Genetic correlation between amyotrophic lateral sclerosis and schizophrenia

Russell L. McLaughlin1,2,*, Dick Schijven3,4,*, Wouter van Rheenen3, Kristel R. van Eijk3, Margaret O’Brien1, Project MinE GWAS Consortium†, Schizophrenia Working Group of the Psychiatric Genomics Consortium‡, René S. Kahn4, Roel A. Ophoff4,5,6, An Goris7, Daniel G. Bradley2, Ammar Al-Chalabi8, Leonard H. van den Berg3, Jurjen J. Luykx3,4,9,**, Orla Hardiman2,** & Jan H. Veldink3,**

We have previously shown higher-than-expected rates of schizophrenia in relatives of patients with amyotrophic lateral sclerosis (ALS), suggesting an aetiological relationship between the diseases. Here, we investigate the genetic relationship between ALS and schizophrenia using genome-wide association study data from over 100,000 unique individuals. Using linkage disequilibrium score regression, we estimate the genetic correlation between ALS and schizophrenia to be 14.3% (7.05–21.6; \(P = 1 \times 10^{-4} \)) with schizophrenia polygenic risk scores explaining up to 0.12% of the variance in ALS (\(P = 8.4 \times 10^{-7} \)). A modest increase in comorbidity of ALS and schizophrenia is expected given these findings (odds ratio 1.08–1.26) but this would require very large studies to observe epidemiologically.

We identify five potential novel ALS-associated loci using conditional false discovery rate analysis. It is likely that shared neurobiological mechanisms between these two disorders will engender novel hypotheses in future preclinical and clinical studies.

1Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 DK07, Republic of Ireland. 2Smurfit Institute of Genetics, Trinity College Dublin, Dublin D02 DK07, Republic of Ireland. 3Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands. 4Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands. 5Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA. 6Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California 90095, USA. 7Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven—University of Leuven, Leuven B-3000, Belgium. 8Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London WC2R 2LS, UK. 9Department of Psychiatry, Hospital Network Antwerp (ZNA) Stuivenberg and Sint Erasmus, Antwerp 2020, Belgium. * These authors contributed equally to this work. ** These authors jointly supervised this work. Correspondence and requests for materials should be addressed to R.L.M. (email: mclaugr@tcd.ie).
†A full list of Project MinE GWAS Consortium members appears at the end of the paper. ‡A full list of Schizophrenia Working Group of the Psychiatric Genomics Consortium members appears at the end of the paper.
Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative condition characterized by progressive loss of upper and lower motor neurons, leading to death from respiratory failure in 70% of patients within 3 years of symptom onset. Although ALS is often described as a primarily motor-system disease, extramotor involvement occurs in up to 50% of cases, with prominent executive and behavioural impairment, and behavioural variant frontotemporal dementia (FTD) in up to 14% of cases. A neurophysiological syndrome has been described in some people with ALS–FTD, and higher rates of schizophrenia and suicide have been reported in first and second degree relatives of those with ALS, particularly in kindreds associated with the C9orf72 hexanucleotide repeat expansion. These clinical and epidemiological observations suggest that ALS and schizophrenia may share heritability.

ALS and schizophrenia both have high heritability estimates (0.65 and 0.64, respectively), however the underlying genetic architectures of these heritable components appear to differ. Analysis of large genome-wide association study (GWAS) datasets has implicated over 100 independent risk loci for schizophrenia and estimated that a substantial proportion (23%) of the variance in underlying liability for schizophrenia is due to additive polygenic risk (many risk-increasing alleles of low individual effect combining to cause disease) conferred by common genetic variants. This proportion, the single nucleotide polymorphism (SNP)-based heritability, is lower in ALS (8.2%), in which fewer than ten risk loci have been identified by GWAS. Nevertheless, both diseases have polygenic components, but the extent to which they overlap has not been investigated.

Recently, methods to investigate overlap between polygenic traits using GWAS data have been developed. These methods assess either pleiotropy (identical genetic variants influencing both traits) or genetic correlation (identical alleles influencing both traits). Genetic correlation is related to heritability; for both measures, binary traits such as ALS and schizophrenia are typically modelled as extremes of an underlying continuous scale of liability to develop the trait. If two binary traits are genetically correlated, their liabilities covary, and this covariance is due to overlapping risk loci. Studies of pleiotropy and genetic correlation have provided insights into the overlapping genetics of numerous traits and disorders, although none to date has implicated shared polygenic risk between neurodegenerative and neuropsychiatric disease. Here, we apply several techniques to identify and dissect the polygenic overlap between ALS and schizophrenia. We provide evidence for genetic correlation between the two disorders which is unlikely to be driven by diagnostic misclassification and we demonstrate a lack of polygenic overlap between ALS and other neuropsychiatric and neurological conditions, which could be due to limited power given the smaller cohort sizes for these studies.

Results

Genetic correlation between ALS and schizophrenia. To investigate the polygenic overlap between ALS and schizophrenia, we used individual-level and summary data from GWAS for ALS (36,052 individuals) and schizophrenia (79,845 individuals). At least 5,582 control individuals were common to both datasets, but for some cohorts included in the schizophrenia dataset this could not be ascertained so this number is likely to be higher. For ALS, we used summary data from both mixed linear model association testing and meta-analysis of cohort-level logistic regression. We first used linkage disequilibrium (LD) score regression with ALS and schizophrenia summary statistics; this technique models, for polygenic traits, a linear relationship between a SNP’s LD score (the amount of genetic variation that it captures) and its GWAS test statistic. This distinguishes confounding from polygenicity in GWAS inflation and the regression coefficient can be used to estimate the SNP-based heritability (h^2_{SNP}) for single traits. In the bivariate case, the regression coefficient estimates genetic covariance (p_{g}) for pairs of traits, from which genetic correlation (r_{g}) is estimated; these estimates are unaffected by sample overlap between traits. Using constrained intercept LD score regression with mixed linear model ALS summary statistics, we estimated the liability-scale SNP-based heritability of ALS to be 8.2% (95% confidence interval = 7.2–9.1; mean $\chi^2 = 1.13$; all ranges reported below indicate 95% confidence intervals), replicating previous estimates based on alternative methods. Estimates based on ALS meta-analysis summary statistics and free-intercept LD score regression with mixed linear model summary statistics were lower (Supplementary Table 1), resulting in higher genetic correlation estimates (Supplementary Table 2); for this reason, we conservatively use constrained intercept genetic correlation estimates for ALS mixed linear model summary statistics throughout the remainder of this paper. Heritability estimates for permuted ALS data were null (Supplementary Table 1).

LD score regression estimated the genetic correlation between ALS and schizophrenia to be 14.3% (7.05–21.6; $P = 1 \times 10^{-4}$). Results were similar for a smaller schizophrenia cohort of European ancestry (21,856 individuals), indicating that the inclusion of individuals of Asian ancestry in the schizophrenia cohort did not bias this result (Supplementary Fig. 1). In addition to schizophrenia, we estimated genetic correlation with ALS using GWAS summary statistics for bipolar disorder, major depressive disorder, attention-deficit-hyperactivity disorder, autism spectrum disorder, Alzheimer’s disease (Supplementary Note 1), multiple sclerosis and adult height, finding no significant genetic correlation between ALS and any secondary trait other than schizophrenia (Fig. 1; Supplementary Table 2).

Polygenic risk score analysis. We supported the positive genetic correlation between ALS and schizophrenia by analysis of
polygenic risk for schizophrenia in the ALS cohort. Polygenic risk scores (PRS) are per-individual scores based on the sum of alleles associated with one phenotype, weighted by their effect size, measured in an independent target sample of the same or a different phenotype\(^1\). PRS calculated on schizophrenia GWAS summary statistics for twelve \(P\)-value thresholds \(P_T\) explained up to 0.12% \((P_T = 0.2, P = 8.4 \times 10^{-7})\) of the phenotypic variance in a subset of the individual-level ALS genotype data that had all individuals removed that were known or suspected to be present in the schizophrenia cohort (Fig. 2; Supplementary Table 5). ALS cases had on average higher PRS for schizophrenia compared to healthy controls and harbouring a high schizophrenia PRS for \(P_T = 0.2\) significantly increased the odds of being an ALS patient in our cohort (Fig. 3; Supplementary Table 7). Permutation of case-control labels reduced the explained variance to values near zero (Supplementary Fig. 3).

Modelling misdiagnosis and comorbidity. Using BUHMBOX\(^2\), a tool that distinguishes true genetic relationships between diseases (pleiotropy) from spurious relationships resulting from heterogeneous mixing of disease cohorts, we determined that misdiagnosed cases in the schizophrenia cohort (for example, young-onset FTD–ALS) did not drive the genetic correlation estimate between ALS and schizophrenia \((P = 0.94)\). Assuming a true genetic correlation of 0%, we estimated the required rate of misdiagnosis of ALS as schizophrenia to be 1.17 (1.08–1.26), and the same for schizophrenia given ALS (Supplementary Fig. 4). From a clinical perspective, to achieve 80% power to detect a significant \((\alpha = 0.05)\) excess of schizophrenia in the ALS cohort as a result of this genetic correlation, the required population-based incident cohort size is 16,448 ALS patients (7,310–66,670).

Figure 2 | Analysis of PRS for schizophrenia in a target sample of 10,032 ALS cases and 16,627 healthy controls. \(P\)-value thresholds \(P_T\) for schizophrenia SNPs are shown on the \(x\) axis, where the number of SNPs increases with a more lenient \(P_T\). Explained variances (Nagelkerke \(R^2\), shown as a \% of a generalized linear model including schizophrenia-based PRS versus a baseline model without polygenic scores (blue bars) are shown for each \(P_T\). \(-\log_{10}(P\text{-value})\) explained variance per \(P_T\) (red dots) represent \(P\)-values from the binomial logistic regression of ALS phenotype on PRS, accounting for LD (Supplementary Table 4) and including sex and significant principal components as covariates (Supplementary Fig. 2). Values are provided in Supplementary Table 5.

Figure 3 | Odds ratio for ALS by PRS deciles for schizophrenia. The figure applies to schizophrenia \(P\)-value threshold \(P_T = 0.2\). The \(P\)-values for this threshold were converted to ten deciles containing near identical numbers of individuals. Decile 1 contained the lowest scores and decile 10 contained the highest scores, where decile 1 was the reference and deciles 2-10 were dummy variables to contrast to decile 1 for OR calculation. The case:control ratio per decile is indicated with grey bars. Error bars indicate 95% confidence intervals. Significant differences from decile 1 were determined by logistic regression of ALS phenotype on PRS decile, including sex and principal components as covariates and are indicated by *\(P<0.05\) or ***\(P<0.001\).
Pleiotropic risk loci. We leveraged the genetic correlation between ALS and schizophrenia to discover novel ALS-associated genomic loci by conditional false discovery rate (cFDR) analysis6,22 (Fig. 4; Supplementary Table 8). Five loci already known to be involved in ALS were identified (corresponding to MOBP, C9orf72, TBK1, SARM1 and UNC13A) along with five potential novel loci at cFDR < 0.01 (CNTN6, TNIP1, PPP2R2D, NCKAP5L and ZNF295-AS1). No gene set was significantly enriched (after Bonferroni correction) in genome-wide cFDR values when analysed using MAGENTA.

Discussion

There is evolving clinical, epidemiological and biological evidence for an association between ALS and psychotic illness, particularly schizophrenia. Genetic evidence of overlap to date has been based primarily on individual genes showing Mendelian inheritance, in particular the C9orf72 hexanucleotide repeat expansion, which is associated with ALS and FTD, and with psychosis in relatives of ALS patients8. In this study, we have replicated SNP-based heritability estimates for ALS and schizophrenia using GWAS summary statistics, and have for the first time demonstrated significant overlap between the polygenic components of both diseases, estimating the genetic correlation to be 14.3%. We have carefully controlled for confounding bias, including population stratification and shared control samples, and have shown through analysis of polygenic risk scores that the overlapping polygenic risk applies to SNPs that are modestly associated with both diseases. Given that our genetic correlation estimate relates to the polygenic components of ALS ($h^2_\text{ALS} = 8.2\%$) and schizophrenia ($h^2_\text{SCZ} = 23\%$) and these estimates do not represent all heritability for both diseases, the accuracy of using schizophrenia-based PRS to predict ALS status in any patient is expected to be low (Nagelkerke’s $R^2 = 0.12\%$ for $P_4 = 0.2$), although statistically significant ($P = 8.4 \times 10^{-7}$). Nevertheless, the positive genetic correlation of 14.3% indicates that the direction of effect of risk-increasing and protective alleles is consistently aligned between ALS and schizophrenia, suggesting convergent biological mechanisms between the two diseases.

Although phenotypically heterogeneous, both ALS and schizophrenia are clinically recognizable as syndromes23,24. The common biological mechanisms underlying the association between the two conditions are not well understood, but are likely associated with disruption of cortical networks. Schizophrenia is a polygenic neurodevelopmental disorder characterized by a combination of positive symptoms (hallucinations and delusions), negative symptoms (diminished motivation, blunted affect, reduction in spontaneous speech and poor social functioning) and impairment over a broad range of cognitive abilities25. ALS is a late onset complex genetic disease characterized by a predominantly motor phenotype with recently recognized extra-motor features in 50% of patients, including cognitive impairment1. It has been suggested that the functional effects of risk genes in schizophrenia converge by modulating synaptic plasticity, and influencing the development and stabilization of cortical microcircuitry26. In this context, our identification of CNTN6 (contactin 6, also known as NB-3, a neural adhesion protein important in axon development)27 as a novel pleiotropy-informed ALS-associated locus supports neural network dysregulation as a potential convergent mechanism of disease in ALS and schizophrenia.

No significantly enriched biological pathway or ontological term was identified within genome-wide cFDR values using MAGENTA. Low inflation in ALS GWAS statistics, coupled with a rare variant genetic architecture2, render enrichment-based biological pathway analyses with current sample sizes challenging. Nevertheless, nine further loci were associated with ALS risk at cFDR < 0.01. Of these, MOBP, C9orf72, TBK1, SARM1 and UNC13A have been described previously in ALS and were associated by cFDR analysis in this study owing to their strong association with ALS through GWAS7. The remaining four loci (TNIP1, PPP2R2D, NCKAP5L and ZNF295-AS1) are novel associations and may represent pleiotropic disease loci. TNIP1 encodes TNFAIP3 interacting protein 1 and is involved in autophagy and tissue homoeostasis27. The protein product of PPP2R2D is a regulatory subunit of protein phosphatase 2 and has a role in P13K-Akt signalling and mitosis28. NCKAP5L is a homologue of NCKAP5, encoding NAP5, a proline-rich protein that has previously been implicated in schizophrenia, bipolar disorder and autism29,30. ZNF295-AS1 is a noncoding RNA31. Further investigation into the biological roles of these genes may yield novel insight into the pathophysiology of certain subtypes of ALS and schizophrenia, and as whole-genome and exome datasets become available in the future for appropriately large ALS case–control cohorts, testing for burden of rare genetic variation across these genes will be particularly instructive, especially given the role that rare variants appear to play in the pathophysiology of ALS7.

Figure 4 | Pleiotropy-informed ALS risk loci determined by analysis of cFDR in ALS GWAS P-values given schizophrenia GWAS P-values (cFDR\textsubscript{ALS}\textsubscript{SCZ}). Each point denotes a SNP; its x axis position corresponds to its chromosomal location and its height indicates the extent of association with ALS by cFDR analysis. The solid line indicates the threshold cFDR = 0.01. Any gene whose role in ALS is already established is in bold. A complete list of all loci at cFDR ≤ 0.05 is provided in Supplementary Table 8.
Our data suggest that other neuropsychiatric conditions (bipolar disorder, autism and major depression) do not share polygenic risk with ALS. This finding contrasts with our recent observations from family aggregation studies and may be unexpected given the extensive genetic correlation between neuropsychiatric conditions\(^5\). This could relate to statistical power conferred by secondary phenotype cohort sizes, and future studies with larger sample sizes will shed further light on the relationship between ALS and neuropsychiatric disease. It is also possible that the current study underestimates genetic correlations due to the substantial role that rare variants play in the genetic architecture of ALS\(^2\) and future fine-grained studies examining heritability and genetic correlation in low-minor allele frequency and low-LD regions may identify a broader relationship between ALS and neuropsychiatric diseases.

A potential criticism of this study is that the polygenic overlap between ALS and schizophrenia could be driven by misdiagnosis, particularly in cases of ALS–FTD, which can present in later life as a psychotic illness and could be misdiagnosed as schizophrenia. This is unlikely, as strict diagnostic criteria are required for inclusion of samples in the schizophrenia GWAS dataset\(^6\). Furthermore, since core schizophrenia symptoms are usually diagnosed during late adolescence, a misdiagnosis of FTD-onset ALS–FTD as schizophrenia is unlikely. In this study, we found no evidence for misdiagnosis of ALS as schizophrenia (BUHMBOX \(P = 0.94\)) and we estimated that a misdiagnosis of 4.86% of ALS cases would be required to spuriously observe a genetic correlation of 14.3%, which is not likely to occur in clinical practice. We are therefore confident that this genetic correlation estimate reflects a genuine polygenic overlap between the two diseases and is not a feature of cohort ascertainment, but the possibility of some misdiagnosis in either cohort cannot be entirely excluded based on available data.

A positive genetic correlation between ALS and schizophrenia predicts an excess of patients presenting with both diseases. Most neurologists and psychiatrists, however, will not readily acknowledge that these conditions co-occur frequently. Our genetic correlation estimate confers an odds ratio of 1.17 as related in future drug development studies. Indeed, the possibility of some misdiagnosis in either cohort cannot be entirely excluded based on available data.

LD score regression. We calculated LD scores using LDSC v1.0.0 in 1 centiMorgan windows around 13,307,412 non-singleton variants genotyped in 379 European individuals (CEU, FIN, GBR, IBS and TSI populations) in the phase 1 integrated release of the 1,000 Genomes Project\(^35\). For regression weights\(^34\), we restricted LD score calculation to SNPs included in both the GWAS summary statistics and HapMap phase 3; for \(r_g\) estimation in pairs of traits this was the intersection of SNPs for both traits and HapMap. Because population structure and confounding were highly controlled in the ALS summary statistics by the use of mixed linear model association testing, we constrained the LD score regression intercept to 1 for \(h_2^l\) estimation in ALS and we also estimated \(h_2^l\) with a free intercept to estimate \(r_g\) for ALS traits and \(r_g\) was a free parameter. We also estimated \(r_g\) using ALS meta-analysis results\(^7\) with free and constrained intercepts and with permuted data conserving population structure. Briefly, principal component analysis was carried out for each stratum using smartpc\(^36\) and the three-dimensional space defined by principal components 1-3 was equally subdivided into 1,000 cubes. Within each cube, case–control labels were randomly swapped and association statistics were re-calculated for the entire stratum using logistic regression. Study-level \(P\)-values were then calculated using inverse variance weighted fixed effect meta-analysis implemented in METAL\(^23\); \(h_2^l\) was estimated for these meta-analysed permuted data using LD score regression (Supplementary Table 1).

Polymetric risk score analysis. We calculated PRS for 10,032 cases and 16,627 healthy controls in the ALS dataset (duplicate and suspected and confirmed replicates with the schizophrenia dataset removed) and schizophrenia-associated alleles and effect sizes reported in the GWAS summary statistics for 6,843,674 SNPs included in both studies and in the phase 1 integrated release of the 1,000 Genomes Project\(^35\) (imputation INFO score < 0.3; minor allele frequency < 0.01; A/T and G/C SNPs removed). SNPs were clumped in two rounds (physical distance threshold of 5,000 kb and a LD threshold of 0.2 in the first round) using PLINK v1.90b3\(^\text{v2}\), removing high-LD regions (Supplementary Table 4), resulting in a final set of 496,548 SNPs for PRS calculations. Odds ratios for autosomal SNPs reported in the schizophrenia summary statistics were log-converted to beta values and PRS scores were calculated using PLINK’s score function for twelve schizophrenia GWAS \(P\)-value thresholds (\(P_j\): 5 \times 10^{-5}, 5 \times 10^{-6}, 5 \times 10^{-7}, 5 \times 10^{-8}, 5 \times 10^{-9}, 5 \times 10^{-10}, 5 \times 10^{-11}, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5). A total of 100 principal components (PCs) were generated for the ALS sample using GCTA version 1.2.44. Using R version 3.2.2, a generalized linear model was applied to model the phenotype of individuals in the ALS dataset. PCs that had a significant effect on the phenotype (\(P < 0.0005\); Bonferroni-corrected for 100 PCs) were selected (PCs 1, 4, 5, 7, 8, 10, 11, 12, 14, 36, 49).

methods

Study population and genetic data. For ALS, 7,740,343 SNPs genotyped in 12,577 ALS patients and 23,475 healthy controls of European ancestry organized in 27 platform- and country-defined strata were used\(^7\). The schizophrenia dataset comprised GWAS summary statistics for 9,444,230 SNPs originally genotyped in 34,241 patients and 45,604 controls of European and Asian ancestry\(^7\). For LD score regression, GWAS summary statistics were generated for the ALS cohort using mixed linear model association testing implemented in Genome-wide Complex Trait Analysis\(^34\) or logistic regression combined with cross-stratum meta-analysis using METAL\(^23\). To evaluate sample overlap for PRS and cFDR analyses, we also obtained individual-level genotype data for 27,647 schizophrenia cases and 33,675 controls from the schizophrenia GWAS (Psychiatric Genomics Consortium\(^2\) and dbGaP accession number phs000213.v3.p2). Using 88,971 LDL-pruned (window size 200 SNPs; shift 20 SNPs; \(r_g > 0.25\)) SNPs in both datasets (INFO score > 0.8; MAF > 0.2), with SNPs in high-LD regions removed (Supplementary Table 4), samples were removed from the ALS dataset if they were duplicated or had a cryptically related counterpart (PLINK \(R > 0.1; 5,582\) individuals) in the schizophrenia cohort and whole strata (representing Finnish and German samples; 3,811 individuals) were also removed if commonismality with the schizophrenia cohort could not be ascertained (due to unavailability of individual-level genotypic data in the schizophrenia cohort) and in which a sample overlap was suspected (Supplementary Table 3).

Polymetric risk score analysis. We calculated PRS for 10,032 cases and 16,627 healthy controls in the ALS dataset (duplicate and suspected and confirmed replicates with the schizophrenia dataset removed) and schizophrenia-associated alleles and effect sizes reported in the GWAS summary statistics for 6,843,674 SNPs included in both studies and in the phase 1 integrated release of the 1,000 Genomes Project\(^35\) (imputation INFO score < 0.3; minor allele frequency < 0.01; A/T and G/C SNPs removed). SNPs were clumped in two rounds (physical distance threshold of 5,000 kb and a LD threshold of 0.2 in the first round) using PLINK v1.90b3\(^\text{v2}\), removing high-LD regions (Supplementary Table 4), resulting in a final set of 496,548 SNPs for PRS calculations. Odds ratios for autosomal SNPs reported in the schizophrenia summary statistics were log-converted to beta values and PRS scores were calculated using PLINK’s score function for twelve schizophrenia GWAS \(P\)-value thresholds (\(P_j\): 5 \times 10^{-5}, 5 \times 10^{-6}, 5 \times 10^{-7}, 5 \times 10^{-8}, 5 \times 10^{-9}, 5 \times 10^{-10}, 5 \times 10^{-11}, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5). A total of 100 principal components (PCs) were generated for the ALS sample using GCTA version 1.2.44. Using R version 3.2.2, a generalized linear model was applied to model the phenotype of individuals in the ALS dataset. PCs that had a significant effect on the phenotype (\(P < 0.0005\); Bonferroni-corrected for 100 PCs) were selected (PCs 1, 4, 5, 7, 8, 10, 11, 12, 14, 36, 49).
To estimate explained variance of PRS on the phenotype, a baseline linear relationship including only sex and significant PCs as variables was modelled first:

\[y = \beta_0 + \beta_{sex} x_{sex} + \sum_{n} \beta_{pc_n} x_{pc_n}, \]

where \(y \) is the phenotype in the ALS dataset, \(x \) is the intercept of the model with a slope \(\beta \) for each variable \(x \).

Subsequently, a linear model including polygenic scores for each schizophrenia \(P_i \) was calculated:

\[y = \beta_0 + \beta_{sex} x_{sex} + \sum_{n} \beta_{pc_n} x_{pc_n} + \beta_{pc_i} x_{pc_i}. \]

A Nagelkerke \(R^2 \) value was obtained for every model and the baseline Nagelkerke \(R^2 \) value was subtracted, resulting in a \(\Delta \) explained variance that describes the contribution of schizophrenia-based PRS to the phenotype in the ALS dataset. PRS analysis was also performed in permuted case-control data (1,000 permutations, conserving case–control ratio) to assess whether the increased \(\Delta \) explained variance was a true signal associated with phenotype. \(\Delta \) explained variances and \(P \)-values were averaged across permutation analyses.

To ensure we did not over- or under-correct for population effects in our model, we tested the inclusion of up to a total of 30 PCs in the model, starting with the PC with the most significant effect on the ALS phenotype (Supplementary Fig. 2). Increasing the number of PCs initially had a large effect on the explained variance, but this effect levelled out after 11 PCs. On the basis of this test we are confident that adding the 11 PCs that had a significant effect on the phenotype sufficiently accounted for possible confounding due to population differences. For the schizophrenia \(P_i \) for which we obtained the highest \(\Delta \) explained variance (0.2), we subdivided observed schizophrenia-based PRS in the ALS cohort into deciles and calculated the odds ratio for being an ALS case in each decile compared to the first decile using a similar generalized linear model:

\[y = \beta_0 + \beta_{sex} x_{sex} + \sum_{n} \beta_{pc_n} x_{pc_n} + \beta_{pc_i \text{decile}} x_{pc_i \text{decile}}. \]

Odds ratios and 95% confidence intervals for ALS were derived by calculating the exponential function of the beta estimate of the model for each of the deciles 2–10.

Diagnostic misclassification. To distinguish the contribution of misdiagnosis from true genetic pleiotropy we used B HUMBOX23 with 417 independent ALS risk alleles in a sample of 27,647 schizophrenia patients for which individual-level genotype data were available. We also estimated the required misdiagnosis rate \(M \) of FTD–ALS as schizophrenia that would lead to the observed genetic correlation estimate as \(C/C + 1 \), where \(C = \rho_{SNC35/ALS} \) and \(SNC35/ALS \) are the number of cases in the schizophrenia and ALS datasets, respectively25 (derived in Supplementary Methods 1).

Expected comorbidity. To investigate the expected comorbidity of ALS and schizophrenia given the observed genetic correlation, we modelled the distribution in liability for ALS and schizophrenia as a bivariate normal distribution with the schizophrenia given the observed genetic correlation, we modelled the distribution score-corrected schizophrenia GWAS sufficiently accounted for possible confounding due to population differences. To ensure we did not over- or under-correct for population effects in our analysis was based on the 95th percentile of gene scores for all genes in the genome. The null distribution of gene scores for each gene set was based on 10,000 randomly sampled gene sets with equal size. MAGENTA uses a Mann–Whitney rank-sum test to assess gene-set enrichment39.

Data availability. All data used in this study are publically available and can be accessed via the studies cited in the text. Other data are available from the authors upon reasonable request.

References

Acknowledgements

We acknowledge helpful contributions from Mr Gert Jan van de Vendel in the design and execution of PRS analyses. This study received support from the ALS Association; Fondation Thierry Latran; the Motor Neurone Disease Association of England, Wales and Northern Ireland; Science Foundation Ireland; Health Research Board (Ireland), The Netherlands ALS Foundation (Project MiNE), to J.H.V., L.H.v.d.B.; the Netherlands Organisation for Health Research and Development (Vici scheme, L.H.v.d.B.) and ZonMW under the frame of E-Rare-2, the ERA Net for Research on Rare Diseases (PYRAMID). Research leading to these results has received funding from the European Community’s Health Seventh Framework Programme (FP7/2007–2013). A.G. is supported by the Research Foundation EU Leuven (C24/16/045). A.A.-C. received salary support from the National Institute for Health Research (NIHR) Dementia Biomedical Research Unit and Biomedical Research Centre in Mental Health at South London and Maudsley NHS Foundation Trust and King’s College London. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. Samples used in this research were in part obtained from the UK National DNA Bank for MND Research, funded by the MND Association and the Wellcome Trust. We acknowledge sample management undertaken by Biosampling Solutions funded by the Medical Research Council (MRC) at the Centre for Integrated Genomic Medical Research, University of Manchester. This is an EU Joint Programme-Neurodegenerative Disease Research (IPND) Project (STRENGTH, SOPHIA). In addition to those mentioned above, the project is supported through the following funding organizations under the aegis of IPND UK: Economic and Social Research Council, Italy, Ministry of Health and Ministry of Education, University and Research; France, L’Agence nationale pour la recherche. The work leading up to this publication was funded by the European Community’s Health Seventh Framework Programme (FP7/2007–2013; Grant Agreement Number 259,687). We thank the International Genomics of Alzheimer’s Project (IGAP) for providing summary results data for these analyses. The investigators within IGAP provided data but did not participate in analysis or writing of this report. IGAP was made possible by the generous participation of the control subjects, the patients, and their families. The i-Select chips was funded by the French National Foundation on Alzheimer’s disease and related disorders. EADI was supported by the LABEX (laboratory of excellence program investment for the future) DISTALZ grant, Inserm, Institut Pasteur de Lille, Université de Lille 2 and the Lille University Hospital. GERAD was supported by the MRC (Grant No. 5.03,480), Alzheimer’s Research UK (Grant No. 5.03,176), the Wellcome Trust (Grant No. 082604/207/Z) and German Federal Ministry of Education and Research: Competence Network Dementia Grant no. 01GI0102, 01GI0711, 01GI0420. CHARITY was partly supported by the NIH/NIA Grant RO1 AG033193 and the NIA AG081220 and AGES contract N01-AG-12,100, the NHLBI Grant RO1 HL105756, the Icelandic Heart Association, and the Erasmus Medical Center and Erasmus University. ADGC was supported by the NIH/NIA Grants: U01 AG032984, U24 AG021886, U01 AG06976; and the Alzheimer’s Association Grant ADGC-10–196728. The Project MiNE GWAS Consortium included contributions from the PARALS registry, SLALOM group, SLAP registry, FAAS Sequencing Consortium, SLAGEN Consortium and NINPSS Study Group; the Schizophrenia Working Group of the Psychiatric Genomics Consortium included contributions from the Psychosis Endophenotypes International Consortium and Wellcome Trust Case-control Consortium. Members of these eight consortia are listed in Supplementary Note 2.

Author contributions

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/ naturecommunications

Competing interests: O.H. has received speaking honoraria from Novartis, Biogen Idec, Sanofi Aventis and Merck-Serono. She has been a member of advisory panels for Biogen Idec, Allergen, Ono Pharmaceuticals, Novartis, Cytokinetics and Sanofi Aventis. She serves as Editor-in-Chief of Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. L.H.v.d.B. serves on scientific advisory boards for Prinses Beatrix Spierfonds, Thierry Latran Foundation, Baxalta, Cytokinetics and Biogen, serves on the Editorial Board of the Journal of Neurology, Neurosurgery, and Psychiatry, Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, and Journal of Neuromuscular Diseases. A.A.C. has served on advisory panels for Biogen Idec, Cytokinetics, GSK, OnyxPharma and Mitsubishi Tanabe, serves on the Editorial Boards of Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration and F1000, and receives royalties for The Brain: A Beginner’s Guide, OneWorld Publications, and Genetics of Complex Human Diseases, Cold Spring Harbor Laboratory Press. The remaining authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/ reprintsandpermissions/

How to cite this article: McLaughlin, R. L. et al. Genetic correlation between amyotrophic lateral sclerosis and schizophrenia. Nat. Commun. 8, 14774; doi: 10.1038/ncomms14774 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
Project MinE GWAS Consortium

10Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia. 11University of Sydney, ANZAC Research Institute, Concord Hospital, Sydney, New South Wales, Australia. 12The Stacey MND Laboratory, Department of Pathology, The University of Sydney, New South Wales, Australia. 13Brain and Mind Research Institute, The University of Sydney, New South Wales, Australia. 14Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation, Sydney, New South Wales, Australia. 15Department of Neurology, Academic Medical Center, Amsterdam, The Netherlands. 16Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy. 17Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ Center, Università degli Studi di Milano, Milano, Italy. 18Institut du Cerveau et de la Moelle épinière, Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, Paris, France. 19Ramsay General and Emory ALS Center, Emory University School of Medicine, Atlanta, Georgia, USA. 20Centre for Neuroregeneration and Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK. 21Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK. 22Department of Neurology, Hospital de Santa Maria-CHLN, Lisbon, Portugal. 23Department of Neurology, Hospital de la Santa Creu i Sant Pau de Barcelona, Autonomous University of Barcelona, Barcelona, Spain. 24Department of Neurology and Emory ALS Center, Emory University School of Medicine, Atlanta, Georgia, USA. 25Department of Pathophysiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA. 26Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA. 27Department of Neurodegeneration Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA. 28Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA. 29Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK. 30Department of Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy. 31Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK. 32Department of Neurodegenerative Diseases, Institute of Neurology, University College London, London, UK. 33Department of Neurodegenerative Diseases, Institute of Neurology, University College London, London, UK. 34Department of Neurology, Medical School Hannover, Hannover, Germany. 35Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany. 36Institute for Clinical Neurobiology, University of Würzburg, Würzburg, Germany. 37Charité University Hospital, Humboldt-Universität, Berlin, Germany. 38Institute for Neurology, University of California, San Francisco, California, USA. 39Institute for Neurology, University of California, San Francisco, California, USA. 40Department of Neurology, University of California, San Francisco, California, USA. 41Department of Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA. 42Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA. 43Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA. 44Department of Neurology, Humboldt-Universität, Berlin, Germany. 45Neurodegeneration Research Laboratory, Bogazici University, Istanbul, Turkey. 46Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany. 47INSERM U930, Université François Rabelais, Tours, France. 48INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Paris, France. 49Genethon, CNRS UMR 8587, Evry, France.
Schizophrenia Working Group of the Psychiatric Genomics Consortium

Cambridge, Massachusetts, USA. 97Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA. 98Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College, Dublin, Ireland. 99MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK. 100National Centre for Mental Health, Cardiff University, Cardiff, Wales. 101Liilly and Company Limited, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey, UK. 102Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, London, UK. 103Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark. 104Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children’s Hospital, Boston, Massachusetts, USA. 105Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden. 106Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway. 107NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway. 108Centre for Integrative Register-based Research, CIRRAU, Aarhus University, Aarhus, Denmark. 109National Centre for Register-based Research, Aarhus University, Aarhus, Denmark. 110The Lundbeck Foundation Initiative for Integrative Psychiatric Research, IPSYCH, Denmark. 111State Mental Hospital, Haar, Germany. 112Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA. 113Department of Psychiatry and Behavioral Sciences, Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA. 114Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia, USA. 115Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA. 116Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany. 117Department of Medical Genetics, University of Pécs, Pécs, Hungary. 118Szentagothai Research Center, University of Pécs, Pécs, Hungary. 119Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. 120Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA. 121University Medical Center Groningen, Department of Psychiatry, University of Groningen, The Netherlands. 122School of Nursing, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA. 123Athinoula A. Martinos Center, Massachusetts General Hospital, Boston, Massachusetts, USA. 124Center for Brain Science, Harvard University, Cambridge Massachusetts, USA. 125Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA. 126Department of Psychiatry, University of California at San Francisco, San Francisco, California, USA. 127Department of Human Genetics, Icahn School of Medicine at Mount Sinai, New York, New York, USA. 128Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA. 129Center for Integrative Sequencing, ISEQ, Aarhus University, Aarhus, Denmark. 130Department of Biomedicine, Aarhus University, Aarhus, Denmark. 131Faculty of Medicine, University of Sydney, Sydney, Australia. 132School of Psychiatry, University of New South Wales, New South Wales, Sydney, Australia. 133Royal Brisbane and Women’s Hospital, University of Queensland, Queensland, Brisbane, Australia. 134Institute of Psychology, Chinese Academy of Science, Beijing, China. 135Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China. 136State Ket Laboratory for Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China. 137Castle Peak Hospital, Hong Kong, China. 138Institute of Mental Health, Singapore. 139Department of Psychiatry, Washington University, St Louis, Missouri, USA. 140Department of Child and Adolescent Psychiatry, Pierre and Marie Curie Faculty of Medicine and Brain and Spinal Cord Institute (ICM), Paris, France. 141Neuropsychosomatic Therapy Area, Janssen Research and Development, LLC, Raritan, New Jersey, USA. 142Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA. 143Department of Biostatistics, Karolinska Institutet, Stockholm, Sweden. 144Department of Psychiatry, University of California, San Francisco, California, USA. 145Department of Psychiatry, University of California, San Francisco, California, USA. 146Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA. 147Department of Medical Genetics, University of Sydney, Sydney, Australia. 148Institute of Cancer, Faculty of Medicine, University of Copenhagen, Copenhagen, Denmark. 149First Department of Medical Genetics, University of Aarhus, Aarhus, Denmark. 150Institute of Health Sciences, National University of Ireland Galway, Ireland. 151Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, USA. 152Department of Psychiatry and Behavioral Sciences, NorthShore University HealthSystem, Evanston, Illinois, USA. 153Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK. 154Institute of Psychiatry, University of London, London, UK. 155Institute of Psychiatry, University of London, London, UK. 156Department of Child and Adolescent Psychiatry, University Clinic of Psychiatry, Skopje, Republic of Macedonia. 157Department of Psychiatry, University of Regensburg, Regensburg, Germany. 158Department of General Practice, Helsinki University Central Hospital, Helsinki, Finland. 159Eikihlsan Research Center, Helsinki, Finland. 160National Institute for Health and Welfare, Helsinki, Finland. 161Translational Technologies and Bioinformatics, Pharma Research and Early Development, F. Hoffmann-La Roche, Basel, Switzerland. 162Department of Psychiatry, Georgetown University Medical Center, Washington, District Of Columbia, USA. 163Department of Psychiatry, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA. 164Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA. 165Mental Health Service Line, Washington V.A. Medical Center, Washington, District Of Columbia, USA. 166Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany. 167Department of Psychiatry, University of Colorado Denver, Aurora, Colorado, USA. 168Department of Psychiatry, University of Halle, Halle, Germany. 169Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA. 170Department of Psychiatry, University of Munich, Munich, Germany. 171Departments of Psychiatry and Human and Molecular Genetics, INSERM, Institut de Myologie, Hôpital de la Pitié-Salpêtrière, Paris, France. 172Mental Health Research Centre, Russian Academy of Medical Sciences, Moscow, Russia. 173Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia. 174Academic Medical Centre University of Amsterdam, Department of Psychiatry, Amsterdam, The Netherlands. 175Innolm, Inc., La Jolla, California, USA. 176Institute of Biological Psychology, M.H.C. Sts, Mens, Mental Health Services, Copenhagen, Denmark. 177Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA. 178J Pers V.A. Medical Center, Bronx, New York, USA. 179Priority Research Centre for Health Behaviour, University of Newcastle, Newcastle, Australia. 180School of Electrical Engineering and Computer Science, University of Newcastle, Newcastle, Australia. 181Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA. 182Section of Neonatal Science, Institute of Medical and Biological Chemistry, Institute for Infants, Children and Youth, University of Heidelberg, Heidelberg, Germany. 183National Centre for Medical Research Development, Pfizer, Sandwich, Kent, UK. 184Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan. 185Regional Centre for Clinical Research in Psychosis, Department of Psychiatry, Stavanger University Hospital, Stavanger, Norway. 186Neuropsychiatric Genetics Research Group, Vall d’Hebron Research Institute, Barcelona, Spain. 187Department of Medical Research, The University of Western Australia, Perth, Western Australia, Australia. 188Perkins Institute for Medical Research, The University of Western Australia, Perth, Western Australia, Australia. 189Department of Medical Genetics, Medical University, Sofia, Bulgaria. 190Department of Psychology, University of Colorado Boulder, Boulder, Colorado, USA. 191Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada. 192Institute of Medical Genetics, University of Toronto, Toronto, Ontario, Canada. 193Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia. 194Latvian Biomedical Research and Study Centre, Riga, Latvia. 195Department of Psychiatry and Zilkhe Neurogenetics Institute, Keck School of Medicine at University of Southern California, Los Angeles, USA. 196Department of Medicine, Vilnius University, Vilnius, Lithuania. 197Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic. 198Department of Biology and Medical Genetics, Charles University Prague, Prague, Czech Republic. 199Pierre and Marie Curie Faculty of Medicine, Paris, France. 200Duke-NUS Graduate Medical School, Singapore. 201Department of Psychiatry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel. 202Center for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China. 203Mental Health Centre and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China. 204Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA. 205Department of Psychiatry, Columbia University, New York,