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Abstract 

 

Epidemiological studies have examined the association between PM2.5 mass and mortality, 

but there remains uncertainty about the relative importance of species. PM2.5 contains various 

species, such as organic carbon, elemental carbon, and metals. Determining the differential toxicity 

of PM2.5 species and identifying species with greatest toxicity is of great importance to emission-

control strategies and regulations.  

In the dissertation thesis, effects of PM2.5 species on health outcomes on different levels 

were estimated. The first study examined the association between PM2.5 species and mortality on 

approximately 4.5 million deaths for all causes, cardiovascular diseases, myocardial infarction, 

stroke, and respiratory diseases in 75 U.S. cities for 2000-2006, using city-season specific Poisson 

regression and multivariate meta-regression controlled for infiltration. Since cardiovascular 

diseases are leading causes of death within U.S. population, the second study aimed to determine 

which PM2.5 species are associated with blood pressure, an indicator of cardiovascular health, in a 

longitudinal cohort. Linear mixed-effects models with the adaptive LASSO penalty were applied 

to longitudinal data from 718 elderly men in the Veterans Affairs Normative Aging Study (NAS), 
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1999-2010. Species considered included 8 metals (Fe, K, Al, Ni, V, Cu, Zn, and Na) and 3 non-

metals (S, Si, and Se). At last, the relationship between long-term exposure to PM2.5 species and 

epigenome-wide DNA methylation at 484 613 CpG probes in the longitudinal NAS cohort that 

included 646 subjects were investigated to explore the potential biological mechanisms on the 

epigenetic level in study 3.  

The studies have showed an increased risk of mortality and blood pressure associated with 

PM2.5, which varied with species, and differential DNA methylation linked to long-term exposure 

to particular components of PM2.5. In conclusion, mass alone might not be sufficient to evaluate 

the health effects of particles. Understanding the toxicity of particle components is crucial to public 

health.  
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Study 1. Associations of Fine Particulate Matter Species with Mortality in the United 

States: A Multicity Time-Series Analysis 

 

Lingzhen Dai, Antonella Zanobetti, Petros Koutrakis, and Joel D. Schwartz 

Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, 

Massachusetts, USA 

 

Abstract 

Background: Epidemiological studies have examined the association between PM2.5 and 

mortality, but there remains uncertainty about the seasonal variations in PM2.5-related effects and 

the relative importance of species. 

Objectives: to estimate the effects of PM2.5 species on mortality and how infiltration rates may 

modify the association. 

Methods: Using city-season specific Poisson regression, we estimated PM2.5 effects on 

approximately 4.5 million deaths for all causes, CVD, MI, stroke, and respiratory diseases in 75 

U.S. cities for 2000-2006. We added interaction terms between PM2.5 and monthly average 

species-to-PM2.5 proportions of individual species to determine the relative toxicity of each 

species. We combined results across cities using multivariate meta-regression, and controlled for 

infiltration. 

Results: We estimated a 1.18% [95% confidence interval (CI): 0.93, 1.44%] increase in all-cause 

mortality, a 1.03% (95% CI: 0.65, 1.41%) increase in CVD, a 1.22% (95% CI: 0.62, 1.82%) 

increase in MI, a 1.76% (95% CI: 1.01, 2.52%) increase in stroke, and a 1.71% (95% CI: 1.06, 
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2.35%) increase in respiratory deaths in association with a 10-µg/m3 increase in 2-day averaged 

PM2.5 concentration. The associations were largest in the spring. Silicon, calcium, and sulfur were 

associated with more all-cause mortality, while sulfur was related to more respiratory deaths. 

County-level smoking and alcohol were associated with larger estimated PM2.5 effects.  

Conclusions: Our study showed an increased risk of mortality associated with PM2.5, which varied 

with seasons and species. The results suggest that mass alone might not be sufficient to evaluate 

the health effects of particles.  

 

Introduction 

Over the past few decades, there has been much research on the adverse effects of ambient 

particulate matter (PM). A number of studies have used fine PM (PM2.5, particles < 2.5 µm in 

aerodynamic diameter) as an exposure metric and estimated the effects of PM2.5 on human health 

(Laden et al. 2006; Ostro et al. 2006; Pope and Dockery 2006; Zanobetti and Schwartz 2009). 

Meanwhile, researchers have found some PM2.5 species significantly modify PM2.5-related effects 

(Franklin et al. 2008; Lippmann et al. 2006; Zanobetti et al. 2009). PM2.5 consists of many chemical 

components that originate from various sources, such as traffic, biomass burning and coal 

combustion. The U.S. National Research Council has emphasized the importance of examining 

the risk of PM species (NRC 2004). Determining the differential toxicity of PM2.5 species and 

identifying species with greatest toxicity is of great importance to emission-control strategies and 

regulations.  

The U.S. Environmental Protection Agency (EPA) established the PM2.5 Speciation Trends 

Network (http://www.epa.gov/ttnamti1/speciepg.html) in 2000. Speciation sampling was 

http://www.epa.gov/ttnamti1/speciepg.html
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conducted every third or sixth day, which limits statistical power for analysis of responses to acute 

exposure and also prevent the examination of e.g. two-day moving averages of exposure which 

most studies find more strongly associated with mortality and hospital admissions than single day 

exposures. As a result, there are a limited number of studies investigating the toxicity of PM2.5 

components. These investigations have reported numerous components that may be responsible 

for particle toxicity such as elemental and organic carbon, sulfate, nitrate, and metals, including 

zinc, nickel, iron, potassium, and chromium (Atkinson et al. 2010; Bell et al. 2009; Franklin et al. 

2008; Ostro et al. 2006; Valdes et al. 2012; Zhou et al. 2011).  

Recently, Krall et al. reported on the association of 1-day average concentrations of species from 

the speciation network and mortality in 72 cities for the years 2000-2005 (Krall et al. 2013). This 

paper addresses a similar question, but with the following differences. First, Krall et al. analyzed 

PM components without controlling for PM mass risks. As pointed out by Mostofsky et al. 

(Mostofsky et al. 2012), it is possible to find associations for components because they are highly 

correlated with mass, and not because they are themselves particularly toxic. Second, it focuses on 

single day exposures. PM2.5 mortality studies have consistently reported that the associations are 

spread over more than one day. Thus when one uses separate time series for components which 

are measured only 1 day in 6 or 1 day in 3, this will bias downward estimates, possibly more for 

some components than others. In addition, the loss of two thirds to five sixths of the data 

substantially reduces power.  

US adults, particularly the elderly who dominate mortality statistics, spend approximately 90% of 

their time indoors (U.S.EPA 1989). While particles penetrate indoors, the infiltration rates vary 

with the extent to which windows and doors are open, which in turn can vary with local 

temperature and may therefore modify the association. Previous studies have reported such 
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modification (Franklin et al. 2008; Stafoggia et al. 2008; Zanobetti et al. 2009). In this paper we 

address these issues and in addition examine more species, add an additional year of observation, 

and look at specific causes of death. 

 

Methods 

Study sites 

We included 75 U.S. cities in our study. Cities of interest were selected based on the availability 

of daily mortality, PM2.5 mass, and speciation data for at least 400 days between 2000 and 2006. 

 

Environmental data 

We conducted county-level analysis for most cities as the city lies within a single county, and used 

multiple counties for a city whose population extends beyond the boundary of one county 

(Zanobetti and Schwartz 2009). We obtained PM2.5 mass and species concentration data from the 

U.S. EPA Air Quality System Technology Transfer Network 

(http://www.epa.gov/ttn/airs/airsaqs/). PM2.5 mass samples were collected daily in most of the 

cities, while the speciation monitoring sites were operated on a 1-in-3 or 1-in-6 day schedule. Most 

of the cities had a single monitor. For cities with more than one sampling site concentration data 

were averaged. Our analysis focused on organic carbon (OC), elemental carbon (EC), sodium (Na), 

aluminum (Al), silicon (Si), sulfur (S), potassium (K), calcium (Ca), vanadium (V), iron (Fe), 

nickel (Ni), copper (Cu), and zinc (Zn), because these species have been shown to be representative 

of several sources (e.g., motor vehicles, oil combustion, coal combustion, wood burning, sea salt, 

http://www.epa.gov/ttn/airs/airsaqs/
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and road dust) and their concentration levels are mostly above the method detection limits (Hopke 

et al. 2006). Furthermore, they have been studied by previous epidemiologic and toxicological 

studies (Bell et al. 2009; Franklin et al. 2008; Ostro et al. 2006; Zanobetti et al. 2009; Zhou et al. 

2011). Monthly average proportions between each component and PM2.5 mass were calculated for 

each city by dividing monthly concentrations of species by the respective mass mean.  

Daily mean temperature in every city was obtained from the National Oceanic and Atmospheric 

Administration (http://www.noaa.gov/). We used 24-hour average temperature data from the 

closest weather station to the center of the city. Percent green space data were obtained from the 

National Land Cover Database, Multi-Resolution Land Characteristics Consortium 

(http://www.mrlc.gov/). 

 

Health data 

Daily mortality data were obtained from National Center for Health Statistics 

(http://www.cdc.gov/nchs/). We examined non-accidental deaths due to all causes and specific 

diseases, which were derived from the International Statistical Classification of Disease, 10th 

Revision (WHO 2007) codes as follows: all causes (ICD-10, A00-R99), cardiovascular diseases 

(ICD-10, I01–I59), respiratory diseases (ICD-10, J00–J99), myocardial infarction (ICD-10, I21-

I22), and stroke (ICD-10, I60-I69).  

We investigated several behavioral and other risk factors that have been reported to impact health 

(Baja et al. 2010; Dogra et al. 2007; Dwyer-Lindgren et al. 2013; Mora et al. 2007), including 

diabetes, being overweight or obese (i.e., BMI ≥ 25), smoking, quitting smoking, alcohol 

http://www.noaa.gov/
http://www.mrlc.gov/
http://www.cdc.gov/nchs/
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consumption (having > two drinks per day), asthma, and leisure time physical activity, from the 

Behavioral Risk Factor Surveillance System (BRFSS) (CDC 2006). We applied county-level 

weighting methodology to obtain county-level percentages of these variables in 2006. For counties 

that were not available, we used data from the closest metropolitan or micropolitan statistical area 

(MMSA) and applied MMSA-level weighting methodology.  

 

Statistical methods 

We applied a two-stage analysis in our study. In the first stage, a city-specific season-stratified 

time-series analysis using Poisson regression in a generalized additive model (GAM) was used to 

estimate the association between daily mortality and the mean of PM2.5 mass on the day of death 

and the day before death in each city and each season (defined as Spring: March – May; Summer: 

June – August; Fall: September – November; Winter: December – February). We controlled for 

time trend with a natural cubic regression spline with 1.5 degrees of freedom (d.f.) per season per 

year, for day of the week with indicator variables, and for daily temperature on the same day (lag 

0) and on the previous day (lag 1) with a natural cubic spline with 3 d.f. for each. For every species, 

we calculated the monthly average species-to-PM2.5 proportions for each month as a solution to 

the missing speciation data problem due to the 1-in-6 or 1-in-3 day sampling frequency. We then 

added, one at the time, the interaction terms between PM2.5 and the monthly average species-to-

PM2.5 proportions of each individual species (Valdes et al. 2012). The model is as below: 

LogE(Yt) = Intercept + ns(time, df) + ns(temperaturet, df) + ns(temperaturet-1, df) + day of the week 

+ αZt-1,t + βpi + γZt-1,t pi         [1.1] 
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where, E(Yt) is the expected death count at day t, ns is the natural cubic splines, Zt-1,t indicates 2-

day averaged concentration of PM2.5 at day t-1 and t, and pi is the mean monthly proportion of 

species i to mass.  

By using an interaction with the monthly mean ratio we avoid losing most of the daily 

observations, since we are able to use more than one day’s exposure, and control for PM mass. 

While the use of the monthly ratio introduces some error in that variable, much of the variation in 

species mass is across cities, and between months within cities. For example, organic carbon, 

sulfate and nitrate are products of photochemical reactions whose rates are temperature-dependent, 

and this varies substantially across the U.S. and differently by month in different locations (Baker 

and Scheff 2007; de Gouw et al. 2005). It is important to note that if a species ratio is not significant 

in this analysis that does not mean that the species has no effect, it means its effect is not different 

than the average PM effect. A species with low or no toxicity would be expected to have a 

significant negative interaction term. 

In the second stage of the analysis, we conducted a multivariate random effects meta-analysis and 

combined the 300 (i.e., 75 cities * 4 seasons) city-season specific effect estimates to obtain an 

overall association between PM2.5 mass and its interaction with each species with mortality across 

all 75 cities: 

Yi = XBi       [1.2] 

where, Yi is a (300 × 2) matrix, whose first column contains 300 city-season specific coefficients 

for PM2.5 and the second column contains 300 city-season specific coefficients for interaction with 

species i, X is a (300 × 4) matrix for intercept, linear, quadratic and cubic temperature, and Bi 
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indicates a (4 × 2) matrix of meta-regression coefficient for PM2.5 and for interaction with species 

i. 

It has been shown that high ventilation is seen at mild temperatures whereas low ventilation is seen 

at high and low temperatures (Koutrakis et al. 2005). Assuming that PM effect would not drop 

consistently as temperature increases, we added a cubic term in the model to allow for a plateau. 

We also examined whether the BRFSS factors modified PM2.5 effects. The model is: 

β̂is = β0 + β1tis + β2tis2 + β3tis
3 + β4BRFSSi   [1.3] 

where β̂is is the estimated PM2.5 coefficient for city i in season s, tis is the centered temperature 

(i.e., temperature – mean temperature) for city i in season s, and BRFSSi is the BRFSS variable in 

city i. To estimate the effect of individual species, we performed the same meta-regression, but 

with the coefficient of the interaction term for species as the outcome being modeled. Here again 

we adjusted for city-season mean temperature as a surrogate for air exchange. We also investigated 

spatial variations between cities by focusing on a single outcome and exposure season to evaluate 

the effects in each city by mean exposure in that season for each city. 

The effect estimates for PM2.5 were expressed as the percent change in mortality associated with a 

10 µg/m3 increase in the 2-day averaged concentration of PM2.5 mass, for comparability with most 

previous studies. We expressed the effect of species on mortality as the estimated percent increase 

in mortality at the 10th and 90th percentile of distribution of species-to-PM2.5 proportion for each 

species, holding the PM2.5 increase constant at 10 µg/m3.  

Data management was performed with SAS version 9.1 (SAS 2006), and regression analysis with 

R version 3.0.0 (R 2013). 
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Results 

In this study, we examined 4,473,519 all-cause deaths, of which 1,429,968 were CVD, 308,235 

MI, 255,430 stroke and 436,800 respiratory deaths. 

Table 1-1 summarizes daily mortality, PM2.5, temperature in all cities. On average, there were 28 

non-accidental deaths per day. Daily death count by season was higher in the winter (n=31) and 

spring (n=28). Among the causes of interest, CVD killed the most people on average (9/day), 

followed by respiratory diseases (3/day). The overall mean concentration of PM2.5 was 13.3 µg/m3. 

PM2.5 mean concentration was highest in the summer (15.0 µg/m3) and lowest in the spring (11.6 

µg/m3). Some of the species exhibited strong seasonal variability. For example, sulfur varied from 

798 ng/m3 in the winter to 1669 ng/m3 in the summer, with larger variations in some cities. 
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Table 1-1. Summary of daily mortality counts, PM2.5, and temperature across all 75 cities in 2000–

2006 (mean ± SD). 

Variable Overall Spring Summer Fall Winter 
Mortality (no.)      

All causes 28.0 ± 33.9 28.2 ± 33.9 26.0 ± 31.4 27.1 ± 32.5 30.8 ± 37.2 
CVD 9.0 ± 12.6 9.1 ± 12.6 8.2 ± 11.5 8.5 ± 11.8 10.0 ± 14.1 
MI 1.9 ± 2.9 1.9 ± 2.9 1.8 ± 2.6 1.8 ± 2.7 2.2 ± 3.3 
Stroke 1.6 ± 2.2 1.6 ± 2.2 1.5 ± 2.0 1.6 ± 2.1 1.8 ± 2.4 
Respiratory diseases 2.7 ± 3.6 2.9 ± 3.7 2.3 ± 3.1 2.4 ± 3.2 3.3 ± 4.4 

Temperature (˚C) 14.1 ± 10.0 13.4 ± 7.5 24.0 ± 4.1 15.1 ± 7.3 3.6 ± 8.0 
PM2.5 (µg/m3) 13.3 ± 8.3 11.6 ± 6.5 15.0 ± 8.8 12.8 ± 8.4 13.9 ± 9.0 
PM2.5 species (ng/m3)      

OC 4367 ± 2752 3688 ± 1806 4590 ± 2371 4491 ± 2716 4688 ± 3724 
EC 724 ± 590 602 ± 438 628 ± 459 830 ± 647 842 ± 733 
Na 80 ± 141 93 ± 165 89 ± 152 66 ± 117 71 ± 122 
Al 31 ± 78 31 ± 55 51 ± 128 23 ± 45 15 ± 34 
Si 117 ± 177 123 ± 134 171 ± 273 98 ± 125 69 ± 85 
S 1174 ± 1019 1066 ± 731 1669 ± 1385 1107 ± 960 798 ± 512 
K 79 ± 197 63 ± 49 103 ± 360 69 ± 62 79 ± 103 
Ca 65 ± 77 65 ± 68 74 ± 77 68 ± 88 53 ± 72 
V 2.5 ± 4.0 2.2 ± 3.4 2.7 ± 4.2 2.7 ± 4.4 2.5 ± 3.8 
Fe 102 ± 124 93 ± 127 111 ± 111 108 ± 136 93 ± 121 
Ni 2.5 ± 11.6 2.3 ± 6.0 2.2 ± 6.5 2.2 ± 5.7 3.2 ± 21.4 
Cu 5.1 ± 8.9 4.2 ± 7.3 5.7 ± 11.5 5.0 ± 7.3 5.4 ± 8.6 
Zn 18 ± 57 16 ± 39 16 ± 57 19 ± 53 22 ± 76 

 

The distributions of monthly average proportions of PM2.5 species are shown in Table 1-2. OC had 

the largest mean proportion (37.9%), followed by sulfur (8.78%) and EC (6.31%). The mean 

proportions for all the metals were less than 1% of mass concentration.   
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Table 1-2. Distributions of monthly species-to-PM2.5 proportions (%) across all 75 cities (the 3-

7th columns indicate 10th, 25th, …., 90th percentiles of the monthly species-to-PM2.5 proportions). 

Species Mean ± SD 10th 25th 50th 75th 90th 
OC 37.9 ± 16.9 24.6 29.1 35.5 44.1 53.6 
EC 6.31 ± 3.45 2.86 3.96 5.51 7.49 10.1 
Na 0.82 ± 1.31 0.07 0.20 0.45 0.96 1.90 
Al 0.28 ± 0.44 0.03 0.07 0.15 0.31 0.64 
Si 1.07 ± 1.22 0.30 0.45 0.70 1.20 2.12 
S 8.78 ± 3.80 4.54 6.83 8.96 11.1 12.7 
K 0.64 ± 0.52 0.31 0.40 0.53 0.72 0.98 
Ca 0.62 ± 0.67 0.17 0.26 0.44 0.73 1.24 
V 0.02 ± 0.03 0.00 0.01 0.01 0.03 0.05 
Fe 0.89 ± 0.72 0.33 0.47 0.70 1.07 1.57 
Ni 0.02 ± 0.06 0.00 0.00 0.01 0.02 0.04 
Cu 0.04 ± 0.05 0.01 0.02 0.03 0.05 0.08 
Zn 0.15 ± 0.18 0.04 0.06 0.10 0.15 0.24 

 

Table 1-3 presents the estimated percent increase mortality for a 10 µg/m3 increase in 2-day 

averaged PM2.5 across the 75 cities. We found statistically significant associations between PM2.5 

and mortality. A 1.18% (95% CI: 0.93, 1.44%) increase in all-cause mortality was associated with 

a 10 µg/m3 increase in the 2-day averaged concentration of PM2.5. The greatest effect estimate 

effect was observed for stroke mortality [1.76% (95% CI: 1.01, 2.52%)], followed by respiratory 

deaths [1.71% (95% CI: 1.06, 2.35%)]. We observed seasonal variations in PM2.5 effects. For a 

10-µg/m3 increase in 2-day averaged PM2.5, the percent increases in all mortality categories were 

greatest in the spring. 

 



 

12 
 

Table 1-3. Estimated percent difference in mortality (95% CI) in association with a 10-µg/m3 

increase in PM2.5 at lag 0-1 by cause of death and season. 

Mortality Overall Spring Summer Fall Winter 
All causes 1.18  

(0.93, 1.44) 
2.85  

(2.23, 3.47) 
0.85  

(0.42, 1.28) 
1.17  

(0.72, 1.63) 
0.46  

(0.07, 0.85) 
CVD 1.03  

(0.65, 1.41) 
2.47  

(1.52, 3.43) 
1.03  

(0.38, 1.67) 
0.87  

(0.33, 1.42) 
0.39  

(-0.36, 1.14) 
MI 1.22  

(0.62, 1.82) 
2.08  

(0.72, 3.46) 
1.23  

(-0.19, 2.66) 
0.81  

(-0.32, 1.95) 
0.41  

(-1.12, 1.96) 
Stroke 1.76  

(1.01, 2.52) 
3.31  

(0.49, 6.22) 
1.16  

(-0.42, 2.76) 
1.31  

(0.05, 2.58) 
1.59  

(0.16, 3.03) 
Respiratory diseases 1.71  

(1.06, 2.35) 
4.03  

(2.85, 5.21) 
1.09  

(-0.58, 2.78) 
0.58  

(-0.39, 1.57) 
0.86  

(-0.11, 1.84) 
 

Figure 1-1. Spatial variations in estimated PM2.5 effects between cities. 
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Figure 1-1 shows the effect estimates of PM2.5 on all-cause mortality in each city by mean spring 

PM2.5 in each city. We observed differential effects across cities. 

Figure 1-2 shows the adjusted estimated percent increases in mortality for a 10-µg/m3 increase in 

2-day averaged PM2.5 at the 10th or 90th percentile of distribution of the proportions of species. For 

all-cause mortality, interaction terms between PM2.5 and species silicon, calcium, and sulfur had a 

p-value less than or equal to 0.1. We found that a 10-µg/m3 increase in 2-day averaged PM2.5 was 

associated with an increase in all-cause mortality of 3.55% (95% CI: 1.35, 5.81%)] at 90th 

percentile of distribution of the sulfur-to-PM2.5 proportion versus 2.16% (95% CI: 1.27, 3.06%) at 

the 10th percentile of the sulfur-to-PM2.5 ratio (data not shown). We also found silicon [3.25% 

(95% CI: 1.91, 4.62%) vs. 1.87% (95% CI: 1.42, 2.32%)] and calcium [3.42% (95% CI: 2.08, 

4.77%) vs. 1.75% (95% CI: 1.34, 2.16%)] were associated with higher estimated effects of PM2.5 

on all-cause mortality. In addition, sulfur was associated with higher estimated PM2.5 effect on 

respiratory deaths. The percent increase in respiratory mortality at the 90th percentile of the sulfur-

to-PM2.5 proportion was 8.96% (95% CI: 1.55, 16.90%), vs. 4.44% (95% CI: 1.46, 7.51%) at the 

10th percentile.  
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Figure 1-2. Estimated percent difference in mortality for a 10-µg/m3 increase in PM2.5 at lag 0-1 

and an increase of 10th or 90th percentile of distribution of monthly species-to-PM2.5 

proportions, controlled for city-season specific temperature (* indicates a p-value ≤ 0.1 for the 

interaction term, ** indicates a p-value ≤ 0.05 for the interaction term). 
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Figure 1-3. Relationship between estimated effects of PM2.5 on all-cause mortality and temperature 

(controlled for smoking and alcohol consumption). 

 

Figure 1-3 indicates the relationship between effect estimates and city-season temperature, which 

serves as a surrogate for ventilation and thus particle penetration indoors. We observed an inverted 

U-shape relationship with a plateau at high temperatures. The p-value for cubic term is 0.06 in 

meta-regression without BRFSS factors and is 0.07 controlled for smoking and alcohol 
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consumption. The all-cause mortality effect estimates first increase as temperature increases and 

peak around a seasonal average of 10 ˚C. After that, they decrease until they reach a plateau at 

around 28 ˚C. 

County-level percent of green space, diabetes, obesity, asthma, or physical activity did not modify 

the effect of PM2.5 on mortality. However, among the behavioral factors, we found the effects of 

PM2.5 were higher in areas where people smoked more or had two drinks or more per day. 

Specifically, an IQR increase in the prevalence of smokers (8.8%) was associated with a 34% 

increase in estimated PM2.5 effects, while an IQR increase in the prevalence of heavy drinkers 

(7.0%) was associated with an increase of 40% in the estimated effects of fine particles. 

 

Discussion 

In this nationwide time-series study, we estimated the effects of PM2.5 mass and species on daily 

mortality across 75 U.S. cities, covering over 4 million deaths. We found an increase in PM2.5 

concentration at lag day 0-1 was statistically significantly associated with increased risk of all-

cause mortality, CVD, MI, stroke, and respiratory mortality. We also found that PM2.5-related 

effects were modified by certain species. Furthermore, analysis by season indicated that effect 

estimates were highest in the spring. To investigate this seasonal pattern we included city-season 

specific temperature in the meta-regression analysis. These seasonal variations may affect the 

characteristics of PM2.5 mixture and mediate its effects on health outcomes (Bell et al. 2007).  

Controlling for this potential confounder and for PM2.5 mass, we found that a species related to 

coal combustion (i.e., sulfur) was associated with higher risks for all cause but particularly 



 

17 
 

respiratory mortality. Sulfur is also a marker of regional pollution thus it may not only reflect 

exposures to power plant emissions.  Changes in the proportion of OC mass in PM2.5 did not 

modify its effect on mortality for any cause, suggesting this species has average toxicity. We found 

higher silicon or calcium proportions were associated with increased estimated PM2.5 mortality 

risks. These crustal elements are often elevated near roads and can be a surrogate for increased 

road dust, which in addition to those elements contains various organic compounds, compounds 

from tire and brake wear, etc. (Rogge et al. 1993). Thus they may be a marker for pollution from 

traffic other than EC.  

The BRFSS factors we examined were on the county level. The distributions of prevalence of 

smoking and heavy drinkers (i.e., > two drinks/day) in different cities were approximately normal 

distributed with a mean around 30% and 60%, respectively. We found that cities with more 

smokers or heavy drinkers had larger estimated effects of PM2.5. These have not previously been 

identified as susceptibility factors for the effects of particles on health, and this requires greater 

attention.  

The magnitudes of effects in our study are comparable to those reported by other studies. For 

example, a study that included 112 U.S. cities reported a 0.98% (95% CI: 0.75, 1.22%) increase, 

a 0.85% (95% CI: 0.46, 1.24%) increase, a 1.18% (95% CI: 0.48, 1.89%) increase, a 1.78% (95% 

CI: 0.96. 2.62%) increase, and a 1.68% (95% CI: 1.04, 2.33%) increase in all-cause, CVD, MI, 

stroke, and respiratory mortality, respectively, for a 10-µg/m3 increase in 2-day averaged PM2.5 

(Zanobetti and Schwartz 2009). Our estimates are slightly higher than the above ones and are 

closer to those by a 27-city study, which found a 1.21% (95% CI: 0.29, 2.14%) increase in all-

cause mortality, a 1.78% (95% CI: 0.20, 3.36%) increase in respiratory mortality and 1.03% (95% 

CI: 0.02, 2.04%) increase in stroke mortality for a 10 µg/m3 increase in previous day’s PM2.5 
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(Franklin et al. 2007). Our study and these two studies used city-season specific models to allow 

for seasonal differences in the effects of temperature and day of the week.  

The finding that effects were highest in the spring is consistent with previous studies (Zanobetti 

and Schwartz 2009; Zeka et al. 2006). Franklin et al. (2008) found similar pattern using linear and 

quadratic temperature in the meta-regression. Additionally, we included the cubic term, which was 

marginally significant and led to the small plateau at high temperatures. These results indicated 

greater effects for moderate temperatures when windows are more likely to be open and particle 

penetration rates are higher.  

EC is considered as a marker of traffic emissions (Viana et al. 2006). Previous research has 

reported EC was significantly associated with increased risk of mortality due to all causes or 

cardiovascular diseases (Bell et al. 2009; Metzger et al. 2004; Peng et al. 2009). In this study, we 

did observe that increase in the EC-to-PM2.5 proportion increased the association between PM2.5 

and all-cause mortality and CVD mortality in crude meta-regression, but it was no longer 

significant when we controlled for city-season temperature. Similarly, there were two studies that 

also controlled for temperature in the meta-regression and did not find any effect modification by 

EC in the association between PM2.5 and non-accidental mortality or hospital admissions for 

cardiovascular diseases (Franklin et al. 2008; Zanobetti et al. 2009).  

Silicon and calcium, which may be associated with soil or road dust, were observed to modify the 

effects of PM2.5 on all-cause mortality in our study. Crustal elements have been reported to have 

adverse effects on health. For example, Ostro et al. found strong association between silicon and 

mortality (Ostro et al. 2010); Franklin et al. (2008) observed silicon and aluminum were modifiers 

of the PM2.5-mortality effects. There were also studies that showed plausible biological 



 

19 
 

mechanisms of inflammatory effects of road dust containing aluminum and/or silicon (Becker et 

al. 2005; Clarke et al. 2000). Additionally, road dust is often coated with organic compounds and 

metals from car exhaust, tire wear, etc. (Rogge et al. 1993), that may contribute to its toxicity.  

Nickel, as a marker of oil combustion, was reported to have effect modification in the relationship 

between PM2.5 and mortality or hospital admissions in previous studies (Franklin et al. 2008; 

Zanobetti et al. 2009), but we did not observe any. On average, nickel only accounted for 0.02% 

of the PM2.5 concentration in this study. The concentrations of nickel are frequently lower than the 

method detection limit (Burnett et al. 2000), which may make us fail to detect its effects. 

Nevertheless, toxicological research has found evidence on its adverse effects (Gao et al. 2004; 

Lippmann et al. 2006). For example, Lippmann et al. (2006) found atherosclerotic prone mice that 

were exposed to concentrated air particles had a pronounced acute change in heart rate and heart 

rate variability when nickel was especially high. Lippmann and the New York studies which found 

nickel effects had high exposures due to the residual fuel burn in New York for heating. The levels 

for the entire country are lower. 

We observed the effect of PM2.5 mass on all-cause and respiratory mortality was modified by 

sulfur. This component is a marker of coal combustion emissions, which suggests species derived 

from coal combustion might have great toxicity on mortality, particularly due to respiratory 

diseases. Sulfate is the primary form of sulfur in particles. Sulfate has been implicated as a major 

toxic species in PM2.5 (Amdur 1996) and reported to be associated with increased risk of various 

mortality outcomes in earlier epidemiological studies (Fairley 1999; Hoek et al. 2000; Laden et al. 

2000; Mar et al. 2000). The importance of sulfates in the air may be due to the ability of acid 

sulfates to solubilize transition metals and thus making them bio-available (Ghio et al. 1999). 

There were studies that found sulfate was associated with endothelial dysfunction (O' Neill et al. 
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2005), increased oxidative stress and coagulation (Chuang et al. 2007). These toxicology findings 

provide plausibility to sulfate health effects. 

One disappointing aspect of this result is that despite the use of 75 cities and almost 4.5 million 

deaths, we were unable to distinguish much difference in toxicity for many of the species we 

examined. This may reflect only modest differences in toxicity, but may also reflect more 

fundamental difficulties in identifying differences between many correlated exposures with limited 

measurements over time. Evidence of the low power to detect differences can be seen in the 

difference between our results for all deaths and results for cardiovascular deaths. The pattern of 

higher estimated effects when PM mass has a larger fraction of silicon, sulfur, and calcium is 

present for cardiovascular deaths as well, but with a third as many deaths, it does not reach 

significance. One option to improve study power might be specifically selecting locations with 

high proportions of the species of interest. 

There are several limitations in this study. First, our ability to capture spatial variability is 

constrained due to the location of U.S. EPA monitors. A previous study showed moderate to low 

monitor-to-monitor correlations between daily concentrations of several species (arsenic, EC, and 

nickel) in the New York City area, which suggest high spatial variability in some speciation 

concentrations (Ito et al. 2004). Differential measurement error between species that are better or 

worse represented by a single monitor may bias differential results. However, in a time-series study 

much of the geographic variability will result in Berkson error (Zeger et al. 2000), which will not 

produce bias. Meanwhile, failing to capture spatial variability might weaken study power and 

attenuate estimates. Second, we failed to capture day-to-day variation in the analysis. Although we 

used monthly average species-to-PM2.5 proportions to gain more power, we still lost variation 

across days. Nevertheless, we believe that the day-to-day variation is random error in 
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measurement, which induces little or no bias. Third, as mentioned above, there are data limitations, 

such as the one-in-six and one-in-three sampling frequency for the species. Whether one takes the 

approach of Krall et al. (2013) and only analyzes those days, or our approach and gains power by 

analyzing every day but with more error prone monthly means of the species, there is a price that 

is paid for this lack of data. Together with moderate correlation among the species and with total 

particle mass, this makes the task difficult. We do not believe this is likely to produce false 

positives, and hence we believe our findings are well supported.  
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Abstract 

Background: PM2.5 has been associated with adverse cardiovascular outcomes, but it is unclear 

whether specific PM2.5 components, particularly metals, may be responsible for cardiovascular 

effects. 

Objectives: to determine which PM2.5 components are associated with blood pressure in a 

longitudinal cohort. 

Methods: We fit linear mixed-effects models with the adaptive LASSO penalty to longitudinal 

data from 718 elderly men in the Veterans Affairs Normative Aging Study, 1999-2010. We 

controlled for PM2.5 mass, age, body mass index, use of antihypertensive medication (ACE 

inhibitors, non-ophthalmic beta blockers, calcium channel blockers, diuretics, and angiotensin 
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receptor antagonists), smoking status, alcohol intake, years of education, temperature, and season 

as fixed effects in the models, and additionally applied the adaptive LASSO method to select PM2.5 

components associated with blood pressure. Final models were identified by the Bayesian 

Information Criterion (BIC). 

Results: For systolic blood pressure (SBP), Ni and Na were selected by the adaptive LASSO, 

whereas only Ni was selected for diastolic blood pressure (DBP). An IQR increase (2.5 ng/m3) in 

7-day moving average Ni was associated with 2.48 (95% CI: 1.45, 3.50) mm Hg increase in SBP 

and 2.22 (95% CI: 1.69, 2.75) mm Hg increase in DBP, respectively. Associations were 

comparable when the analysis was restricted to study visits with PM2.5 below the 75th percentile of 

the distribution (12 µg/m3). 

Conclusions: Our study suggested exposure to ambient Ni was associated with increased blood 

pressure independent of PM2.5 mass in our study population of elderly men. Further research is 

needed to confirm our findings, assess generalizability to other populations, and identify potential 

mechanisms for Ni effects. 

 

Introduction 

Studies have shown that exposure to fine particulate matter (PM2.5, particles ≤ 2.5 µm in 

aerodynamic diameter) is associated with cardiovascular morbidity and mortality (Franklin et al. 

2008; Laden et al. 2006; Miller et al. 2007; Zanobetti et al. 2009). PM2.5 consists of various 

components, including organic and elemental carbon, metals, and ions. Some national studies have 

evaluated whether PM2.5 components may have differential effects on cardiovascular health (Dai 
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et al. 2014; Peng et al. 2009), but it still is not clear whether specific components may be 

responsible for PM2.5-related cardiovascular effects. 

Increased blood pressure is a major risk factor for cardiovascular events. Several studies have 

investigated the relationship between PM and blood pressure. However, the results have varied, 

possibly because of differences in the particle composition (Baccarelli et al. 2011; Choi et al. 2007; 

Chuang et al. 2010; Dvonch et al. 2009; Harrabi et al. 2006; Hoffmann et al. 2012; Ibald-Mulli et 

al. 2004; McCracken et al. 2007; Schwartz et al. 2012; Wilker et al. 2009; Wilker et al. 2010).  

Inhaled PM-associated metals may be able to translocate from lung into systemic circulation and 

induce adverse effects on cardiovascular system (Wallenborn et al. 2007). There is growing 

evidence supporting adverse effects of ambient metals on cardiovascular health. For example, Fe, 

K, Ti, and Zn in fine particles were positively associated with cardiovascular mortality in a 

California study (Ostro et al. 2007). A multiple-community study reported that Ni and Na+ 

modified associations of PM2.5 on hospital admissions due to cardiovascular diseases (Zanobetti 

et al. 2009). There were also numerous animal studies that reported cardiovascular toxicity of PM 

metal components Zn, Ni, and V (Campen et al. 2001; Chuang et al. 2013; Kodavanti et al. 2008; 

Lippmann et al. 2006). In terms of sources, PM-associated metals usually come from road dust 

(e.g., Ca, Al, Fe, and Ti), oil combustion (e.g., Ni and V), traffic emission (e.g., Zn and Cu), wood 

burning (e.g., K), and sea salt (e.g., Na).  

In this study, we examined the association between blood pressure and 11 PM2.5 components, 

including 8 metals (Fe, K, Al, Ni, V, Cu, Zn, and Na) and 3 non-metals (S, Si, and Se), with 

longitudinal data from the Veterans Affairs Normative Aging Study.   
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Methods 

Study population 

The Normative Aging Study (NAS) was established in 1963 by the Department of Veterans Affairs 

(Bell et al. 1972). Briefly, it is an ongoing longitudinal study of aging, which enrolled 2,280 

community-dwelling, healthy men living in the Greater Boston area. Participants were free of 

known chronic medical conditions at enrollment and have undergone examinations every 3 to 5 

years, including physical examinations and questionnaires. All participants provided written 

informed consent. The study was reviewed and approved by the Institutional Review Boards of all 

participating institutions. 

After excluding participants with incomplete information for any of the covariates of interest, those 

who died, or those who moved out of New England, a total of 718 participants with 1,567 

observations had examinations between March 1999 and October 2010. Of the 718 participants, 

235 (33%) had one visit, 195 (27%) had two visits, and 288 (40%) had three or more visits. 

 

Blood pressure measurements 

During a clinical visit, a physician uses a standard mercury sphygmomanometer with a 14-cm cuff 

to measure blood pressure for the subject while he is sitting, including systolic blood pressure 

(SBP) and fifth-phase diastolic blood pressure (DBP) in each arm to the nearest 2 mm Hg. We 

used the means of the left and right arm measurements as a subject’s SBP and DBP. 
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Environmental data 

Daily ambient PM2.5 and its components were measured at the stationary ambient monitoring site 

at the Harvard University Countway Library (Kang et al. 2010), using the Tapered Element 

Oscillating Microbalance (TEOM 1400a, Rupprecht & Patashnick Co.) and the Energy Dispersive 

X-ray Fluorescence Spectrometer (Epsilon 5, PANalytical), respectively. The monitoring site is 1 

km from the clinical examination site. We obtained daily temperature data from Boston Logan 

airport weather station. 

 

Statistical analysis 

We used 7-day moving average concentrations for PM2.5 and the following 11 components, K, S, 

Se, Al, Si, Fe, Ni, V, Cu, Zn, and Na, since previous studies have suggested that PM averaging 

over that time period is strongly associated with blood pressure (Mordukhovich et al. 2009; Wilker 

et al. 2010; Zanobetti et al. 2004). We focused on these components because their concentration 

levels are mostly above the method detection limits and they are representative of different PM 

sources (Hopke et al. 2006). In the analysis, we controlled for continuous variables age, body mass 

index [BMI, computed as weight (in kilograms) divided by height (in square meters)], years of 

education, linear and quadratic terms of mean temperature of visit day, and categorical variables 

use of each individual types of antihypertensive medication (ACE inhibitors, non-ophthalmic beta 

blockers, calcium channel blockers, diuretics, and angiotensin receptor antagonists), smoking 

status (3 categories: never, former, current smoker), alcohol intake (whether the participant takes 

two or more drinks per day, yes or no), and season (4 categories; defined as spring: March-May, 

summer: June-August, fall: September-November, winter: December-February) regardless of 
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statistical significance as these variables have been shown to predict cardiovascular health 

(Mordukhovich et al. 2009; Schwartz et al. 2012). In addition, we adjusted for potential 

confounding of associations with PM2.5 components by PM2.5 mass (Mostofsky et al. 2012). All 

variables were measured at each visit. We forced these covariates to be included in the models and 

estimated their fixed effects with no penalization.  

Selecting important predictors from a large list of correlated predictors is difficult, and most 

methods are empirical. Approaches such as stepwise methods ignore stochastic errors inherited in 

the stages of variable selection (Fan and Li 2001) and can yield falsely narrow confidence intervals 

(Harrell 2001). To improve on this, we applied the adaptive LASSO method to select important 

component(s) that may be associated with blood pressure from those 11 PM2.5 components. Briefly, 

the LASSO (Least Absolute Shrinkage and Selection Operator) is a regression shrinkage and 

selection approach that applies an ℓ1 penalty to the component regression coefficients. This penalty 

essentially minimizes the sum of squared errors subject to the sum of the absolute values of the 

coefficients being less than a given value (Tibshirani 1996). The adaptive LASSO is a later version 

of the LASSO, which uses weights for penalizing different coefficients in the ℓ1 penalty and enjoys 

the oracle properties, which means, given that the true model depends only on a subset of the 

predictors, this selection procedure is able to identify the right subset model and satisfies 

asymptotic normality (Fan and Li 2001; Zou 2006). Since subjects had repeated measures, we fit 

linear mixed-effects models with random subject-specific intercepts to capture the correlation 

among different measurements within the same subject, as follows: 

Yi=Xiα+Ziβ+µi+εi ,                              [2.1] 
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where, Yi is the blood pressure level (SBP or DBP) of subject i, Xi = (Xi1,  …, XiP)T is a vector of 

PM2.5 mass and other covariates, Zi = (Z1i,  …, ZiM)T  is a vector of PM2.5 components, µi is the 

random intercept. Hence, α indicates the fixed effects of PM2.5 mass and other covariates Xi, and 

β is the penalized effects of PM2.5 components Zi that are given by the adaptive LASSO. 

First, we used the ordinary linear mixed-effects (LME) model to obtain non-zero coefficients (βlme) 

for each component, and computed the adaptive weight as its inverse (w = 1/βlme). Heuristically, 

this allows us to give less weight in the penalty to variables whose standardized regression 

coefficients are large, since they are more likely to be predictors. When using the adaptive LASSO, 

we assign a non-negative penalty parameter, λ, to determine how strongly we penalize, or restrict, 

the magnitude of the PM2.5 components regression coefficients. When λ is equal to 0, there is no 

shrinkage and the model is just the ordinary mixed-effects regression of the fixed covariates and 

all components; when it is large enough, there is maximum shrinkage, yielding a model that 

includes fixed covariates only and all component coefficients equal to 0; when λ takes some value 

in between, some coefficients are 0, and the model is a penalized model. Components with non-

zero coefficients are “selected” by the adaptive LASSO. In this way, the method chooses PM2.5 

components that may be associated with the outcomes. We ran the models across that range of λ’s, 

i.e., from no shrinkage to maximum shrinkage, and chose the λ having the smallest Bayesian 

Information Criterion (BIC) (Schwarz 1978). Last, we used the mixed-effects model with fixed 

covariates and selected components only to obtain the estimated effects and corresponding 95% 

confidence intervals. 

In a sensitivity analysis, we omitted study visits with PM2.5 below the 75th percentile of the 

distribution (12 µg/m3). 
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Data cleaning was performed with SAS 9.3 (SAS Institute Inc.), and data analysis was performed 

with R 3.0.1 (http://www.r-project.org/). 

 

Results 

Table 2-1 summarizes the characteristics of study population. Subjects in this study were elderly 

men, with a mean age of 73 years (SD = 7 years) at the first visit. Average SBP and DBP at the 

first visit were 132 mm Hg (SD = 17 mm Hg) and 76 mm Hg (SD = 10 mm Hg), respectively.  

 

Table 2-1. Characteristics of subjects in the study. 

Variable First visit All visits 
 (n=718) (n=1,567) 
Mean ± SD   
SBP (mm Hg) 131.6 ± 16.7 128.1 ± 17.6 
DBP (mm Hg) 75.9 ± 9.9 71.9 ± 10.3 
Age (years) 72.8 ± 6.8 74.7 ± 6.8 
BMI (kg/m2) 28.2 ± 4.0 28.0 ± 4.1 
Education (years) 14.6 ± 2.8 14.6 ± 2.8 
Number (%)   
Use of ACE inhibitors 197 (27%) 540 (34%) 
Use of non-ophthalmic beta blockers 213 (30%) 554 (35%) 
Use of calcium channel blockers 104 (14%) 265 (17%) 
Use of diuretics 150 (21%) 381 (24%) 
Use of angiotensin receptor antagonists 36 (5%) 124 (8%) 
Current smokers 28 (4%) 47 (3%) 
Former smokers 488 (68%) 1049 (67%) 
Two or more drinks per day 143 (20%) 299 (19%) 

 

 



 

36 
 

PM2.5 and component concentrations are shown in Table 2-2. 7-day moving average PM2.5 across 

all study visits had a mean of 10 µg/m3 (SD = 3.7 µg/m3), with an IQR of 4.3 µg/m3. S accounted 

for the largest proportion of the total PM2.5 concentration (10.4%), followed by Na (1.9%). The 

average concentration of Ni was 3.1 ng/m3 (SD = 2.5 ng/m3), and it only accounted for 0.03% of 

the mass concentration. 

 

Table 2-2. Mean PM2.5 mass and component concentrations across all study visits. 

Pollutant Mean ± SD IQR Proportion of PM2.5 (%) 
PM2.5 (µg/m3) 10.0 ± 3.7 4.3  
Components (ng/m3)    
Fe 68.1 ± 24.2 21.5 0.7 
K 39.2 ± 24.6 16.9 0.4 
S 1039.1 ± 513.2 554.1 10.4 
Al 51.8 ± 27.8 21.1 0.5 
Si 76.7 ± 51.1 38.4 0.8 
Ni 3.1 ± 2.5 2.5 0.03 
V 3.5 ± 2.3 2.6 0.04 
Cu 3.5 ± 1.2 1.5 0.04 
Zn 11.4 ± 6.0 5.8 0.1 
Se 0.2 ± 0.3 0.3 0.002 
Na 190.7 ± 72.4 92.8 1.9 

 

Figure 2-1 shows the relationship between BIC, a criterion for model selection and λ, the adaptive 

LASSO penalty parameter. For SBP models, the model with the smallest BIC had λ = 4 and Ni 

and Na as the only two among the eleven PM2.5 components (i.e., K, S, Se, Al, Si, Fe, Ni, V, Cu, 

Zn, and Na) with non-zero coefficients, whereas all component coefficients were zero when λ = 9. 

For DBP models, the model with the smallest BIC had λ = 13 and Ni as the only component with 

a non-zero coefficient, whereas all component coefficients were zero when λ = 30. 
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Figure 2-1. The relationship between BIC, a criterion for model selection and λ, the adaptive 

LASSO penalty parameter. 

 

In models fitted using only the selected components, we found an IQR increase (2.5 ng/m3) in 7-

day moving average Ni was associated with a 2.48 (95% CI: 1.45, 3.50) mm Hg increase in SBP 

and 2.22 (95% CI: 1.69, 2.75) mm Hg increase in DBP, respectively. To compare with other studies, 

we also estimated the effects of PM2.5 mass: every 10 µg/m3 increase in 7-day moving average 

PM2.5 was associated with 1.36 (95% CI: -1.67, 4.39) mm Hg increase in SBP and 0.61 (95% CI: 

-0.85, 2.07) mm Hg increase in DBP, respectively. 
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Figure 2-2. LASSO coefficient paths: plot of coefficient profiles for PM2.5 components as a 

function of λ. 
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LASSO coefficient paths for SBP and DBP are shown in Figure 2-2. Each component coefficient 

is expressed as the change in mean SBP or DBP per 1-µg/m3 increase in the 7-day moving average 

concentration of the PM2.5 component. Each curve indicates the rate at which the component 

coefficient shrinks towards zero as λ increases. When λ = 0, all components have non-zero 

coefficients. 

 

Table 2-3. Comparison of estimated coefficients of Ni in the main analysis and in the sensitivity 

analysis where study visits with 7-day moving average PM2.5 ≥ 12 μg/m3 were excluded. 

 SBP  DBP  
Analysis (No. of visits) Coefficient p-value Coefficient p-value 
Main analysis (N = 1,567) 0.989 < 0.001 0.888 < 0.001 
Sensitivity analysis (N = 1,201) 1.149 < 0.001 1.104 < 0.001 

 

 

Table 2-3 shows the comparison of results from the main analysis and the sensitivity analysis that 

was restricted to data from study visits with PM2.5 concentrations below the 75th percentile of the 

distribution (12 µg/m3). We found that the estimated coefficients of Ni for both SBP and DBP in 

the sensitivity analysis were comparable to those in the main analysis, and their statistical 

significance remained. That is, Ni was associated with SBP and DBP even when overall PM2.5 

concentrations were restricted to < 12 µg/m3. 
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Discussion 

In this study, we used the adaptive LASSO shrinkage method to choose PM2.5 components that 

might be related to blood pressure in a cohort of elderly men. We found that 7-day moving average 

Ni and Na were associated with SBP, and 7-day moving average Ni concentration was also 

associated with DBP. This association persisted when restricted to data from study visits with 

PM2.5 concentrations below 12 μg/m3. 

Ni in ambient air is considered a marker of oil combustion; other sources of Ni include coal 

combustion, nickel metal refining, sewage sludge incineration, and manufacturing facilities. (EPA 

2000). There have been a number of toxicological studies that examined the effects of ambient Ni 

on cardiovascular health. In a mouse model of atherosclerosis, mice had acute changes in heart 

rate and heart rate variability when exposed to concentrated fine PM (average concentration of Ni 

was 43 ng/m3 and there were Ni peaks at ~ 175 ng/m3) (Lippmann et al. 2006). Another animal 

study showed that Ni inhalation caused a decrease of 75 bpm in maximal heart rate at the 

concentration of 1.3 mg/m3 and a decrease of 100 bpm at 2.1 mg/m3 in rats (Campen et al. 2001). 

Moreover, Ni was reported to induce increases in pulmonary protein leakage and perivascular and 

peribronchiolar inflammation in both normotensive and spontaneously hypertensive rats that were 

intratracheal instilled with 1.5 µmol/kg of NiSO4•6H2O in saline (Kodavanti et al. 2001). A similar 

study found alterations in heart rate variability (HRV) related to PM exposure were Ni-dependent 

in spontaneously hypertensive rats after adjusted for HRV responses in control rats (Chuang et al. 

2013).  

Several epidemiological studies have provided evidence of cardiovascular effects of Ni. A national 

study conducted in 106 U.S. counties reported that associations between PM2.5 concentrations and 
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cardiovascular and respiratory hospitalizations were stronger when Ni was high (Bell et al. 2009). 

Zanobetti et al. (2009) examined associations of PM2.5 with emergency hospital admissions in 26 

U.S. communities and found that Ni significantly modified the association between PM2.5 mass 

and hospital admissions for cardiac diseases and myocardial infarctions. A recent study found a 

significant association between ischemic heart diseases mortality and Ni based on data from the 

American Cancer Society (Lippmann et al. 2013). On the other hand, Zhou and co-authors (2011) 

failed to find cumulative effects from lag 0 to lag 2 of Ni in Detroit or Seattle. A more recent 

nationwide study that included 75 U.S. cities did not observe any effect modification of Ni in the 

PM2.5-mortality association (Dai et al. 2014).   

There are several possible reasons for the differences in these epidemiological studies. First, Ni 

concentrations are usually lower than the method detection limits, which makes it difficult to 

determine whether associations are present (Burnett et al. 2000). New York counties had 

particularly high levels of Ni (a mean of 19.0 ng/m3 Ni in New York fine PM vs. a mean of 1.9 

ng/m3 Ni in national fine PM) due to combustion of residual oil-fired power plants and ocean-

going ships (Lippmann et al. 2006). In a reanalysis of the National Morbidity, Mortality, and Air 

Pollution Study (NMMAPS) data, Dominici et al. (2007) found evidence of effect modification by 

Ni, which was consistent with Lippmann et al. (2006); however, the effect modification of Ni on 

PM-mortality association was much weaker and no longer statistically significant when New York 

counties were excluded from the analysis. In the two studies that did not find significant 

associations of Ni, Ni had a relatively low level. For example, the national mean concentration of 

Ni was 2.5 ng/m3 in Dai et al. (2014). Given the substantial differences in Ni concentrations, it is 

conceivable that studies conducted in other places or nationally may not be able to observe the 

health effects of Ni as the New York studies did. In our study, Ni had an average concentration of 
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3.1 ng/m3, which was higher than the national mean but still much lower than New York levels 

(Dominici et al. 2007; Lippmann et al. 2006). Furthermore, it is possible that Ni interacts with 

other PM components to pose an increased risk to health. Campen et al. (2001) reported evidence 

of a synergistic interaction between Ni and V, both of which are markers of PM from oil 

combustion. Hence, the heterogeneous composition of PM in different locations might lead to 

different estimated effects of Ni.   

Na also was selected, in addition to Ni, when the adaptive LASSO method was applied to identify 

PM2.5 components associated with SBP. There is limited literature on the effects of ambient Na on 

cardiovascular health. Zanobetti et al. (2009) documented that Na+ modified the relationship 

between PM2.5 and emergency hospital admissions for cardiac diseases.  

In the study, 7-day moving average PM2.5 concentration ranged from 3.2 to 34.3 µg/m3, while daily 

PM2.5 was in the range of 1.2 ~ 44.8 µg/m3 with a 99th percentile of 34 µg/m3. Hence, we identified 

associations in a study population that was usually exposed to PM2.5 concentrations below the 

current EPA daily ambient standard 35 µg/m3 (EPA 2012). Associations with Ni were similar 

when we excluded observations with 7-day moving average PM concentration ≥ 12 μg/m3. Our 

findings may suggest stricter air quality standards.  

To date, many studies have investigated the biological mechanisms of the adverse effects of 

inhalation exposures to PM on cardiovascular diseases. Brook et al. (2010) summarized there are 

three potential pathways: 1) inducing pulmonary oxidative stress and inflammation via the release 

of proinflammatory mediators or vasculoactive molecules; 2) interacting with lung receptors or 

nerves to perturb systemic autonomic nervous system balance or heart rhythm; 3) PM or PM 

components being transmitting into the systemic circulation. Metals are typical PM components. 
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It has been documented that metals can enhance lung inflammation and injury (Ghio and Devlin 

2001; Schaumann et al. 2004), which may be attributed to the metal-catalyzed oxygen stress via 

non-nitric oxide pathways (Dye et al. 1997). Nevertheless, mechanisms of cardiovascular effects 

of Ni have not been fully established. Previous studies have shown that metals in particles (e.g., 

Ni, V) could induce the activation of transcription factor NF-κB (a family of proteins that regulates 

DNA transcription in cellular responses such as immune, inflammatory response, and apoptosis), 

cell apoptosis and cell cycle regulation (Chen and Shi 2002; Goebeler et al. 1995; Quay et al. 1998).  

Although the clinical relevance is unclear, our finding that an IQR increase in Ni was associated 

with a 2.48/2.22 mm Hg increase in blood pressure may imply elevated risks of cardiovascular 

outcomes induced by Ni. 

The major strengths in the study were highlighted as follows. 1) We used a novel approach, the 

adaptive LASSO, to investigate the relationship between PM2.5 components and health outcomes. 

This method has advantages over conventional approaches. Typically, researchers examined 

effects of components by including all components in models or by using conventional selection 

procedures, such as stepwise selection. Linear regression with all components included may fail 

to detect any association as the collinearity among components reduce power, while conventional 

selection methods make no guarantee to select the right variables asymptotically. 2) To our 

knowledge, this is the first longitudinal cohort study that examined the effects of PM-related metals 

on blood pressure. The study population was geographically stable, well described and followed 

up since the enrollment in 1963. 3) We had daily concentrations of PM metals for more than 10 

years. In previous studies, especially large national/multi-city studies, researchers usually used 

data from EPA Air Quality System that was sampling PM components every 3rd or 6th day (Dai et 
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al. 2014; Krall et al. 2013; Zanobetti et al. 2009), and hence had to face the challenge in lack of 

data. 

On the other hand, there are several limitations in the study. Due to the use of stationary measures 

of PM2.5 components, we were unable to capture the personal exposures of our subjects. Another 

limitation of our study is the potential measurement errors in blood pressure since blood pressure 

was measured only once at each study visit. Last, since the study population was limited to elderly 

men, most of whom were Caucasian, our findings cannot be directly generalized to women, 

younger men, or more diverse populations of elderly men. Subjects voluntarily continue to 

participate in the ongoing NAS study, so there may be volunteer bias if healthier people are more 

likely to participate. Also, there would be survivor bias if people who stay in the study are healthier 

than other people. 
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Abstract 

Background: Although there is growing evidence that exposure to ambient particulate matter is 

associated with global DNA methylation and gene-specific methylation, little is known regarding 

epigenome-wide change in DNA methylation in relation to particles, and less to their components. 



 

53 
 

Objectives: to examine epigenome-wide DNA methylation associated with PM2.5 components in 

a longitudinal cohort. 

Methods: Using the Illumina Infinium HumanMethylation450 BeadChip, we examined the 

relationship between one-year moving average PM2.5 species (Al, Ca, Cu, Fe, K, Na, Ni, S, Si, V, 

and Zn) and DNA methylation at 484 613 CpG probes in a longitudinal cohort that included 646 

subjects. Bonferroni correction was applied to adjust for multiple comparisons. Bioinformatic 

analysis of KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment was also 

performed.  

Results: We observed 20 Bonferroni significant (p-value < 9.4 × 10-9) CpGs for Fe, 8 for Ni, and 

1 for V. Particularly, methylation at SLFN11 (Schlafen Family Member 11) cg10911913 was 

positively associated with all the three species. The SLFN11 gene codes for an interferon-induced 

protein that inhibits retroviruses and sensitizes cancer cells to DNA-damaging agents. 

Bioinformatic analysis suggests that gene targets may be relevant to pathways including cancers, 

signal transduction, cell growth and death. This is the first study on the epigenome-wide 

association of ambient particles species with DNA methylation.  

Conclusions: We found that long-term exposure to particular components of ambient particle 

pollution, especially particles emitted during oil combustion, were associated with methylation 

changes in genes relevant to immune responses. Our findings provide insight into potential 

biological mechanisms on an epigenetic level. 
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Introduction 

The associations between fine particulate matter (PM2.5, particles with an aerodynamic size of ≤ 

2.5 µm) and health outcomes are well established. It is estimated that PM2.5 leads to 3.15 million 

premature deaths per year on a global scale (Lelieveld et al. 2015). Nationwide and multiple-

community studies reported that exposure to PM2.5 was linked with increased risk in hospital 

admissions and mortality in the U.S., and certain PM2.5 species may be more toxic than others (Dai 

et al. 2014; Krall et al. 2013; Peng et al. 2009; Zanobetti et al. 2009).  

DNA methylation is an epigenetic process in which a methyl group is added to deoxycytosine 

bases to form deoxymethylcytosine. Literature has shown that DNA methylation may be an 

important pathway linking particulate matter (PM) to health outcomes (Baccarelli and Bollati 2009; 

Belinsky et al. 2002; Chen et al. 2004; Chen et al. 2015; Madrigano et al. 2011). For example, 

changes in patterns of DNA methylation may be associated with processes leading to 

cardiovascular diseases (Baccarelli et al. 2010; Castro et al. 2003). There is growing evidence that 

exposure to PM is associated with global DNA methylation and gene-specific methylation 

(Bellavia et al. 2013; Chen et al. 2015; Madrigano et al. 2011; Madrigano et al. 2012); particularly, 

exposure to metal-rich PM in occupational settings (Fan et al. 2014; Kile et al. 2013). Yet, little is 

known regarding how DNA methylation changes on a genome-wide level.  

Measurements of DNA methylation at cytosine-guanine dinucleotide (CpG) loci have recently 

become available; for instance, the Illumina Infinium HumanMethylation450 Beadchip (450K; 

Illumina Inc.) measures methylation at more than 450,000 CpG sites. This makes an epigenome-

wide association study between particles and DNA methylation possible. Several studies have 

investigated the epigenome-wide association between smoking, an important PM source, and DNA 
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methylation. Using the 450K platform and Bonferroni correction, Joubert et al. (2012) identified 

26 CpGs with methylation changes in newborns related to maternal smoking during pregnancy in 

a large Norwegian birth cohort. Specifically, the authors documented CpGs in CYP1A1 

(cytochrome p450 1A1) and AHRR (aryl-hydrocarbon receptor repressor), genes known to play a 

key role in the AhR (aryl hydrocarbon receptor) signaling pathway that mediates the detoxification 

of components of tobacco smoke. Zeilinger et al. (2013) conducted an epigenome-wide study 

comparing methylation levels among current, former, and never smokers in a population-based 

panel, and found widespread differences in the degree of site-specific methylation as a function of 

tobacco smoking. Moreover, they observed that the most significant associations with smoking 

were DNA methylation sites in AHRR. 

To date, there are very few epigenome-wide association studies focusing on ambient particles. A 

recent study has identified several CpG sites associated with cumulative exposure to ambient 

particles in an epigenome-wide study among populations from Germany and the U.S. (Panni et al. 

2016). Yet, no studies were reported regarding the toxicity of species. Such research would be of 

great importance because epigenome-wide association research based on DNA methylation 

microarrays could provide insight into epigenetic mechanisms of air particles and improve our 

understanding of human disease. In the current study, we, for the first time, examined the 

epigenome-wide association between PM2.5 species and DNA methylation using data from a large 

longitudinal cohort. 

 

Methods 

Study population 
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Study subjects were participants of the Normative Aging Study (NAS) that was established in 1963 

by the Department of Veterans Affairs. It is an ongoing longitudinal study of aging that enrolled 

2280 community-dwelling, healthy men living in the Greater Boston area (Bell et al. 1972). 

Participants were free of known chronic medical conditions at enrollment and have undergone 

examinations every 3 to 5 years on a continuous rolling basis. All participants provided written 

informed consent. The study was reviewed and approved by the Institutional Review Boards of all 

participating institutions. 

We restricted study subjects to those who provided DNA samples and who were Caucasian, who 

comprise the vast majority of our study population (approximately 97%). We then excluded 

observations that did not have complete information on exposure or covariates of interest. In the 

final analyses, samples from 646 subjects with 1031 total visits were included. Of the 646 subjects, 

314 had one visit, 279 had two visits, and 53 had three visits. The flowchart of our study 

participants is shown in Figure 3-1. 
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Figure 3-1. Flowchart of study participants. 

 

DNA methylation 

DNA samples were collected between 1999 and 2013. We used the QIAamp DNA Blood Kit 

(QIAGEN, CA, USA) to extract DNA from buffy coat, and performed bisulfite conversion with 

the EZ-96 DNA Methylation Kit (Zymo Research, CA, USA). To minimize batch effects, we 

randomized chips across plates and randomized samples based on a two-stage age stratified 

algorithm so that age distributed similarly across chips and plates. 

We measured DNA methylation of CpG probes using Illumina’s Infinium HumanMethylation450 

BeadChip (Bibikova et al. 2011). Quality control analysis was performed, where samples with > 
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1% of probes have a detection p-value of > 0.05 were removed, and probes with > 5% samples 

have beadcount < 3 or with > 1% samples have a detection p-value of > 0.05 were removed. The 

remaining samples were preprocessed using the Illumina-type background correction (Triche et al. 

2013) and normalized with the dye-bias (Davis et al. 2015) and BMIQ3 adjustments (Teschendorff 

et al. 2012), which were used to generate methylation values. Extreme outliers, defined by Tukey’s 

method (i.e., < 25th percentile – 3 × IQR or > 75th percentile + 3 × IQR), were trimmed. As a result, 

484 613 CpG probes were in the working set. 

We used the β value to indicate methylation level at each CpG site. β value represents the ratio of 

the fluorescence of the methylated signal to the combined methylated and unmethylated signals, 

that is, β = intensity of the methylated signal (M) / (intensity of the unmethylated signal (U) + 

intensity of the methylated signal (M) + 100) (Bibikova et al. 2011). 

 

Air pollution 

We measured daily concentrations of PM2.5 mass and species at the stationary monitoring supersite 

at the Harvard University Countway Library, Boston, MA, USA. PM2.5 was assessed by the 

Tapered Element Oscillating Microbalance (TEOM 1400a, Rupprecht & Patashnick Co.) and 

species by the Energy Dispersive X-ray Fluorescence Spectrometer (Epsilon 5, PANalytical). 

To estimate long-term effects of air pollution on DNA methylation, we calculated one-year moving 

average concentrations for PM2.5 and the following eleven species: Al, Ca, Cu, Fe, K, Na, Ni, S, 

Si, V, and Zn. These species are representative of different sources of particles: Al, Ca, Fe, and Si 

are major components of road dust; Cu and Zn originate from traffic emissions; Ni and V are 

tracers of oil combustion; S is a regional pollutant that is associated with coal combustion and to 
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a lesser extent with metallurgic activities; Na is a major component of sea salt particles; K 

originates from wood burning and soil.  

 

Statistical analysis 

For each specific CpG site, we applied a linear mixed-effects model as described below, 

E(Yij) = β0 + β1*PM2.5ij + β2*Compij + β3*Ageij + … + µi,                          [3.1] 

where, Yij is the methylation level of subject i at visit j, PM2.5ij is one-year moving average PM2.5 

concentration previous to visit j, Compij is the one-year moving average component, Ageij is subject 

i’s age at visit j (same for other covariates, we used value at each visit in analyses), and µi is the 

random intercept that accounts for correlation within subject.  

In the analysis, we controlled for the following covariates a priori based on literature (Madrigano 

et al. 2011; Mostofsky et al. 2012; Zeilinger et al. 2013; Zhu et al. 2012): total PM2.5 mass, cell 

proportions (CD4+ T lymphocytes, CD8+ T lymphocytes, natural killer cells, B cells, monocytes) 

estimated by the Houseman et al. method (Aryee et al. 2014; Houseman et al. 2012; Reinius et al. 

2012), age, body mass index (BMI, computed as weight [in kilograms] divided by height [in square 

meters]), cigarette pack years, smoking status (never, ever), alcohol consumption (≥ 2 drinks/day, 

< 2 drinks/day), years of education, year and season (spring: March-May, summer: June-August, 

fall: September-November, winter: December-February). In adjusting for cell proportions, we did 

not include granulocytes, i.e., the cell type with the largest proportion, to avoid the identifiability 

problem. Potential batch effects were also considered, including plate, position of chip on plate, 

row and column position on chip.  
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Since overall type I error inflates as the number of statistical tests increases, known as multiple 

comparisons, we used Bonferroni correction, which has been widely used in similar studies (Huang 

da et al. 2009a, b; Li et al. 2012), accounting for number of CpG sites and exposures tested. As a 

result, the adjusted level of significance was 9.4 × 10-9, i.e., 0.05 / (484 613 × 11) in the current 

study. After identifying significant CpGs, we further checked whether they were non-unimodal in 

the dip test (Hartigan and Hartigan 1985), were cross-reactive (Chen et al. 2013), or contained 

SNPs in the last 10 bases from those of European populations (Abecasis et al. 2012).  

All statistical analyses were performed using R 3.1.2 (R Core Team 2014). 

 

Bioinformatic analysis 

We performed KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis (Kanehisa 

et al. 2002) using the genes targets of CpGs, identified by the Illumina annotation assignment, with 

Benjamini-Hochberg false discovery rate (FDR) (Benjamini and Hochberg 1995) < 1% and those 

with FDR < 5%, respectively. Bioinformatic analysis was carried out using DAVID (Database for 

Annotation, Visualization and Integrated Discovery) Bioinformatics Resources 6.7 (Huang da et 

al. 2009a, b). Briefly, DAVID consists of an integrated biological knowledgebase with wide 

annotation content coverage. It allows us to find out the most relevant pathways associated with 

the gene lists we provided.  
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Results 

Characteristics of study subjects are presented in Table 3-1. At baseline, the mean age was 74 (SD 

= 7) years. The study population was well-educated, with a mean of 15 (SD = 3) years of education. 

Furthermore, 186 of the 646 (28.8%) individuals never smoked, and 131 (20.3%) had two or more 

drinks per day. 

 

Table 3-1.  Characteristics of the study population. 

Variable First visit (n = 646) All visits (n = 1031) 
Mean ± SD   
Age (years) 73.7 ± 6.8 74.7 ± 6.8 
BMI (kg/m2) 28.0 ± 4.1 28.0 ± 4.2 
Education (years) 15.1 ± 3.0 15.2 ± 3.0 
Cigarette smoking (pack years) 21.3 ± 25.5 21.3 ± 25.2 
Number (%)   
Smoking status   
Never 186 (28.8) 298 (28.9) 
Ever 460 (71.2) 733 (71.1) 
Alcohol consumption (drinks/day)   
≥ 2 131 (20.3) 200 (19.4) 
< 2 515 (79.7) 831 (80.6) 

 

Table 3-2 shows the descriptive summary of concentrations of PM2.5 mass and species. During the 

study period 1999 – 2013, the annual average PM2.5 concentration was 10.5 (SD = 1.1) µg/m3. 

Among the examined species, S accounted for the largest mass proportion (10%). The oil 

combustion tracers, Ni and V, accounted for 0.03% and 0.04% of PM2.5 mass. Their mean 

concentrations were 0.0037 (SD = 0.0013) µg/m3 and 0.0041 (SD = 0.0012) µg/m3, respectively.  
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Table 3-2. Summary of one-year moving average PM2.5 mass and species across all study visits 

(year 1999 - 2013). 

Pollutant Mean ± SD (µg/m3) IQR (µg/m3) Proportion of the 
PM2.5 mass (%) 

PM2.5 mass 10.5 ± 1.1 1.9 - 
Coal combustion    
S 1.11 ± 0.13 0.08 10 
Sea salt    
Na 0.20 ± 0.01 0.01 1.8 
Road dust    
Al 0.051 ± 0.008 0.009 0.5 
Ca 0.032 ± 0.005 0.007 0.3 
Fe 0.069 ± 0.010 0.012 0.6 
Si 0.075 ± 0.016 0.022 0.7 
Wood burning    
K 0.041 ± 0.002 0.003 0.4 
Traffic    
Zn 0.013 ± 0.003 0.004 0.1 
Cu 0.0035 ± 0.0003 0.0004 0.03 
Oil combustion    
Ni 0.0037 ± 0.0013 0.0011 0.03 
V 0.0041 ± 0.0012 0.0015 0.04 

 

Table 3-3 presents CpGs that reached Bonferroni-corrected significance (p-value < 9.4 × 10-9) in 

relation to PM2.5 species. After excluding CpGs that were non-unimodal in the dip test, were cross-

reactive, or contained SNPs in the last 10 bases, we observed 20 significant CpGs for Fe, 8 for Ni, 

and 1 for V. Particularly, SLFN11 cg10911913 was significant for all the three metals. The ratio 

of methylation on this CpG site is expected to increase by 0.073, 0.031, and 0.044 per IQR increase 

in one-year moving average Fe, Ni, and V, respectively. We also found that CASZ1 cg16238819, 

CUEDC2 cg06024834, ONECUT1 cg15446043, and FOXO4 cg12453500 were significant for 

both Fe and Ni. To illustrate the epigenome-wide association between PM2.5 species and 



 

63 
 

methylation, we plotted the -log10(p-value) from the mixed-effects models for all the 484,613 CpG 

sites in Figure 3-2. The horizontal line represents the significance threshold with Bonferroni 

correction (p-value < 9.4 × 10-9). We originally found 22 significant CpGs for Fe, 9 for Ni, and 1 

for V, as shown in Figure 3-1. After excluding CpGs that were non-unimodal in the dip test, were 

cross-reactive, or contained SNPs in the last 10 bases, 20 CpGs remained significantly associated 

with Fe, 8 with Ni, and 1 with V. 
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Table 3-3. Genome-wide association of one-year moving average PM2.5 species with DNA 

methylation: CpGs with Bonferroni-corrected statistical significance (p-value < 9.4 × 10-9). 

Species Chr Gene CpG Est Coef SE p-value 
Fe 1 DHRS3 ch.1.471396R 0.053 0.089 0.015 2.37E-09 
 1 CASZ1 cg16238819 0.076 0.126 0.021 6.94E-09 
 6 SLC39A7;RXRB cg24319547 0.031 0.052 0.009 2.20E-09 
 6 KIAA1949 cg08052856 0.072 0.120 0.020 2.58E-09 
 6 CDC5L cg22877480 0.068 0.113 0.019 8.30E-09 
 8 FBXO25 ch.8.7249R 0.062 0.103 0.017 4.40E-09 
 10 CUEDC2 cg06024834 0.039 0.065 0.011 1.98E-09 
 11 RPS6KB2 cg26457823 0.035 0.059 0.010 3.82E-09 
 11 RPS25;TRAPPC4 cg05223675 0.077 0.128 0.021 6.97E-09 
 14 SMEK1 cg01561368 0.024 0.040 0.007 6.20E-09 
 15 ONECUT1 cg15446043 0.146 0.243 0.039 1.37E-09 
 15 TPM1 cg12302829 0.039 0.065 0.011 2.72E-09 
 17 SLFN11 cg10911913 0.073 0.122 0.018 1.84E-10 
 17 CYTH1 cg26525457 -0.076 -0.126 0.020 1.26E-09 
 18 RNF138 cg16078886 0.065 0.108 0.018 2.55E-09 
 19 MYPOP cg03766703 -0.119 -0.198 0.033 6.91E-09 
 19 REEP6;PCSK4 cg13970591 0.222 0.370 0.063 8.10E-09 
 21 C21orf57 cg10434947 0.043 0.072 0.012 4.32E-09 
 22 CBY1;LOC646851 cg11003278 0.050 0.084 0.013 4.71E-10 
 X FOXO4 cg12453500 0.059 0.098 0.014 2.89E-11 
Ni 1 CASZ1 cg16238819 0.032 1.062 0.179 8.25E-09 
 10 CUEDC2 cg06024834 0.017 0.560 0.089 1.10E-09 
 15 ONECUT1 cg15446043 0.059 1.950 0.330 8.31E-09 
 16 WDR90 cg02734472 0.035 1.168 0.194 4.61E-09 
 17 SLFN11 cg10911913 0.031 1.046 0.156 7.56E-11 
 18 RNF138 cg16078886 0.029 0.973 0.148 1.91E-10 
 19 SEC1;DBP cg13402773 0.056 1.850 0.310 6.22E-09 
 X FOXO4 cg12453500 0.022 0.739 0.120 2.10E-09 
V 17 SLFN11 cg10911913 0.044 1.103 0.174 6.81E-10 

Abbreviation: Chr: Chromosome; Est: Estimate of change in β value per IQR increase in the 

species; Coef: Regression coefficient in the mixed-effects models, with adjustment for PM2.5 mass, 

Houseman estimated cell proportions (CD4+ T lymphocytes, CD8+ T lymphocytes, natural killer 



 

65 
 

cells, B cells, monocytes), age, BMI, cigarette pack years, smoking status, alcohol consumption, 

education, year, season, and batch effects (plate, position of chip on plate, row and column position 

on chip); SE: Standard error for regression coefficient. 

  



 

66 
 

 

Figure 3-2. Figure 3 2. Genome-wide association of one-year moving average PM2.5 species with 

DNA methylation, displayed by Manhattan plots.  

 

Results of the bioinformatic analysis are shown in Figure 3-3. We conducted KEGG pathway 

enrichment analysis for gene targets of CpGs with FDR < 1% and < 5%, respectively. Pathways 
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whose enrichment FDRs were less than 5% were considered significant and indicated by colored 

chunks in the figure. In analysis for gene targets of CpGs with FDR < 1%, we identified nine 

significant KEGG pathways. Three of them (i.e., “pathways in cancer”, “non-small cell lung 

cancer”, and “glioma”) belong to the “Cancers” network. Results with gene targets of CpGs with 

FDR < 5% suggest that those genes may also be linked to other cancers (e.g., myeloid leukemia) 

and pathways in the immune system. Of interest among the other pathways identified are the 

diabetes pathway and MAPK (mitogen-activated protein kinases) signaling pathway which is 

involved in cellular functions including cell proliferation, differentiation and migration. 



 

68 
 

 

Figure 3-3. KEGG pathway enrichment analysis for (A) gene targets of CpGs with FDR < 1%, 

and (B) gene targets of CpGs with FDR < 5%.  
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Discussion 

In this study, we investigated the relationship between PM2.5 species and epigenome-wide DNA 

methylation in a large longitudinal cohort of elderly men. To the best of our knowledge, this is the 

first study that examined epigenome-wide association between ambient PM2.5 components and 

DNA methylation. We adjusted for the multiple tests from 11 components and the 484 613 CpGs 

analyzed. We observed that 20 CpGs met the conservative Bonferroni-corrected level of 

significance (p-value < 9.4 × 10-9) in the analysis for Fe, 8 for Ni, and 1 for V.  In addition, we 

found that all three metals were associated with cg10911913 on the SLFN11 gene. Our 

bioinformatic analysis suggests that gene targets of CpGs with FDR < 1% may be relevant to 

pathways including cancers, signal transduction, cell growth and death. 

To date, only a limited number of research studies have examined the association of ambient 

particles with DNA methylation. Most of them used surrogates, such as repetitive elements, for 

global DNA methylation or focused on methylation in candidate genes. The main shortcomings of 

these studies are: 1) methylation levels measured by surrogates do not consider the location in the 

genome and the patterns of methylation at surrogates may not well represent the patterns of gene 

methylation, and 2) use of candidate genes can only reveal methylation changes in specific genes 

selected a priori and miss the genes that exhibit the most profound effects.  

One previous study regarding PM exposure and DNA methylation reported that exposures to 90-

day moving average black carbon and sulfate particles concentrations were associated with 

hypomethylation of the long interspersed nucleotide element-1 (LINE-1) and the short interspersed 

nucleotide element Alu (Madrigano et al. 2011). Baccarelli et al. (2009) found decreased LINE-1 

methylation in association with 7-day moving average black carbon and PM2.5 levels, whereas no 
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association was observed for Alu methylation. A controlled human exposure experiment has 

observed hypomethylation of Alu and TLR4 (toll-like receptor 4) gene among 15 healthy adults 

exposed to fine concentrated ambient particles (CAPs) for 130 minutes (Bellavia et al. 2013). 

Recently, a longitudinal study reported a relationship between decreased methylation at three CpG 

loci located in the NOS2A (nitric oxide synthase 2, inducible) gene and short-term exposures to 

organic carbon, elemental carbon, NO3
- and NH4

+ among 28 patients with chronic obstructive 

pulmonary disease (Chen et al. 2015). A more recent epigenome-wide study found variations in 

DNA methylation associated with short- and mid-term PM2.5 exposure among Germany and U.S. 

cohorts (Panni et al. 2016). 

The most consistent finding of our study was the significant increases in methylation at SLFN11 

cg10911913 that was associated with one-year moving average concentrations of PM2.5 species Fe, 

Ni, and V. SLFN (Schlafen Family Member) genes encode a family of proteins that have been 

implicated in the regulation of cell growth and T cell development (Geserick et al. 2004; Schwarz 

et al. 1998). SLFN11, a member of the SLFN family, potently and specifically abrogates the 

production of retroviruses, e.g., human immunodeficiency virus (HIV-1) (Li et al. 2012). Using 

cells with endogenously high and low SLFN11 expression and siRNA-mediated silencing, Zoppoli 

et al. (2012) found that SLFN11 causally determines cell death and cell cycle arrest in response to 

DNA-damaging agents in cancer cells from different tissues of origin. SLFN11 cg10911913 is 

located in a region whose function is promoter associated. Our results showed that the methylation 

in this CpG site was positively associated with one-year moving average PM2.5 species Fe, Ni, and 

V. Our analysis suggests that exposure to ambient particles, especially those from oil combustion, 

was associated with hypermethylation of CpGs on SLFN11, which might lead to its 

downregulation and thus declines in inhibiting retroviruses and increased DNA damage to cancer 
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cells. This hypothesis is consistent with recent literature on air-pollution-induced activation of 

viral sequences integrated in the human genome. A study of truck drivers and office workers in 

Beijing, China showed a significant association of exposure to elemental carbon – taken as a 

marker of traffic particle exposure – with altered expression of viral microRNAs, possibly 

reflecting reactivation of latent retroviral sequences integrated in the host DNA (Hou et al. 2015). 

In addition, the International Agency for Research on Cancer has recently classified particulate air 

pollution as a known human carcinogen (Loomis et al. 2013), and this result is consistent with a 

carcinogenic potential. 

We also observed that methylation at ONECUT1 cg15446043 was positively associated with Fe 

and Ni. ONECUT1 (one cut homeobox 1) can inhibit hepatitis B virus, a small enveloped DNA 

virus, gene expression and DNA replication via both transcriptional and post-transcriptional 

mechanisms (Hao et al. 2015). Hypermethylation at this CpG associated with PM exposures may 

depress ONECUT1 expression, and thus lead to an increased risk of viral infections.  

In addition, we found that long-term exposure to Fe was linked to methylation in other genes 

functioning on immune cells, including CYTH1 and RPS6KB2. CYTH1 (cytohesin 1) regulates 

adhesion and transendothelial migration of monocytes, T lymphocytes, and dentritic cells; it is also 

a key regulator of neutrophil adhesion to endothelial cells and to components of extracellular 

matrix (El azreq and Bourgoin 2011; Kolanus 2007). RPS6KB2 (ribosomal protein S6 kinase) 

plays an important role in neutrophilic differentiation and neutrophilic proliferation in HL-60 

(Human promyelocytic leukemia) cells. Hence, methylation changes at pertinent CpG sites of 

these two genes may affect immune functions.  
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Interestingly, Fe in our data was associated with methylation levels of CpGs in genes that regulate 

cell cycle, such as CDC5L cg22877480 and RPS6KB2 cg26457823 (Boyer et al. 2008; Graub et 

al. 2008). CDC5L (cell division cycle 5-like) is a crucial regulator of cell cycle G2/M progression 

and a component of pre-mRNA processing, hence previous research has suggested it as a target 

for cancer therapy (Graub et al. 2008; Mu et al. 2014); RPS6KB2 (ribosomal protein S6 kinase) is 

also highly active in the G2 and M phases (Boyer et al. 2008). Changes in methylation in these 

genes might lead to unguarded cell proliferation. This finding is consistent with the results of our 

bioinformatic analysis, in which we found that the gene targets may be related to biological 

pathways including cancer, cell growth and death. 

The DAVID bioinformatic analysis also indicated that Fe and Ni were associated with type II 

diabetes mellitus, insulin signaling pathways, and the MAPK pathway. This is consistent with 

previous work. For instance, long-term PM2.5 exposure resulted in systemic inflammation, 

increased visceral adiposity and insulin resistance in mice on a high fat diet (Sun et al. 2009). In 

mice on normal diets, PM exposure was a risk factor for the development of type II diabetes as it 

induced insulin resistance and impaired glucose tolerance (Xu et al. 2011). Similarly in humans, 

long-term exposure to particulate matter was linked to increased risk of type II diabetes in a large 

cohort study (Weinmayr et al. 2015). We have also reported in the NAS cohort that particulate air 

pollution was associated with changes in methylation in the MAPK pathway, but were unable to 

analyze metal components as in this study (Carmona et al. 2014).  

Earlier, we found particles from oil combustion were associated with markers of inflammation and 

endothelial dysfunction, and with increased blood pressure in the NAS population (Dai et al. 2015; 

Dai et al. 2016). The current study may provide potential mechanisms on an epigenetic level: a 

proinflammatory stimulus such as air pollution modifies methylation in genes relevant to immune 
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responses, inducing inflammation and endothelial dysfunction, thereby influencing cardiovascular 

health.  

Our study has several strengths. First, this is the first study that examined the effects of ambient 

particulate matter on epigenome-wide DNA methylation. Previous studies often estimated DNA 

methylation associated with ambient PM using surrogates for global methylation or gene-specific 

methylation at candidate genes. An epigenome-wide study like ours offers a novel perspective on 

such an association, and implicates potential biological mechanisms on an epigenetic level. Second, 

we used a stringent Bonferroni correction to adjust the level of significance, which accounted both 

for the 11 PM2.5 species and for the number of CpG sites analyzed. Although we observed a small 

number of significant CpGs due to the strict correction, the probability of false positive is expected 

to remain appropriate. Third, the study population was geographically stable and well followed 

since the enrollment in 1963. 

On the other hand, this study has several notable limitations. We do not have information on gene 

expression, and thus we cannot confirm the expected functional implications of the methylation 

changes. Further research on gene expression in relation to PM exposures is needed. Additionally, 

we are unable to rule out residual confounding. The bioinformatic analysis of pathways used 

annotations of methylation sites within genes and thus genes that include more sites on the 450K 

array, such as those involved in cancer, are more likely to arise in pathway results (Harper et al. 

2013). Last but not least, there exists the generalizability issue because the study population 

consisted of elderly Caucasian men. One should consider factors like age, sex, and race when 

generalizing our findings to other populations. 
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In summary, we examine the association of long-term exposure to PM2.5 species with differential 

DNA methylation in a 450K epigenome-wide association study using a large longitudinal cohort. 

Our study confirmed previous research on the association of ambient PM2.5 mass on epigenome-

wide DNA methylation (Panni et al. 2016). It also provides a possible link between the effects and 

species; particularly, it suggests that particles from oil combustion were associated with 

methylation changes in genes relevant to immune responses. 
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Conclusions 

The findings showed an increased risk of mortality and blood pressure associated with PM2.5, 

which varied with species. In particular, silicon and calcium from road dust as well as sulfur from 

coal burning were associated with higher risk of mortality, while nickel from oil combustion were 

responsible for the effects of PM2.5 mass on elevated blood pressure. Epigenome-wide association 

study observed differential DNA methylation: long-term exposure to particular components of 

ambient particle pollution, especially particles emitted during oil combustion, were associated with 

methylation changes in genes relevant to immune responses. 

In conclusion, mass alone might not be sufficient to evaluate the health effects of particles. Further 

research is needed to confirm the findings, assess generalizability to other populations, and identify 

potential mechanisms for PM2.5 species.  

 


