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Abstract

Detecting disease-associated genomic outcomes is one of the key steps in precision medi-

cine research. Cutting-edge high-throughput technologies enable researchers to unbiasedly

test if genomic outcomes are associated with disease of interest. However, these technolo-

gies also include the challenges associated with the analysis of genome-wide data. Two big

challenges are (1) how to reduce the effects of technical noise; and (2) how to handle the

curse of dimensionality (i.e., number of variables are way larger than the number of sam-

ples). To tackle these challenges, we propose a constrained mixture of Bayesian hierarchi-

cal models (MBHM) for detecting disease-associated genomic outcomes for data obtained

from paired/matched designs. Paired/matched designs can effectively reduce effects of

confounding factors. MBHM does not involve multiple testing, hence does not have the

problem of the curse of dimensionality. It also could borrow information across genes so that

it can be used for whole genome data with small sample sizes.

Introduction

We propose to develop Bayesian statistical models to identify genomic outcomes associated

with complex human diseases, such as cancer and other chronic diseases, that are causing sig-

nificant burden to patients, families, societies and countries. Identifying disease-associated

genomic outcomes could not only help discover the underlying molecular mechanisms of

complex human diseases, but also help explain the inter-individual variation of response to

drug treatments. It is the first step toward precision medicine that takes into account individ-

ual variability in genes, environment, and lifestyle for each person in delivering treatment and

prevention measures. Messenger RNA (mRNA) could reflect the effects of both genetic and

environmental factors on complex human diseases. By comparing the mRNA abundance

between diseased subjects and normal subjects, researchers can identify potential disease-asso-

ciated genes.
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Cutting-edge DNA microarray technology has been developed to simultaneously measure

the intensities of mRNAs for tens of thousands of genes in the human genome. This whole-

genome approach, unlike the candidate gene approach, could unbiasedly evaluate the associa-

tions of tens of thousands of genes to the disease of interest.

When analyzing whole-genome gene expression data, researchers face two big challenges:

the effects of noise (e.g., batch effect) in the microarray data and the curse of dimensionality

(i.e., the number of predictors (gene probes) is much larger than the number of observations

(samples)).

The noise (e.g., batch effect) could either mask the true gene differential expression or cre-

ate false detection of gene differential expression. Several effective noise-reduction methods,

such as quantile normalization [1] and surrogate variable analysis [2], have been proposed for

gene microarray data analysis.

Paired/matched designs can also reduce the effects of noise. Paired designs are common in

intervention studies, such as clinical trials. Matched designs are common in observational

studies, such as matched case-control studies. Both are designed to reduce the effects of poten-

tial inter-individual variations by providing a homogeneous environment (i.e., block) for com-

paring measurements under different conditions. Paired /matched designs are commonly

used in gene microarray studies.

The most common method to analyze gene microarray data from paired/matched designs

is to perform paired t-test or a moderated paired t-test for one gene probe at a time, then adjust

the p-values to control for multiple testing. For example, the R packages limma and samr from

the Bioconductor project [3] utilize this approach (c.f. [4] and [5]). Another approach is regu-

larized regression, such as LASSO (c.f. [6] and [7]). Both approaches aim to reduce the effects

of the curse of high dimensionality.

Researchers also used probe clustering, based on mixtures of Bayesian hierarchical models

(MBHMs) ([8], [9], and [10]), to identify differentially expressed (DE) gene probes. Probe clus-

tering based on MBHMs treats gene probes as “samples” and arrays as “variables”. Hence, the

number of “samples” (i.e., gene probes) would be much greater than the number of “variables”

(i.e., arrays). Therefore, probe clustering based on MBHMs does not have the curse-of-

dimensionality problem. In addition, unlike probe-specific tests that have several parameters

per probe, probe clustering based on MBHMs has only a few parameters per cluster and could

borrow information across probes to estimate model parameters. Hence it could produce more

accurate estimates of model parameters and could work well for datasets with small sample

sizes. This property is particularly useful for genomic data that usually have small sample sizes

due to high cost of obtaining genome-wide data. Probe clustering based on MBHMs is a special

type of model-based clustering that has a known number of clusters (2 or 3 clusters) and

imposes special restrictions on the structure of mean vectors and covariance matrices for each

cluster [11]. By utilizing this additional information about the number of clusters and structures

of mean vectors and covariance matrices, probe clustering based on MBHMs could have much

better performance than probe-clustering algorithms without using this information [11].

Although paired/matched designs are common and very useful in gene microarray studies,

to the best of our knowledge, there is no probe clustering method based on MBHMs previously

developed for analyzing data from these two designs. For example, the probe clustering algo-

rithms based on MBHMs proposed in the literature ([8], [9], and [10]) require that samples are

independent (c.f. Section A in S1 File). Hence, they could not analyze data in which samples

are dependent within a pair. In this paper, we propose a novel MBHM method to perform

probe clustering for genomic data collected from paired/matched design. Specifically, we pro-

pose a constrained MBHM, called eLNNpaired, to identify disease-associated genetic outcomes

measured from paired/matched designs.

Constrained mixture of Bayesian hierarchical models
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Materials and methods

eLNNpaired model

We denote xgl and ygl as the expression levels of the g-th gene probe for the l-th sample under

two different conditions (e.g., controls and cases). The eLNN model [10] characterizes the

hierarchical distributions of xgl and ygl and assumes that xgl and ygl are independent for a given

gene probe g. For data from a paired/matched design, samples within a pair are dependent.

Hence, the eLNN model could not be used for data from a paired/matched design. To over-

come this limitation, we propose to characterize the distribution of the within-pair difference.

We denote dgl as the difference between log2 ygl and log2 xgl, that is dgl = log2 ygl − log2 xgl. We

assume that the log2 difference dgl is normally distributed. We also assume that each gene

probe could be classified into one of 3 clusters: (1) probes over-expressed (OE) in cases; (2)

probes under-expressed (UE) in cases; and (3) probes non-differentially expressed (NE)

between cases and controls. We further assume a Bayesian hierarchical model for each of the

three gene-probe clusters.

For a given probe in cluster 1 (cluster of OE gene probes), we expect that its population

mean of log2 difference would be positive. To get a closed-form marginal distribution, we use

conjugate prior distributions and assume the following Bayesian hierarchical model:

dglj mg ; tg

� �
� Nðmg ; t

� 1
g Þ; mg jtg � Nðm1; k1t

� 1
g Þ; tg � Gða1; b1Þ; ð1Þ

where μ1 > 0, k1 > 0, α1 > 0, and β1 > 0.

For a given probe in cluster 2 (cluster of UE gene probes), we expect that its population

mean of log2 difference would be negative. Similar to probes to cluster 1, we assume the fol-

lowing Bayesian hierarchical model:

dglj mg ; tg

� �
� Nðmg ; t

� 1
g Þ; mg jtg � Nðm2; k2t

� 1
g Þ; tg � Gða2; b2Þ; ð2Þ

where μ2 < 0, k2 > 0, α2 > 0, and β2 > 0.

For a given probe in cluster 3 (cluster of NE gene probes), we expect that its population

mean μg of log2 difference would be exactly zero. Hence, we assume the following Bayesian

hierarchical model:

dgljtg � Nð0; t� 1
g Þ; tg � Gða3; b3Þ; ð3Þ

where α3 > 0 and β3 > 0.

The hyper-parameters αc and βc are shape and rate parameters for the Gamma distribution,

respectively, c = 1,2,3. As for k1 and k2, intuitively, the variation of μg should be smaller than

that of dgl. So we have 0< k1 < 1 and 0< k2 < 1.

Constraints

Ideally, we should require μg> 0 (μg< 0) for all probes in cluster 1 (cluster 2). To do so, we

can assume a log normal prior distribution for μg in cluster 1, for instance. However, a log nor-

mal distribution is not a conjugate prior for the mean of a normal distribution. It would

increase the computational burden if non-conjugate priors were used. As an alternative, we

require the mean of μg> 0 (mean of μg< 0) for cluster 1 (cluster 2). However, this constraint

is not enough. For example, if we generate a random number μg from Nðm1; k1t
� 1
g Þ with μ1 = 1,

it is possible that μg is very close to zero (e.g., μg = 0.1) or μg< 0 (e.g., μg = −0.2). Then it would

not be reasonable to claim this probe is from cluster 1, which is the cluster of over-expressed

probes. Hence, we would like to avoid this type of mistake as much as possible. To quantify

Constrained mixture of Bayesian hierarchical models
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this type of mistake, let’s consider a probe from cluster 3 (cluster of NE probes). We expect

that its standardized log2 difference ðdgl=
ffiffiffiffiffiffi
t� 1
g

q
Þ would most likely be within the interval [c2,

c1], where c2 = F−1(0.05) and c1 = F−1(0.95) are the 5-th and 95-th percentile of the standard

normal distributions, respectively. Hence, if a probe is from cluster 1 (cluster of OE probes),

we expect that mg=
ffiffiffiffiffiffi
t� 1
g

q
should be>c1. In other words, we require the probability that makes a

mistake that mg=
ffiffiffiffiffiffi
t� 1
g

q
� c1 is small. Mathematically, we require

Pr
mg
ffiffiffiffiffiffi
t� 1
g

q � c1jt
� 1

g

0

B
@

1

C
A < 0:05;

which is equivalent to

tg >
c1 � F� 1ð0:05Þ

ffiffiffiffi
k1

p

m1

 !2

: ð4Þ

It would be too stringent to require that τg for all probes in cluster 1 should satisfy the

inequality in Eq (4). So we relax the constraint by requiring that at least the most possible

value of τg (i.e., mode of τg) should satisfy the inequality in Eq (4):

modeðtgÞ ¼
a1 � 1

b1

>
c1 � F� 1ð0:05Þ

ffiffiffiffi
k1

p

m1

 !2

;

which is equivalent to

a1 > 1þ b1

c1 � F� 1ð0:05Þ
ffiffiffiffi
k1

p

m1

 !2

;

where c1 = F−1(0.95).

Similarly, for probes in cluster 2 (cluster of UE probes) we require

Pr
mg
ffiffiffiffiffiffi
t� 1
g

q � c2jt
� 1

g

0

B
@

1

C
A < 0:05

and get the following constraint for cluster 2:

a2 > 1þ b2

c2 � F� 1ð0:95Þ
ffiffiffiffi
k2

p

m2

 !2

;

where c2 = F−1(0.05).

Parameter estimation

To make sure the parameters satisfy the constraints in numerical optimization, we re-parame-

terized the parameters by ψ = (δ1, ξ1, λ1, ν1, δ2, ξ2, λ2, ν2, λ3, ν3), where μ1 = exp(δ1), k1 = F(ξ1),

α1 = exp(λ1), β1 = exp(ν1), μ2 = −exp(δ2), k2 = F(ξ2), α2 = exp(λ2), β2 = exp(ν2), α3 = exp(λ3),

Constrained mixture of Bayesian hierarchical models
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β3 = exp(ν3), and

a1 ¼ exp ðl1Þ þ 1þ b1

c1 � F� 1ð0:05Þ
ffiffiffiffi
k1

p

m1

 !2

;

a2 ¼ expðl2Þ þ 1þ b2

c2 � F� 1ð0:95Þ
ffiffiffiffi
k2

p

m2

 !2

;

F is the cumulative distribution function of standard normal distribution.

We denote f1(dg|ψ), f2(dg|ψ) and f3(dg|ψ) as the marginal densities of the 3 clusters, respec-

tively. The formulae for these 3 marginal densities are shown in Section B in S1 File. Denote

π = (π1, π2, π3) as the cluster proportions. We impose a symmetric Dirichlet D(b) prior on π
with concentration parameters b = (b1, b2, b3) = (b, b, b) to stabilize the estimate of π. We

would like to choose the value for b so that the mixture proportions are most likely to be equal

(π1 = π2 = π3 = 1/3). Any value b> 1 would satisfy this condition since the mode of D(b) is 1/3,

which does not depend on b. Following [8], we set b = 2. Let zg = (zg1, zg2, zg3), where zgc is an

indicator variable indicating if gene probe g belongs to cluster c (zgc = 1) or not (zgc = 0),

c = 1,2,3.

The complete data log-likelihood is:

lðπ;ψjd; zÞ

¼
X

g

zg1 log f1ðdg jψÞ þ zg2 log f2ðdg jψÞ þ zg3 log f3ðdg jψÞ
� �

þ
X

g

zg1 log p1 þ zg2 log p2 þ zg3 log p3

� �

þ log
Gð
P3

c¼1
bcÞ

Q3

c¼1
GðbcÞ

 !

þ
X3

c¼1

ðbc � 1Þ log pc;

ð5Þ

where d = (d1,. . .,dG) and z = (z1,. . .,zG), and G is the number of gene probes.

For gene probe g, let ~zgc ¼ Prðzgc ¼ 1jdg ; π;ψÞ, c = 1, 2, 3. Let ~zg ¼ ð~zg1; ~zg2; ~zg3Þ. Applying

Bayes rule, we get the posterior probability:

~zgc ¼ Prðzgc ¼ 1jdg ; π;ψÞ

¼
Prðdg jg is in cluster cÞPrðg is in cluster cÞ
P

sPrðdg jg is in cluster sÞPrðg is in cluster sÞ

¼
pcfcðdg jψÞ

p1f1ðdg jψÞ þ p2f2ðdg jψÞ þ p3f3ðdg jψÞ
;

for c = 1, 2, 3.

The EM algorithm is used to estimate parameters π and ψ. In the E-step, we treat zg as miss-

ing values and integrate out zg by calculating the expectation of l(π, ψ|d,z) w.r.t. zg. In the

(t+1)-th iteration of the EM algorithm, we have E½lðπ;ψjd; z;πðtÞ;ψðtÞÞ� ¼ lðπ;ψjd; ~zÞ, where

π(t) and ψ(t) are estimated in the t-th iteration, and ~z ¼ ð~z1; . . . ; ~zGÞ. In the M-step, we maxi-

mize the expected log likelihood ([l(π, ψ|d,z, π(t), ψ(t))]) over parameters π and ψ. We repeat

these two steps until the difference of the parameters π and ψ between two consecutive

Constrained mixture of Bayesian hierarchical models
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iterations is small or the number of iterations exceeds the allowed maximum number. Details

about the marginal distributions and the EM algorithm are shown in Sections B and C in S1

File. The method to initialize model parameters is shown in Section D in S1 File. The gene

probe g will be classified to cluster c if the posterior probability ~zgc is the largest among ~zg1, ~zg2,

and ~zg3.

Approximated weighted density plot

We intend to plot density functions in one plot with a red line for π1 f1(dg|ψ), a blue line for π2

f2(dg|ψ), a black line for π3 f3(dg|ψ) and brown line for the summation of these three weighted

density functions. However, since dg is a vector of multiple dimensions, it would be very diffi-

cult to visualize π1 f1(dg|ψ), π2 f2(dg|ψ) and π3 f3(dg|ψ). To provide a rough plot for these

weighted density functions, we set dg to be one dimension, that is, it only contains information

from one sample, to approximate the actual weighted densities.

GEO datasets

GSE43292 [12] is from a genome-wide expression study of human carotid atheroma, which

contains paired samples for 32 patients. For a given patient, one sample is from the atheroma

plaque and the other sample is from distant macroscopically intact tissue. For each of the 64

samples, the expression levels of 33,297 gene probes were measured by using Affymetrix

Human Gene 1.0 ST array.

GSE24742 [13] is from a study investigating the global molecular effects of rituximab in

synovial biopsies obtained from 12 anti-TNF resistant rheumatoid arthritis (RA) patients

before and after administration of the drug (rituximab). For each of the 24 samples, the expres-

sion levels of 54,675 gene probes were measured by Affymetrix Human Genome U133 Plus 2.0

array.

The study associated with GSE6631 [14] aimed to identify reliable differentially-expressed

genes between samples of head and neck squamous cell carcinoma (HNSCC) and normal tis-

sue samples from a study with paired design; paired samples from 44 patients were used to

measure expression levels of 12,625 genes using the Affymetrix Human Genome U95 version

2 array.

Table 1 summarizes the numbers of probes, the numbers of sample pairs, and the microar-

ray platforms for the 3 GEO data sets.

QC checking for the GEO data sets

We downloaded datasets from https://www.ncbi.nlm.nih.gov/geo/ and performed quality

checking before further analysis. First we checked if there were any missing values, duplicated

samples or duplicated subjects. We used lumiT in Bioconductor package lumi to test if the

original dataset had been log2 transformed; if not, a log2 transformation was performed. We

found that GSE24742 and GSE6631were not log2 transformed, while GSE43292 had already

been log2 transformed. To check the existence of outliers, for each array we calculated its 0-th,

Table 1. The numbers of probes, the numbers of sample pairs, and platforms for the 3 GEO datasets.

Number of probes Number of sample pairs Platform

GSE43292 33297 32 Affymetrix Human Gene 1.0 ST

GSE24742 54675 12 Affymetrix Human Genome U133 Plus 2.0

GSE6631 12625 22 Affymetrix Human Genome U95 version 2

https://doi.org/10.1371/journal.pone.0174602.t001

Constrained mixture of Bayesian hierarchical models
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5-th, 25-th, 50-th, 75-th, 95-th, and 100-th percentiles of expression levels and viewed them

across all arrays. We also obtained the principal components (PCA) of gene expression data

and plotted the first component against the second component. Please refer to Figs A, B and C

in S1 File for QC plots of the three datasets. Based on the results, we found that the three data-

sets had good quality, with no obvious outliers or batch effects.

Generating simulated datasets

We conducted two sets of simulation studies. In the first set of the simulation studies, log2 dif-

ference of expression levels within a pair of samples were generated from the eLNNpaired
model. We used the model parameters estimated from GSE43292 as the true values of the

model parameters. That is: μ1 = 0.441, k1 = 0.118, α1 = 1.718, β1 = 0.029, μ2 = −0.442, k2 =

0.079, α2 = 1.766, β2 = 0.034, α3 = 2.138, β3 = 0.131, π1 = 0.086, π2 = 0.071, and π3 = 1−π1−π2 =

0.843. We considered two scenarios to evaluate the effect of sample size on the performance of

probe detection. In the first scenario (denoted by G30), we generated 100 datasets using this

model, each of which has 1000 genes and 30 pairs of samples. In the second scenario (denoted

by G100), we generated 100 datasets using this model, each of which has 1000 genes and 100

pairs of samples.

In the second set of the simulation studies, we generated log2 difference of expression levels

within a pair of samples using three simple normal distributions, separately. For over-

expressed gene probes, we assumed that the log2 differences follow Nðm1; s
2
1
Þ; for under-

expressed gene probes, we assumed that the log2 differences follow Nðm2; s
2
2
Þ; for non-differen-

tially expressed gene probes, we assumed that the log2 differences follow Nð0;s2
3
Þ. For simplic-

ity, we set μ1 = −μ2 = 2 and σ1 = σ2 = 1, σ3 = 2. In addition, we set the proportion of the over-

expressed and under-expressed gene probes as 5 percent respectively. We considered 2 scenar-

ios. In the first scenario (denoted by S30), we generated 100 datasets using this model, each of

which has 1000 genes and 30 pairs of samples. In the second scenario (denoted by S100), we

generated 100 datasets using this model, each of which has 1000 genes and 100 pairs of

samples.

Existing methods

To best of our knowledge, no existing MBHM models could handle data from paired/matched

designs. We identified two regularized regression models that could handle data from paired/

matched designs [15, 16]. However, we could not find statistical software that implements

these two models. Hence, we compared the performance of eLNNpaired with several existing

hypothesis-based gene selection methods that can handle data from paired/matched design:

linear models for microarray data (limma) [4], global test (gt) [17, 18], significant analysis of

microarray (samr) [5], and linear model toolset for gene set enrichment analysis (lmPerGene)
[19]. Using these existing methods, we first performed hypothesis testing for each gene probe,

and then adjusted the p-value for multiple testing.

Limma and samr are essentially paired t-tests with an adjustment for the variance of the

mean within-pair difference of gene-expression levels. Limma uses probe-specific adjustment

based on an empirical Bayesian approach, while samr used a fixed constant as adjustment. Gt
and lmPerGene are linear regression approaches, in which the outcome variable measures the

within-pair difference of gene expression levels and a non-zero intercept indicates differential

gene expression. A positive (negative) test statistic indicates that the gene probe is over

(under)-expressed.
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For limma, gt, samr, and lmPerGene, a gene is detected as differentially expressed if the

FDR-adjusted p-value is <0.05. For samr, FDR-adjusted p-values were based on 100

permutations.

Comparison criteria

Five agreement indices and four error rates are used to evaluate the performance of eLNN-
paired. The five agreement indices are Rand index (Rand), Hubert and Arabie’s adjusted Rand

index (HA), Morey and Agresti’s adjusted Rand index (MA), Fowlkes and Mallows’s index

(FM), and Jaccard index (Jaccard) [20]. HA and MA correct for chance agreement and were

recommended by [20]. For perfect agreement, these indices have a value of one. If an index

takes a value close to zero (or a negative value), then the agreement between the true probe

cluster membership and the estimated probe cluster membership is likely due to chance.

The four error rates are false positive rate (FPR), false negative rate (FNR), false discovery

rate (FDR), and false non-discovery rate (FNDR). FPR is the percentage of detected DE probes

among truly NE probes. FNR is the percentage of detected NE probes among truly DE probes.

FDR is the percentage of truly NE probes among detected DE probes. FNDR is the percentage

of truly DE probes among detected NE probes.

For real data sets in which true gene cluster membership is unknown, we applied the Ran-

dom Forest classification algorithm [21] to predict subjects’ disease statuses based on the

detected DE probes and visualized the prediction powers of the 5 probe-detection methods via

ROC curves and precision-recall curves.

Results

We used both real datasets and simulated datasets to evaluate the performance of eLNNpaired
and to compare its performance with limma, gt, samr, and lmPerGene.

Results for real data

We downloaded from Gene Expression Omnibus (GEO) three gene expression datasets

(GSE43292, GSE24742 and GSE6631), all of which used paired designs to collect samples and

have been preprocessed by their submitters to ensure good quality of the data. We performed

further quality checking to clean the data. (c.f. Section E in S1 File and Figs A, B, and C in S1

File).

For each of the three cleaned GEO datasets, we applied eLNNpaired, limma, gt, samr, and

lmPerGene to identify DE gene probes, which consisted of over-expressed (OE) and under-

expressed (UE) genes. For non-differentially expressed gene probes, we denote them by NE.

We then used cross table to compare the 3-cluster partitions obtained by the 5 methods

(Table 2).

For GSE43292, all gene probes classified as DE (OE or UE) by eLNNpaired are in accor-

dance with limma. More than 4000 gene probes that were classified as NE by eLNNpaired were

claimed as OE or UE by limma, gt, samr, and lmPerGene. The approximated weighted proba-

bility density functions for GSE43292 are presented in Fig 1. For GSE24742 with only 12 pairs

of samples, limma and gt did not identify any DE gene probes, samr identified 8 under-

expressed gene probes, lmPerGene identified 93 over-expressed gene probes and 120 under-

expressed gene probes, while eLNNpaired identified 10 OE gene probes and 2 UE gene probes.

The 8 UE gene probes identified by samr were identified as NE by eLNNpaired. The 12 DE

gene probes identified by eLNNpaired were also identified by lmPerGene. The parallel boxplots

of the within-pair log2 differences across for the 12 DE gene probes identified by eLNNpaired
demonstrated that the results for GSE24742 by eLNNpaired are reasonable (c.f. Fig 2).
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Table 2. Cross table of the 3-cluster partitions obtained by eLNNpaired, limma, gt, samr, and lmPerGene.

eLNNpaired

GSE43292 GSE24742 GSE6631

OE UE NE OE UE NE OE UE NE

limma OE 2811 0 1997 0 0 0 772 42 912

UE 0 2336 2319 0 0 0 0 520 905

NE 0 0 23834 10 2 54663 0 0 9474

gt OE 2811 0 1988 0 0 0 772 42 826

UE 0 2336 2266 0 0 0 0 520 837

NE 0 0 23896 10 2 54663 0 0 9628

samr OE 2811 0 3296 0 0 0 772 42 1821

UE 0 2336 3416 0 0 8 0 520 1790

NE 0 0 21438 10 2 54655 0 0 7680

lmPerGene OE 2811 0 2351 10 0 83 772 42 1147

UE 0 2336 2655 0 2 118 0 520 1174

NE 0 0 23144 0 0 54462 0 0 8970

https://doi.org/10.1371/journal.pone.0174602.t002

Fig 1. Plots of approximated weighted probability density functions for GSE43292.

https://doi.org/10.1371/journal.pone.0174602.g001
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For GSE6631, all gene probes classified as OE by eLNNpaired are in accordance with

limma, gt, samr, and lmPerGene; all gene probes, except for 42 gene probes, classified as UE

by eLNNpaired are in accordance with the other 4 methods. The 1,817 gene probes that were

classified as UE by eLNNpaired were claimed as OE or UE by limma. The 1,663 gene probes

that were classified as UE by eLNNpaired were claimed as OE or UE by gt. The 3,611 gene

probes that were classified as UE by eLNNpaired were claimed as OE or UE by samr. The

2,321 gene probes that were classified as UE by eLNNpaired were claimed as OE or UE by

lmPerGene.

We compared the prediction power of the DE probes obtained by the five probe-detection

methods to predict disease statuses of subjects by using the Random Forest algorithm. ROC

curves and precision-recall curves are shown in Figs J and K in S1 File. The good performance

of all 5 methods was indicated by the fact that all ROC curves were toward the upper-left cor-

ner and all precision-recall curves were toward the upper-right corner. Figs J and K in S1 File

also indicate that the ROC curve and precision-recall curve of eLNNpaired are similar to those

of limma, gt, samr, and lmPerGene.
The estimates of the eLNNpaired model parameters for the 3 GEO datasets are shown in

Table 3.

Fig 2. Parallel boxplots of the within-pair log2 difference for the 12 DE probes identified by eLNNpaired for GSE24742.

https://doi.org/10.1371/journal.pone.0174602.g002
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Results for simulation studies

In this section, we evaluated the performance of eLNNpaired by two sets of simulation studies.

In the first set, the simulated data were generated from the eLNNpaired model. The model

parameters estimated from GSE43292 were used as the true parameter values. In the second

set, the simulated data were not generated from eLNNpaired model. For each set, we generated

100 simulated datasets, each of which contained expression levels of 1000 gene probes for n
pairs of samples. To evaluate the effect of sample size, we investigated two scenarios: n = 30

pairs and n = 100 pairs for each set of simulation studies. We denoted the first set of simulation

as G30 and G100 respectively for n = 30 and n = 100. Similarly, we denoted the second set as

S30 and S100 respectively for n = 30 and n = 100.

Tables 4 and 5 and Tables A and B in S1 File show that all 5 methods had good performance

(agreement indices are close to one and error rates are close to zero) for these 2 sets of simula-

tion studies. Figs 3, 4, and Figs D—I in S1 File show that (1) eLNNpaired performed better

than the other 4 methods in terms of agreement indices, FDR and FPR and (2) eLNNpaired
had similar FNDR and FNR to limma, gt, samr, and lmPerGene.

Table 4. Summary of agreement indices from simulation results for the scenario where n = 30 pairs per data set.

eLNNpaired limma gt samr lmPerGene

mean sd mean sd mean sd mean sd mean sd

Rand G30 0.996 0.003 0.983 0.006 0.984 0.006 0.978 0.007 0.977 0.007

S30 1.00 0.000 0.989 0.005 0.991 0.004 0.982 0.006 0.983 0.006

HA G30 0.989 0.008 0.958 0.014 0.961 0.015 0.946 0.017 0.943 0.016

S30 1.000 0.001 0.965 0.015 0.972 0.013 0.941 0.019 0.946 0.018

MA G30 0.989 0.008 0.958 0.014 0.961 0.015 0.946 0.017 0.943 0.016

S30 1.000 0.001 0.965 0.015 0.972 0.013 0.941 0.019 0.946 0.018

FM G30 0.997 0.002 0.988 0.004 0.989 0.004 0.985 0.005 0.984 0.005

S30 1.000 0.000 0.993 0.003 0.995 0.003 0.989 0.004 0.990 0.004

Jaccard G30 0.994 0.004 0.977 0.008 0.978 0.008 0.970 0.010 0.968 0.010

S30 1.000 0.000 0.987 0.006 0.989 0.005 0.977 0.008 0.980 0.007

https://doi.org/10.1371/journal.pone.0174602.t004

Table 3. The estimates of the eLNNpaired model parameters for the 3 GEO datasets.

parameter GSE43292 GSE24742 GSE6631

π1 0.086 3.36×10−4 0.062

π2 0.071 8.00×10−5 0.048

π3 0.843 0.9996 0.890

μ1 0.441 0.313 0.502

k1 0.118 3.572×10−11 2.066×10−10

α1 1.718 9.015 2.192

β1 0.029 0.290 0.111

μ2 -0.442 -0.672 -0.845

k2 0.079 7.920×10−6 0.503

α2 1.766 5.042 1.767

β2 0.034 0.671 0.069

α3 2.138 0.825 1.393

β3 0.131 0.551 0.096

https://doi.org/10.1371/journal.pone.0174602.t003

Constrained mixture of Bayesian hierarchical models

PLOS ONE | https://doi.org/10.1371/journal.pone.0174602 March 30, 2017 11 / 16

https://doi.org/10.1371/journal.pone.0174602.t004
https://doi.org/10.1371/journal.pone.0174602.t003
https://doi.org/10.1371/journal.pone.0174602


Discussion

In this paper, we aimed to extend existing MBHM methods to analyze genomic data collected

from paired/matched designs. The proposed model does not involve hypothesis testing; hence

it does not have the problem of the curse of dimensionality. The proposed model can also

Table 5. Summary of error rates from simulation results for the scenario where n = 30 pairs per data set.

eLNNpaired limma gt samr lmPerGene

mean sd mean sd mean sd mean sd mean sd

FDR G30 0.003 0.005 0.049 0.017 0.045 0.018 0.068 0.021 0.069 0.020

S30 0.000 0.002 0.054 0.023 0.044 0.020 0.088 0.027 0.081 0.026

FNDR G30 0.002 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001

S30 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FPR G30 0.001 0.001 0.010 0.003 0.009 0.004 0.014 0.005 0.014 0.004

S30 0.000 0.000 0.006 0.003 0.005 0.002 0.011 0.004 0.010 0.003

FNR G30 0.012 0.010 0.007 0.007 0.008 0.007 0.004 0.005 0.007 0.007

S30 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

https://doi.org/10.1371/journal.pone.0174602.t005

Fig 3. Boxplots of the agreement indices (Rand, HA, MA, FM, and Jaccard) for eLNNpaired, limma, gt, samr, and lmPerGene based

on simulation G30. Top-left panel: Rand; Top-middle panel: HA; Top-right panel: MA; Bottom-left panel: FM; Bottom-right panel: Jaccard.

https://doi.org/10.1371/journal.pone.0174602.g003
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borrow information across genes to estimate hyper-parameters, which makes it useful for data

with small sample sizes.

The performance of the proposed model in detecting DE gene probes worked better than

the existing hypothesis-based methods limma, gt, samr, and lmPerGene in terms of agreement

indices in the simulation studies.

Both simulation studies and real data analyses showed that the proposed model had similar

error rates and prediction accuracy to limma, gt, samr, and lmPerGene, although the proposed

model detected much fewer DE probes than the other four methods.

One advantage of the proposed model over the existing MBHM methods is that it intro-

duces constraints on the model hyper-parameters to reduce false discoveries. More stringent

constraints could result in fewer positives and a reduction in false discoveries. One possible

benefit of the constraint setting is to make it adaptive to different datasets. Specifically, we can

first set constraints empirically, then compare the derived results with what limma provides. If

a gene is classified by limma as over-expressed but by our model as under-expressed or the

other way round, we assume that limma is correct and tighten our constraints by a small

Fig 4. Boxplots of the error rates (FDR, FNDR, FNR, and FPR) for eLNNpaired, limma, gt, samr, and lmPerGene based on

simulation G30. Top-left panel: FDR; Top-right panel: FNDR; Bottom-left panel: FPR; Bottom-right panel: FNR.

https://doi.org/10.1371/journal.pone.0174602.g004
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amount. If no such genes are discovered, we loosen our constraints in the same manner.

Under these new constraints, we run our model again. We repeat this procedure until we

reach a critical point where we find as many positives as possible, while also avoiding false dis-

coveries to a large extent.

For example, for GSE6631, 42 genes were classified as OE by our model, but as UE by

limma. This can be reduced by setting the constraints stronger. For instance, we can set c2 =

F−1(0.025) instead of F−1(0.05), and we will get a new cross table with less number of false UE

(c.f. Table 6).

Since the parameter estimation of the proposed model is based on the EM algorithm, which

is computationally inefficient, the adaptive constraints introduced above may take too much

time. One efficient way to reduce false discovery is to compare the results with what limma
provides, and use limma’s result when conflicts are found between over-expressed and under-

expressed genes.

It is well known that the EM algorithm converges slowly. Based on the Appendix E of [22],

the computational complexity of one EM iteration is OðnGþ KG2Þ, where n is the number of

sample pairs, G is the number of gene probes, and K = 3 is the number of mixtures. We used R

language to implement the eLNNpaired algorithm, and this produced results in reasonable

time. For example, we used a Linux Machine running 64-bit CentOS 6.8 Linux with 4 cores,

24G memory, 2.6 GHz Xeon CPU and the running times for the 3 GEO data sets are listed in

Table 7. In the future, we can use FORTRAN language to program the core parts of the eLNN-
paired algorithm and then use R to call the FORTRAN functions to improve the speed of

eLNNpaired.

The proposed method can be used or adapted for analyzing other types of omics data, such

as DNA methylation data, microRNA data, metabolite data, or next generation sequencing

data.

The proposed model has some limitations. First, the model, like other MBHMs, assumes

that gene probes are independent, which could not be totally satisfied by the real data since

physically adjacent gene probes might be positively correlated. Ignoring positive correlation

would typically reduce the number of positive test results. Since the proposed model borrows

information across genes, this may counter the effects of ignoring positive correlation. Future

research is warranted to study how to incorporate gene-gene correlation into our model.

Table 6. New cross table for GSE6631.

eLNNpaired

OE UE NE

limma OE 773 2 951

UE 0 412 1013

NE 0 0 9474

https://doi.org/10.1371/journal.pone.0174602.t006

Table 7. Total elapsed times (seconds) for the 3 GEO data sets.

GSE43292 GSE24742 GSE6631

eLNNpaired 139.679 170.833 61.561

limma 5.325 6.619 2.720

gt 326.308 553.442 128.067

samr 47.709 63.136 20.737

lmPerGene 1.082 1.563 0.482

https://doi.org/10.1371/journal.pone.0174602.t007
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To simplify the model building and parameter estimation, we assume that the within-pair

log2 difference of expression levels is conditional normally distributed and we impose conju-

gate prior distributions on model parameters. Real data analysis usually shows that conditional

normality assumption is reasonable. In further work, we will experiment with other priors or a

non-informative prior and use Bayesian estimation (e.g., Markov Chain Monte Carlo

(MCMC) method) to estimate model hyper-parameters.

We implemented the eLNNpaired algorithm to an R package (S2 File), which is freely avail-

able to researchers.
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