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ORIGINAL ARTICLE

Abstract: Medical conditions such as epilepsy or infection with 
human immunodeficiency virus (HIV) are known to be associated 
with a spectrum of adverse health outcomes if not appropriately 
managed by efficacious treatment and care. Medications for such 
conditions can be potent, and their use might sometimes have unin-
tended health consequences. Prominent examples have emerged in 
HIV perinatal research in which use of antiretroviral treatment dur-
ing pregnancy to treat maternal HIV infection and prevent trans-
mission of the virus to the fetus have been shown to be associated 
with adverse birth outcomes. Likewise, use of antiepileptic drugs 
during pregnancy to treat maternal epilepsy has been shown to 
increase the risk of birth defects. Pharmacoepidemiology studies 
routinely aim to quantify the extent to which, in such settings, an 
observed association between an underlying medical condition and 
certain health outcomes can be attributed to the natural progression 
of the disease, and the extent to which it might be mediated by 
medication used to slow disease progression. We describe a sim-
ple yet principled methodology to quantify medication-mediated 
effects to address these types of queries. While methods for causal 
mediation analysis abound, there also has been much criticism of 
these methods as relying on untestable and sometimes unrealistic 
assumptions. In contrast, here we show that when the disease-free 
control group is also medication-free, mediated effects of the type 
described above are nonparametrically identified under standard 
no-unobserved confounding conditions, thus establishing that such 
effects are in a sense immune to recent criticism leveled at causal 
mediation methodology.

(Epidemiology 2017;28: 439–445)

There has recently been a surge of interest in epidemiologic 
methods for causal mediation analysis.1–16 Such methods 

aim to quantify the extent to which the effects of a given expo-
sure are mediated by an intermediate variable on the causal 
pathway to the outcome.1,2 In pharmacoepidemiology, queries 
of this type arise routinely in the context of understanding 
the mediating role of exposure to medication prescribed to 
combat disease progression. Specifically, medications taken 
for serious health conditions such as infection with HIV or 
epilepsy can be potent, and their use to slow disease progres-
sion and improve the health of those living with the condition 
might sometimes have unintended health consequences.

Several prominent examples have recently emerged in peri-
natal epidemiology research, where the use of some medications 
during pregnancy has been associated with adverse birth outcomes. 
For instance in HIV research, several studies have shown evidence 
for an increased risk in stillbirths, preterm delivery, and small for 
gestational age among women who used combination antiretrovi-
ral treatment (ART) during pregnancy compared with those who 
did not17–21; yet the use of combination ART during pregnancy is 
the standard of care for HIV-infected pregnant women due to the 
remarkable efficacy of these medications to treat maternal HIV 
infection and simultaneously prevent transmission of the virus to 
the fetus.22–24 Likewise in epilepsy research, a harmful association 
has been found between use of antiepileptic drugs during preg-
nancy and adverse birth outcomes, including birth defects, growth 
retardation, and cognitive function.25–28

In both settings described above, it is of interest to quantify 
the extent to which an existing association between an underly-
ing medical condition and certain health outcomes can be attrib-
uted to the natural progression of the disease, and the extent to 
which such an association might be mostly mediated by medica-
tion used to slow disease progression. Recent literature on causal 
mediation analysis has made important contributions toward a 
formalization of causal and statistical conditions under which 
one might be able to decompose the total effect of an exposure 
into the effect not mediated by a specific intermediate variable 
(known as the direct effect) and the effect mediated by the inter-
mediate variable (known as the indirect effect), accounting for 
pre-exposure confounding, interactions, and possible nonlineari-
ties.1,2,4 Henceforth, any mention of direct/indirect effects in this 
article will specifically be referring to the so-called natural direct/
indirect effects of Robins–Greenland–Pearl1,2 which are formally 
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defined in the next section. Natural direct/indirect effects are par-
ticularly relevant to our interest in medication-mediated effects as 
they sum-up to produce the total effect of exposure to the disease 
on birth outcome, and therefore quantify the extent that an effect 
might be operating through medication versus by another path-
way. In contrast, so-called controlled direct effects are arguably 
not of primary interest in this article, as they quantify residual 
effects of the disease in question on birth outcome if one were 
to hypothetically intervene and say prevent all persons in the 
population from exposure to medication irrespective of disease 
status; thus controlled direct effect cannot generally be used to 
quantify indirect effects and henceforth are not further consid-
ered. Recent advances in identification and inference about natu-
ral direct/ indirect effects have allowed for a better understanding 
of the strong assumptions needed for mediation analysis to have 
a compelling causal interpretation, of which some could never be 
enforced to hold even in experimental settings. In fact, a major 
limitation of mediation analysis (more specifically of natural 
direct and indirect effects) is that it is not generally possible to 
(nonparametrically) identify a mediated effect with a clear causal 
interpretation when the intermediate variable of interest is subject 
to exposure-induced confounding, even if all of the confound-
ers are observed.3,4,29 Because most examples of intermediate 
variables encountered in epidemiology, and certainly in pharma-
coepidemiology applications mentioned above, are bound to be 
confounded by post exposure variables, existing identification 
assumptions for causal mediation analysis may be of limited rel-
evance for modern epidemiologic practice. For instance, mater-
nal use of ART during pregnancy is likely to be confounded with 
maternal immune status (e.g., CD4 cell count), an important cor-
relate of birth outcomes, which is also influenced by maternal 
HIV status (i.e., the exposure). Therefore, CD4 cell count is likely 
an exposure-induced confounder of the effects of maternal ART 
use (the mediator) on birth outcomes, in which case, according to 
existing mediation theory, ART-mediated effects of HIV on birth 
outcomes would in principle not be identified empirically even 
if CD4 cell count were observed and there were no-unobserved 
confounders.

In this article, we exploit a particular feature shared by a 
large class of medication-mediated effects of interest in pharma-
coepidemiology to show that despite the previous observation, 
nonparametric identification remains possible in such settings, 
even in the presence of exposure-induced confounding, under 
fairly straightforward no-unobserved confounding assumptions 
that could in principle be enforced under a simple experimen-
tal design. Specifically, as is typically the case for a number of 
diseases, healthy persons are a priori excluded from receiving 
medication for the disease in question. As we establish, this par-
ticular restriction allows one to identify the natural direct effect 
(and the natural indirect effect) of exposure to disease not medi-
ated (mediated) by medication from observational data, pro-
vided there is no-unobserved confounding even if a confounder 
of the mediator–outcome relationship is directly affected by 
exposure to disease. Therefore as we elaborate below, the 

specific mediation setting described in this article is in a sense 
immune to the aforementioned limitations. Interestingly, we also 
establish that the proposed medication-mediated effect (i.e., 
the natural indirect effect) retains a causal interpretation even 
if there is an unmeasured common cause between the exposure 
(i.e., maternal disease status) and the outcome (i.e., birth out-
come), provided that there is no unmeasured confounding of the 
effects of the mediator on the outcome, and of the effects of the 
exposure on the mediator. In other words, we formally show that 
medication-mediated effects may be causally interpreted even if 
effects of maternal disease status cannot be interpreted  causally. 
Results regarding robustness to unobserved confounding of the 
 exposure-mediator relationship, provided exposure-outcome 
and mediator-outcome relationships are unconfounded.

METHODS
We now introduce the notation, assumptions, and defini-

tions we will use throughout.

Identification conditions
We will first discuss a simple setting without exposure-

induced confounding of the mediator. Let A denote the exposure 
of interest, for example maternal epilepsy; let Y denote a post 
exposure outcome, such as a birth defect; and let M denote a post 
exposure intermediate variable to the outcome, such as use of 
antiepileptic drugs during pregnancy. Let C denote the value of a 
set of pre-exposure confounding variables of the effects of A and 
M on Y, for example age and race. Throughout, we will assume 
independent and identically distributed sampling of C, A, M, and 
Y. If there is no confounder of the mediator effect on the outcome 
that is affected by the exposure, then the relationships between 
these variables may be depicted in the causal diagram in Figure 1.

We now consider counterfactuals or potential outcomes, 
under possible interventions on the variables. Let Y(a) denote a 
subject’s outcome if exposure A were set, possibly contrary to 
fact, to a. In the context of mediation there will also be poten-
tial outcomes for the intermediate variable. Let M(a) denote a 
subject’s counterfactual value of the intermediate M if exposure 
A were set to the value a. Finally, let Y(a, m) denote a subject’s 
counterfactual value for Y if A were set to a and M were set to 

A M Y

C

FIGURE 1. No confounder of M–Y relation is affected by A.
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m. Robins and Greenland1 and Pearl2 considered the following 
decomposition of individual total effect of exposure A:

Y a Y a Y a M a Y a M a( ) − ( ) = ( )( ) − ( )( )( )* , *, * total effect
 (1)

 = ( )( ) − ( )( )( )Y a M a Y a M a, * *, * natural direct effect
 (2)

 + ( )( ) − ( )( )( )Y a M a Y a M a, , * natural indirect effect
 (3)

where a* indicates a reference or baseline value of A. For instance, 
it is common to choose a* = 0 and a = 1 for binary A, where a = 
1 indicates exposure to say, epilepsy. The contrast in (2) displayed 
above defines the natural direct effect of exposure A on outcome 
Y in a given person. The potential outcome Y(a*, M(a*)) captures 
the behavior of Y under the baseline exposure value, for example, 
the outcome under no epilepsy, while Y(a, M(a*)) describes the 
behavior of Y under the active exposure value, in a hypothetical 
situation where the mediator behaves as if exposure were set to 
baseline. Conceptually, for a = 1 and a* = 0, the potential outcome 
Y(a, M(a*)) could be obtained if it were possible in an interven-
tion to deactivate the component of the exposure that affects solely 
the mediator, so that the mediator would take the value M(a*), 
while at the same time leaving active the component of the expo-
sure which affects only the outcome, so that we would observe 
Y(1, M(0)). Using our epilepsy example, this is the potential out-
come if a person with epilepsy were to receive the treatment they 
would have received had they been epilepsy-free. The contrast in 
(3) of the display above corresponds to the natural indirect effect 
of exposure A on outcome Y. The potential outcome Y(a, M(a)) 
describes the behavior of Y under the active exposure value, while 
the second “subtracts off ” the behavior of Y under the active expo-
sure value in a hypothetical situation where the mediator behaves 
as if exposure were set to its baseline value. In graphical terms, 
the individual natural indirect effect quantifies the effect of A on 
Y along the indirect causal pathway A → M → Y, but not along 
the direct arrow from A to Y. Because potential outcomes under 
conflicting exposure status are never jointly observed, individual 
causal effects are generally not identified. However, one can hope 
that under certain assumptions, population average causal effects 
would become identified. Thus we shall consider estimation of the 
average total, natural direct, and natural indirect effects

TE

NDE

N

a a E Y a Y a

a a E Y a M a Y a M a

, * *

, * , * *, *

( ) = ( ) − ( ){ }
( ) = ( )( ) − ( )( ){ }

IIE a a E Y a M a Y a M a, * , , *( ) = ( )( ) − ( )( ){ }

A conventional interpretation of the graph in Figure 1 
implies the following no-unobserved confounding assump-
tions, for all a and m:

(a.1) A is independent of {Y(a), M(a)} given C;
(a.2) A is independent of Y(a, m) given C;
(a.3) M(a) is independent of Y(a, m) given C and A = a.

It is well known that the average total effect TE(a, a*) of A 
on Y is identified under assumption (a.1), and is given by the 
g-formula of Robins.30 The assumption that there is no expo-
sure-induced confounding of M may be unrealistic in many 
epidemiologic applications, particularly in pharmacoepidemi-
ology settings where A indicates disease status, and the media-
tor M is medication taken to slow disease progression. Because 
the decision to initiate treatment is likely based on a patient’s 
current health status, exposure-induced confounding of the 
mediator–outcome relation can seldom be ruled out. In the 
causal diagram depicted in Figure 2, N now encodes an expo-
sure-induced confounder of M. Thus, in this graph, N is simul-
taneously a confounder of the effects of the mediator M on Y, 
and on the causal pathway from exposure to outcome. Going 
back to our maternal epilepsy example, the decision to initiate 
anticonvulsants might be based on the number of seizures a 
woman experiences, and her seizure status will likely be asso-
ciated with birth defects. Seizure status is therefore simultane-
ously a confounder of the effect of antiepileptic drugs on birth 
defects and is also on the causal pathway of the effect of epi-
lepsy on birth defects. While the total effect of A on Y remains 
identified in Figure 2 by Robins’ g-formula, so that the pres-
ence of N presents no new difficulty, assumptions (a.1)–(a.3) 
do not suffice to identify NDE(a, a*) and NIE(a, a*).

We consider an alternative strategy for identification of 
NDE(a, a*) and NIE(a, a*) under the following conventional 
no-unobserved confounding assumptions encoded in the 
graph in Figure 2, (a.1), (a.2), and (b.3) given below

(b.3) Y(a, m) is independent of M(a) conditional on N, 
A = a and C.

Although not explicitly shown in Figure 2, our approach 
does not technically require that there be no-unobserved 
confounding between (C, N, and Y) and therefore there may 
be unobserved common causes of these variables, although 
we shall continue to suppress such variables as done in the 
graph. Throughout, for simplicity we set a = 1 and a* = 0, 

N M Y

C

A

FIGURE 2. N is a confounder of M–Y relation that is affected 
by A.
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so that we seek to identify NDE(1, 0) and NIE(1, 0). In this 
vein suppose that, as would usually be the case, the media-
tor indicates taking a particular medication (e.g., antiepilep-
tic drugs) which may only be prescribed to a person with a 
specific disease (A = 1, e.g., epilepsy), and all disease-free 
persons (A = 0, e.g., no epilepsy) remain unexposed to this 
specific medication. Formally, this can be stated with coun-
terfactuals as followed:

b. ,4 0 0( ) ( ) =M

that is, a person is to remain medication-free if possibly con-
trary to fact the person were to be disease-free. It then follows 
that under (b.4),

E Y M E Y1 0 1 0, , ,( )( ){ } = ( ){ }

and therefore,

NDE

NIE

1 0 1 0 0 0 1 0 0

1 0

, , , , ,

,

( ) = ( )( ) − ( )( ){ } = ( ){ } − ( ){ }
( )

E Y M Y M E Y E Y

== ( )( ) − ( )( ){ } = ( ){ } − ( ){ }E Y M Y M E Y E Y1 1 1 0 1 1 0, , , .

Because E{Y(1, 0)}, E{Y(0)} and E{Y(1)} are nonpara-
metrically identified by Robins g-formula under assumptions 
(a.1), (a.2), and (b.3) encoded in the graph of Figure 2, it fol-
lows that NDE(1, 0) and NIE(1, 0) are therefore empirically 
identified under assumptions (a.1), (a.2), (b.3), and (b.4). Tech-
nically, identification of E{Y(1, 0)} also requires the positivity 
assumptions Pr{A = 1|c} > 0 and Pr{M = 0|A = 1, c, n} > 0 
for all c and n; and likewise identification of E{Y(a)} requires 
that Pr{A = 1|c} > 0 for all c. These identification results of 
NDE(1, 0) and NIE(1, 0) are quite remarkable and may seem 
somewhat surprising as previous literature has suggested that 
NDE(1, 0) and NIE(1, 0) are generally not identified in the 
setting of Figure 2, even under fairly stringent conditions.4 In 
eAppendix 1 (http://links.lww.com/EDE/B152), we provide 
more extensive discussion about existing identification results 
in the literature, thus clarifying our previous claim that the 
proposed identification conditions are immune to well-known 
limitations of previous causal mediation methodology.

Instead of marginal effects, one may wish to estimate 
conditional effects such as say NDE(1, 0, c) = E{Y(1, M(0)) − 
Y(0, M(0))|c}. Then (b.4) likewise gives NDE(1, 0, c) = E{Y(1, 
0)|c} − E{Y(0)|c}. For binary outcome, effect decomposition 
on the risk ratio scale is perhaps more relevant with

TE Pr Pr

NDE Pr

1 0 1 1 0 1

1 0 1 0 1

, , | / | ,

, , , |

c Y c Y c

c Y

( ) = ( ) ={ } ( ) ={ }
( ) = ( ) = cc Y c{ } ( ) ={ }/ | ,Pr 0 1

and

NIE Pr Pr1 0 1 1 1 0 1, , | / , | ,c Y c Y c( ) = ( ) ={ } ( ) ={ }

such that TE(1 ,0, c) decomposes on the multiplicative scale as

TE NDE NIE1 0 1 0 1 0, , , , , , .c c c( ) = ( ) × ( )

It will also be of interest to quantify the proportion of 
the total effect that is mediated (known as proportion medi-
ated), given by

NIE TE1 0 1 0, , / , , ,c c( ) ( )

and

logNIE logTE1 0 1 0, , / , , ,c c( ) ( )

for the additive and multiplicative scales, respectively.31

Robustness of Medication-mediated Effects to 
Unobserved Confounding of Disease Status

It is instructive to consider the empirical expression of 
NIE(1, 0 ,c) under assumptions (a.1), (a.2), (b.3), and (b.4) 
which follows from straightforward application of Robins’ 
g-formula:

NIE 1 0 1 1 1 0, , , | , |c E Y M c E Y M c( ) = ( )( ){ } − ( )( ){ }

= = = = =∑
m n

E Y A m n c M m N n A c
,

( | , , , ) ( , | , )1 1Pr

− = = = =∑
n

E Y A M n c N n A c( | , , , ) ( | , ).1 0 1Pr

Interestingly, in eAppendix 1 (http://links.lww.com/
EDE/B152), we show that the empirical expression in the 
above display can still be interpreted causally even if only 
assumptions (b.3) and (b.4) hold but either of assumptions  
(a.1) or (a.2) does not as long as the other assumption holds. 
That is either (1) the effect of A on Y may be subject to unob-
served confounding but  both the effects of A on M and the 
effects of M on Y are not; or (2) the effect of A on M is subject 
to unmeasured confounding however both the effects of A on 
Y and the effects of M on Y are not. Specifically, we show that

| , ,

, | , |E Y M c E Y M c

E Y M Y M A c

1 1 1 0

1 0 1

( )( ){ } − ( )( ){ } =

( )( ) − ( )( ) =( )

which defines the natural indirect effect of A on Y medi-
ated by M among persons with A = 1 and C = c, that is, the 
conditional medication-mediated effect of exposure to dis-
ease among persons who have the disease, which we denote 
NIED(c). Therefore, we have successfully established 
that nonparametric identification of medication-mediated 
causal effects among diseased persons is possible even 
if the effects of disease status are subject to unobserved 

http://links.lww.com/EDE/B152
http://links.lww.com/EDE/B152
http://links.lww.com/EDE/B152
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confounding, provided that assumptions (b.3) and (b.4) 
hold. It is straightforward to show that the result also 
applies on the multiplicative scale. It is further possible to 
show that under (2) NDE(1,0,c) is infact nonparametrically 
identified. However, the result does not apply to either the 
total effect or the direct effect, and unobserved confound-
ing of disease status A will in general result in biased infer-
ences about these effects.

Inverse Probability Weighting Estimation of 
Medication-mediated Effects

Both simple parametric and semiparametric methods 
are well developed to estimate Robins’ g-formula for E{Y(a, 
m)|c} and, therefore, statistical inference does not present any 
new difficulty that is not easily addressed with existing meth-
odology. Here we shall only consider a simple weighted strat-
egy which is perhaps most relevant for routine application.32 
Suppose that Y is a rare, binary outcome, such that a standard 
logistic regression may be used to estimate the total effect of 
A conditional on C on the risk ratio scale, that is,

LogitPr Y A C b b A b C=( ) = + × +1 0 1 2| , ´

Then under assumption (a.1), TE(1, 0, c) ≈ exp(b1). To 
estimate the direct effect, one may simply run a weighted ver-
sion of the above logistic regression, Logit Pr(Y = 1|A, C) = B0 
+ B1 × A + B2'C, restricted to the sample of observations with 
M = 0, with individual weight Pr�{ | , , }M A C N A= −0 , where 
Pr� M A C N={ }0 | , ,  is the maximum likelihood estimator of 
LogitPr M A C N={ }0 | , ,  = d0 + d1 × A + d2'C + d3'N, the prob-
ability of remaining free of the mediator. Under assumptions 
(a.1), (a.2), (b.3), (b.4), the positivity assumption, and in the 
absence of model misspecification, this procedure will produce 
a consistent estimate of NDE(1, 0, c) = exp(B1). Intuitively, the 
direct effect of A can be evaluated among persons without the 
mediator, by comparing what their potential outcome would 
be if possibly contrary to fact they were disease free (therefore 
also without the mediator by (b.4)) to what it would be if they 
had the disease (and remained without the mediator). There-
fore a change in the outcome resulting from this contrast can 
only be attributed to an effect of the exposure not through the 
mediator. The weights are needed to account for post exposure 
confounding by N, which is only active for persons with the 
disease, because disease-free persons are also free of the medi-
ator by (b.4) and therefore are not susceptible to confounding 
of the mediator.

To estimate the indirect effect, one can evaluate the fol-
lowing ratio:

NIE TE NDE exp1 0 1 0 1 0 1 1, , , , / , , ] ( ),c c c b B( ) = ( ) ( ) = −

on estimating the total and direct effects as described above. 
Conservative Wald-type confidence intervals can be obtained 
for NDE(1, 0, c) using the standard sandwich variance 

estimator,32 or alternatively, more accurate confidence inter-
vals are available with the nonparametric bootstrap which 
may be used for inference about both NDE(1, 0, c) and NIE(1, 
0, c). Analogous steps can be followed for a nonrare binary 
outcome, on substituting the log-link for the logit link in all 
outcome regressions. Likewise, continuous outcomes can be 
handled by simply replacing logistic regression with linear 
regression in all outcome models.

Data Application
In this section, we illustrate the mediation analysis tech-

niques described above to quantify the AED-mediated effect 
of maternal epilepsy on birth outcomes (specifically, growth 
retardation, microcephaly, and hypoplasia of the fingers). To 
accomplish this, we decompose the total effect into two dif-
ferent pathways: (1) the effect of epilepsy on birth outcomes 
through a pathway mediated by use of antiepileptic drugs dur-
ing pregnancy, that is, the natural indirect effect, and 2) the 
effect of epilepsy on birth outcomes through a pathway that 
is not mediated by AED use, that is, the natural direct effect. 
For each birth outcome, we then estimate the proportion of 
the total effect of epilepsy that is mediated by antiepileptic 
drug use.

We used data from a study by Holmes et al.25 con-
ducted between 1986 and 1993 at five maternity hospitals 
in the Boston area (Brigham and Women’s Hospital, Beth 
Israel Hospital, St. Margaret’s Hospital, St. Elizabeth Hospi-
tal, and Newton-Wellesley Hospital). The goal of the study 
was to assess whether the increased risk of abnormalities in 
infants exposed to anticonvulsant drugs in utero are caused 
by the maternal epilepsy itself or whether it is due to expo-
sure to anticonvulsant drugs. Briefly, the study screened a 
total of 128,049 pregnant women at delivery to identify three 
groups of infants who were then examined for the presence 
of malformations: those whose mothers had epilepsy and 
were exposed to anticonvulsant drugs in utero (N = 316), 
those whose mothers had epilepsy but were unexposed to 
anticonvulsant drugs in utero (N = 98), and those unexposed 
to anticonvulsant drugs in utero with no maternal history of 
seizures (i.e., controls, N = 508). In the original article, stan-
dard multivariate logistic regression analyses were performed 
to assess the association between each exposure group and 
each of the outcomes adjusting for other risk factors; how-
ever, the study did not formally quantify the proportion of 
the total effect of maternal epilepsy that is mediated by anti-
convulsant use. The original study protocol was reviewed 
and approved annually by the institutional review board at 
each participating hospital. Additional details regarding the 
study sample, data extraction and analysis are available in 
the original article.25

Using SAS statistical analysis software (Version 9.4, 
SAS Institute, Cary NC), we evaluated the total effect by 
regressing each outcome on maternal epilepsy status using 
multivariate logistic regression to obtain risk ratio estimates,33 
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adjusting for risk factors that were available in our data source 
(maternal age and race). To estimate the natural direct effect 
of maternal epilepsy, we regressed each outcome on maternal 
epilepsy status using a weighted multivariate logistic regres-
sion and adjusting for the same risk factors as in the model 
for the total effect (maternal age and race); this analysis was 
restricted to the subsample of antiepileptic drug-naïve women 
(with or without epilepsy). Restricting the analysis to antiepi-
leptic drug-naïve women ensured that we isolated the effect 
of epilepsy that is not mediated by use of these drugs during 
pregnancy (i.e., direct effect). The weights for women with 
epilepsy were defined as the inverse probability of remain-
ing antiepileptic drug-naïve conditional on the woman hav-
ing epilepsy, her baseline risk factors (alcohol use, cigarette 
smoking, and substance abuse), and the severity of her sei-
zures during pregnancy (no seizures, no loss of conscious-
ness, or loss of consciousness). Because seizure status is 
both an important confounder of antiepileptic drug use and a 
mediator of the effect of epilepsy on growth retardation and 
malformations, it is not appropriate to adjust for it directly 
in the regression model and a weighted analysis is typically 
recommended as previously discussed.32 The weights were set 
to 1 for women who did not have epilepsy reflecting the fact 
that none of these women received antiepileptic drugs during 
pregnancy by study design (although in practice, some women 
with no epilepsy may receive these drugs for other medical 
reasons). Finally, we estimated the natural indirect effect by 
calculating the ratio of the total effect and direct effect risk 
ratios,31,34 and the proportion mediated as the ratio of the log 
indirect effect and the log total effect. Sample SAS code illus-
trating our analyses is provided in eAppendix 2 (http://links.
lww.com/EDE/B152).

Our results showed evidence of significant mediation 
of the effect of maternal epilepsy through a pathway involv-
ing antiepileptic drug use during pregnancy for microcephaly, 
growth retardation, and hypoplasia of the fingers (Table). 
The largest indirect effect was for microcephaly (proportion 
mediated = 87%), followed by growth retardation (propor-
tion mediated = 79%), while for hypoplasia of the fingers 
only 42% of the total effect of maternal epilepsy is through 

a pathway involving antiepileptic drug use during pregnancy. 
We therefore conclude, based on these results, that use of anti-
epileptic drugs mediates the majority of the effect of mater-
nal epilepsy on microcephaly and growth retardation, while 
another pathway (not involving these drugs) possibly accounts 
for the majority of the effect of maternal epilepsy on hypopla-
sia of the fingers.

Although our analyses accounted for age and race as 
potential confounders, one cannot rule out with certainty the 
presence of unmeasured confounding. Fortunately, as previ-
ously shown, our estimates of indirect effects are robust to 
unmeasured confounding of maternal epilepsy, and may alter-
natively be interpreted as quantifying medication-mediated 
effects of maternal epilepsy on birth outcomes among mothers 
with epilepsy, even if maternal epilepsy itself is confounded, 
provided there is no-unobserved confounding of the effects of 
antiepileptic drugs on birth outcomes. However, both direct 
and total effects of maternal epilepsy may be biased if the 
latter is confounded, in which case, the proportion mediated 
may be difficult to interpret. Unfortunately, information iden-
tifying participant’s study center was unavailable in our data 
source; therefore, unobserved confounding of the effects of 
antiepileptic drugs on birth outcomes by study center cannot 
be ruled out, and clustering of birth outcomes by study cen-
ter may likewise impact the coverage of reported confidence 
intervals.

DISCUSSION
We have proposed straightforward conditions for identi-

fication of a large class of medication-mediated effects that may 
be of particular interest in pharmacoepidemiologic research. 
The proposed conditions combine conventional assumptions 
of no-unobserved confounding about the effects of exposure on 
the mediator and outcome variables, as well as about the effects 
of the mediator on the outcome (assumptions (a.1), (a.2), and 
(a.3)), with a condition that disease-free persons in the target 
population cannot be exposed to medication (assumption b.4). 
Under these assumptions, we have shown that direct and indi-
rect effects can be evaluated empirically with careful use of 
Robins g-formula, which we implemented via standard inverse 

TABLE.  Adjusted RRs and 95% CIs for the Total Effect, Natural Direct Effect, and Natural Indirect Effect of Epilepsy on Birth 
Outcomes

Birth Outcome
Total Effect-adjusted  

RR (95% CI)a

Direct Effect-adjusted  
RR (95% CI)b

Indirect Effect-adjusted  
RR (95% CI)

Proportion  
Mediated (%)

Growth retardation 3.6 (1.4, 9.5) 1.3 (0.5, 3.4) 2.7 (1.4, 5.3) 78

Microcephaly 2.0 (0.8, 5.0) 1.1 (0.5, 2.4) 1.9 (1.0, 3.6) 88

Hypoplasia of the fingers 2.4 (1.1, 5.2) 1.7 (0.8, 3.4) 1.4 (0.8, 2.5) 40

Mediator = any AED use during pregnancy versus no AED use during pregnancy.
aMultivariate logistic model adjusted for maternal age and maternal race (Black, White, and Other).
bWeighted logistic model adjusted for same variables as in the total effect model. Weights for women with epilepsy were computed using the predicted probability from a logistic 

regression of AED use during pregnancy on risk factors (alcohol use, cigarette smoking, and substance abuse) and whether or not the woman had seizures during pregnancy; weights 
for women without epilepsy were set to 1.

AED indicates antiepileptic drug; CI, confidence interval; RR, risk ratio.

http://links.lww.com/EDE/B152
http://links.lww.com/EDE/B152
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probability weighting. The methodology presented in this work 
could also potentially be of use in other settings not directly 
considered in our article. For instance, the methods could be 
used in analyses of randomized clinical trials where patients on 
the treatment arm have access to rescue medication; however, 
patients on the control arm do not. In such settings, one may 
use our proposed approach to tease apart the indirect effects 
of the randomized medication attributed to rescue medication 
from the direct effects not through rescue medication.

We note in closing that, while assumption (b.4) is expected 
to hold for a large class of medical conditions, the assumption 
may be violated in settings where medication may be taken by 
disease-free persons as a preventive measure. For example, 
treatment as prevention has recently emerged as an effective 
intervention to prevent HIV infection in certain high risk popu-
lations; an example of such a population is uninfected persons 
with HIV-infected sexual partners (i.e., discordant couples).35,36 
Likewise, antiepileptic drugs are sometimes prescribed for 
other conditions such as certain psychiatric disorders and pain 
syndromes.37 In such settings, assumption (b.4) clearly cannot 
hold, and therefore the methods described herein may not apply, 
although other existing causal mediation methods mentioned 
in eAppendix 1 (http://links.lww.com/EDE/B152) that rely on 
stronger identifying assumptions may potentially apply.
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