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ABSTRACT 

Epidemiological studies have documented significant relationships between outdoor 

particle exposure and adverse health effects whilst indoor residential PM2.5 exposure is found to 

be the most influential on total PM2.5 exposure as people spend more than 80% of their time 

indoors. Accurate exposure assessments for ambient and indoor environments are therefore of 

equal importance. In this dissertation, we aim to develop methodologies that enhance our ability 

to quantify fine particulate matter (PM2.5) exposure in both macro and micro perspective. 

With advanced remote sensing technologies becoming more prevalent and less expensive, 

there is great potential in employing satellite date to analyze and illustrate ambient air quality in 

real-time over large geographic areas. In Chapter 1, we introduced a top down approach to 

construct PM2.5 emission inventory through the integration of mass balance and satellite retrieved 

daily Aerosol Optical Depth (AOD) at 1km x 1km resolution.  The satellite-based inventory 

provides spatially- and temporally-resolved emission estimates as opposed to the conventional 

source-oriented inventory that has time lag issues with limited spatial variability to the extent of 

its data source (usually ground monitoring network). Subsequently in Chapter 2, we quantified 

the temporal and spatial trends of PM2.5 emission in the North East U.S. using the satellite-based 

emission inventory. Satellite-based emission trends are in agreement with that of the source-

oriented inventories released by the US EPA, showing major reductions achieved in urban areas 
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as well as along important traffic corridors. The technique of this part of the study can be applied 

to nation-wide or global remote sensing data for estimating PM2.5 emissions and hence 

improving the quantification of fine particles effects on climate, air quality and human health. 

While big data may be the game changer for resolving ambient air quality problems, we 

still face the challenge of data scarcity in microenvironments. In Chapter 3, prediction models 

that utilize few available samples to assess indoor PM2.5 exposure were developed. We estimated 

infiltration rate of ambient particles penetrating indoors using sulfur as the tracer element at 95 

residences in the Greater Boston Area. Mixed effects model was employed in order to predict 

infiltration for individual residences. We then estimate indoor levels of PM2.5 and its black 

carbon (BC) content using outdoor measurements and the estimated infiltration factor. We cross 

validated the aforementioned models to evaluate their predictive power specifically at dates 

without indoor information. Cross validation results of the infiltration model (R2=0.89) indicates 

that mixed effects captured infiltration rates for individual households adequately. We also found 

strong predictability when sulfur infiltration surrogate and outdoor measurements of PM2.5 and 

BC were used in predicting indoor exposure levels (R2= 0.79 [PM2.5], 0.76 [BC]).  

Altogether, the methodologies introduced in this dissertation may serve as frameworks to 

(1) quantify and illustrate ambient emission of PM2.5 or other pollutants in a macro perspective 

and (2) determine the relationships between outdoor and indoor air quality and to predict indoor 

air pollution which are critical information for developing solutions of micro-level air quality 

problems. 
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INTRODUCTION 

Air pollution has occupied the public attention in the U.S throughout the 20th century. This 

awareness drives the U.S. to reduce its air pollution to only a fraction of past levels. On the flip 

side, recent research reveals that particulate matter with aerodynamic diameters less than 2.5 µm, 

or PM2.5, can still pose adverse effects(Pope et al. 2002, Dominici 2003, Zanobetti and Schwartz 

2006, Peng et al. 2009, Levy et al. 2012) on human health even concentrations of PM2.5 has 

reached historical low(Shi et al. 2016). With a fairly clean atmosphere in the U.S., further 

improving air quality becomes even more challenging as unnecessary collateral damage could be 

easily made due to obscured or sometimes exaggerated exposure levels of PM2.5. Better 

understanding the origin, distribution and infiltration to microenvironments of PM2.5 is therefore 

indispensable prior to implementing particle control strategies.  

Sources of PM2.5 are commonly categorized into primary emissions and secondary 

formations. Primary PM2.5 is directly released into the atmosphere from natural and 

anthropogenic activities while secondary PM2.5 is formed within the atmosphere from precursor 

gases such as Sulfur dioxide (SO2), ammonia (NH3), nitrogen oxides (NOx), and volatile organic 

compounds (VOCs) via gas-phase photochemical reactions or through liquid phase reactions in 

clouds and fog droplets.  Currently, the U.S. Environmental Protection Agency (EPA) monitor 

primary sources by estimating unit emission rate (or emission factor) and frequency of activity 

for each known sources (EPA 2005a, 2008, 2011). Modeling emission factors often rely on 

ground-level networks for data collection and thus most emission estimates have time lags with 

limited temporal and spatial information. While a spectrum of primary PM2.5 sources are 

documented in the EPA’s emission inventory, this source-oriented method is not directly 
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applicable to assess secondary particle formations which constitute a substantial portion of the 

total PM2.5 in the atmosphere. At present, sources of the precursor gases that contribute to or aid 

secondary particles formation are voluntarily reported to the EPA. The formation processes for 

inorganic particles is fairly well understood so far but much is to be learned regarding the 

organic portion of the process. In essence, quantifying secondary formation of PM2.5 based on 

precursor gases is still difficult and the high uncertainties of these estimation undermines our 

efforts to understand trends of PM2.5(Fine, Sioutas, and Solomon 2008). Ultimately, this source-

oriented approach becomes very expensive and unrealistic as new sources are rapidly emerging 

while research on known sources has yet to be completed. In order to enhance the emission 

control efficiency, cost effective ways to quantify particle emissions over broad areas with 

enough temporal and spatial details are needed. 

An alternative source of data that could help us address the aforementioned issue has 

emerged along with the major advancement in detecting air pollution from outer space (Streets et 

al. 2013).  Satellite data has the potential for quantifying emissions near real time with high 

spatial resolution global coverage. Furthermore, it can be applied to measure area sources (e.g. 

biogenic sources, biomass burning, etc.) which are difficult to assess using traditional source-

oriented methods and uncertain emissions from neighboring countries (e.g. Mexican and 

Canadian emissions) where ground network data may be unavailable. At present, inverse 

modeling is the most common technique to constraint emissions using satellite data. However, 

the forefront limitation of this method is that it is computationally unattractive. Consequently, 

the emission inventories generated from inverse models are still restricted to coarse spatial 

resolution with little temporal information. For example, Dubovik et al., predicted global aerosol 

emissions at 2 º x 2.5º using two weeks of aerosol data simulated by the Goddard Chemistry 
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Aerosol Radiation and Transport (GOCART) model (Dubovik et al. 2008) and more recently, 

Huneeus et al., estimates monthly averaged aerosol emission fluxes at 1º x 1º in 2002 using 

Aerosol Optical Depth (AOD) from the Moderate Resolution Imaging Spectroradiometer 

(MODIS)(Huneeus, Chevallier, and Boucher 2012). In the aforementioned studies, actual 

measurements of emissions with comparable spatial and temporal scale as the satellite-derived 

emissions are still limited and therefore uncertainties of these models are often indirectly 

determined. Furthermore, satellite measurements (e.g. AOD) represent the vertical loading of 

aerosols while ground-based observations reflect particles near ground and this discrepancy 

could pose another challenge to evaluate the uncertainties of satellite-derived emissions. 

In Chapter 1 we introduced a new emission inventory method, Particles Emission 

Inventory using Remote Sensing (PEIRS), predicting total PM2.5 emissions through integration 

of mass balance and high resolution 1km x 1km AOD data. AOD is one of the most robust 

measures for fine aerosols, also referred to as aerosol optical thickness (AOT). The relationship 

between AOD and PM2.5 has been well studied and calibrations were performed using various 

statistical techniques including simple linear regression(Tai, Mickley, and Jacob 2010), neural 

networks(Hooyberghs et al. 2005) and hybrid spatial and temporal models(Kloog et al. 2011) to 

predict ambient PM2.5 concentrations with high accuracies. Building upon the sophisticated 

calibration techniques, we first calibrated AOD into ground-level PM2.5 concentrations. This 

calibration allows us to predict near-ground particle emissions using a mass balance equation and 

further evaluate emission estimates with monitor observed or estimated emission from the 

National Emission Inventory released by the U.S. EPA. The trajectory of air mass movement 

was captured using wind direction obtained from the North American Regional Reanalysis 

database and subsequently included in the emission model as surrogate of upwind particle 



4 
 

contributor. Local emissions including primary and secondary particles within each 1km x 1km 

grid cell are estimated across the North East U.S. over the period of 2002 to 2013.  

In Chapter 2, as an implication of the inventory method proposed in Chapter 1, we 

applied the PEIRS approach to build and analyze temporal and spatial trends of triennial 

averaged emission inventories across Northeast U.S. during 2002 to 2013. Temporal emission 

trends were estimated using a linear quantile regression model in order to examine the variation 

of trends at different quantiles of the emission distribution. Source-oriented trends were 

quantified using land use regression models. To further determine the seasonality of emission 

trends, the aforementioned trend analyses were also conducted separately for warm and cold 

season specific satellite-based emission inventories. 

While ample amount of resources and great advancement of modeling techniques have 

become readily available for ambient air quality research, just as we demonstrated in the first two 

chapters, indoor air quality studies are still restricted to very few field samples and questionnaire 

data as surrogates of indoor sources or penetrations of ambient air pollutants. As people spend 

the majority of their time indoor, it is equally or even more critical to adequately assess the 

exposure levels in the micro-environment as of the macro-environment. More importantly, in 

view of the clear association between health effects and ambient PM2.5 concentrations 

demonstrated by many studies worldwide in the past decade, the correlation between the 

components of micro-environmental exposure due to outdoor particles have also drawn the 

interests of epidemiologists.  Many studies have focused on building prediction models for 

indoor particles using various data such as household characteristics, land use parameters, tracer 

elements. However, reliable predictions from previous studies were rather limited due to the 
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scarcity of indoor samples, variation of infiltration rate by the size distribution and composition 

of fine particles, and mediation of infiltration rates by human behaviors. 

To address these issue, Chapter 3 presented an analysis to model infiltration factor using 

sulfur as its tracer for each individual households in the Greater Boston Area. Cross validation is 

used to evaluate the stability and predictability of the model and the appropriateness of the use of 

I/O S ratio as a surrogate of infiltration. More importantly, the cross validation was designed to 

examine the predictability when indoor data are not available which is crucial for 

epidemiological studies. We then incorporated the estimated I/O S ratio in predicting indoor 

PM2.5 and BC concentrations as a secondary evaluation. The relationship between the predicted 

sulfur ratio and human activities that modifies the infiltration rates such as use of AC, purifier, 

and open windows were also examined in this study. 
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ABSTRACT 
 

Information regarding the magnitude and distribution of PM2.5 emissions is crucial in 

establishing effective PM regulations and assessing the associated risk to human health and the 

ecosystem. At present, emission data is obtained from measured or estimated emission factors of 

various source types. Collecting such information for every known source is costly and time 

consuming. For this reason, emission inventories are reported periodically and unknown or 

smaller sources are often omitted or aggregated at large spatial scale. To address these 

limitations, we have developed and evaluated a novel method that uses remote sensing data to 

construct spatially-resolved emission inventories for PM2.5. This approach enables us to account 

for all sources within a fixed area, which renders source classification unnecessary.  We applied 

this method to predict emissions in the northeast United States during the period of 2002-2013 

using high- resolution 1 km x 1km Aerosol Optical Depth (AOD). Emission estimates 

moderately agreed with the EPA National Emission Inventory (R2=0.66~0.71, CV = 17.7~20%). 

Predicted emissions are found to correlate with land use parameters suggesting that our method 

can capture emissions from land use-related sources.  In addition, we distinguished small-scale 

intra-urban variation in emissions reflecting distribution of metropolitan sources. In essence, this 

study demonstrates the great potential of remote sensing data to predict particle source emissions 

cost-effectively.  

INTRODUCTION 
 

Fine particulate matter (PM2.5) is a major public health burden associated with a range of adverse 

health effects (Schwartz and Dockery 1992, Schwartz 2001, Pope et al. 2002, Schwartz, Laden, 

and Zanobetti 2002, Ren, Williams, and Tong 2006, Zanobetti and Schwartz 2006, Turner et al. 
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2011, Lepeule et al. 2012). As such, identifying particle sources and quantifying their emissions 

is of paramount importance to the development of air quality standards and the enforcement of 

emission reduction policies. The US Environmental Protection Agency (EPA) is responsible for 

developing a nationwide particle emission inventory, the National Emission Inventory (NEI), 

which is the most comprehensive database for criteria air pollutants (CAP) and hazardous air 

pollutants (HAP) emissions. The NEI is updated every three years using data collected from 

state, local and tribal air agencies as well as EPA emission trading programs.  Collecting 

information on area and mobile emission sources can be challenging especially when there are 

ample amount of small sources widely dispersed over a large area. For instance, smaller 

stationary sources such as wood furnaces and stoves are not defined as major point sources in the 

NEI and thus are not rigorously regulated. However, these smaller sources may represent a large 

fraction of the total emissions as bigger industrial sources decrease in intensity due to strict 

regulations and improved technology. For PM, the current NEI aggregates mobile sources and 

nonindustrial sources at county level. Information for such broad geographic areas, in 

combination with measurement error and modeling uncertainties may limit effectiveness to 

implement emission regulations. Coarse spatial resolution also limits the utility of the NEI data 

to assess human health risks  or develop air pollution models (EPA 2008).   

 

Satellite data is increasingly important for air pollution exposure assessment because of scarce 

and ad hoc spatial-temporal coverage of the federal monitoring network. Overtime, satellite data 

has been incorporated in a variety of air quality applications, including tracking long-term 

pollution transport, identifying exceptional events such as wild fires, fireworks and dust storms, 

and estimating ground level pollution concentrations (Duncan et al. 2014). Satellite-based 
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sensors have provided information on important air pollutants, such as nitrogen dioxide (NO2), 

sulfur dioxide (SO2), volatile organic compounds (VOCs) and fine particulate matter (PM2.5) 

(Martin 2008). Specifically, a growing number of studies have successfully employed AOD data 

to characterize properties and patterns of PM2.5 (Gupta and Christopher 2009, Liu, Paciorek, and 

Koutrakis 2009, Kloog et al. 2011, Lee et al. 2012, Hu et al. 2014, Kloog et al. 2014).  

 

AOD is a dimensionless measure of the attenuation of light due to the presence of aerosols that 

prevent light transmission via absorption or scattering. This fundamental property of AOD, with 

proper correction for absorption and scattering of gases in the atmosphere, makes it a suitable 

surrogate of the aerosol loading in the atmosphere (Hoff and Christopher 2009). Nevertheless, 

vigilant calibration of the AOD data is required due to several physical differences among AOD 

and ground-level PM2.5. A critical concern is that AOD represents the total amount of aerosols in 

the entire atmospheric column while measured PM2.5 only reflects particles at ground level. The 

relationship between AOD and PM2.5 is therefore highly dependent on the vertical distribution of 

aerosols. Moreover, like all satellite measurements, AOD readings are snapshots of the aerosol 

distribution at that exact moment, while filter-based PM2.5 samples are collected over a 24-hour 

period. This temporal mismatch also influences the association between AOD and ground level 

PM2.5. To address these concerns, multiple techniques including neural network, generalized 

additive models and hybrid models have been used to generate AOD-derived PM2.5 

concentrations (Gupta and Christopher 2009, Lee et al. 2012, Hu et al. 2014, Kloog et al. 2014). 

Recent advancements in various predictive statistical models have enabled scientists to assess 

daily PM2.5 exposures with continuous spatial coverage, which are crucial for legislation 
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development and health effects studies. Nonetheless, satellite data has yet to become a prime 

resource in predicting particle emissions. 

 

In this chapter, we introduce a method using satellite AOD data to predict emission inventories 

for PM2.5. As a demonstration of the proposed method, we constructed spatially resolved PM2.5 

emission inventories in the Northeast U.S. using 1 km x 1 km daily AOD retrievals during the 

period of 2002-2013. We derive the emission model based on the concept of one compartment 

model, which is often used to estimate emissions of indoor sources (Spengler, Samet, and 

McCarthy 2001).  Our approach has the potential to generate comprehensive emission 

inventories cost- effectively as oppose to the existing ones.  

METHODS 

Data and Materials 
 

PM2.5 ground monitoring concentration data. The study domain is the Northeast U.S. that 

includes the states of Connecticut (CT), Massachusetts (MA), Maine (ME), New Hampshire 

(NH), New York (NY), Rhode Island (RI) and Vermont (VT). We obtained daily averaged PM2.5 

measurements, mostly from integrated filter samples, measured at 124 monitoring sites among 

the U.S. Environmental Protection Agency (EPA) Compliance Network, Air Quality 

System(AQS) and the Interagency Monitoring of Protected Visual Environments (IMPROVE) 

database during the period of 2002 to 2013. Daily averaged monitoring PM2.5 is used to calibrate 

AOD data into AOD-derived-PM2.5 concentrations (Figure 1). 
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Figure 1. Study area and EPA monitoring network. 

 

Satellite Aerosol Optical Depth. The Moderate Resolution Imaging Spectroradiometer (MODIS) 

instrument on board the Earth Observing System (EOS) Aqua satellite provides numerous 

aerosol measures including AOD product reflecting fine particle loading. In 2011, an advanced  

algorithm ,the Multi-angle Implementation of Atmospheric Correction (MAIAC), was presented 

(Lyapustin et al. 2011) providing a set of AOD product with much finer resolution (1 km x 1km) 

compared to the standard MYD04 product at 10km x 10km resolution. A study evaluating the 

MAIAC AOD product concluded that it is more robust under partly cloudy conditions with fewer 

non retrieval days and pixels than the standard product. For this reason, MAIAC AOD also 

pertains improved ability in capturing spatial patterns of particle loading (Chudnovsky et al. 

2013). Furthermore, calibration of the MAIAC AOD product was shown to be successful for the 
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New England Area (Kloog et al. 2014). Here we took advantage of the MAIAC AOD Aqua 

product to predict spatially resolved (1 km x1 km) emission inventories. 

 

Meteorological data. Meteorological parameters such as vertical (VWND) and horizontal wind 

speed (UWND), relative humidity (RH), boundary layer height (PBL), snow coverage, 

precipitation (PRCP) and temperature (TEMP) for the period from 2002 to 2013 were obtained 

from the National Oceanic and Atmospheric Administration (NOAA) North America Regional 

Reanalysis (NARR) database. This dataset assimilates multiple sources of measurements and 

optimizes estimation of meteorological fields as described by (Kalnay et al. 1996). The 

reanalysis dataset provides surface level meteorological variables at a spatial resolution of 32 km 

x 32 km and temporal resolution of 1 day. The PBL is used to estimate the columnar volume of 

air on a given day, and other meteorological variables are used to calibrate the AOD/PM2.5 

relationship. All NARR daily meteorological variables were linearly interpolated to 1 km×1 km 

resolution using a Matlab package, scatteredInterpolant. More detail on the package algorithm 

can be found in the MathWorks online documentation 

(http://www.mathworks.com/help/matlab/ref/scatteredinterpolant-class.html).   

In building the emission prediction model, wind speed is used to estimate the residence time of 

air mass inside a volume of 1km x 1km x PBL km, while wind direction is the key factor to 

identify the location of the upwind adjacent grid cell. After interpolating both wind field 

parameters into 1km x 1km resolution as described above, we calculated wind speed (WS) as the 

square root of sum of u2 and v2 and wind direction (WD) as the vector sum of UWND and 

VWND. We assumed that the daily wind direction and wind speed was constant within at all 

altitudes at the surface level defined by the NOAA land surface model (Mesinger et al. 2006). 
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Land use variables. Traffic-related variables including major roads (A1-A3) density and other 

roads (A4) density were gathered from the StreetMap USA database. Roads were classified using 

the Feature Class Code (A1-A4) from the US Census Bureau, 

Topologically Integrated Geographic Encoding and Referencing (TIGER) system. Annual 

averaged traffic count for major roads was obtained from the Highway Performance Monitoring 

System (HMPS) database. We used a Kernel density algorithm to calculate grid (1km x 1km) 

averages of the major traffic density parameters using ESRI® ArcMap software. Land cover data 

for the entire Northeast U.S. were obtained from the 2011 collection of the National Land Cover 

Database (NLCD). With more detailed classification of land use, land cover data for 

Massachusetts were also gathered from the Massachusetts Department of Environmental 

Protection (Mass DEP). Elevation raster data was obtained from the ESRI® database. All land 

use parameters except elevation were used only for emission validation and are excluded from 

both AOD/PM2.5 calibration and the emission model. 

 

NEI emission data. Point, nonpoint, and mobile emissions were obtained from the 2008 and 2011 

U.S. EPA emission inventories. According to EPA’s definition, point emission contains larger 

industrial sources while nonpoint refers to smaller stationary sources that are inventoried at 

county level. Such sources (or sectors) include residential wood combustion, field burning, and 

consumer solvent use etc. Mobile sources pertains mostly transportation emissions such as road 

traffic, locomotive, aircraft and commercial marine vessels. Detailed sector descriptions can be 

found in the 2008 NEI report. For this study, we aggregated the nonpoint and mobile EPA NEI 

emission data to evaluate the predicted particle emissions. The locations of NEI point emissions 

were intersected with the corresponding 1km x 1km AOD grid cell. A variable indicating the 
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presence of NEI point sources was created and was included in the land use regression validation 

models. 

Statistical Analysis 
 

The PEIRS approach encompasses three analytical stages: First, we calibrated AOD to obtain 

AOD-derived PM2.5 predictions for all 1km x 1km grids in the study domain. Second, we fit an 

emission model for each grid cell to predict emissions released within the grid. Third, we 

deployed land use regression models and compared county-level predicted and NEI-reported 

emissions to evaluate our method.  

 

AOD/PM2.5 Calibration.  Let us consider an air mass enclosed in a box with a base of 1km x 

1km (Pixel Area) and a height equal to that of the boundary layer (PBL). We can assume that 

AOD is proportional to the particle mass inside this box based on the previously established 

relationship between AOD and fine particles(Hoff and Christopher 2009). Subsequently, we can 

express the particle mass as the product of the average particle concentration (CPM2.5) and the box 

volume:  

 

𝐴𝑂𝐷 ∝ 𝑀𝑎𝑠𝑠𝑃𝑀2.5 = 𝐶𝑃𝑀2.5 × 𝑉𝑜𝑙𝑢𝑚𝑒 =  𝐶𝑃𝑀2.5 × 𝑃𝐵𝐿 × 𝑃𝑖𝑥𝑒𝑙 𝐴𝑟𝑒𝑎  (1) 

 

Since the pixel area remains constant (1 km2) and most particles are usually below the boundary 

layer, we can translate the relationship in eq 1. into the basis of a calibration model as follows:  

 

𝐶𝑃𝑀2.5 = 𝛽0 + 𝛽1
𝐴𝑂𝐷

𝑃𝐵𝐿
      (2) 
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Where β0 is the intercept and β1 is the slope or conversion factor of the simple calibration model. 

Because PBL, relative humidity and particle composition vary daily, we performed daily 

calibrations using a mixed-effects regression model. Including random slopes (𝛼1𝑖 , i: day) and 

intercepts (𝛼0𝑖) by day enables the model to capture day-to-day variability in the AOD/PM2.5 

relationship (Lee et al. 2012, Kloog et al. 2014). Relative humidity (RH), wind speed (WS), 

snow coverage, precipitation, temperature (Temp) and elevation are also included as covariates 

to adjust for site-specific characteristics. We also added interaction terms between AOD and all 

meteorological parameters to further control their effects on particle extinction efficiency. 

However, we did not include any source related land use here because AOD-derived-PM2.5 

concentrations are used to estimate emissions. For this reason, source related parameters should 

be excluded from the calibration process. The final calibration model is as follows: 

 

𝐶𝑃𝑀2.5 = 𝛼0𝑖 + 𝛽0 + (𝛼1𝑖 + 𝛽1)
𝐴𝑂𝐷

𝑃𝐵𝐿
+  𝛽2𝑊𝑆 + 𝛽3𝑅𝐻 + 𝛽4𝑇𝑒𝑚𝑝 + 𝛽5𝑆𝑛𝑜𝑤𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 +

𝛽6𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 + 𝛽7𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 + 𝛽8𝑇𝑒𝑚𝑝 ×
𝐴𝑂𝐷

𝑃𝐵𝐿
+ 𝛽9𝑆𝑛𝑜𝑤𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ×

𝐴𝑂𝐷

𝑃𝐵𝐿
+ 𝛽10𝑅𝐻 ×

𝐴𝑂𝐷

𝑃𝐵𝐿
+ 𝛽11𝑊𝑆 ×

𝐴𝑂𝐷

𝑃𝐵𝐿
 + 𝛽12𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 ×

𝐴𝑂𝐷

𝑃𝐵𝐿
                 

(3) 

 

Subsequently, a 10-fold cross validation is conducted to evaluate the calibration model (eq. 3).To 

perform cross validation, data from the monitoring stations are randomly separated into a 10% 

held-out set and a 90% training set. The calibration is a supervised linear regression model fitted 

based on the 90% training set and thereafter to predict the 10% held-out data. The same 

procedure is repeated 10 times until all data are predicted once. We then compare the calibrated 

prediction to the observed PM2.5 concentration and examine the variability explained by the 

prediction (R2) and bias (slope and intercept). The difference in R2 between the 10-fold 
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calibration and training (where all data is used to fit the model) should be less than 10% 

otherwise the model is likely over fitted. After careful evaluation, we obtained AOD-derived-

PM2.5 concentrations for all 1km x 1km cells in the study domain. 

 

Emission model. We considered each box as a single compartment and modeled PM2.5 

concentration (C) using the mass balance concept as illustrated in Figure 2: 

 

𝑑𝐶(𝑡)

𝑑𝑡
= ∑ 𝑆𝑜𝑢𝑟𝑐𝑒𝑠 − ∑ 𝑆𝑖𝑛𝑘𝑠     (4) 

 

 
 

Figure 2. Box model dynamics. 

 

Within a box, particles are transported from upwind cell (s) (Cu, PM2.5 concentration in the 

upwind cell) or released by sources located inside the box (local emissions). This includes 

primary emissions from local sources as well as formation of secondary particles from precursor 

gases emitted from local or distant sources. On the other hand, particle losses (sinks) within an 

atmospheric column are due to dry deposition (d), wet deposition (w) and air exchange (α) 

transport to the downwind cell. Wet deposition is not accounted for in this model because we 

omitted AOD retrievals during days with rain or clouds.  As previously stated, we used PBL to 



17 
 

estimate the volume of each 1 km x 1 km cell, and thus the predicted local emission Q is 

expressed in tons/km2/year. Moving forward we will discuss particle transport and model 

derivation in 2-dimensional space. 

 

𝑑𝐶(𝑡)

𝑑𝑡
= 𝛼𝐶𝑢 +

𝑄

𝑃𝐵𝐿
− (𝛼 + 𝑑)𝐶(𝑡)    (5) 

 

Since dry deposition is usually considerably slower than the air exchange rate, we can simplify 

the mass balance equation by neglecting dry deposition: 

 

𝑑𝐶(𝑡)

𝑑𝑡
= 𝛼𝐶𝑢 +

𝑄

𝑃𝐵𝐿
− 𝛼𝐶(𝑡)     (6) 

 

Assuming equilibrium, we can solve the differential eq 6. and obtain the following solution: 

 

𝐶 = 𝐶𝑢 +
𝑄

𝛼×𝑃𝐵𝐿
+ 𝐶1𝑒−𝛼𝑡     (7) 

 

In addition, if we assume that the transported pollution Cu is independent of local emissions Q, 

the integration constant C1 is equal to zero, and we can simplify eq 7. as follows: 

 

𝐶 = 𝐶𝑢 +
𝑄

𝛼×𝑃𝐵𝐿
       (8) 

 

Particle transport primarily occurs between two neighboring cells as shown in Figure 2. 

However, emissions may travel further depending on the wind speed and elevation of the source. 

Given the fine resolution (1km x 1km cells) of this study, transported emission is likely 

travelling from further than one upwind cell. In fact, PM2.5 concentrations of upwind cells within 

3km distance strongly correlate to the concentration of the corresponding downwind cell. For 
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this reason, 3 upwind cells are included in the emission model to account for all transported 

particles. The algorithm used to locate upwind cell(s) depends on wind direction in the 

downwind cell as illustrated in Figure 3. 

 

 

 

Figure 3. Example of upwind cells identification. 
wd: wind direction, N: North, NW: Northwest, W: west. 

 

 

In addition to the within-cell emission, secondary particles are formed from gaseous emissions 

originated from sources situated within and outside the downwind cell. In order to control for the 

secondary particles formed outside the downwind cell and were not captured by the upwind cell 

concentrations, we include  temperature(ºK) in our model as a surrogate of the various weather 

parameters associated with particle formation (Vehkamaki and Riipinen 2012): 

 

𝐶 = ∑ (𝐶𝑢𝑖 ×3
𝑖=1 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) +

𝑄

𝛼×𝑃𝐵𝐿
      (9) 

 

We fitted the above model (eq.9) to predict emissions, Q, for all 1 km x 1 km cells within the 

study domain. 
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Land use regression. Since emissions are often closely related to land use parameters, we fitted 

regression (LUR) models to examine relationships between model predictions (Q) and source 

types, which is an indirect approach to evaluate PERIRS. The land cover data from MASS DEP 

provides a more detailed classification than that of the NEI. Therefore, we fitted a land use 

model specifically for Massachusetts to examine potential relationships between model 

predictions and different land cover types. In addition, we also included point emission estimates 

from the NEI in the LUR model to account for industrial or larger point sources that may not be 

included in the land use database. Toward this end, we included an indicator variable for point 

emission in the LUR models to determine whether higher Q values are associated with major 

point sources inside the 1km x 1km grid cell.   

 

County level evaluation model.  US EPA reports PM emission from all sources at the county 

level, and for this reason, we averaged our 12-year-averaged-emission predictions by county and 

compared them to the county NEI emission densities as a secondary validation (eq. 10). We 

performed two county-level evaluations using NEI 2008 and 2011, respectively. In addition, we 

conducted state-specific evaluations to examine differences among model predictions and NEI 

emissions. Although a better evaluation is to compare annual PEIRS emissions to the NEI in 

corresponding years, we currently do not predict annual emissions with the PEIRS model. The 

reason being annual emission predictions could be biased due to imbalanced data since missing 

in AOD occurs seasonally.  

 

𝑁𝐸𝐼 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 =  𝛽0 + 𝛽1𝑄𝑐𝑜𝑢𝑛𝑡𝑦 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 + 𝜖   (10) 
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RESULTS AND DISCUSSION 

 

AOD/PM2.5 Calibration Performance 
 

Table 1 depicts the performance of AOD/PM2.5 calibration. The model training R square (0.85) is 

moderately high suggesting that the calibration model was well fitted. The cross-validation 

analysis demonstrated that model predictive accuracy is high for temporal variability (R2=0.80) 

and moderate for spatial variability (R2=0.66).  Among AOD-PM2.5 calibration models, that of 

Kloog et al., has so far the strongest predictive power (temporal R2 = 0.87, spatial R2 = 0.87) 

(Kloog et al., 2014). While the temporal predictability is similar between our calibration and that 

reported by of Kloog et al., our spatial predictability is much lower. A possible reason for this 

difference is that Kloog et al., used a hybrid approach that includes not only meteorological 

covariates and elevation, but also many other land use variables, which are crucial PM25 

predictors enhancing spatial predictability. As previously stated, the major goal of our model is 

to predict emissions based on remote sensing data, and it would not be appropriate to include 

source-related covariates such as land use terms.  

 

Table 1. 10 fold cross validation 

R2 (dimensionless) 

RMSE (μg/m3) 
Temporal Spatial 

R2 RMSE R2 RMSE 

Training Performance 0.85 2.56 0.75 0.90 

10 fold Cross Validation 0.80 2.85 0.66 1.06 

 

 

Predicted emissions 

 

Figure 4 depicts emissions predicted over the period of 2002 to 2013 in the northeast US. We 

observed emission hotspots with more than 35 tons/year/km2 in most highly populated areas such 
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as Boston, New York City, and Long island. In addition, we observed transportation emissions 

along major highways.  Finally, we predicted low emission levels for rural areas (<20 

tons/year/km2).  

 

 
Figure 4. Estimated emission in north east US. 

 

Figure 5 shows the estimated emissions, land cover and population distributions in the Greater 

Boston, New York, and Providence areas. In general, we found similar spatial patterns among 

highly populated areas such as the Greater Boston and New York, reflecting typical urban 

activities. PEIRS predicted high emissions levels in developed areas (Figure 5d and 5e, color in 

red) in east Boston, New York City, and Long Island areas with a mixture sources including 

residential heating, transportation, industrial, and commercial activities. More importantly, we 

were able to capture intra-urban variation. For example, we predicted lower emissions for the 
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east Cambridge where the Massachusetts Institute of Technology (MIT) Campus is located. As 

shown in figure 5a, emissions are noticeably lower (25~30 tons/year/km2) as opposed to 

surrounding areas such as Somerville and west Cambridge. The campus area is less populated 

compared to neighboring cities and the school has been actively promoting green building and 

energy sustainability programs over the past decade, which both attribute to lower emission. 

Furthermore, we predicted high emissions at densely populated and commercially active areas in 

northern Brookline and lower emissions at parks, large green spaces, and residential areas in the 

southwestern part of the town (Figure 5a). Our results in New York (Figure 5b) show 

comparable intra-urban spatial pattern of PM2.5 to those reported by a previous study (Clougherty 

et al. 2013).  Clougherty et al., found that large combustion boilers for residential heating, mostly 

burning oil, are concentrated in midtown and downtown Manhattan as well as in some 

neighborhoods of Brooklyn and Queens. These areas are all highly developed with similar 

population density and land use. Even surrounded by high intensity emission sources, we are 

able to identify intense oil-burning emissions in some of the grid cells that exceeded 60 

tons/year/km2 in these neighborhoods.  
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Figure 5. (a) Estimated emission in Greater Boston. 

 
 

 

Figure 5. (b) Land cover type from NLCD 2011 database in Greater Boston. 
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Figure 5. (c) Population of year 2000 in Greater Boston. 
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Figure 5. (d) Estimated emission in New York. 
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Figure 5. (e) Land cover type from NLCD 2011 database in 
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Figure 5. (f) Population of year 2000 in New York. 
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Figure 5. (g) Estimated emission in Providence. 
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Figure 5. (h) Land cover type from NLCD 2011 database in Providence 
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Figure 5. (i) Population of year 2000 in Providence. 
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Our model overestimated emissions in areas surrounded by water surfaces or wetlands, such as 

Providence and southeast Massachusetts (Figure 5c).For instance, the model estimated high 

emissions (20-30 tons/year/km2) in some green areas of southeast Massachusetts where 

anthropogenic sources are scarce. The possible overestimation is likely due to bias in AOD 

readings, as the MAIAC algorithm was developed to retrieve AOD over land, and is less reliable 

for retrievals over water surfaces (Lyapustin et al. 2011). Although we excluded pixels 

encompassing bodies of water prior, AOD retrieval near water or the shore can still be influenced 

by high humidity or ocean glint. Because we estimated PM2.5 concentrations using AOD data, 

biases in the AOD are likely to influence the final emission product as well. However, it is also 

Population

0

1 - 3,000

3,001 - 6,000

6,001 - 9,000

9,001 - 15,000



32 
 

possible that some of the predicted emissions are due to primary or secondary particles from 

natural sources.  

Land use regression 

Predicted emissions in the northeast United States are related to land use variables (R2 = 0.65). 

Table 2 shows the predicted land-use-specific emissions where the predominant sources include 

developed area (high/medium/low density and open area), traffic, and population. The land use 

regression model predicts that large point sources emit on average 0.58 tons/year/km2 that is 

close to the averaged NEI point emission in 2008 (0.53 tons/year) and 2011(0.26 tons/year).  

Figure 6a shows the residuals (25th percentile = -2.7, mean = 0, 75th percentile = 2.5) of the land 

use regression model in the study area. As noted, the Providence and southeast Massachusetts 

areas have larger residuals (>5 tons/year/km2), which suggests that either the predicted emissions 

are overestimated or they are not correlated to land use covariates, e.g., biogenic sources, 

biogenic precursors or oceanic particles.  Previous studies suggest that in remote areas most 

particles are secondary (Kanakidou et al. 2000, Spracklen et al. 2006, Andreae 2007), which are 

not accounted for by land use models.  

 

Table 2. LUR estimated emission from different land use for north east US. 

Land use type/ emission sources 
Averaged emission 

(ton/yr/km2) 

On road A1-A3 Major road 0.4 ~ 28 

Developed area High density 13 

Medium density 13 

Low density 6.7 

Open area 5.6 

Population 250 people/cell 0.1 

10,000 people/cell 2.7 

Farms Crop & Livestock 0.34 

NEI point source (NEI 2008 mean = 0.53) 0.58 
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Figure 6. (a) Residual map of land use regression (LUR) model in northeast US  

 
 

 

 

Figure 6. (b) Residual map of land use regression (LUR) model in Massachusetts. 
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In addition to the national land cover product, we also incorporated the land cover data classified 

by the Massachusetts Department of Environmental Protection (Mass DEP), and fitted a separate 

land use model for Massachusetts. Compared to the national model (R2 = 0.65), the 

Massachusetts model has a slightly higher R2 of 0.67. As shown in Table 3, transportation, 

developed area, and population are larger sources predicted by the land use model. With a finer 

classification, we can see the intra-urban variation related to industrial, residential, and 

commercial sources areas, which is not for the NEI database that are mostly county level 

averages (Figure 7 b and 7c). Crop and livestock farms emissions are 0.7 tons/year/km2, which 

are similar to those reported by the NEI program. Cranberry bogs, nurseries, and orchards 

generate more emissions than other croplands. Consistent with the results of the northeast US 

Land use regression, we observed high residuals in the southeastern Massachusetts. As noted 

above, this may be due to difficulties in measuring AOD near water bodies, or possibly, to the 

presence of sources whose emissions are independent of land use variables.  
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County level evaluation 

  

We found a moderate correlation between predicted and 2008 NEI emissions (R2=0.52, 

CV=144%). The slope and intercept of the 2008 NEI county model (β1 = 2.6    β0 = -38.7) 

suggest that the model underestimated the county level emissions. Since the NEI emission data is 

right skewed (median = 4.9, mean = 11.8), we suspect the large error is due to extreme values (or 

outliers) in the NEI data. When restricting NEI data to less than 50 tons/year/km2, we obtained a 

better model fit (R2 = 0.66, CV=20.0%, β1 = 0.65 and β0 = -5.6). This suggests that the model 

may underestimate the largest emission sources. The different temporal scale among emission 

predictions and NEI estimates could be another source of uncertainty leading to larger error and 

a larger deviation of the intercept. Nonetheless, the PEIRS method has great potential in 

predicting emissions at finer temporal scales and would reduce the temporal inconsistency error. 

We found similar results when comparing model emission predictions to those reported by the 

2011 NEI. The model fit was significantly improved after removing high NEI emissions from the 

model (R2 = 0.65  0.71, CV= 105%17.9%, β1 = 3.4 1.09, β0 = -47.8  -11.7, all data  

subset). Interestingly, the slope of the county regression model shows that our model 

overestimated emissions in comparison to the 2008 NEI, and slightly underestimated when in 

comparison to 2011 NEI. This is consistent with the emission changes documented in the 2011 

NEI report where emissions overall increased by 25 to 250% compared to 2008 due to 

resuspension of road dust and more frequent wildfires (EPA 2011).  

Table 3. LUR estimated emission from different land use for Massachusetts. 

Land use type/ emission sources 
Averaged emission 

(ton/yr/km2) 

On road A1-A3 Major road 0.4 ~ 24.5 

 Public transit 2.5 

Developed area High density residential 3.6 
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Medium density residential 3.5 

Low density residential 1.8 

Multifamily residential 2.1 

 Open area 2.4 

 Industrial  4.3 

 Mining 2.4 

 Commercial 3.1 

 Junkyard 4.6 

Population 400 people/cell 0.32 

10,000 people/cell 8 

Farms Crop & Livestock 0.7 

 Cranberry bog, nursery, orchard gardens 2.2 ~ 7.8 

NEI point source 
 

1.5 

 

Table 4 and Table 5 show the state specific county level evaluation results compared to 2008 and 

2011 NEI data, respectively. We observed fair agreement for Connecticut and New Hampshire 

than that for states with large sources such as New York and Massachusetts. In general, the 

agreement was improved when outliers were removed from the analysis. Predicted emissions 

were weakly related to NEI data in Vermont suggesting that the model is less sensitive to low 

level emission variations.  As shown in Figure 7, for most counties in Vermont both model 

predicted and NEI-reported emissions are low. The relatively high emissions predicted for Grand 

Isle county, which is surrounded by Lake Champlain, may be due to water bias in the AOD. In 

addition, we did not find a good agreement for Franklin, Chittenden, and Addison counties 

where the model predicts higher emissions (6 ~15 tons/year/km2) than those reported by NEI (< 

5 tons/year/km2).  However, we found out that emissions of particles precursors such as NH3, 

NOx and VOC are relatively high in these three counties according to the NEI 2008 report. 

Therefore, it is possible that differences are due to the formation of secondary particles and high 

biomass burning sources, which are accounted for by the model but not included in the NEI 

database. In fact, counties where predicted emissions are higher than those reported by the NEI 



37 
 

are locations with high precursor emissions. These include urban counties in Greater Boston, 

New Haven, New York City, and Long Island, as well as agriculture-driven counties in the upper 

west New York state.  

 

 Table 4. Evaluation results of estimated emission vs. EPA NEI emission 2008 at county level. 

 R2 CV Slope (β1) Intercept (β0) 

Connecticut 0.85 6.61% 0.73 -6.8 

Maine 0.65 9.11% 0.54 -5.5 

New Hampshire 0.86 15.0% 1.44 -15.5 

Massachusetts 0.58  (0.87) 75.4% (6.97%) 1.84  (0.47) -26.8   (1.0) 

Rhode Island 0.21 13.3% 0.20 5.03 

New York 0.58  (0.67) 211.1% (26.3%) 2.99  (0.71) -45.44  (-6.6) 

Vermont 0.01 7.45% 0.02 3.40 

* ( ): are model parameter when data is restricted to counties with ≤50 tons/yr NEI emission 

 

 

Table 5. Evaluation results of emission estimates vs. EPA NEI emission 2011 at county level 

 R2 CV Slope (β1) Intercept (β0) 

Connecticut 0.88 7.15% 1.41 -11.7 

Maine 0.70 7.69% 0.76 -8.87 

New Hampshire 0.89 8.13% 1.35 -14.6 

Massachusetts 0.63  (0.27) 60.1% (16.1%) 2.37  (0.43) -32.3   (3.7) 

Rhode Island 0.49 10.7% 0.50 -0.47 

New York 0.70  (0.80) 159.6% (21.2%) 3.80  (1.26) -54.7  (-14.3) 

Vermont 0.08 6.98% 0.11 1.96 

* ( ): are model parameter when data is restricted to counties with ≤50 tons/yr NEI emission 

 

 

Figure 7. (a) Estimated emission vs. EPA NEI nonpoint emission in (b) 2008 and (c) 2011 at 

county level. 

 

(a) Estimated emission from the PEIRS model, downgraded to county level. 
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Figure 7. (a) Estimated emission vs. EPA NEI nonpoint emission in (b) 2008 and (c) 2011 at 

county level. 

(b) US EPA NEI non-point emission in 2008 at county level. 
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(c) US EPA NEI non-point emission in 2011 at county level. 
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ABSTRACT 
 

Clarifying the trends in quantity, location, and causes of PM2.5 emission changes is critical for 

evaluating and improving emission control strategies and reduce the risk posed to human health. 

According to the National Emission Inventories (NEI) released by the U.S. EPA, a general 

downward trend in PM2.5 emissions has been observed in the U.S. over the past decade. While 

this trend is representative at the national level, it lacks the precision to locate emission hotspots 

at a finer scale. Moreover, the changes reported in the NEI are likely confounded by periodic 

modification of inventory methods, and imprecision for area sources. In this regard, it is 

imperative to acquire emission inventories with as much spatial and temporal detail as possible 

to further our knowledge of particle emissions, exposure levels, and associated health risks. In 

this study, we employed the PEIRS (Particle Emission Inventory using Remote Sensing) 

approach to predict triennial averaged emissions at 1 km x 1 km resolution across the Northeast 

U.S. from 2002 to 2013. Notably, the PEIRS approach is able to capture both primary emission 

and secondary formation of PM2.5. Regional emission trends were evaluated using quantile 

regression and source-oriented trends were modeled with land use regression. Our analysis found 

a regional decrease in PM2.5 emissions of 3.3 tons/year/km2 (18%) over the 12-year period. 

Furthermore, the rate of emission change at the extremes of the emission distribution was 

significantly different than that of the mean. Both quantile regression and spatial trends imply 

that the majority of the reduction in PM2.5 emissions was attributable to highly developed spaces 

such as metropolitan areas and important traffic corridors. This urban-rural disparity was 

particularly apparent during the cold season. Indirect evidence suggested that the emission 
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decline during the warm season is primarily attributed to less secondary particle formation. 

These findings warrant closer investigation of the impact of seasonality on PM2.5 emissions. 

INTRODUCTION 
 

Particulate matter with aerodynamic diameters less than 2.5 μm (PM2.5) poses a serious public 

health concern. Globally, exposure to PM2.5 contributed to approximately 3.5 million annual 

cardiopulmonary mortalities and 200,000 lung cancer-associated annual mortalities (Anenberg et 

al. 2010). In the U.S., an estimated 130,000 deaths per year were attributed to PM2.5 exposure 

(Fann et al. 2012). Furthermore, a recent study reported that there is no safe threshold of PM2.5 

exposure (Shi et al. 2016). Thus, despite the significant decreases in PM2.5 concentrations that 

have been achieved in the U.S.(Hu et al. 2013), there is a need to further improve air quality to 

reduce adverse health effects. The most effective way to improve air quality is to eliminate 

individual sources, and a better understanding of trends in the quantity, location, and causes of 

PM2.5 emissions is of upmost importance to achieving this goal. 

 

The U.S. EPA, which is mandated to maintain good air quality for the general public, has taken a 

number of steps to monitor particle emissions over the past decade. Specifically, they developed 

the National Emission Inventory (NEI) that contains triennially updated Criteria (CAP) and 

Hazardous Air Pollutants (HAP) emission estimates for a broad spectrum of source types. 

According to the 2011 NEI, primary anthropogenic PM2.5 emission has decreased 53% nationally 

between 1990 and 2011, with the largest decline in the fuel combustion category (72%) (EPA 

2011). Typically, the East Coast shows the highest PM2.5 emission density as well as its 

precursor gases including sulfur dioxide (SO2), volatile organic compounds (VOC), and 
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ammonia (NH3). Most pollutants are generated in urban counties, except NH3, which is higher in 

more rural areas where agricultural and pasture activities are frequent. While the NEI trends are 

generally representative at the national level, local-scale emission characteristics are less clear 

because the NEI estimates are often based on county-level models using data collected at various 

points in time. Furthermore, the confluence of other air pollutants may also increase the 

uncertainty of local-scale models. For these reasons, EPA has sought more detailed analyses of 

local emission assessments. 

 

EPA deploys a source-oriented approach to construct the NEI, which estimates the unit emission 

per activity (or emission factor) of known sources and acquires frequencies of the emission 

activities to predict total emissions. The NEI is useful in answering general emission questions 

over broad geographic areas, but this inventory method has led to several issues in interpreting 

emission trends. First, the NEI only represents a fraction of the total PM2.5 emissions, as EPA 

prioritizes tracking of primary particle sources. Secondary particles are currently indirectly 

monitored by precursor gases that facilitate particle formations are only voluntarily reported. As 

secondary particles play an important role in the air quality in the U.S., more comprehensive 

measure or estimation on this portion of the pollution would render the NEI more complete. 

Second, whether the NEI trends reflect a real change or is merely a consequence of the periodic 

adjustment of inventory methodologies is still uncertain. A slight upward trend in PM2.5 

emissions from the highway vehicle sector was reported in both the 2005 NEI (EPA 2005b) and 

2008 NEI (EPA 2008). However, EPA scientists have concluded that the change is likely due to 

recent method and data improvements in estimating mobile sources(EPA 2008). Lastly, updating 

new emission factors is costly and laborious. The prospect of comprehensively researching every 
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existing and emerging emission source is unrealistic. Emission factors that are not regularly 

revised or updated may also lead to disparities in quality among source sectors. For instance, 

information on oil and gas operations was incomplete in the 2008 NEI, especially for nonpoint 

source sectors. The wide spread use of diesel engines to power hydraulic fracturing in the 

Marcellus shale and elsewhere means emissions from individual wells may be underestimated. 

Moreover, particle emissions from wildfires, prescribed fires, and biogenic sources are often 

excluded from the NEI due to high uncertainties of information. Since climate change is likely to 

increase the incidence of wildfires, this omission may produce misleading trends. Obsolete or 

incomplete emission information may render the NEI insufficient to accurately and 

comprehensively represent emission trends. 

 

Instead of estimating individual emission factors, recently, we developed a new method (Particle 

Emission Inventories using Remote Sensing, PEIRS), which deploys a top-down approach by 

predicting the total PM2.5 emissions directly using satellite data (Tang et al. 2016). Because 

satellite data has great potential to enhance the timeliness and locating accuracies for emission 

estimates, satellite imagery has been used to construct inventories for biomass burning or forest 

fire emissions (Zhang et al. 2011) and global aerosol emissions at 1º to 2º spatial resolution 

(Dubovik et al. 2008, Huneeus, Chevallier, and Boucher 2012). The PEIRS approach integrates 

state-of-the-art statistical modeling and long-term daily satellite retrievals of high-resolution 1 

km x 1 km Aerosol Optical Depth (AOD) data to generate spatially and time-resolved emission 

inventories. It has been successfully applied to predict 12-year averaged emissions in the 

Northeast U.S. and the data have shown reasonable agreement with the county-level NEI. PEIRS 

emission estimates reflect small-scale intra-urban variations which provide crucial spatial 
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information for health effects studies and legislative decision making. More importantly, the 

PEIRS approach enables us to capture both primary emissions and secondary formation inside 

each 1 km x 1km cells based on a mass balance model. The limitation of the PEIRS method is 

that AOD data retrieval is restricted during certain weather conditions (e.g., cloudy and snow 

covered days). However, the PEIRS can still provide ample temporal information when more 

than 1 year of AOD data is used to predict emissions. Its enhanced cost-effectiveness and 

consistency also render the PEIRS inventory more adequate for trend analyses. 

 

In this study, we applied the PIERS approach to estimate triennial averaged PM2.5 emission 

inventories and then assessed regional temporal and spatial trends in the Northeast U.S. 

Calculation of multiyear emission averages is an interim strategy to compensate for weather-

associated missing AOD data. Thus, our study duration consists of four 3-year periods spanning 

from 2002 to 2013, which corresponds to the NEI triennial update schedule. Period 1 refers to 

2002–2004, Period 2 to 2005–2007, Period 3 to 2008–2010, and Period 4 to 2011–2013. 

Regional emission trends were examined using quantile regression models and source-oriented 

emission changes were predicted using land use regression. We applied the aforementioned 

analyses to 1) year-round, 2) warm season, and 3) cold season-specific emission estimates 

separately to further determine the seasonality of emission trends. 

METHODS 

Input Data 
 

Satellite AOD-derived PM2.5 concentrations. We obtained spatially resolved daily PM2.5 

concentration estimates over the period from 2002 to 2013. The concentration estimates were 
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derived from high-resolution (1 km x 1 km) daily AOD data from the Moderate Resolution 

Imaging Spectroradiometer (MODIS) instrument on board the Aqua Earth Observing Satellite. 

High-resolution AOD data was retrieved using the Multi-Angle Implementation of Atmospheric 

Correction (MAIAC) algorithm (Lyapustin et al. 2011), which has been proven to be more robust 

with higher retrieval rates (Chudnovsky et al. 2013). Detailed calibration procedures and 

performance are described in (Tang et al. 2016). 

 

Meteorological data. Daily averaged boundary layer height (PBL), temperature (TEMP), and 

wind field data during the period from 2002 to 2013 were obtained from the National Oceanic 

and Atmospheric Administration (NOAA) North America Regional Reanalysis (NARR) 

database. All NARR daily meteorological variables were linearly interpolated from the original 

resolution of 32 km x 32 km to a resolution of 1 km x 1 km using the scatteredinterpolant 

package from Mathworks ( http://www.mathworks.com/help/matlab/ref/scatteredinterpolant-

class.html).  

 

Land use variables. Land use parameters often serve as surrogates of anthropogenic PM2.5 

sources; in this study, land use parameters were used to quantify source-oriented emission 

intensities. The percentage of land cover in a grid of 1 km x 1 km cells covering the entire 

Northeast U.S. was obtained from the 2011 collection of the National Land Cover Database 

(NLCD). Important land cover parameters used in the LUR included spaces with high, medium, 

and low intensity development, developed open spaces, agriculture, grass, deciduous forest, 

evergreen forest, and mixed forest. Major roads (A1-A3) density was gathered from the 

StreetMap USA database using the Feature Class Code (A1-A4) classification from the U.S. 



42 
 

Census Bureau Topologically Integrated Geographic Encoding and Referencing (TIGER) 

system. Annual averaged traffic count for major roads was obtained from the Highway 

Performance Monitoring System (HMPS) database. The built-in Kernel density algorithm from 

ArcMap was used to calculate traffic count weighted for major road density within 1 km2. 

Population density was calculated within 1 km2 from the census track database of 2000. A 

variable indicating the presence of industrial point sources was created by intersecting the 

locations of large industrial facilities and the corresponding 1 km x 1 km cell in the study domain 

grid. 

Statistical analysis 
 

Emission model. PEIRS is an inventory method that models the dynamics of fine particle fate 

and transport on a gridded domain of 1 km x 1 km cells. Three central processes are accounted 

for in the PEIRS model: (1) transported particles from upwind to downwind cells, (2) within-cell 

emissions, and (3) particle removal by air exchange. The transport process closely depends on air 

exchange rate (α), which is a measure of the air flow entered or exitted from a fixed space. The 

volume of this fixed space in our study had a base area of 1 km x 1 km and we used the boundary 

layer height (PBL) to estimate its height. The flow rate of this fixed volume of air was estimated 

by the produrct of horizontal wind speed and the cross sectional area (PBL x 1 km) of the air 

movement. We obtained the air exchange rate with the following formula: 

 

𝛼 =
𝐹𝑙𝑜𝑤 𝑟𝑎𝑡𝑒

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑎𝑖𝑟
=  

𝑤𝑠 𝑥 𝑃𝐵𝐿 𝑥 1 𝑘𝑚

1 𝑘𝑚 𝑥 1 𝑘𝑚 𝑥 𝑃𝐵𝐿
      (1) 
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Once the air exchange rate was estimated for each grid cell daily, we then used wind direction to 

locate upwind cells that air masses carrying particles travelled through on the corresponding day. 

Additionally, temperature is included in the emission model as a surrogate for secondary particle 

formation. The complete model is formulated as equation 2. Detailed concepts and derivation of 

the emission model can be found in Tang et al., 2016.  

 

𝐶 = ∑ (𝐶𝑢𝑖 ×3
𝑖=1 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) +

𝑄

𝛼×𝑃𝐵𝐿
     (2) 

 

where C is the PM2.5 concentrations in a downwind cell, Cui is the PM2.5 concentration in an 

upwind cell I, and  Q is the estimated emission expressed in tons/yr/km2). This model was fitted 

separately for each 1 km x 1 km grid cell across the Northeast U.S to obtain Q.  

 

Quantile regression. Emission trends were estimated using a linear quantile regression model 

with a linear variable indicating the time period (period). Quantile regression has the advantage 

of estimating functional relationships for all portions of the emission distribution (e.g. 

percentiles) as opposed to the traditional mean estimator (Koenker and Bassett 1978). In addition 

quantile regression does not require any normality assumptions for variables. Quantile regression 

provides a more comprehensive analysis of the emission trends, specifically at the higher and 

lower percentiles in the distribution, where the trends in emissions may be quite different 

because those percentiles may have different source profiles then those that drive the center of 

the distribution of emissions. Quantile regression was performed from the 5th percentile to the 

95th percentile using the quantreg package in R v3.2.2.  
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Land use regression. Source-specific emissions and their trends were assessed using land use 

terms as predictors in the regression models. The land use parameters included percent 

developed spaces with high (dh), medium (dm), or low (dl) intensity, percent developed open 

spaces (dop), percent agricultural space (arg), percent deciduous forest (df), percent evergreen 

forest (ef), percent mixed forest (mf), traffic count weighted for major road density within 1 km2 

(rd), and population density within 1 km2 (pop). In addition, we also created an indicator variable 

(ind) identifying the presence of major industrial sources in each 1 km x 1 km cell. Land use 

terms are surrogates for emissions and their relationship to emissions may change over time as, 

for example, pollution controls are implemented that impact the sources of those emissions. To 

test for these trends, we fitted four land use models separately for the four follow-up periods in 

the study due to the fact that some land use terms were only measured once over time. The four 

sets of slopes of the land use terms represent the emission intensity of the corresponding period, 

and the differences over follow-up periods represent their trends. The LUR model was 

formulated as follows: 

 

Q = 𝛽0𝑖 + 𝛽1𝑖(𝑑ℎ) + 𝛽2𝑖(𝑑𝑚) + 𝛽3𝑖(𝑑𝑙) + 𝛽4𝑖(𝑑𝑜𝑝) + 𝛽5𝑖(𝑎𝑟g) 

+𝛽6𝑖(𝑑𝑓) + 𝛽7𝑖(𝑒𝑓) + 𝛽8𝑖(𝑚𝑓) + 𝛽9𝑖(𝑝𝑜𝑝) + 𝛽10𝑖(𝑖𝑛𝑑)   (3) 

 

where i is the study period, Q is the estimated emission, and the other predictors are as defined 

above. To test the significance of the LU-related emission trends (difference between slopes), we 

fitted the below model including emission estimates over the 4 study periods: 

  

Q = 𝛽0 + ∑ 𝛽𝑘(𝐿𝑈𝑘)9
𝑘=1 + ∑ 𝛽𝑘(𝐿𝑈𝑘 × 𝑃𝑒𝑟𝑖𝑜𝑑)9

𝑘=1    (3) 
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where k is the kth land use variable included in the LUR model (eq.3) and Period is a continuous 

variable of the period number.  

RESULTS AND DISCUSSION 
 

Regional and state-specific trends in PM2.5 emissions 

 

Regional PM2.5 emission trends in the Northeast U.S. were estimated by comparing averages of 

year-round, cold season (Nov-Apr), and warm season (May-Oct) emission predictions (Table 6). 

Across the entire study period (Period 4 vs Period 1), year-round emissions decreased by 18%, 

which is comparable to but somewhat larger than the 11% decrease reported by the NEI during 

the period 2002–2011 (EPA 2011). The absolute reduction was more pronounced in the cold 

season, while the percent decrease was considerably larger in the warm season. The ratio of the 

regional mean emissions during the cold versus warm season also increased over time. These 

findings imply that current emission control is likely more effective in the warm season than the 

cold season. EPA scientists have similarly reported a generally lower effectiveness of emission 

controls during the winter due to strong weather interference on particle loading in the past 

decade (EPA 2008).  

 

Table 6. Regional PM2.5 Mean Triennial-averaged-emissions over the Four Study Periods 

    Mean emission (tons/yr/km2) 
 

 
All season Cold season Warm season 

Period 1 (2002-2004) 18.3 33.9 9.4 

Period 2 (2005-2007) 17.4 31.1 7.3 

Period 3 (2008-2010) 16.0 23.4 9.6 

Period 4 (2011-2013) 15.0 26.4 4.4 
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  Mean emission changes (tons/yr/km2 , %) 
    All season Cold season Warm season 

Period 2 vs 1 -0.9 (-5%) -2.8 (-8%) -2.1 (-22%) 

Period 3 vs 2  -1.4 (-8%) -7.7 (-25%) +2.3 (+32%) 

Period 4 vs 3  -1.0 (-6%) +3.0 (+13%) -5.2 (-54%) 

Period 4 vs 1  -3.3 (-18%) -7.5 (-22%) -5.0 (-54%) 

 

PM2.5 emission trends not only varied by season but also by location. Among seven Northeast 

U.S. states, Connecticut (CT) and Rhode Island (RI) exhibited the largest year-round PM2.5 

emission reduction during the study period (Table 7, Period 4 vs Period 1). Furthermore, these 

two formerly non-attainment states exhibited a more than 20 tons/year/km2 decrease in PM2.5 

emissions during the cold season, which was almost twice that seen in the other five states. As 

the atmospheric conditions are less favorable for secondary particle formation during the cold 

season, the high reduction rates observed in CT and RI during cold season is likely attributable to 

changes in primary emissions. The significant decrease in PM2.5 emissions during the cold 

season began to manifest in Period 3 (2008-2010), after the non-attainment area designation in 

2006 and before the maximum attainment in April 2010. This could be suggesting that the states’ 

control programs for primary PM2.5 emissions were sufficiently effective to meet federal 

requirements. However, a number of factors may also contribute to this reduction. For instance, 

the demand for home heating oil in the Northeast fell by 43% between 2000 and 2012 and may 

have led to the declining emission during cold season(Andrews and Perl 2014). Improved 

insulation, furnaces and fuel switching from oil to gas may all play a role in addition to 

attainment designations. Furthermore, the observed reduction may be related to the economic 

recession during 2008 to 2010. People may tune down their thermostats lower to save money and 

lived in colder houses. This could also explain the increased in emission from period 3 

(2008~2010) to period 4 (2011~2013) when the economy started recovering. On the other hand, 
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the largest long-term reduction in PM2.5 emissions during the warm season occurred in Vermont 

(VT, -9.3 tons/yr/km2, -73%) followed by New Hampshire (NH, -8.7 tons/yr/km2, -72%). While 

drivers for the faster reduction rate in VT and NH during the warm season are unknown, the NEI 

reported larger percentage decreases in precursor gases (SO2 and NOx) than in primary PM2.5 

emissions in VT and NH during 2002–2011 (Table 8) which implies more rapid reduction in 

secondary particles than primary sources in less urbanized states.  
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Table 7. Regional mean PM2.5 triennial-averaged-emission changes (tons/yr/km2, %) by State. 

Year-round 
 New York Vermont Massachusetts Connecticut New Hampshire Maine Rhode Island 

Period 2 vs 1 -0.8 (-5%) -2.2 (-13%) +2.5 (+9%) -2.7 (-9%) -1.1 (-6%) -0.7 (-4%) +2.0 (+5%) 

Period 3 vs 2 -1.8 (-11%) -1.6 (-11%) -5.1 (-18%) -0.4 (-1%) -1.7 (-11%) +1.0 (+6%) -8.5 (-21%) 

Period 4 vs 3 +0.7 (+5%) -1.7 (-12%) -2.5 (-10%) -5.8 (-20%) -1.2 (-8%) -2.7 (-17%) -5.7 (-18%) 

Period 4 vs 1 -2.0 (-12%) -5.5 (-32%) -5.1 (-20%) -8.8 (-28%) -4.0 (-23%) -2.5 (-15%) -12.2 (-32%) 

Warm season 
 New York Vermont Massachusetts Connecticut New Hampshire Maine Rhode Island 

Period 2 vs 1 -0.9 (-12%) -4.5 (-35%) -1.0 (-9%) -1.8 (-15%) -5.2 (-43%) -2.7 (-30%) +0.3 (+2%) 

Period 3 vs 2 +1.4 (+20%) +1.8 (+22%) +2.4 (+23%) +1.1 (+11%) +3.6 (+52%) +4.7 (+72%) +1.0 (+8%) 

Period 4 vs 3 -4.0 (-50%) -6.6 (-65%) -6.9 (-54%) -2.8 (-25%) -7.2 (-68%) -6.4 (-57%) -5.9 (-41%) 

Period 4 vs 1 -3.6 (-47%) -9.3 (-73%) -5.6 (-49%) -3.5 (-29%) -8.7 (-72%) -4.5 (-48%) -4.6 (-36%) 

Cold season 
 New York Vermont Massachusetts Connecticut New Hampshire Maine Rhode Island 

Period 2 vs 1 -3.0 (-10%) -2.8 (-10%) +4.4 (+10%) -4.9 (-9%) +2.1 (+7%) -7.4 (-21%) +3.5 (+5%) 

Period 3 vs 2 -6.9 (-24%) -7.2 (-27%) -13.3 (-28%) -8.2 (-16%) -11.2 (-35%) -5.3 (-19%) -22.9 (-34%) 

Period 4 vs 3 +6.5 (+30%) +2.0 (+10%) -1.5 (-4%) -11.2 (-26%) +2.7 (+13%) +0.3 (+1%) -7.7 (-17%) 

Period 4 vs 1 -3.4 (-11%) -8.0 (-27%) -10.4 (-24%) -24.4 (-43%) -6.4 (-21%) -12.3 (-35%) -27.1 (-42%) 

 

Table 8. NEI 10-year Emission Trends for PM2.5,* NOx, SO2, VOC, and NH3 in the Northeast U.S., 2002–2011 

Year-round 
 New York Vermont Massachusetts Connecticut New Hampshire Maine Rhode Island 

PM2.5  -25 ~ -50% -0 ~ -25%  -25 ~ -50%  -0 ~ -25%  -25 ~ -50%  -25 ~ -50%  +25 ~ +50%  

NOx -25 ~ -50% -50 ~ -75% -50 ~ -75% -50 ~ -75% -50 ~ -75% -25 ~ -50% -25 ~ -50% 

SO2 -50 ~ -75% -50 ~ -75% -75 ~ -100% -50 ~ -75% -75 ~ -100% -50 ~ -75% -50 ~ -75% 

VOC -25 ~ -50% -0 ~ -25% -25 ~ -50% -25 ~ -50% -25 ~ -50% -25 ~ -50% -0 ~ -25% 

NH3 -0 ~ -25% -0 ~ -25% -25 ~ -50% -25 ~ -50% -0 ~ -25% -0 ~ -25% +50 ~ +75% 

* NEI PM2.5 consists of primary sources only. 
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Spatial patterns and trends of PM2.5 emissions 
 

One of the advantages of satellite-based emission inventories is ample spatial information that 

allows visualization of the locations where reduction or growth occurred and consideration of 

appropriate emission control strategies. For year-round PM2.5 emissions (Figure 8), urban areas 

like the Greater Boston area and New York City exhibited a clear downward trend while rural 

trends were more difficult to determine. As discussed in Tang et al., 2016, the PEIRS emission 

estimates in areas in the vicinity to water surfaces has larger uncertainties due to compromised 

AOD data. We observed potentially problematic emissions near Burlington, VT, due to 

interference from Lake Champlain. A similar problem occurred in Rochester, Syracuse, and 

areas bordering the Finger Lakes in New York. Relatively higher fraction of secondary particles 

involving complex reactions among precursor gases may provide another plausible explanation 

for the variations in emissions trends in less urbanized areas. In particular, NH3, NOx, and VOC 

emissions were reported to be high in rural areas according to the 2011 NEI report. The NEI also 

found that significant reductions in NOx, VOC, and SO2 have been achieved over time while 

NH3 emissions remained fairly constant. The uneven changes in these gas pollutants could 

modulate emission trends and spatial patterns significantly.  

 

Cold season PM2.5 emissions (Figure 9) generally showed similar spatial trends to those of the 

year-round emissions. In addition to the apparent decrease in emissions in metropolitan areas 

over time, reduction in important traffic corridors became more discernible during the cold 

season as well (i.e., Route 90 in the middle of the New York state). This indirectly supports the 
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EPA inference that periodic method and data improvements used in the NEI are the main reasons 

for the observed increase in vehicle emissions in 2005 and 2008 NEI.  In contrast, warm season 

PM2.5 emissions (Figure 10) were distributed rather uniformly, with miniscule urban versus rural 

disparity. The onset of emissions reduction did not manifest during the warm season until the last 

period (2011-2013) measured. The difference between cold and warm season PM2.5 emission 

trends implies a significant association between weather and total emissions and warrants further 

assessment of emission trends separately by season. 
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Figure 8. Triennial-averaged emission estimates in northeast U.S. (year-round). 
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Figure 9. Triennial-averaged emission estimates in northeast U.S. (cold season). 
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Figure 10. Triennial-averaged emission estimates in northeast U.S. (warm season). 
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Quantile trends on PM2.5 emission sources 
 

To more closely investigate the large spatial variability of PM2.5 emissions, we applied quantile 

regression models on emission inventories year-round (Figure 11a) and in the warm season 

(Figure 11b) and the cold season (Figure 11c) to quantify trends for a wider range of emission 

distribution. The quantile trend showed an exponential increase in the rate of reduction above the 

80th percentile in year-round PM2.5 emissions (Figure 11a). This result is consistent with our 

qualitative evaluation of the spatial trends (Figure 8) where reduction was most apparent in urban 

areas (higher quantile) and gradually tapered off in suburban and rural areas (lower quantile). 

The cold season quantile-specific trend was similar to that of the year-round quantile trend, but 

with larger deviance from the mean trend overall. This implies that urban-related PM2.5 emission 

sources play an important role year-round but become considerably stronger in cold weather. On 

the other hand, the warm season quantile regression rate of change was similar throughout the 

distribution except for a weakening reduction rate below the 20th percentile, which given how 

much lower emissions were in the warm season, represents areas that are quite clean already. 

The uniformity suggests little urban-rural contrast during the warm season, and that the warm 

season reduction is likely more attributable to sources that are not particularly urban-related such 

as regional sources or secondary formation which are expected to be more pronounced during 

warm season. This is in agreement with the state-specific trend where less urban states such as 

VT and NH showed the most reduction in PM2.5 emissions during warm season (Table 7).  
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Figure 11. Quantile emission trends (a) Year-round, (b) Warm season, and (c) Cold season. 

 

(a)  

(b)  

(c)  
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Trends in PM2.5 emissions based on land use regression 
 

To improve PM2.5 emission control efficiency, it is critical to identify large contributors by 

source type. We fitted land use regression models to categorize our emission inventory. Table 9 

depicts the land use-specific PM2.5 emission intensities over the four study periods. Over the 

entire study period, substantial reduction in PM2.5 emissions was achieved across all land use-

related sources. For year-round emissions, developed spaces produced 8.4–27.3 tons/year/km2 of 

particles during Period 1, which dropped to 2.5–14.7 tons/year/km2 in Period 4, translating to a 

40%–70% emissions reduction rate. The reduction in developed spaces was even more 

pronounced in the cold season (Table 10), possibly due to reduced heating demands, specifically 

heating oil consumption (Andrews and Perl 2014), as the winter in the northeastern part of the 

U.S. becomes warmer (Hayhoe et al. 2006) and insulation and furnaces have improved efficiency 

over the past decade. Source-oriented PM2.5 emissions also decreased in the warm season in 

general except for high-intensity developed spaces, which almost tripled from period 1 to 3 and 

then decreased sharply in period 4(Table 11). High-intensity developed space contains a mixture 

of land use including commercial, industrial, and residential. The source profile for this 

geographic setting is complex, and identifying the causes of this emission trend can be difficult 

and require further research. Regarding the transportation sector, emission from a vehicle that 

travelled 10,000 miles annually went from an averaged year-round contribution of 1.58 to 0.98 

tons/year/km2 over the past 12 years (Table 9). Traffic emission trends appeared to be consistent 

year-round with little seasonal variance. Furthermore, emissions from large industrial point 

sources such as power plants have declined despite the increasing energy demands. Population 

related emission fell substantially during cold season, however, during warm season population 

input has little change over the decade –emission fell during the recession and then bounced 
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back. Finally, for the forest categories we found negative slopes in general which indicates a net 

loss of particles due to more removal of PM2.5 by plants, including interception and absorption 

(Nowak et al. 2013), than their biogenic emissions or resuspensions. The slopes of the forests, 

specifically deciduous forest, are more negative during cold season due to fewer or no leaves on 

the trees and thus less biogenic emissions. The land use regression results show that the removal 

mechanism of the forests became gradually stronger over the study period. However, since the 

removal mechanism may act synergistically with the weather, meteorological variations could be 

a confounding factor for the reduction observed in the forest categories.  
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Table 9. Land Use-related PM2.5 emissions intensity (tons/yr/km2) year-round in the Northeast U.S., 2002–2013  
Intercept Deciduous  

Forest  

Mixed  

Forest  

Evergreen  

Forest  

Agriculture 

/Pasture 

Industrial  

Points 

Period 1 

(2002-2004) 
0.5* -7.2* -6.3* -6.4* 0.1* 1.0* 

Period 2 

(2005-2007) 
-3.7* -5.5* -4.5* -5.7* 0.4* 1.7* 

Period 3 

(2008-2010) 
7.2* -9.5* -5.3* -8.2* -0.1* 0.8* 

Period 4 

(2011-2013) 
-1.3* -10.2* -8.6* -10.7* 0.1* 0.5* 

 
Developed 

Open Space 

Developed 

High 

Intensity 

Developed 

Medium Intensity 

Developed 

Low Intensity 

Major 

Road 

Population 

 

Period 1 

(2002-2004) 

27.3* 19.5* 23.4* 8.4* 9.8E-05* 4.05E-04* 

Period 2 

(2005-2007) 

26.7* 23.2* 27.6* 9.2* 8.3E-05* 4.68E-04* 

Period 3 

(2008-2010) 

20.3* 21.4* 20.7* 9.7* 8.4E-05* 4.88E-04* 

Period 4 

(2011-2013) 

14.7* 11.3* 11.9* 2.5* 6.1E-05* 3.35E-04* 

* : statistically significant in the trend test. 

 

Unit of Land use variables:  

1. % land cover inside 1km x 1km grid --- Deciduous forest, Mixed forest, Evergreen forest, Agriculture/Pasture, Developed 

open space, Developed high, medium and low intensity.  

2. km × no. of vehicles inside 1km x 1km grid --- Major Road 

3. no. of person inside 1km x 1km grid --- Population 
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Table 10. Land Use-related PM2.5 emissions intensity during the cold season (Nov-Apr) in the Northeast U.S., 2002–2013  
Intercept Deciduous  

Forest 

Mixed  

Forest 

Evergreen  

Forest 

Agriculture 

/Pasture 

Industrial  

Points 

Period 1 (2002-2004) 18.8* -14.3* -9.7* -12.6* -0.9 0.6* 

Period 2 (2005-2007) 0.2* -7.6* -5.9* -7.2* +0.05 2.9* 

Period 3 (2008-2010) 14.4* -11.5* -8.7* -12.0* +0.1 0.9* 

Period 4 (2011-2013) 9.3* -19.4* -17.9* -20.0* +0.05 0.6*  
Developed 

Open Space 

Developed 

High Intensity 

Developed 

Medium Intensity 

Developed 

Low Intensity 

Major 

Road 

Population 

Period 1 (2002-2004) 34.7* 21.3* 32.1* 9.7* 1.7E-04* 6.63E-04* 

Period 2 (2005-2007) 38.0* 23.8* 39.2* 17.8* 1.4E-04* 4.78E-04* 

Period 3 (2008-2010) 27.2* 23.9* 27.5* 11.4* 1.2E-04* 6.30E-04* 

Period 4 (2011-2013) 8.9* 8.8* 5.5* -0.7* 0.5E-04* 2.72E-04* 

* : statistically significant in the trend test. 

 

Table 11. Land Use-related PM2.5 emissions intensity during the warm season (May-Oct) in the Northeast U.S., 2002–2013  
Intercept Deciduous  

Forest 

Mixed  

Forest 

Evergreen  

Forest 

Agriculture 

/Pasture 

Industrial  

Points 

Period 1 (2002-2004) 3.4* -4.0* 0.5* -0.7* 0.3* 0.7* 

Period 2 (2005-2007) 1.4* -4.5* -3.0* -3.1* 0.4* 0.1* 

Period 3 (2008-2010) 6.1* -7.8* -1.4* -4.3* 0.0* 0.8* 

Period 4 (2011-2013) 0.6* -4.5* -2.8* -4.5* 0.01* -0.2*  
Developed 

Open Space 

Developed 

High Intensity 

Developed 

Medium Intensity 

Developed 

Low Intensity 

Major 

Road 

Population 

Period 1 (2002-2004) 7.6* 3.4* 8.0* 4.2* 4.8E-05* 3.03E-04* 

Period 2 (2005-2007) 8.8* 9.9* 10.9* 0.5* 1.4E-05* 2.20E-04* 

Period 3 (2008-2010) 5.6* 11.8* 7.6* 2.6* 3.4E-07* 1.85E-04* 

Period 4 (2011-2013) 6.5* 6.4* 5.2* -1.2* 2.7E-05* 2.64E-04* 

* : statistically significant in the trend test. 
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ABSTRACT 

Quantifying indoor air pollution levels provides more accurate exposure assessment for 

epidemiological studies as individuals spend most of their time indoor. Given the high cost of 

micro-environmental sampling, indoor exposure measurements were scarce both temporally and 

spatially. On days without indoor measurements, indoor exposure levels are usually estimated 

using outdoor concentrations. These models require knowledge of the infiltration factor which 

indicates the fraction of outdoor particles penetrating indoors. In this study, we developed a 

robust model to predict indoor-to-outdoor sulfur ratio (Sin/Sout), a common surrogate of the 

infiltration factor, at 95 residences of patients with Chronic Obstructive Pulmonary Disease 

(COPD) living in the Greater Boston Area. Subsequently, we incorporated the estimated Sin/Sout 

and outdoor monitoring measurements to predict indoor fine particulate matter (PM2.5) and black 

carbon (BC) concentrations. The cross-validated results show that our model adequately 

predicted indoor-to-outdoor sulfur ratio (Out-of-sample by home and season R2=0.89) for 

individual households. Our indoor-to-outdoor ratio estimates reflected behaviors that influence 

particle filtration rate such as window opening, forced air heating use, and purifier use. The 

sulfur-adjusted models used to predict indoor PM2.5 and BC levels performed quite well (Out of 

sample correlations: PM2.5, R
2 = 0.79, BC, R2 = 0.61). This suggests that the predicted indoor-to-

outdoor sulfur ratio served as a good surrogate for infiltration factor and that indoor exposures 

could be predicted using outdoor concentrations. 

 



40 
 

INTRODUCTION 

Real-time PM2.5 pollution measurements in indoor environments where people spend their time 

are the most relevant exposure metrics for health risks assessment (Morawska et al. 2001). 

Nevertheless, indoor particle samples are often small in number due to high cost and effort. As 

indoor pollution are highly correlated to those outdoors, under normal ventilation condition we 

can use the readily available outdoor measurements to estimate indoor exposure levels at times 

when indoor measurements are not available (Sarnat et al. 2002). 

Typically, the mass balance equation is used to apportion indoor PM2.5 into particles of outdoor 

and indoor origin. The key parameter is the infiltration factor, which may vary by housing 

characteristics (e.g., insulation, age of house etc.) or human activities such as open windows, use 

of fan, purifier and air conditioning use (Van Der Zee et al. 2016, Meng et al. 2009, Morawska et 

al. 2001). Overtime much effort has been put in estimating the infiltration using household and 

behavior characteristics (Baxter et al. 2007). However, infiltration rate reported in the literature 

vary significantly(Diapouli, Chaloulakou, and Koutrakis 2013). Specifically, reliable infiltration 

models based on questionnaire data are rather few (Wallace and Williams 2005).  These 

exposure error associated with poorly characterized infiltration have found to bias health effects 

assessment as a consequence (Zeger et al. 2000). 

A more quantitative approach in estimating infiltration is to incorporate a tracer element that is 

(1) predominantly of outdoor origin, (2) may be measured accurately and continuously in both 

indoor and outdoor environment, (3) is found in relatively high levels to ensure measurement 

accuracy, and (4) is chemically stable (Wilson, Mage, and Grant 2000). Meeting these criteria, 

the indoor-to-outdoor ratio of the tracer element can be used as a surrogate of the infiltration rate. 

Among major constituents of PM2.5, sulfur or sulfate is generated mostly from outdoor sources 
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such as power plants and industrial activities (Long and Sarnat 2004). Moreover, studies have 

shown that indoor sulfur sources are scarce and that indoor sulfur concentrations are highly 

correlated with the respective outdoor concentrations (Ozkaynak et al. 1996, Koutrakis, Briggs, 

and Leaderer 1992). For these reasons, sulfur has been incorporated as a tracer element to assess 

infiltration rates previously (Wallace and Williams 2005, Sarnat et al. 2002, Gaffin et al. 2016, 

Geller et al. 2002, Na, Sawant, and Cocker 2004).  

Nevertheless, quantifying indoor-to-outdoor sulfur ratio remains a challenging task (Diapouli, 

Chaloulakou, and Koutrakis 2013). For instance, uncensored or under reported indoor sulfur 

sources may incorrectly attribute to outdoor sources and bias the estimated infiltration 

rates(Wallace et al. 2006), even though there are few known indoor sulfur sources (e.g. kerosene 

heater use, cigarette smoking, and burning sulfur rich fuels).  Specifically in the New England 

area, the frequent use of oil as home heating fuel could be a notable indoor sulfur source. 

Specifically, the Energy Information Administration reported that 31% of Massachusetts 

residents use fuel oil as their primary heating fuel for home heating and hot water systems, which 

is five times higher than the nationwide average of 6% (Energy Information Administration, 

2015). The sulfur content limit for heating oil issued by the Massachusetts Department of 

Environmental Protection in the Regional Haze State Implementation Plan was set at 500 ppm in 

2014 which means the sulfur content in heating oil could be much higher in early years. In this 

regard, the common assumption of zero indoor sulfur sources may be violated in homes using oil 

as their main heating fuel and subsequently lowered the correlation between the indoor-to-

outdoor sulfur ratio and the infiltration rate. 

As numerous investigations have linked increased health risks with fine particles (Dominici 

2003, Simkhovich, Kleinman, and Kloner 2008, Bell, Ebisu, Peng, Samet, et al. 2009, Brauer et 
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al. 2012), a reliable estimation of indoor exposure levels may assist the development of effective 

regulation and control strategies. For this reason, we developed a robust model to estimate 

indoor-to-outdoor sulfur ratio, the surrogate of the main parameters governing ambient particle 

infiltration, in dependence of indoor activity predictors. Subsequently, we employed the 

estimated indoor-to-outdoor sulfur ratio to predict indoor PM2.5 and BC concentrations. 

 

MATERIALS AND METHODS 

Study Design 

The Chronic Obstructive Pulmonary Disease (COPD) Study enrolled 300 participants from the 

estimated pool of 2,200 patients in the Veterans Administration Boston COPD registry who live 

within Route 495. We collected weeklong indoor samples in each subject’s home at 3 month 

intervals during the period of 2012 to 2014. We included 328 weeklong indoor samples collected 

at 95 residences to the analyses. Indoor sulfur, PM2.5 and black carbon concentration were 

collected at least during two seasons. In this study, we define season by month as winter 

(December-February), spring (March-May), summer (June- August) and fall (September-

November).  Finally, outdoor concentrations were measured at a central site throughout the 

study. 

 

Data Collection 

Outdoor air pollution. Daily ambient PM2.5 samples were collected at the central monitoring 

supersite located on the roof of the Countway Library of the Harvard Medical School in downtown 
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Boston throughout the study period. Details on outdoor PM2.5 measurements at the supersite can 

be found in previous study (Kang, Koutrakis, and Suh 2010).  

 

Indoor air pollution. A Harvard School of Public Health (HSPH) Micro-environmental 

Automated Particle Sampler (APS, figure 12) was placed in subject’s home for indoor sampling. 

The APS includes an inertial impactor that collects PM2.5 on Teflon filters at a low flow rate of 1.8 

L/min. Teflon filters were first weighed on an electronic microbalance (MT-5 Mettler Toledo, 

Columbus, OH) prior to and after field measurements. Subsequently, indoor BC concentrations 

were analyzed by measuring filter blackness of the Teflon filter using a smoke stain reflectometer 

(model EEL M43D, Diffusion Systems Ltd., United Kingdom). Sulfur concentration in the indoor 

PM2.5 samples was determined using X-Ray Fluorescence (XRF) spectroscopy (model Epsilon 5, 

PANalytical, The Netherlands) (Agency 2008).  

 

Figure 12. Harvard School of Public Health (HSPH) Micro-environmental Automated Particle 

Sampler. 
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Questionnaires. In the initial home visit, a home environmental evaluation was conducted where 

participants were asked about building age, type of heat fuel, number of air conditioning units 

and forced air heating system in the residence. During each home visit, participants were asked 

to report specific activities that could generate indoor air pollution or alter penetration 

efficiencies of outdoor air pollution in a comprehensive questionnaire. The 7-day recall format 

has proved to be accurate in elder populations where the focus has been on recalling specific 

activities to assess energy expenditure. Our specific interest will be in recording time and type of 

activities at different microenvironments. The following questions were included in this analysis: 

(1) How many hours did you open the window during sampling session? (2) How many hours 

did you use an electric space heater during sampling session? (3) Did you use a purifier during 

sampling session and for how long? Responses to these questions were used examine the impact 

of human activities on the predicted sulfur ratio for each residence. 

Land use parameters. Land use parameters often serve as surrogates of anthropogenic PM2.5 

sources; in this study, land use parameters were used to quantify the spatial variability of PM and 
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BC concentrations outside participating homes. The percentage of urban spaces in a grid of 1 km 

x 1 km cells covering the study area was obtained from the 2011 collection of the National Land 

Cover Database (NLCD). Major roads (A1-A3) density was gathered from the StreetMap USA 

database using the Feature Class Code (A1-A4) classification from the U.S. Census Bureau 

Topologically Integrated Geographic Encoding and Referencing (TIGER) system. Annual 

averaged traffic count for major roads was obtained from the Highway Performance Monitoring 

System (HMPS) database. The built-in Kernel density algorithm (Silverman 1986) from ArcMap 

was used to calculate traffic count weighted for major road density within 1 km2. Population 

density was calculated within 1 km2 from the census track database of 2000. 

 

Statistical Analysis 

In this study, we considered the dynamics of fine particles involving infiltration (or inflow), 

exfiltration (or outflow), indoor emission and deposition removal (figure 13). 

Figure 13. Dynamics of inflow, outflow, emission, removal of fine particles in the indoor 

environment. 

 

Based on the relationships illustrated in figure 2, we can obtain a simplified mass balance 

equation as follows: 
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𝐶𝑖𝑛𝑑𝑜𝑜𝑟(𝑡)

𝑑𝑡
= 𝐹𝑖𝑛 + 𝐸 − 𝐹𝑜𝑢𝑡 − 𝑅     (1) 

Where Cindoor (t) is the indoor concentration of particle mass (ug/m3) at time t, Fin represents 

particles infiltrated from outdoor, E is the indoor emission, Fout is particle exfiltration to outdoor 

and R is the indoor removal by deposition.  Both inflow (Fin) and outflow (Fout) of particles are 

governed by the infiltration factor (p) and therefore we rearrange eq. 1 into the following form: 

𝐶𝑖𝑛𝑑𝑜𝑜𝑟(𝑡)

𝑑𝑡
= 𝑝𝐶𝑜𝑢𝑡𝑑𝑜𝑜𝑟 + 𝐸 − 𝑝𝐶𝑖𝑛𝑑𝑜𝑜𝑟 − 𝑑𝐶𝑖𝑛𝑑𝑜𝑜𝑟   (2) 

Where Coutdoor is the particle concentration outside each individual household (ug/m3), p is the 

infiltration factor and d is the deposition rate. Under the assumption where indoor air is well 

mixed and that transient changes are negligible due to sufficient length of sampling, we can solve 

the eq. 2 into the following: 

𝐶𝑖𝑛𝑑𝑜𝑜𝑟 =
𝐸

(𝑝+𝑑)
+ 𝑝𝐶𝑜𝑢𝑡𝑑𝑜𝑜𝑟     (3) 

From the above derivation, it is apparent that the key parameter allowing us to use outdoor 

particle concentrations to estimate indoor concentrations is the infiltration factor (p). The 

traditional method to acquire infiltration is to measure the building tightness of each house which 

could become unrealistic as the number of homes increased in the study. For this reason, the 

indoor-to-outdoor ratio of tracer elements is often used to quantify infiltration. In this study, we 

employed sulfur as the tracer element and constructed a sulfur model to estimate the indoor-to-

outdoor sulfur ratio for individual households. Subsequently, we incorporated the estimated 

indoor-to-outdoor sulfur ratio to predict indoor PM2.5 and black carbon concentrations based on 

the mass balance concept (eq. 3). 
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Sulfur Model. As previously described, in situations where there are no indoor sulfur emissions, 

we can calculate the indoor-to-outdoor sulfur ratio (eq. 4) directly and use it as a surrogate of the 

infiltration factor (p): 

𝑝 =
𝑆𝑖𝑛𝑑𝑜𝑜𝑟

𝑆𝑜𝑢𝑡𝑑𝑜𝑜𝑟
      (4) 

However, given that indoor sulfur emissions may not be captured entirely by questionnaire data 

and subsequently introducing noise to the ratio calculated from eq. 1, we estimated the 

infiltration factor with the following model (eq. 5): 

𝑆𝑖𝑛𝑑𝑜𝑜𝑟 = 𝛼0𝑖 + 𝛽0 + (𝛼1𝑖 + 𝛽1)𝑆𝑜𝑢𝑡𝑑𝑜𝑜𝑟 + ∑ +𝛽𝑗+1(𝑆𝑜𝑢𝑡𝑑𝑜𝑜𝑟 × 𝐼𝑗)4
𝑗=1   (5) 

Where Sindoor is the sulfur concentration measured indoors, Soutdoor is the sulfur concentration 

outdoor,  i represents the homes included in the study and j is the season identifier. Ij is the 

indicator variable for season j. Since sulfur was not measured outside each individual household 

and it is considered as a regional pollutant with smaller spatial variation within a city, we used 

the sulfur concentration measured at the Countway Supersite as a surrogate of the sulfur 

concentration outside each participating home. Here we included fixed intercept (𝛽0) and random 

intercept by home (𝛼0𝑖) to capture potential indoor sulfur emissions such as under reported 

indoor smoking. A random slope by home of the outdoor sulfur is also included to generate 

sulfur ratio estimates for each household individually and also the random slopes account for the 

spatial variability of sulfur that was not reflected by the Countway supersite measurements. In 

addition, we included an interaction term between outdoor sulfur concentration and season to 

capture the seasonal variation of the infiltration. Finally, the estimated indoor-to-outdoor sulfur 

ratio equals to the sum of the estimated fixed (𝛽1) and random slope (𝛼1𝑖) and the slopes of the 

season interaction terms (𝛽𝑗). 
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Indoor PM2.5 and BC Model. Combining the estimated indoor-to-outdoor sulfur ratio (eq. 5) and 

mass balance (eq. 3) we can estimate indoor concentrations of PM2.5 and BC with the following 

equation: 

𝐶𝑖𝑛𝑑𝑜𝑜𝑟 = 𝛼0𝑖 + 𝛽0 + (𝛼1𝑖 + 𝛽1) ∙
𝑆𝑖𝑛𝑑𝑜𝑜𝑟

𝑆𝑜𝑢𝑡𝑑𝑜𝑜𝑟
∙ 𝐶𝑜𝑢𝑡𝑑𝑜𝑜𝑟   (6) 

Where Cindoor (ug/m3) is the indoor concentration of particle mass, Coutdoor (ug/m3) is the particle 

concentration outside individual household, and Sindoor/SCountway (unit-less) is the predicted 

indoor-to-outdoor sulfur ratio from the sulfur model (eq. 5). 

Nevertheless, unlike sulfur where ambient concentration is generally homogeneously distributed 

across space, the spatial distribution of PM2.5 and BC can vary by location significantly even 

within a small metropolitan. In other words, the PM2.5 and BC concentrations measured at the 

Countway supersite may not be representative of the particle levels outside participating homes. 

Since both PM2.5 and BC are highly associated with the traffic volume and metropolitan 

activities, we employed land use variables including major road density, percent urban spaces 

and the distance between home and Countway supersite to predict outdoor PM2.5 and BC 

concentrations in addition to the monitor measured concentrations. The final indoor model (eq. 

7) is therefore formulated as below: 

𝐶𝑖𝑛𝑑𝑜𝑜𝑟 = (𝛼0𝑖 + 𝛽0) + (𝛼1𝑖 + 𝛽1) ∙ (
𝑆𝑖𝑛𝑑𝑜𝑜𝑟

𝑆𝑜𝑢𝑡𝑑𝑜𝑜𝑟
) ∙ 𝐶 𝑐𝑜𝑢𝑛𝑡𝑤𝑎𝑦 ∙ (𝑅𝑜𝑎𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 + % 𝑈𝑟𝑏𝑎𝑛 +

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑡𝑤 ℎ𝑜𝑚𝑒 𝑎𝑛𝑑 𝐶𝑜𝑢𝑛𝑡𝑤𝑎𝑦 𝑠𝑢𝑝𝑒𝑟𝑠𝑖𝑡𝑒)             (7) 

Where Ccountway (ug/m3) is the measured concentration at the central monitoring site, Road density 

(1/km) is the traffic density of A1-A3 roads within a 1 km2 grid where the participating home 

falls in, %Urban is the percentage of urban spaces within a 1 km2 grid surrounding the homes. In 

this model we included a random intercept (𝛼0𝑖) by home (i) to account for indoor PM2.5 and BC 
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emissions. Whereas the random slope (𝛼1𝑖) by home accounts for the spatial variability that was 

not captured by the land use variables and the sulfur ratio. 

 

Out-of-sample cross validation. We conducted cross validation by home and by season to 

evaluate the predictive power of the sulfur, indoor PM2.5 and BC models described above. For 

each home, we held out one sample and predicted the held out data using the model fitted with 

the rest of the samples from that specific home and all data from other homes. We iterate the 

same procedure until all data is predicted once and examined the R2 of the cross validated 

prediction versus the observed measurements.  

RESULTS AND DISCUSSION 

General Characteristics 

A total of 328 weeklong sampling sessions were conducted at 95 residences and a nearby central 

monitoring site (Countway supersite). Table 1 displays the household characteristics and 

surrounding land use in this analysis. The participated households include a wide range of air 

conditioning and forced air heating prevalence. Moderate variability was also found in natural 

ventilation, specifically window opening hours. These factors are expected to influence the 

infiltration and exfiltration of particles and were found to lower the model predictive power in 

previous studies (Baxter et al. 2007). The distribution of measured indoor and outdoor 

concentrations is summarized in Table 2. The measured weekly PM2.5 concentrations were 

generally higher than that of the outdoor measurements suggesting significant indoor sources of 

particles. The higher BC concentration measured at the central site is likely reflecting the larger 

amount of traffic emissions and biomass burning in the outdoor environment (Patel et al. 2009, 
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Saleh et al. 2014). It is therefore important to take into account the spatial variation of outside-

home PM2.5 and BC which is addressed by including land use parameters, distance to central site 

and random effects by home in our analysis. More importantly, the indoor-to-outdoor ratio of 

PM2.5 and BC is found to vary considerably. Previous studies have attributed this variation to 

multiple factors including indoor particle emission, air exchange rate and natural ventilation 

(Long and Sarnat 2004). Essentially, these findings indicate high relevance of infiltration factors 

in the modeling process of indoor exposure levels. 

Table 12. Distribution of residence characteristics, surrounding land use and questionnaire 

variables related to indoor air pollution. 

Variables Mean SD Min Median Max 

%Urban within 500m radius 67% 27% 0% 74% 100% 

Major road density within 500m radius 

(km/km2) 
2.2 1.6 0.0 2.0 11.5 

Distance to supersite (km) 27.7 20.2 1.2 24.5 88.2 

Building age 62.8 31.9 9.0 51.0 171.0 

No. of AC 2.2 0.7 1.0 2.0 4.0 

Use of Forced air heating Yes No    

(# subject-week) 66 262    

 

Questionnaire questions 

 

Mean 

 

SD 

 

Min 

 

Median 

 

Max 

(1) How many hours did you open the 

window during sampling session? 
31.4 57.1 0.0 0.0 168.0 

(2) How many hours did you use an 

electric space heater during sampling 

session? 

5.5 6.8 0.2 3.0 24.0 

(3) How many hours did you use a 

purifier during sampling session? 
10.1 33.6 0.0 0.0 168.0 

(4) What heat fuel do you use for heating? Gas Electric Other/Oil 

(# homes) 44 21 30 

  

Table 13. Distribution of measured indoor and outdoor (at central site) PM2.5 concentrations 

and its BC and Sulfur content.  
Indoor Central site  

Mean SD Mean SD 

PM2.5 (ug/m3) 8.8 6.5 6.5 2.2 

BC (ug/m3) 0.24 0.26 0.58 0.24 
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Sulfur (ug/m3) 0.30 0.15 0.45 0.19 

 

Predicted Indoor-to-Outdoor Sulfur Ratio 

The mixed effects model (eq. 5) predicting indoor sulfur using central site measurements as 

outdoor proxy shows excellent predictability with high cross validated R2 of 0.89, a non-biased 

slope and a negligible intercept bias when comparing the predicted to the measured indoor sulfur 

concentration (Table 3).   

Table 4 displays the relationship between the predicted sulfur ratio and home characteristics and 

human activities. The indoor-to-outdoor sulfur ratio increased with higher natural ventilation 

(window opening) and urban density. On the other hand, purifier, air conditioning, and forced air 

heating use had opposite effect on the indoor-to-outdoor sulfur ratio (-0.06~-0.28). These 

findings are in agreement with previous investigations (Cyrys et al. 2004, Bell, Ebisu, Peng, and 

Dominici 2009).  Homes using oil as primary heating fuel have higher sulfur ratio as opposed to 

those with gas or electric fuel. A plausible reason could be that outdoor furnaces emitting sulfur-

rich particles added the spatial variability of sulfur concentration outdoors. Consequently, the 

indoor-to-outdoor sulfur ratios for these oil using homes were slightly overestimated (0.07) due 

to using the lower level central site measurement as outdoor sulfur surrogate (Table 4). 

Nevertheless, the random slopes by home in the indoor PM2.5 and BC model (eq. 7) corrected 

this heating oil associated bias.  Finally, the predicted sulfur ratio did not vary by electric space 

heater use and was borderline related to road density.   

 

Table 14. Cross-validated R2 and corresponding MSE between observed and predicted indoor 

Sulfur, PM2.5 and BC. 
 R2 RMSE Intercept Bias Slope Bias 
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(ug/m3) (ug/m3) 

Indoor Sulfur Model 0.89 0.038 -0.02 1.05 

Indoor PM2.5 Model 0.79 1.695 0.38 0.90 

Indoor BC Model 0.76 0.122 0.01 1.01 

 

Table 15. Relationship between the predicted I/O S ratio and household characteristics and 

behaviors. 
 Estimate Std. Error T value P value 

Heat fuel     

other/oil vs gas/electric 0.07 0.020 3.165 0.001 

Window     

Open vs Close 0.10 0.020 4.340 <0.001 

Road density 0.03 0.017 1.790 0.07 

Electric space heater 0.003 0.030 0.096 0.92 

Forced air heating     

Yes vs No           -0.06 0.030 -1.930 0.05 

Land cover     

Urban vs Rural 0.20 0.043 4.477 <0.001 

Purifier use     

Yes vs No           -0.28 0.095 -2.884 0.004 

AC use     

Yes vs No -0.06 0.026 -2.396 0.017 

 

Predicted Indoor PM2.5 and BC 

Using the cross validated indoor-to-outdoor sulfur ratio as the infiltration proxy we predicted 

indoor PM2.5 and BC concentrations. The cross-validated R2 for indoor PM2.5 and BC was 0.79 

and 0.76, respectively, showing strong predictive power (Table 3).  Model performance was 

superior to previous indoor models, specifically those without the use of sulfur tracer as 

infiltration surrogate (Table 5).  We relaxed the assumption of none indoor sulfur sources and 

used fixed and random intercepts (eq. 5) to filter noise attributable to potential indoor sulfur 

emissions. This approach is likely a reason for our improved model performance. Furthermore, 
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the number of participating homes in this study is much higher than that of previous studies and 

therefore enhanced our model predictability with larger sample size. 

We found significant indoor sources of fine particles where 54% and 72% of BC and PM2.5 was 

estimated to originate from indoor sources, respectively. While PM2.5 concentrations of indoor 

origin varied across households, this variability was not explained by housing characteristics 

except a significantly lower PM2.5 concentration (-6.3 µg/m3) when purifiers were used. The 

unexplained indoor particles could likely generated by cooking and incense burning which was 

found to be major sources of indoor particles in previous studies (Habre et al. 2014, Baxter et al. 

2007, Pokhrel et al. 2015). On the other hand, we found significant relationship between indoor 

BC of outdoor origin and traffic density surrounding homes. This is consistent to the discovery 

that traffic pollutants including BC can easily penetrate buildings in urban areas (Dorizas et al. 

2015, Kang, Koutrakis, and Suh 2010, Park et al. 2007, Maynard et al. 2007).  

Potentially, our model predictability could be improved by extending the sample size via 

measuring daily instead of weeklong indoor concentrations or expanding the study area. We did 

not take into account the influence of chemical transformations, such as changes in gas-to-

particle partitioning during the infiltration of volatile organic compounds, nitrate or ammonium 

(Lunden et al. 2008, Hering et al. 2007) which may also affect the performance of indoor PM 

and BC models. Furthermore, the large amount of indoor particle generation warrants further 

investigation regarding the sources and size distributions of these indoor particles as well as their 

chemical composition and biological effects. Nevertheless, the exposure models developed in 

this study have superior predictive power compared to the literature and therefore provide more 

reliable exposure data to study the relative toxicity and biological effects of particles of indoor 

and outdoor origins. 
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Table 16.  Comparison among previous studies modeling infiltration and indoor particle levels and the current study. 

 Current study 
(Gaffin et al. 

2016) 
(Allen et al. 2012) (Baxter et al. 2007) 

(Wallace and 

Williams 2005) 

Study area 95 Boston homes 
30 Boston public 

schools 

353 homes in 7 cities 

across US 
39 Boston homes 

37 North Carolina 

homes 

Sampling 

Frequencies 

 

At least 2 sampling 

sessions 

1 sampling per 

season 

Mostly 1 sampling 

session 

2 sampling sessions 

per home 

1 sampling per 

season 

How to model 

Infiltration 

 

Indoor sulfur 

(weeklong) 

Sulfur ratio 

(weeklong) 

Sulfur ratio 

(2 week) 

GIS & housing 

characters 

Indoor sulfur 

(weeklong) 

Model type 

 

Mixed effects 

By season & home 

Mixed effects 

By school 

Simple 

Regression 

Bayesian model 

(without S ratio) 

Simple 

Regression 

Validation of 

Sulfur 

or ratio model 

 

by season & home 

CV 

R
2

=89.3% 

10-fold CV 

R
2

=31% 

10-fold CV 

By city R
2

=30~60% 
NA NA 

Predictive power 

on PM
2.5

 

by season & home 

CV 

R
2

=79.1% 

10-fold CV 

R
2

=68% 
-- R

2

=0.37 R
2

=0.74 
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CONCLUSION 

This chapter summarizes the main findings in this dissertation and their potential applications 

and implications.  

In Chapter 1, we proposed a new method (the PEIRS approach) to construct spatially 

resolved emission inventories for fine particulate matter. The predicted emissions in the 

northeast US are in a reasonable agreement with those reported in the 2008 and the 2011 

National Emission Inventory released by the U.S. EPA. The key feature of the PEIRS model is 

its capability of capturing small-scale intra-urban variations in emissions and formation of 

secondary particles. Although inherent biases from the satellite data, possibly due to humidity 

interference and ocean glint, may reduce model accuracy in predicting emissions, generally they 

manifest in remote areas with little population. Future research should examine whether the 

allegedly higher emissions are due to AOD measurement artifacts or the presence of secondary 

formed from biogenic precursors. Another limitation of the PEIRS method is the weather or 

cloud induced missing AOD retrievals which may contribute to the uncertainties of the 

subsequent emission estimates. Our interim solution to the problem is to predict multi-year 

averaged emissions including more than 2 years of daily satellite-derived PM2.5 concentrations in 

the modeling process.  Proper imputation or advancement in the retrieval methods of AOD are 

required to improve the quality of AOD data and subsequently allowing more flexible time 

scales for the emission estimation. 

Overall, we have demonstrated the potential of satellite AOD data to predict PM2.5 

emissions at a fine spatial scale (1km x 1km). In contrast to conventional methods collecting 

emission data for known sources, we developed a model, based on the physical properties of 
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particles, that captures emissions from all sources, including primary and secondary particles, 

within a specific area. We can take full advantage of the breadth of satellite based remote sensing 

data to predict emission with a high spatial and temporal resolution at low cost. Ultimately as 

satellite remote sensing improves, more robust data with better temporal and spatial resolution 

will become available for predicting emissions not only for particles but for different gaseous air 

pollutants.  

In Chapter 2, as an implication of the PEIRS approach described in Chapter 1, we 

constructed and analyzed triennial averaged trends of satellite-based PM2.5 emission inventories 

from 2002 to 2013 in the northeastern region of the United States. Our trend analyses suggest 

that PM2.5 emissions in the North East region has declined over the past 12 years, with major 

reductions achieved for almost all land use-related sources. Results from the quantile regression 

are in agreement with the spatial trends where most reductions were identified in urban areas or 

along important traffic corridors, particularly during the cold season. Nevertheless, we found that 

emission reduced in a much faster rate during the warm seasons as opposed to the cold seasons 

even though the absolute amount of reduction is more in the later.  

Seasonal variations in PM2.5 emissions were significantly distinguishable in all trend 

analyses performed in this study, warranting future efforts to elucidate the underlying 

mechanisms for these seasonal differences in order to improve the efficacies of emission control 

strategies.  Many studies have demonstrated that temperature variations could lead to human 

behavioral changes and environmental adjustment that could affect both particle emission or 

formation rates directly. For instance, High PM2.5 concentrations in winter were often found in 

neighborhoods with high heating demands or a large proportion of oil and wood burning boiler 

usage (Ross et al. 2013, Noonan et al. 2012), and mobile vehicles were found to produce more 
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PM2.5 emissions as temperature decreased (EPA 2010). The dependence of different PM2.5 

sources on temperature and other weather parameters is complex and thus previous sensitivity 

analyses of these relationships often have high uncertainty (Aw and Kleeman 2003, Kleeman 

2007, Tai, Mickley, and Jacob 2010). The impact of the variation of weather parameters on 

particle emissions should be evaluated more carefully with the newly developed spatially- and 

temporally-resolved emission inventories. This information will enable policy makers to 

consider impact of weather on PM2.5 emission rates and relax the common assumption of a 

constant meteorological scenario over time. Last but not least, as satellite-based emission 

inventories were built for other pollutants, relationships between PM2.5 emissions and precursor 

gases emissions such as NO2, NH3, and SO2 and concurrent pollutant such as O3, could be 

examined to further our understanding of their complex chemical reactions. 

In Chapter 3, This study highlights methodology and data sources that strengthen the estimation 

of infiltration factor, indoor PM2.5 and BC concentrations for individual residences in the Greater 

Boston Area. Indoor-to-outdoor sulfur ratio, serving as a surrogate of the infiltration factor, was 

estimated using filter-based indoor and outdoor sulfur concentrations and seasonality within a 

mixed effects model.  The estimated sulfur ratio reflects household characteristics and human 

activities such as open window, use of purifier, and AC. More importantly, we demonstrated that 

indoor PM2.5 and BC concentrations can be reliably quantified through the combination of 

outdoor monitoring observations, land use parameters and the sulfur tracer method. Finally, our 

models show promise in improving indoor PM2.5 exposure assessments for future health effects 

studies and could serve as exposure model framework more generally for other locations. 

One of the advantages of our approach estimating indoor-to-outdoor sulfur ratio is to 

relax the assumption of absent indoor sulfur sources and include a random intercept to account 



59 
 

for potential sulfur emissions inside homes. This way, uncensored indoor sources would not be 

attributed to ambient particle penetrated indoors and by doing so we lower the risk of generating 

biased infiltration rates for predicting indoor particle exposure levels. However, the treatment is 

only adequate given the high demand of oil as heating fuel in the New England region and may 

not be necessary in other locations where gas or electric fuel are of primary heating source. The 

random slopes on the other hand would be broadly applicable for it takes into account the 

variation of infiltration between households. Finally, model performance and the interpretations 

of our findings may still be limited by the small sample size available in this study. More cost-

effective indoor sampling devices or protocols would still greatly enhance our ability to assess 

indoor exposures more accurately. Nevertheless, the presented models show promise for 

improving exposure assessment for health effects analyses. We also demonstrated applications of 

statistical modeling techniques when resources are restricted.  

In summary, this dissertation presents methodologies to assess PM2.5 exposures and 

address important knowledge gaps in both the ambient and indoor environment that were not 

pursued previously. The emission inventory method for ambient particles is broadly applicable to 

other regions of the world and many different pollutants using various chemical composition 

satellite data. Whereas the series of models predicting infiltration from outdoor to indoors and 

indoor particle concentrations can be serve as a framework to determine the relationships 

between outdoor and indoor air quality more generally. Altogether, this work illustrates novel 

applications of statistical approaches in quantifying particle exposure from a macro to micro 

perspective. 
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