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Abstract

Clinical exome sequencing routinely identifies missense variants in disease-related genes, but 

functional characterization is rarely undertaken, leading to diagnostic uncertainty1,2. For example, 

mutations in PPARG cause Mendelian lipodystrophy3,4 and increase risk of type 2 diabetes 

(T2D)5. While approximately one in 500 people harbor missense variants in PPARG, most are of 

unknown consequence. To prospectively characterize PPARγ variants we used highly parallel 

oligonucleotide synthesis to construct a library encoding all 9,595 possible single amino acid 

substitutions. We developed a pooled functional assay in human macrophages, experimentally 

evaluated all protein variants, and used the experimental data to train a variant classifier by 

supervised machine learning (http://miter.broadinstitute.org). When applied to 55 novel missense 

variants identified in population-based and clinical sequencing, the classifier annotated six as 

pathogenic; these were subsequently validated by single-variant assays. Saturation mutagenesis 

and prospective experimental characterization can support immediate diagnostic interpretation of 

newly discovered missense variants in disease-related genes.

A major challenge in clinical exome sequencing is determining pathogenicity of missense 

variants incidentally found in genes previously implicated in a severe genetic disease 1,2,6. 

Every exome contains ~200 missense variants that have never before been seen7. Few of 

these are in fact pathogenic, but functional testing is too slow and resource intensive for 

clinical use, leading to many Variants of Uncertain Significance (VUS)8. The lack of 

functional data and failure to explicitly incorporate information about ascertainment and 

prior probability can lead both to misdiagnosis6,9 (if a benign variant is presumed 

pathogenic) and overestimation of penetrance (if modestly functional variants are 

systematically excluded from disease databases).

The peroxisome proliferator-activated receptor γ (PPARγ) exemplifies the challenge of 

classifying newly identified variants even in a well-studied disease gene. Rare mutations in 

PPARG cause familial partial lipodystrophy 3 (FPLD3)3,4 and a common missense variant 

p.P12A, along with linked non-coding variants, associates with risk of T2D10,11. Molecular 

functions of PPARγ are well characterized12,13 including its role as the target of anti-

diabetic thiazolidinedione medications. Approximately 0.2% of the general population 

carries a rare missense variant in PPARG, but only 20% of these variants are functionally 

significant and associated with metabolic disease5.

In order to enable functional interpretation of PPARγ variants identified in exome 

sequencing we constructed a cDNA library consisting of all possible amino acid 

substitutions in the protein (Figure 1A and Supplementary Figure 1). Based on the 

observation that primary human blood monocytes from patients with FPLD3 exhibit blunted 

PPARG response when stimulated with agonists ex vivo13, the construct library was 
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introduced into human macrophages edited to lack the endogenous PPARG gene 

(Supplementary Figure 2). After stimulation with PPARγ agonists, cells were FACS sorted 

according to the level of expression of CD36, a canonical target of PPARγ in multiple 

tissues14,15 (Figure 1A). The sorted CD36+ and CD36- cell populations were sequenced to 

determine the distribution of each PPARG variant in relation to CD36 activity.

“Function scores” were generated for each amino acid substitution at each site in PPARγ 
(see Methods, Figure 1B, Figure 2A) based on the partitioning of variants into CD36+/- 

FACS populations. Over 99% of all possible amino acid substitutions in the protein were 

covered. Of the twenty possible amino acid substitutions at each site, change to proline was 

most likely to reduce function, and to cysteine was best tolerated, consistent with the known 

conformational effects of amino acid side chains on protein structure16. Each of the 505 

amino positions in PPARγ was assigned a “tolerance score” by combining function scores 

of the 19 alternative amino acids at that position (Figure 1B). Tolerance scores were overlaid 

on the known crystal structure of PPARγ (Figure 2B)17,18 demonstrating that amino acid 

positions that are intolerant of substitution cluster at residues that contact DNA, co-

activating proteins, and ligands (rosiglitazone) (Figure 1B, 2B).

We next examined the function scores derived from the CD36/macrophage assay for those 

mutations previously reported in patients with lipodystrophy/insulin resistance and known to 

diminish PPARγ activity (Figure 2A). These pathogenic variants (Figure 2A, 2C), clustered 

in the PPARγ ligand-binding and DNA-binding domains19,4 and had function scores 

demonstrating enrichment in the CD36-“low” activity bin. In contrast, higher frequency 

variants including the common P12A variant had function scores demonstrating enrichment 

in the CD36-“high” activity bin (Figure 2C, Supplementary Table 1). The distribution of 

function scores for the pathogenic and common variants were significantly different (p < 

6x10-7, KS test).

Linear discriminant analysis was used to combine function scores for each of the 9,595 

variants across multiple agonist conditions (Figure 2C) into a classifier that maximized 

discrimination between the set of lipodystrophy-associated variants and the set of high 

frequency variants described above. The classifier emits the likelihood of each variant being 

drawn from either of the two classes (pathogenic or benign) and can be expressed as a 

continuous integrated function score (IFS) (Figure 2C-D).

As above and described in the Methods, the classifier was trained on pathogenic variants 

obtained from the published literature and benign variants from population-based 

sequencing20. In order to evaluate the performance of the model on independent data, we 

turned to novel variants obtained in population-based exome sequencing and sequencing of 

PPARG in patients referred to specialty clinics for possible lipodystrophy and early-onset 

diabetes. Specifically, we tested the predictions of functionality emitted by the classifier 

using standard assays and correlation to clinical phenotypes.

The classifier was applied to data from exome sequencing of 22,106 case/controls selected 

for study of early-onset myocardial infarction (MIGEN21). In total, 57 missense variants in 

PPARG were observed with minor allele frequency < 0.1%. Of these, 74% (n=42/57) were 
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novel and thus had not previously been functionally characterized (Supplementary Table 1). 

In order to calculate a posterior probability of pathogenicity relevant to the clinical context 

in which the carriers were identified we combined the IFS of these variants with the 

estimated prevalence of FPLD3 in the general population (1:100,000-1:1,000,00019). One 

variant, p.R194Q, was estimated pathogenic with high posterior odds (benign:pathogenic) of 

1:10,000. The individual who was heterozygous for p.R194Q carried a diagnosis of T2D and 

had fasting triglyceride levels in the 99th percentile (Supplementary Table 2). As described 

below, p.R194Q was independently identified in a separate individual referred for clinical 

features of lipodystrophy (Figure 3, and Supplementary Table 3) who similarly manifested 

T2D and severe hypertriglyceridemia. Moreover, the p.R194Q variant abolished PPARγ 
transactivation activity in standard assays (Figure 3C). The combination of clinical and 

functional data indicate that p.R194Q is likely pathogenic, and that the individual from 

MIGEN may have undiagnosed FPLD3.

We next applied the classifier to variants ascertained from 335 patients referred to UK 

centers specializing in monogenic forms of diabetes and/or insulin resistance. Thirteen 

individuals were identified as carrying novel missense variants in PPARG (Supplementary 

Table 2 and 3), of whom 77% (10/13) had clinical features suggestive of lipodystrophy and 

associated metabolic derangement including severe insulin resistance, non-alcoholic fatty 

liver, dyslipidaemia and low serum adiponectin (Supplementary Table 3). The IFS for these 

thirteen variants were lower than those found in the population-based cohort (above and 

Figure 3A) (P<0.005 Student’s t-test). For each variant, the posterior probability of 

pathogenicity was calculated by combining the IFS for that variant and the prevalence of 

FPLD3 in patients ascertained in these specialty clinics (~1:7 as estimated from the 

Cambridge national lipodystrophy clinic records).

Three variants (p.E54Q, p.D92N, p.D230N) were found in patients without clinical features 

of lipodystrophy who had been referred for sequencing based on suspected monogenic 

diabetes. Despite a higher prior probability based on ascertainment in specialty clinics, these 

three variants were classified as benign with high confidence (posterior odds 

benign:pathogenic = 200:1) (Supplementary Table 2). Moreover, when tested individually in 

standard PPARγ reporter assays these variants showed function indistinguishable from wild-

type PPARγ (Figure 3C). Thus, the rate of benign variant identification in individuals 

ascertained in specialty clinics (~1:110, n=335) was similar to the rate of benign variants 

identified in the MIGEN cohort (~1:200, n=22,106).

Three variants (p.M31L, p.R308P, p.R385Q) classified as benign with high confidence were 

found in individuals with clinical features of partial lipodystrophy. The p.M31L variant was 

found in a female proband with features of lipodystrophy and metabolic derangement 

(Supplementary Table 3); critically, her daughter had a very similar fat distribution and 

metabolic phenotype but did not carry the p.M31L variant. Thus, in this case, the phenotype 

did not segregate with genotype at PPARG. An individual with partial lipodystrophy carried 

p.R385Q, which was independently identified in a woman from the population-based cohort 

who had not developed T2D at age 61 (Supplementary Table 2). When tested in PPARγ 
reporter assays, these variants retained reporter activity, albeit subtly diminished under some 

conditions (Figure 3). The combination of functional testing, clinical data, and segregation / 
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epidemiology suggests that p.M31L, p.R308P, and p.R385Q are likely incidental findings, 

although it is not possible to rule out that they act as partial risk-factors for metabolic 

phenotypes.

Six variants (p.R194Q, p.A417V, p.R212W, p.P387S, p.M203I, p.T356R) were found in 

patients with lipodystrophy and classified as pathogenic with high probability (posterior-

odds benign:pathogenic = 1:>25,000). Five of the six were confirmed as defective in 

classical transactivation assays. The exception was p.R212W, where transactivation function 

when tested using a synthetic PPARγ response element (PPRE) was normal. However, 

R212W showed less activity in a reporter assay with an endogenous promoter (Figure 4A), 

and reduced in vitro binding to three PPREs (Figure 4B). The R212 side-chain forms 

multiple hydrogen-bond contacts in the minor-groove-bound DNA (Figure 4C), outside the 

main PPRE binding motif.These data indicate that R212W is likely a pathogenic variant 

despite not showing decreased activity in the traditional functional assay using a synthetic 

promoter.

Finally, p.T468K, found in a single patient with partial lipodystrophy, was classified by IFS 

as pathogenic with low confidence (posterior-odds benign:pathogenic = 2:3): its score fell in 

the overlapping tails of the benign and lipodystrophy-associated variant distributions. In 

PPARγ reporter assays, this variant demonstrated severely decreased function (Figure 3), 

supporting that p.T468K is likely a pathogenic variant.

We previously reported that rare missense variants in PPARG that impair function in a 

single-variant adipocyte differentiation assay confer increased risk of T2D in the general 

population 5. We re-examined this relationship using functional annotation emitted by the 

classifier (i.e. IFS) for the original sample of 118 PPARG variant carriers ascertained from 

19,752 T2D case/controls (Figure 5A). We observe a long tail of variants with low IFS in 

T2D cases but not controls (P =0.024, two-sample Kolmogorov-Smirnov test). We quantified 

this inverse relationship between IFS and T2D case status (logistic regression beta = -0.49 

+/- SE 0.15, P=0.002). The odds ratio for T2D in carriers of variants with the lowest tertile 

of IFS (as compared to carriers of variants in the highest tertile) was 6.5 (95%CI 1.9 – 41) 

consistent with our previously published estimate5. The odds ratio for the middle vs highest 

tertile of IFS was 2.0 (95%CI 1.3 – 3.1) suggesting that PPARG variants with even 

moderately reduced IFS confer a modest increase in T2D risk. By contrast, a conventional 

predictor of mutation deleteriousness (CONDEL score22) failed to distinguish between 

likely pathogenic and benign variants (Figure 5b; P > 0.1 two-sample Kolmogorov-Smirnov 

test) by misclassifying many likely benign variants as pathogenic (Figure 5C).

These data show that it is possible to experimentally characterize all possible missense 

variants in a mammalian gene and use the information to guide interpretation of VUS, a 

concept that has been previously applied to single protein domains23,24. Testing variants 

prospectively (that is, prior to their discovery in patients) overcomes barriers of time and 

scalability that have thus far made it impractical to incorporate experimental data into 

routine clinical variant interpretation. Furthermore, by simultaneously and consistently 

evaluating all variants in a single experiment, more valid comparisons can be made across 
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variants as compared to data on different variants generated in different labs at different 

times.

The PPARG classifier annotated as benign nearly all variants (56/57) incidentally identified 

in a study of myocardial infarction. The one variant classified as pathogenic with high 

confidence (and confirmed by single variant laboratory experiments) was observed in an 

individual with hypertriglyceridemia and T2D, and independently observed in a patient with 

lipodystrophy, likely indicating FPLD325. In 12/13 cases referred for suspected 

lipodystrophy or monogenic diabetes and carrying a PPARG variant, the classifier provided 

immediate, high confidence information regarding the likelihood of a functional defect and a 

molecular diagnosis of FPLD3. In only a single case (p.T468K) did the classifier not provide 

a high confidence estimate and low-throughput laboratory assays fail to corroborate the 

pooled assay data13.

Systematic variant construction, pooled experimental characterization in relevant assays, and 

statistical integration with epidemiological data offer a generalizable approach to enable 

genome interpretation at clinically important genes, reducing overdiagnosis6,9 and 

diagnostic uncertainty8. Fully realizing such comprehensive approaches will require a 

complementary array of methods26. The PPARG construct library is easily shared so that 

others can generate and contribute function scores in other assays27, but as a transgene 

library it is not ideally suited for detecting functional effects of coding variation on splicing 

efficiency. Given the limitations on the library and because CD36 expression is unlikely to 

report on all the functions of PPARγ we have made the PPARγ classifier available as a web 

application (http://miter.broadinstitute.org) that can be updated as new genetic and 

functional data become available. Broadening this approach to other genes and diseases will 

require cellular assays that read out disease relevant characteristics, are robust and scalable, 

and the availability of training sets of pathogenic and benign variants. Such assays and 

variants exist for a number of Mendelian disease genes, making it possible to apply a similar 

approach to help interpret VUS for many other clinical situations.

Methods

Synthesis and assembly of 9,595 PPARG variant constructs

A library of all 9,595 possible single amino acid variants in PPARG was synthesized using a 

site-directed, multiplexed method (Mutagenesis by Integrated TilEs (MITE)28) adapted to 

render it suitable for saturation mutagenesis in mammalian cells. Detail is provided below 

where methodologic advancements were made permitting saturation mutagenesis of 

PPARG. First, the PPARG cDNA sequence (CCDS2609.1) was recoded (see Supplementary 

Table 4) to eliminate susceptibility to restriction enzymes and CRISPR/CAS9 targeting 

sgRNAs (see below) to enable a “delete and replace” strategy. As described previously, DNA 

oligonucleotides were synthesized on a programmable microarray, each oligonucleotide 

encoding a desired amino acid change but otherwise homologous to the template un-mutated 

PPARG in all other respects. Oligonucleotides were organized into ‘tiles’, where those 

within each tile differ in a central variable region but share identical 5’ and 3’ ends (see 

Supplementary Table 4). Tiles were staggered such that their variable regions collectively 

span the entire template. To ensure uniform amplification and reduce chimera formation for 
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the longer PPARG template, the protocol was modified to amplify each tile by emulsion 

PCR (MICELLULA DNA Emulsion & Purification Kit; EURx). The resulting products 

were inserted into linearized plasmids (Phusion® High-Fidelity DNA Polymerase NEB 

M0530) that carry the remaining template sequence using multiplexed Gibson assembly 

(NEBuilder® HiFi DNA Assembly Master Mix, NEB, cat E2621L) according to the 

manufacturer’s protocol. A “frameshift cleaning” procedure was introduced given that the 

most common error mode during library construction (25-30% of constructs; data not 

shown) resulted from oligo synthesis errors causing 1-2 bp indels. The PPARG template 

vector was designed such that all PPARG constructs terminated with amber stop codons (i.e. 

TAG) and bore an in-frame zeocin resistance cassette (pUC57-PPARG-zeo; GenScript). 

Constructs bearing frame-shifting indels were depleted by transforming into an amber 

suppressor cloning host (TG1, Lucigen) and selecting the construct library under zeocin and 

kanamycin dual selection. Library plasmids were purified from >106 colonies to preserve 

complexity and the frameshift depleted PPARG transgenes excised from the zeocin 

resistance cassette. To enable mammalian cell transduction, the transgene library was 

transferred into a lenti-viral expression vector by simple restriction cloning and transfected 

into a packaging cell line to produce pooled lenti-virus according to standard protocols 

(pLXI_TRC401; http://www.broadinstitute.org/rnai/public/resources/protocols)5.

Deletion of endogenous PPARG in THP-1 monocytes using CRISPR/CAS9

The endonuclease Cas9 and sgRNAs targeting exon 6 of PPARG and exon 8 of a control 

gene, PHACTR1, were introduced into THP1 cells by lenti-viral transduction (see 

Supplementary Table 4). To quantify modification of the endogenous gene, genomic DNA 

was extracted at multiple time points, amplified by PCR around the PPARG sgRNA target 

site and Sanger sequenced (see Supplementary Table 4). Cutting efficiency was determined 

using the TIDE web tool for decomposition analysis of the sequencing traces29.

Twenty-one days after transduction of CRISPR/Cas9 with PPARG or control sgRNAs, cells 

were tested for PPARG response by gene (FABP4) and protein (CD36) expression to 

validate lack of functional endogenous PPARG. PPARG targeting sgRNA and control 

sgRNA treated THP1 cells were stimulated with 1 μMRosiglitazone in THP1 growth media 

(RPMI 1640 + 10% heat-inactivated FBS + 1% PenStrep + 0.1% BME) for 72 hours. mRNA 

was then extracted and quantified for FABP4 gene expression(nanoString Technologies). For 

CD36 protein expression, THP1 cells were stimulated with 50 ng/mL PMA and 1 μM of 

Rosiglitazone in growth media for 72 hours. Cells were then detached from the plate, 

washed and stained with a monoclonal antibody to CD36 according to the manufacturer’s 

protocol (Miltenyi 130-100-149) and subjected to flow cytometry.

Simultaneous testing of 9,595 PPARG variants in experimental assays

The PPARG construct library was introduced into a human monocytic cell line (THP-1: 

obtained from http://www.broadinstitute.org/achilles and tested mycoplasma negative) 

engineered through CRISPR/CAS9 to lack endogenous PPARG (Supplementary Figure 2) 

by pooled infection. While isoform 1 of PPARG is dominantly expressed in monocyte/

macrophages, we expressed isoform 2, which is identical in sequence but encodes a protein 

with an additional 28 N-terminal amino acids. Both isoforms demonstrated identical ligand 
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dependent activity. The pooled virus was diluted such that the multiplicity of infection 

(number of viral particles per cell) was 0.3 so that each monocyte would receive zero or a 

single PPARG variant. Uninfected cells were eliminated by selection with puromycin 2 

μg/mL. Expression of the PPARG transgene was controlled by a doxycycline inducible 

promoter5. At least 107 cells were infected to ensure that each PPARG variant was 

independently represented in 1000 monocytes. The resulting polyclonal population of 

THP-1 monocytes containing the PPARG variant library was stimulated for 72 hours with 1) 

50 μM phorbol ester (PMA) to induce differentiation into macrophages, 2) doxycycline 1 

μg/mL to induce expression of PPARG constructs, and 3) low/high doses (based on ranges 

used in prior studies 13) of thiazolidinedione (Roziglitazone 0.1 μM/1 μM) or proposed 

natural ligand30 (Prostaglandin J2 (PGJ2) 0.1 μM/10 μM) to stimulate PPARG activity. The 

population of stimulated THP-1 macrophages was immuno-stained for CD36 (Miltenyi: 

130-095-472), a cell surface protein that is a direct transcriptional target of PPARG 15. 

Using fluorescence activated cell sorting, stained cells were grouped into two activity bins 

separated by at least 5-10 fold expression of CD36 and selected to encompass equal numbers 

of cells (Supplementary Figure 3). For each stimulation condition, at least three replicates 

were generated, each with at least 5×106 cells sorted. To re-identify and quantitate the 

PPARG variants in the CD36 ‘high’ and ‘low’ bins, genomic DNA was extracted from the 

cells in each bin and the integrated proviral PPARG transgenes amplified by PCR and 

shotgun sequenced (Nextera, Illumina). Raw sequencing reads were aligned to the reference 

PPARG cDNA sequence (see Supplementary Table 4) and the number of occurrences of 

each amino acid at each position along the coding region counted and tabulated with a 

custom aligner. To minimize erroneous mutation calls, only codons that matched designed 

mutations and consisted of high quality base calls (Phred score > 30) were tabulated. Over 

99 percent of the designed amino acid substitutions were observed at least 50 times for a 

given experimental condition (see Supplementary Figure 1). A raw function score was 

calculated based on the ratio of observed frequencies of each mutant amino acid in the two 

CD36 activity bins (see Figure 1).

Calculation of raw function score

Control experiments showed that variants deleterious to PPARG function were enriched in 

the CD36 low fraction and benign variants enriched in the CD36 high fraction. We 

constructed a likelihood function based on the log-odds of an amino acid variant in the 

CD36 high and low fractions. The log-odds for each amino acid variant was estimated by 

maximizing a likelihood function based on the observed counts of each amino acid variant in 

the CD36 high and low fractions as well as the total read depth at that amino acid position. 

Data were combined across experimental replicates after determining replicate variability 

(see Supplementary Figure 4). To avoid spuriously high or low log-odds estimates for any 

given variant, we constrained the log-odds estimate with a Gaussian prior whose parameters 

were estimated from data combined across all variants. See “Supplemental Note: 

Supplementary Analytic Methods” for detailed specification.

Construction of a PPARG classifier by supervised machine learning

To predict the likelihood of novel variants being benign and pathogenic, we developed a 

classifier based on raw function scores obtained across various experimental conditions. The 

Majithia et al. Page 8

Nat Genet. Author manuscript; available in PMC 2017 April 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



synthesis of multiple experimental conditions was intended to span a greater range of 

possible activities of PPARγ than would be queried using a single condition. Specifically, 

we used linear discriminant analysis (MASS package in R 3.0) to train the classifier, 

adopting a two-class model. The model incorporates as parameters (a) raw function scores 

for each PPARγ variant as measured across the four experimental conditions (i.e. 

rosiglitazone (Rosi) and Prostaglandin J2 (PGJ2) at high and low doses) and (b) mutation 

tolerance scores calculated for each position in PPARG as measured across the four 

experimental conditions (see Figure 1B). Potential classifiers were systematically 

constructed on linear combinations of four of these eight parameters, with a requirement that 

one parameter be included from each experimental condition. Classifier models were built 

for each the 16 possible combinations of four parameters using a training set of pathogenic 

and benign PPARγ variants (see Supplementary Table 1). Pathogenic variants used to train 

the classifier were selected based on (a) segregation with FPLD3 and (b) prior demonstration 

of loss-of-function in cellular assays. Benign variants used to train the classifier were 

selected from among variants identified in 60,706 aggregated exome sequences20 at an 

allele frequency rendering them very unlikely to be causal for FPLD3 under a dominant 

model of inheritance and prevalence estimate ranging from 1:100,000 to 1:1,000,000 

(P<0.05 1-tailed binomial probability n=121,412 chromosomes, p=10-5) (see Supplementary 

table 1). The performance of these 16 models was compared using a leave-one-out cross-

validation (LOOCV) protocol with each model scored by its aggregate ability to correctly 

classify the “left-out” variant over all the cycles of LOOCV. The highest scoring model 

consisted of raw function scores for each possible variant obtained from three conditions 

(Rosi 1μM, Rosi 0.1μM, PGJ2 10μM) and mutation tolerance score for each position in 

PPARG obtained from PGJ2 0.1μM. This model was fit to the full training dataset for 

prospective evaluation of novel PPARG variants. The weighted sum of the four parameters 

in the final model, as fit by the LDA algorithm, is denoted as the integrated function score 

(IFS) (see Figure 2C and Supplementary Figure 5) and represents an aggregate measure of 

variant function over the four experimental conditions. For clinical prediction, the IFS was 

expressed as an odds (benign:pathogenic), which when multiplied by the estimated prior 

odds of FPLD3 based on the clinical situation (i.e. prevalence) yielded an estimated 

probability of pathogenicity. Because the final model was trained on the full set of available 

pathogenic and benign variants, its performance next required prospective evaluation on a 

completely independent set of variants. These variants were obtained from the population 

and clinic data described below, and evaluated as described in Figure 3.

Missense PPARG variants identified in population based exomes and clinically referred 
individuals

The study was conducted in accordance with the Declaration of Helsinki, and approved by 

research ethics committees; written informed consent was obtained from all participants.

Missense PPARG variants were extracted from 22,106 exomes (8,400 with early-onset 

coronary artery disease and 12,804 controls) sequenced by the Myocardial Genetics 

Consortium (MIGEN) as described elsewhere21. Study participants were ascertained from 

the following studies: ATVB, DHM, DUKE, JHS, ESP-EOMI, MedStar, OHS, PennCath, 

PROCARDIS, PROMIS, and REGICOR. Participants were of European ancestry (n=12,849; 
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58%), Asian ancestry (n=6,823; 31%), African ancestry (n=2,399; 11%), and “other or 

unknown” self-reported ethnicity (n=34; 0.2%). Twenty-two percent (n=4,258) reported a 

diagnosis of T2D.

Patients were referred to one of two UK centers (Cambridge: www.cuh.org.uk/national-

severe-insulin-resistance-service or Exeter: www.diabetesgenes.org) which specialize in 

syndromes of severe insulin resistance and/or monogenic forms of diabetes. In clinically 

suspected FPLD3 cases, mutations in PPARG were identified in genomic DNA extracted 

from peripheral-blood leukocytes using PPARG amplification and sequencing. In patients 

for whom FPLD3 was not the primary clinical diagnosis, PPARG was sequenced as part of a 

targeted next-generation panel of 29 genes31 selected to improve diagnostic yield for 

suspected monogenic diabetes. Mutations were confirmed in index patients and, where 

possible, from family members. In all instances, the nomenclature used for missense variants 

is for isoform 2 of PPARG (transcript accession: NM_015869.4; protein accession: 

NP_056953.2).

Individual testing of PPARG variant function by transcriptional activity

The novel variants identified in patients with suspected familial lipodystrophy or diabetes 

were characterized using a well-established PPARG reporter containing three, tandemly-

repeated, copies of the PPRE from the Acyl-CoA oxidase (AcCoA: 5’ 

ggaccAGGACAaAGGTCAcgtt 3’) gene upstream of the thymidine kinase (TK) promoter 

and luciferase. In brief, 293EBNA cells, cultured in DMEM/10%FCS were transfected with 

Lipofectamine2000 in 24-well plates and assayed for luciferase and β-galactosidase activity 

as described previously13 following a 36-hour incubation with or without ligand.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Comprehensive functional testing of 9,595 PPARγ amino acid variants.
a) A library of 9,595 PPARG constructs was synthesized, each construct containing one 

amino acid substitution. The construct library was introduced into THP-1 monocytes (edited 

to lack the endogenous PPARG gene) such that each cell received a single construct. This 

polyclonal population of THP-1 monocytes was differentiated to macrophages and 

stimulated with PPARγ agonists (rosiglitazone, PGJ2); the stimulated macrophages were 

separated via fluoresence activated cell sorting according to expression of the PPARγ 
response gene CD36 into low (-) and high (+) activity bins. Each bin of cells was subject to 
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next-generation sequencing at the transgenic PPARG locus to identify and tabulate 

introduced variants. PPARγ variant counts in the CD36 low and CD36 high bins were used 

to calculate a functional score for all 9,595 variants. b) Raw PPARγ function scores for each 

of the 9,595 variants plotted according to amino acid position along the PPARγ sequence. 

“Blue” denotes that any amino acid change away from reference results in low CD36 

function score, whereas ”white” denotes that amino acid changes do not alter function; 

“grey” denotes the reference amino acid. Function scores summed by amino acid position 

are plotted to the right, denoting tolerance for any amino acid substitution away from 

reference.
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Figure 2. Integrating experimental function to construct a PPARγ classification table.
a) Raw PPARγ function scores ranked for all 9,595 PPARγ variants tested. Highlighted in 

red are raw function scores of known lipodystrophy causing mutations if they reside in the 

DNA-binding domain (DBD) or in orange if they reside in the Ligand-binding domain 

(LBD). The common P12A variant is shown in blue. b) Mutation tolerance scores as 

described in Figure1 are shown color-coded and mapped onto the known crystal structure of 

PPARγ with RXRα, NCoA and Rosiglitazone. “Red” denotes that amino acid changes away 

from reference results in low CD36 function score, whereas ”white” denotes that amino acid 
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changes do not alter function. c) Raw PPARγ function scores were obtained for 9,595 

variants under four experimental conditions: 1) 1 μM Rosiglitazone, 2) 0.1 μM 

Rosiglitazone, 3) 10 μM Prostaglandin J2, and 4) 0.1 μM Prostaglandin J2. The function of 

known benign (n=13) and lipodystrophy-causing (n=11) variants are highlighted in blue and 

red respectively with their overall distributions overlaid. The raw function scores were 

combined into an integrated function score (IFS) after classifier training using linear 

discriminant analysis (LDA).
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Figure 3. Experimental and clinical classification of novel missense PPARG variants identified in 
sequenced individuals.
a) Variants identified in patients plotted according to their integrated function score (IFS) 

alongside the IFS distributions of known benign, and lipodystrophy associated variants. b) 

Diagnostic classification for Familial Partial Lipodystrophy 3 (FPLD3) expressed as 

posterior probability of non-pathogenicity of PPARG variants shown in (a). Posterior 

probability was calculated by combining IFS with prevalence of lipodystrophy in the general 

population (1:100,000) or from patients referred for lipodystrophy/familial diabetes (1:7). c) 

The variants identified in patients were individually recreated and tested for their ability to 
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activate luciferase reporter constructs containing three, tandemly-repeated, copies of the 

PPRE from the Acyl-CoA oxidase gene linked to the thymidine kinase promoter under 

varying doses of pharmacologic (rosiglitazone) or endogenous (prostaglandin J2; PGJ2) 

ligands (mean +/- S.E.M n =5). Variants are grouped according to not-pathogenic/pathogenic 

designation in (b).
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Figure 4. Ability of PPARγ p.R212W to transactivate gene expression and bind DNA at 
endogenous enhancers
a) Ability of PPARγ2 WT or R212W mutant to activate luciferase reporter constructs 

containing FABP4 promoter under varying doses of pharmacologic (rosiglitazone 0-1μM) or 

endogenous (prostaglandin J2; PGJ2 0-10μM) ligands (mean +/- S.E.M n = 5). b) 

Comparison of the DNA binding properties of in vitro translated wild type or mutant PPARγ 
proteins, tested in electrophoretic mobility shift assays using either γ1 (R184W) or γ2 

(R212W) mutants and radiolabelled PPREs from the acyl coenzyme A oxidase (AcCoA: 5’ 

ggaccAGGACAaAGGTCAcgtt 3’ ), fatty acid binding protein 4 (FABP4: 

5’aaacaCAGGCAaAGGTCAgagg 3’) or muscle carnitine palmitoyl transferase 1 (CPT1: 5’ 

atcggTGACCTtTTCCCTaca 3’) promoters with retinoid X receptor (RXR) and increasing 

concentrations of ligand (Rosiglitazone 0 to 10uM). RL, reticulocyte lysate. c) PPARγ 
colored by mutation tolerance scores obtained under stimulation with 1μM Rosiglitazone in 

THP-1 cells. As in Figure 2b, red represents sites that exhibited low CD36 response when 
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mutated away from WT. Arginine 212 is highlighted which occurs in the ‘hinge’ region of 

PPARγ connecting the DNA binding and ligand binding domains. The positively charged 

arginine side chain extends into the minor groove of DNA forming multiple hydrogen bonds 

with bases.
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Figure 5. Relationship of PPARγ function to T2D risk in the general population.
a) Missense PPARγ variants identified from 19,752 sequenced type 2 diabetes (T2D) case/

controls plotted according to IFS (integrated functional score) from the PPARγ classification 

table alongside the IFS distributions of known benign, and lipodystrophy associated variants. 

Each point represents a missense variant; point size denote the number of individuals 

carrying that variant. Among the 118 individuals carrying missense PPARγ variants T2D 

cases contained a long tail of low-functioning missense variants, which was notably absent 

from the distribution of variants observed in T2D controls (p = 0.024 two-sample 
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Kolmogorov-Smirnov test). b) When the same 118 individuals were plotted according to 

computational prediction of deleteriousness no difference is distributions of functional 

variants is seen among T2D cases vs controls (p > 0.1 two-sample Kolmogorov-Smirnov 

test). c) Scatterplot of IFS vs computational prediction scores for PPARγ missense variants 

from T2D case/controls as described above.
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