the loss-of-righting reflex in rats [22].

By reasoning that anesthetics, and in fact all activators, bind more tightly in the open state than in the closed state,
and are therefore likely to bind in regions that show conformational changes upon channel opening. Franks [23] compared open and closed state structures from the structurally-related proton-gated *Gloeobacter* ligand-gated ion channel (GLIC) and the glutamate-gated chloride channel (GluCl) from *Caenorhabditis elegans*. The greatest conformational difference between the open and closed states was evident in the region near the top of the second and third transmembrane domains. In the β3 GABA_α receptor, this region contains two cavities that are adjacent to the photolabeled β3(H267) residue. From docking calculations propofol is predicted to bind in the two cavities with affinities near concentrations at which it acts on the GABA_α receptor [23].

ELUCIDATION OF THE FUNCTIONAL ROLE OF LABELED RESIDUES IN β3 HOMOMERIC RECEPTORS

To determine the functional role of residues in the putative binding cavity at the interface between the transmembrane and extracellular domains, Eaton and coworkers [24] examined the effects of tryptophan-substitutions at β3(H267) and nearby residues. The major finding was that while the mutation of the photolabeled β3(H267) residue was without effect on activation by propofol, substitutions at several nearby locations had a profound effect on activation of β3 receptors by propofol but not by another allosteric activator, pentobarbital.

The standard electrophysiological concentration-response data were analyzed in the Monod-Wyman-Changeux (MWC) allosteric protein framework. This approach enables determination of equilibrium affinity of the closed receptor to the activator (K_c) and a measure of gating efficacy (d) (more details below). It was shown that the β3(H267W) mutation had minimal effect on K_c or d. However, substitutions at other locations lining the cavity had a drastic effect on propofol activation. The β3(Y143W) mutation strongly reduced gating efficacy. The β3(F221W), β3(Q224W), and β3(T266W) mutations resulted in receptors that showed no current responses in the presence of propofol. The mutations, however, had a relatively small effect on activation by pentobarbital indicative of a selective effect on activation by propofol [24]. The MWC analysis supported a model where the mutated residues interact with the propofol molecule in the active state where the tryptophan side chain results in an unfavorable interaction with the propofol molecule.

The Y143, F221, and Q224 residues are located at the "-" side of the β3 subunit (Fig. 1). In the homomeric β3 receptor there are five such interfaces and, accordingly, five identical interaction sites.

The lack of effect of tryptophan-mutation of the photolabeled β3(H267) residue is surprising, but may be an artifact of the photolabeling mechanism. The relatively long half-life of the quinone methide [25], a major photo product of photolysis of *ortho*-propofol diazirine, may mean that the activated compound had diffused a short distance. However, the fact that of the numerous water accessible nucleophilic amino acids only β3(H267) was labeled indicates that *ortho*-propofol diazirine is concentrated near this residue.

The experiments did not directly address how the tryptophan substitutions affect receptor activation by propofol. Previous works probing structural features of neurosteroid and etomidate binding sites have proposed that introduction of a large hydrophobic sidechain in a strategic location may mimic the presence of a ligand in the site, and manifest as reduction in GABA EC₅₀ and enhanced level of spontaneous activity [26, 27]. Indeed, spontaneous activity was strongly increased in β3(Y143W), β3(F221W), and β3(T266W). The tryptophan substitution may have decreased the volume of the binding cavity as was proposed for the β3(M286W) mutation that retained sensitivity to 2,6-

Fig. (1). Top view of the β3 homeric (left) and α1β3 heteromeric (right) GABA_α receptor. The putative propofol binding sites in the β3 receptor are located at each of the five β-β interfaces, predominantly in the subunit contributing the "-" side of the interface. Tryptophan-substitutions of Y143, F221, and Q224 drastically reduce or abolish activation by propofol. We propose that in the α1β3 receptor, the propofol binding sites are located at the β-β and α-β where Y143, F221, and Q224 control drug interactions with the receptors, and at the β-α interfaces where the M286 defines the putative binding site.
dimethylphenol but not propofol (2,6-disisopropylphenol) in α1β2 receptors [14]. In agreement with this notion, it was shown that activation of the β3(Y143W) receptor by smaller propofol analogues 2-isopropylphenol and 2,6-dimethylphenol was unchanged [24].

ELUCIDATION OF THE FUNCTIONAL ROLE OF LABELED RESIDUES IN α1β3 HETEROMERIC RECEPTORS

The initial study [24] examining the functional role of putative binding site residues near the top of the second transmembrane domain reported a controversy. The β3(T266W) mutation, that in β3 homomeric receptors abolished activation by propofol, was without effect in α1β3 heteromeric receptors. Furthermore, when β3(T266W) was combined with a tryptophan mutation in one of the α3 subunits (i.e., M286W+Y143W or M286W+F221W) essentially abolished activation by propofol.

To test this hypothesis, we generated doubly-mutated β3 subunits, where the M286W mutation was combined with one of Y143W, F221W, or Q224W. The mutated β3 subunits were co-expressed with the wild-type α1 subunit. The data reveal that mutagenesis of the defining residues in either putative site (M286 vs. Y143, F221, or Q224) alone had a relatively small effect on channel activation by propofol. The combination of mutations to both the "+" and "-" sides of the β3 subunit (i.e., M286W+Y143W or M286W+F221W) essentially abolished activation by propofol.

To reach these conclusions, we analyzed the data in the MWC allosteric model framework [28, 29]. This analysis has the strength that it can account independently for any effects on the inherent energy barrier for activation of the receptor, and the efficacy of an agonist for promoting activation. It provides estimates for the affinity of the resting receptor for an agonist (Kc) and for the ratio of the affinity of the active receptor to that of the resting receptor (d = Kc/Ke), while taking into consideration the ability of receptor to undergo activation in the absence of activator. The latter is expressed as Lc, the gating equilibrium constant of unliganded receptor, and calculated as (1−Pmaxo)/Pmaxo from experimental data. The parameter d measures the efficacy of the agonist for channel gating; a small value denotes a very large increase of affinity when the channel opens (high efficacy) while a value of 1 indicates that the affinities are identical for closed and open channels and no ability of the agonist to stabilize open channels.

For analysis in the MWC framework, the standard normalized concentration-response data were converted to

Table 1. Concentration-response properties for wild-type and mutant α1β3 GABA_A receptors.

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Pmaxo (mM)</th>
<th>EC50 (mM)</th>
<th>nH</th>
<th>Pmax (mM)</th>
<th>EC50 (mM)</th>
<th>nH</th>
<th>Pmax (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α1β3</td>
<td>0.65±0.04</td>
<td>1.5±0.1</td>
<td></td>
<td>0.65±0.04</td>
<td>1.5±0.1</td>
<td></td>
<td>0.65±0.04</td>
</tr>
<tr>
<td>α1β3(Y143W)</td>
<td>0.65±0.04</td>
<td>1.5±0.1</td>
<td></td>
<td>0.65±0.04</td>
<td>1.5±0.1</td>
<td></td>
<td>0.65±0.04</td>
</tr>
<tr>
<td>α1β3(F221W)</td>
<td>0.65±0.04</td>
<td>1.5±0.1</td>
<td></td>
<td>0.65±0.04</td>
<td>1.5±0.1</td>
<td></td>
<td>0.65±0.04</td>
</tr>
<tr>
<td>α1β3(Q224W)</td>
<td>0.65±0.04</td>
<td>1.5±0.1</td>
<td></td>
<td>0.65±0.04</td>
<td>1.5±0.1</td>
<td></td>
<td>0.65±0.04</td>
</tr>
<tr>
<td>α1β3(M286W)</td>
<td>0.65±0.04</td>
<td>1.5±0.1</td>
<td></td>
<td>0.65±0.04</td>
<td>1.5±0.1</td>
<td></td>
<td>0.65±0.04</td>
</tr>
<tr>
<td>α1β3(M286W+Y143W)</td>
<td>0.65±0.04</td>
<td>1.5±0.1</td>
<td></td>
<td>0.65±0.04</td>
<td>1.5±0.1</td>
<td></td>
<td>0.65±0.04</td>
</tr>
<tr>
<td>α1β3(M286W+F221W)</td>
<td>0.65±0.04</td>
<td>1.5±0.1</td>
<td></td>
<td>0.65±0.04</td>
<td>1.5±0.1</td>
<td></td>
<td>0.65±0.04</td>
</tr>
</tbody>
</table>

The table shows Pmaxo, and EC50, nH values and Pmaxo (mean ± S.E.M.) for propofol and GABA, from at least 4 cells under each condition. The concentration-response data were fitted, individually for each cell, with the following equation: Y = Ymaxo*([(drug)^nH]/(1+(drug)^nH)+EC50^mH)

where EC50 is the concentration of drug producing a half-maximal effect, nH describes the slope of relationship, and Ymaxo is the high concentration asymptote.

The estimated open probability of spontaneously-active receptors (P_nmax) was calculated by comparing holding current to the current levels in the presence of 100 µM picrotoxin (assumed P_n = 0) and saturating GABA in the presence of 100 µM pentoobarbital or 1 µM alphaxalone (assumed P_n = 1). P_nmax of 1 indicates that no consistent change in holding current was observed in the presence of 100 µM picrotoxin. Maximal open probability (Pmaxo) was determined by comparing peak responses to saturating propofol, saturating GABA, and saturating GABA in the presence of 100 µM pentoobarbital or 1 µM alphaxalone. Pmaxo of 1 indicates that no increase in peak current was observed when either potentiator was co-applied with saturating GABA. In cases where Pmaxo < 1, the observed fold potentiation can be calculated as (Pmaxo)^nH. The errors in estimating channel open probability may rise from incomplete blockade of spontaneously open channels during application of picrotoxin and the inability to reach a P_n of 1 during application of saturating GABA and potentiator.

All shown mutations were made in the β3 subunit using the QuickChange site-directed mutagenesis kit (Agilent Technologies, Santa Clara, CA). Electrophysiological experiments were conducted using the two-electrode voltage clamp technique as described previously [24].
units of open probability. It should be pointed out that the standard activation curves showed a relatively small functional effect of any mutation or a combination of mutations. The EC₅₀ for activation of wild-type α₁β₃ by propofol was 13 μM. The midpoints of the activation concentration-response curves for mutant receptors ranged from 2 to 69 μM with no clear systematic effect by any combination of mutations (Table 1).

The conversion to units of open probability re-estimates current responses to an agonist taking into consideration spontaneous activity, and maximal open probability that may be unattainable even in the presence of saturating concentrations of the agonist. To estimate open probability of spontaneously active receptors (P₀,spont), receptors in the absence of agonist were exposed to 100 μM picrotoxin, a blocker of the GABAₐ receptor. Under these conditions, any change in the holding current is an indication of block of spontaneous activity. Maximal open probability was obtained by exposing receptors to a saturating concentration of GABA in the presence of a potentiator (100 μM pentobarbital or 1 μM alphaxalone). The drug combination that produced the largest response was considered to have P₀,max of 1. A graphic demonstration of the conversion is given in Fig. 2.

Fitting the pooled P₀ est data showed that the individual mutations β3(Y143W), β3(F221W) and β3(M286W) have a relatively modest effect on Kc and d for propofol. In the wild-type α1β3 receptor, the Kc was 4.7 μM and d was 0.24 (Kc can be calculated as 4.7 μM x 0.24 = 1.1 μM). In mutant receptors, affinity estimates ranged from 6 μM (M286W) to 23 μM (Y143W), and d between 0.23 (F221W) and 0.27 (both Y143W and M286W). The β3(Q224W) mutation was unusual in that it resulted in lower affinity to propofol (increased Kc) but higher efficacy (reduced d).

The true effect of the double mutations becomes apparent in inspection of Fig. 3. Wild-type α1β3 and single mutant receptors exhibited relatively low levels of unliganded gating and little change in the maximal activation by propofol, so there is a large difference between P₀,spont est and maximal P₀ est. In contrast, most of the double mutant receptors showed an increase in P₀,spont with a reduction in maximal P₀ est. For example, receptors containing β3(M286W+Y143W) or β3(M286W+F221W) had P₀,spont est of 0.56 or 0.38, respectively. Yet, enhanced unliganded gating was not accompanied by an increase in P₀,max est (0.64 and 0.60, respectively). In other words, for the double mutants there was a much smaller ability of propofol to elicit opening. The effects of the β3(M286W+Q224W) mutation appear somewhat different from the other two mutations. The mutated receptor had a low P₀,spont est (0.01) but also a greatly reduced P₀,max est (0.11) in the presence of propofol.

The effect of mutation pairs manifested as an increase in d (Kc/Kc) rather than Kc (Table 2). Propofol Kc values in double mutants were generally similar to those in single mutants. In contrast, the ratios of open to closed receptor affinities (d) were strongly increased in all combinations of double mutants. In α1β3(M286W+Y143W), d was 0.93, indicating that the open receptor binds propofol less than 10% more tightly than the closed receptor. In α1β3 (M286W+F221W), d was 0.84. The double mutant receptor containing β3(M286W+Q224W) also had impaired gating with d (0.58) that was greater than that in wild-type (0.24), or in the β3(M286W) (0.27) or β3(Q224W) (0.04) single

Fig. (2). Graphic presentation of estimation of channel open probability. To estimate channel open probability for a given agonist, we first determined P₀ of spontaneously active receptors (P₀,spont est) and conditions required to attain the maximal open probability (P₀ est of 1). The current level corresponding to estimated open probability of 0 was attained by exposing receptors to 100 μM picrotoxin (PTX). The current level corresponding to P₀ est of 1 was obtained by activating receptors with a saturating concentration of GABA in the presence of 100 μM pentobarbital (GABA + PB). All other current levels, including the holding current and the peak current in the presence of GABA or propofol, were compared to this range to obtain estimates of P₀,spont and P₀ in the presence of various concentrations of GABA or propofol. For illustrative purposes, the data traces were obtained from different receptors (block by picrotoxin from α1β3(M286W+F221W), potentiation by pentobarbital from α1β3 wild-type). The human α1β3 GABAₐ receptors were expressed in *Xenopus* oocytes. Harvesting of oocytes was conducted in accordance with the Guide for the Care and Use of Laboratory Animals as adopted and promulgated by the National Institutes of Health. The protocol was approved by the Animal Studies Committee of Washington University in St. Louis. Current traces were recorded using standard two-electrode voltage clamp as described previously [24].
substitutions strongly affect the conformational changes sites when the channel is open. It's interferes with the ability of propofol to interact with these unaffected by the mutations, while the tryptophan substitutions where propofol binding to the closed receptor is essentially mutants.

Table 2. Summary of analysis of electrophysiological data from α1β3 receptors in the MWC allosteric protein framework.

<table>
<thead>
<tr>
<th>Receptor</th>
<th>L0</th>
<th>Propofol</th>
<th>GABA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Kc (µM)</td>
<td>d</td>
</tr>
<tr>
<td>α1β3</td>
<td>1000</td>
<td>4.7±0.1</td>
<td>0.24±0.01</td>
</tr>
<tr>
<td>α1β3(Y143W)</td>
<td>15.7</td>
<td>23.6</td>
<td>0.27±0.03</td>
</tr>
<tr>
<td>α1β3(F221W)</td>
<td>24</td>
<td>13.1±1.5</td>
<td>0.23±0.01</td>
</tr>
<tr>
<td>α1β3(Q224W)</td>
<td>1000</td>
<td>336±435</td>
<td>0.04±0.05</td>
</tr>
<tr>
<td>α1β3(M286W)</td>
<td>1000</td>
<td>6.0±1.4</td>
<td>0.27±0.01</td>
</tr>
<tr>
<td>α1β3(M286W+Y143W)</td>
<td>0.79</td>
<td>1.4±0.3</td>
<td>0.93±0.01</td>
</tr>
<tr>
<td>α1β3(M286W+F221W)</td>
<td>1.63</td>
<td>5.7±1.6</td>
<td>0.84±0.01</td>
</tr>
<tr>
<td>α1β3(M286W+Q224W)</td>
<td>99</td>
<td>61±14</td>
<td>0.58±0.01</td>
</tr>
</tbody>
</table>

The effects of mutations on receptor affinity to the activator and gating efficacy were determined within the Monod-Wyman-Changeux allosteric model framework. This approach involves estimating the relationship between channel open probability and concentration of the activator. A graphic presentation of how open probability was estimated is shown in Fig. 2. Parameters for binding and gating in the presence of propofol or GABA were derived from fitting the P_o^{est} from pooled data to the following equation:

$$P_o^{est} = \frac{1+([\text{agonist}]/K_c)/(1+[\text{agonist}]/dK_c)^n}{1+1/(1+[\text{agonist}]/K_c)/(1+[\text{agonist}]/dK_c)^n}$$

where L_0 is the ratio of the equilibrium occupancy of closed receptors to the equilibrium occupancy of open receptors in the absence of agonist, K_c stands for the closed receptor equilibrium dissociation constant for activator, d is a measure of efficacy expressed as the ratio of open receptor dissociation constant to closed receptor dissociation constant, and n is the number of binding sites for the activator. The number of sites for propofol was constrained to 5. Additional fitting (not shown), conducted with $n = 4$ binding sites, did not show consistent and significant improvement in the goodness of the fit. The number of sites for GABA was constrained to 2. Additional details of analysis and the fitting results are given in Table 2.

The data are most consistent with a model where propofol binding to the closed receptor is essentially unaffected by the mutations, while the tryptophan substitutions interfere with the ability of propofol to interact with these sites when the channel is open. It seems less likely that the substitutions strongly affect the conformational changes during channel gating per se, as the effects on activation by GABA were less marked. The data also suggest that the β-α and α-β/β-β interfaces, or more precisely the effects of tryptophan substitutions at selected sites in these interfaces, are energetically equivalent.
As is evident from the data in Table 2 and Fig. 3, double mutant receptors retained some of their sensitivity to propofol. This indicates that tryptophan substitutions at sites studied are not fully effective at blocking activation or that additional, hitherto unidentified, sites mediate residual activation. We do not favor the latter possibility because of lack of drastic changes in slopes of activation curves in mutated receptors. In any case, residual activation in double mutants is negligible and changes in slopes poorly defined.
In contrast to the effects on activation by propofol, there were relatively small effects on activation by GABA. The affinities for the closed receptor were distributed around the value for the wild-type receptor. The values for d tended to be increased, but only from the wild-type value of 0.02 to a maximum of 0.08, as opposed to the essential loss of efficacy for propofol. Overall, the data indicate that the combination of \(\beta_3(M286W) \) with one of \(\beta_3(Y143W), \beta_3(F221W) \) or \(\beta_3(Q224W) \) strongly reduces gating efficacy for propofol but not GABA.

We note that these residues are conserved among the subtypes of the \(\beta \) subunit. Accordingly, the effects of mutations are expected to be similar in receptors containing the \(\beta_1 \) or \(\beta_2 \) subunits.

A STRUCTURAL MODEL EMERGING FROM FUNCTIONAL DATA

Molecular modeling was used to predict whether propofol could bind within the pocket containing the triplet mutated residues at the \(\alpha_1-\beta_3 \) interface or at homologous pockets at the \(\beta_3-\beta_3 \) and \(\beta_3-\alpha_1 \) interfaces. We used a homology model of a \(\beta_3-\alpha_1-\beta_3-\alpha_1-\beta_3 \) receptor [20] based on the published structure of a human pentameric \(\beta_3 \) receptor [32]. In this model, the three \(\beta_3 \) subunits retained the crystallographic structures with only the two \(\alpha_1 \) subunits requiring homology replacement. Propofol was predicted to bind stably and with similar energies in the pockets between the extracellular and transmembrane domains in proximity to the triplet mutated residues at the \(\beta_3-\beta_3 \) (Fig. 4A) and \(\alpha_1-\beta_3 \) (Fig. 4B) interfaces, as well as at the \(\beta_3-\alpha_1 \) interface (not shown). Within the \(\beta_3-\beta_3 \) pocket, the lowest energy solution for propofol was 4.7 Å from \(\beta_3(Y143), 3.5 \) Å from \(\beta_3(F221) \), and 3.3 Å from \(\beta_3(Q224) \) (Fig. 4A). For docking at the \(\alpha_1-\beta_3 \) triplet pocket, one of the top 20 solutions was 4.8 Å from \(\beta_3(Y143) \), while the other docking solutions extended down into the transmembrane domain (Fig. 4B). The lowest energy solutions for docking at the homologous \(\beta_3-\alpha_1 \) interface triplet pocket (not shown) were positioned below the 17' residue in the second transmembrane domain (M2-17'), 9.6 Å from \(\alpha_1(F146) \) (homologous to \(\beta_3(Y143) \)) and between the adjacent M2 helices, with less favorable interaction energies than either the \(\beta_3-\beta_3 \) or \(\alpha_1-\beta_3 \) triplet pocket solutions. Computational docking predicted previously [20] that in the \(\alpha_1 \beta_3 \) GABA\(_A\) receptor \(\beta_3(M286) \) contributes to pockets at the \(\beta_3-\beta_3 \) and \(\alpha_1-\beta_3 \) interfaces with appropriate size to bind propofol stably. This pocket is located in the transmembrane domain below the level of M2-17 between the second and third transmembrane helices of the "1" side of \(\beta_3 \) and first and second transmembrane helices of the "2" side of \(\alpha_1 \) subunit (Fig. 4C). Based upon CDocker interaction energies, propofol is predicted to bind more favorably (by \(\sim 2-3 \) kcal/mol) to the \(\beta_3-\beta_3 \) and \(\alpha_1-\beta_3 \) pockets containing the triplet mutated residues than to the pocket containing \(\beta_3(M286) \).

CONCLUSION

The data support the involvement of a region near the \(\beta_3(M286) \) residue, originally identified by photolabeling with meta-azipropofol [20], at the \(\alpha_1-\beta_3 \) interface. The functional data for the "2" side of the \(\beta_1 \) subunit (\(\alpha_1-\beta_3 \) and \(\beta_3-\beta_3 \) interfaces) indicate that propofol gating is mediated by the region near \(\beta_3(H267) \), previously identified with photolabeling with ortho-propofol diazirine [22], and involving residues \(\beta_3(Y143), \beta_3(F221), \) and \(\beta_3(Q224) \).

From the analysis of electrophysiological data, conducted in the Monod-Wyman-Changeux allosteric protein framework, we propose a model where receptor activation is produced by propofol interactions with the \(\beta_3-\beta_3 \) interface near the \(\beta_3(M286) \) residue, and the \(\beta_3-\beta_3 \) and \(\alpha_1-\beta_3 \) interfaces near the \(\beta_3(Y143), \beta_3(F221) \) or \(\beta_3(Q224) \) residues. Any interface can mediate activation; hence substitutions at all interfaces are required to produce loss of activity in the presence of propofol.

CONFLICT OF INTEREST

This work was supported by the National Institutes of Health National Institute of General Medical Sciences to J.B. Cohen (GM058448), A.S. Evers (GM108799), and G. Akk (GM108580), and by funds from the Taylor Family Institute for Innovative Psychiatric Research to A.S. Evers and G. Akk.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES

[10] Ruesch, D.; Neumann, E.; Wulf, H.; Forman, S.A. An allosteric coagonist model for propofol effects on \(\alpha_1 \beta_2 \) \(\gamma \)-aminobutyric acid receptors.
acid type A receptors. Anesthesiology, 2012, 116(1), 47-55. [http://dx.doi.org/10.1097/ALN.0b013e31823d0c36] [PMID: 22104494]

