Epigenetic and Mitochondrial Biomarkers Linking Air Pollution and Temperature on Human Health: The Normative Aging Study

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:32644535</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
Epigenetic and Mitochondrial Biomarkers Linking Air Pollution and Temperature on Human Health: The Normative Aging Study

Cheng Peng

A Dissertation Submitted to the Faculty of The Harvard T. H. Chan School of Public Health in Partial Fulfillment of the Requirements for the Degree of Doctor of Science in the Department of Environmental Health Harvard University Boston Massachusetts November 2016
Epigenetic and mitochondrial biomarkers linking air pollution and temperature on human health: The Normative Aging Study

Abstract

Fine particulate matter (particulate matter with aerodynamic diameter ≤2.5 micron or PM$_{2.5}$) exposure, as well as changes in ambient meteorological conditions are associated with adverse health consequences. However, the underlying mechanisms have not been clearly delineated. Systemic inflammation and oxidative stress are two of the primary pathways proposed to account for the association of PM$_{2.5}$ / air temperature with health related outcomes. In this dissertation work, we proposed to use two types of novel molecular biomarkers: (1) nuclear DNA (nDNA) methylation, and (2) mitochondrial DNA (mtDNA) integrity to assess inflammatory and oxidative stress pathways linking environmental insults and health.

Specifically, in Chapter I, we evaluated the mediating role of promoter region DNA methylation of inflammatory biomarkers ($IFN-\gamma$, $IL-6$, $ICAM-1$, and $TLR-2$) linking PM$_{2.5}$ exposure and abnormal glucose metabolism in The Normative Aging Study. Our study showed that PM$_{2.5}$ concentrations are associated with higher fasting blood glucose (FBG) level, and this association was in part mediated through $ICAM-1$ gene methylation, particularly at the longer (28-day) moving average investigated. Our study demonstrates a novel approach of mediation analysis in epigenetic studies and highlights a mediating role of $ICAM-1$ gene methylation in air-pollution associated abnormal glucose metabolism.

In Chapter II, we assessed the relative effects of PM$_{2.5}$ mass and PM$_{2.5}$ components on a novel oxidative stress-related marker—blood mtDNA abundance in The Normative Aging
Study. Our study showed that long-term exposure to PM$_{2.5}$ mass and specific PM$_{2.5}$ components is associated with decreased mtDNA abundance. Our findings from multi-pollutant modeling suggest that nitrate (NO$_3^-$) was associated with higher mitochondrial oxidative stress independent of PM$_{2.5}$ mass concentration, and mass alone may not fully capture the oxidation potency of PM$_{2.5}$.

In Chapter III, we explored short-term changes in daily mean and daily standard deviation (SD) (variability) of ambient air temperature with blood mtDNA lesions in The Normative Aging Study. We observed short-term increases in mean air temperature were associated with higher mtDNA lesions in elderly adults, supporting the hypothesis that changes meteorological conditions may induce pathophysiological responses among susceptible populations.
TABLE OF CONTENTS

ABSTRACT ...II

TABLE OF CONTENTS ..IV

FIGURES AND CAPTIONS ..VIII

TABLES AND CAPTIONS ..XII

ACKNOWLEDGEMENTS ..XIX

INTRODUCTION ..1

CHAPTER 1 ..5

PARTICULATE AIR POLLUTION AND FASTING BLOOD GLUCOSE IN NON-DIABETIC
INDIVIDUALS: ASSOCIATIONS AND EPGENETIC MEDIATION IN THE
NORMATIVE AGING STUDY, 2000-2011 ..5

ABSTRACT ...7

INTRODUCTION ..9

MATERIALS AND METHODS ..10

Study Population ...10

Air Pollution and Temperature ...11

DNA Methylation Measurements ..12

Fasting Blood Glucose Measurements ..13

Statistical Analysis of the Main Association of PM$_{2.5}$ Levels with FBG13

Statistical Analysis of DNA Methylation and Mediation Analysis ...15

Selection of Mediators ...15
Sensitivity Analysis ...91

RESULTS

Study Population...92

Meteorological Data...92

Air Temperature and Mitochondrial DNA Lesions.............................93

Sensitivity Analysis...94

DISCUSSION..94

CONCLUSIONS...99

ACKNOWLEDGEMENTS..100

FUNDINGS..100

CONFLICT OF INTEREST...100

REFERENCES..118

SUMMARY AND CONCLUSIONS..125
FIGURES AND CAPTIONS

Figure 1.1: Directed acyclic graph (DAG) for mediation analysis.

PM_{2.5}^{ij-j} represents air pollution exposure for i^{th} subject prior to j^{th} visit; M_{i}^{ij-j} represents gene-specific DNA methylation for i^{th} subject at j^{th} visit; Y_{i}^{ij-j} represents fasting blood glucose (FBG) concentrations for i^{th} subject at j^{th} visit. C_{1}^{ij} represents exposure outcome confounders, C_{2}^{ij} represents exposure mediator confounders; C_{3}^{ij} represents mediator outcome confounders.

Note: to be simplified, correlations between repeated measures of exposures (i.e. PM_{2.5}^{ij} and PM_{2.5}^{ij+1}), repeated measures of mediators (i.e., M_{ij} and M_{ij+1}) and repeated measures of confounders (i.e., C_{ij} and C_{ij+1}) are not shown in this DAG.

Figure 1.2: Inflammatory candidate gene methylation mediator model of the relationship between PM_{2.5} concentration and fasting blood glucose level.

ICAM-1 mean and TLR-2 mean DNA methylation is log-normally distributed and IL-6 and IFN-γ are normally distributed. β is the coefficient of the independent variable (PM_{2.5} 28-day moving average) when regressing the mediator (candidate gene methylation) on the independent variable, γ is the coefficient of the mediator when regressing the dependent variable (FBG) on both the independent variable and the mediator. Results from regression models are adjusted for age, BMI, race, regular patterns of physical activity, smoking status, pack-years smoked, alcohol consumption, education level, statin use, batch effects, percentage of lymphocytes, and percentage of neutrophils. Participants with diabetes were excluded.
Figure S1.1: Methylation of specific CpG sites for the four candidate genes (interferon gamma (IFN-γ), interleukin-6 (IL-6), Toll-like receptor 2 (TLR-2), and intracellular adhesion molecule-1 (ICAM-1)).

Figure S1.2 Timeline of the study design.

Figure 2.1: Graphical illustration of annual PM$_{2.5}$ mass and PM$_{2.5}$ component concentrations for the study period Normative Aging Study, 2000-2012. The green dots indicate where the fixed monitoring stations are located, while the red dots dictate participants’ residential address.

Figure 2.2: LASSO coefficient paths: plot of PM$_{2.5}$ components as a function of penalty term lambda.

Based on the Lasso shrinkage method with BIC as a selection criterion, we identified NO$_3^-$ independently associated with mtDNA abundance.

Figure S2.1: Flow chart of participants’ inclusion criteria (participants who came in year 2000 will be assigned to the yearly moving average of year 2000).

Figure S2.2: The relationship between the penalty term lambda in LASSO regression and Bayesian information criterion (BIC).

We performed a mixed model version of Lasso regression, with subject specific intercepts, to account for correlation across multiple visits. We forced the following covariates in: age, BMI,
race, regular patterns of physical activity, smoking status, pack-years smoked, education level, lymphocyte count, neutrophil count, platelet count, seasonality, and PM$_{2.5}$ mass concentration.

Figure 3.1: Estimated change (and 95% CI) in mtDNA lesions per IQR increase of daily mean of air temperature over 14-day moving average (by season).

Results from linear mixed-effects regression models accounting for correlation across multiple visits and adjusted for age, BMI, race, metabolic equivalent of tasks (low: ≤12 hours/week; medium: 12-30 hours/week; high: ≥30 hours/week), smoking status (current, former, never), pack-years smoked, alcohol consumption, education level, platelet count, lymphocyte count, neutrophil count, plates, and 24-hr relative humidity.

Figure 3.2: Estimated change (and 95% CI) in mtDNA lesions per IQR increase of daily mean of air temperature over 14-day moving average (by season). We additionally adjusted for within day temperature variability.

Results from linear mixed-effects regression models accounting for correlation across multiple visits and adjusted for age, BMI, race, metabolic equivalent of tasks (low: ≤12 hours/week; medium: 12-30 hours/week; high: ≥30 hours/week), smoking status (current, former, never), pack-years smoked, alcohol consumption, education level, platelet count, lymphocyte count, neutrophil count, plates, 24-hr relative humidity, and within day temperature variability of the corresponding moving average.

Figure 3.3: Estimated change (and 95% CI) in mtDNA lesions per IQR increase of daily variability of air temperature over 14-day moving average.
Results from linear mixed-effects regression models accounting for correlation across multiple visits and adjusted for age, BMI, race, metabolic equivalent of tasks (low: ≤12 hours/week; medium: 12-30 hours/week; high: ≥30 hours/week), smoking status (current, former, never), pack-years smoked, alcohol consumption, education level, platelet count, lymphocyte count, neutrophil count, plates, 24-hr relative humidity and season (spring/summer/fall/winter).

*We additionally adjusted for within day temperature mean of the corresponding moving average.
TABLES AND CAPTIONS

Table 1.1: Characteristics of the Normative Aging Study participants included in the analysis\(^a\) (N = 551 participants), 2000-2011.

\(^a\)Cohort participants with diabetes (N=105) were excluded. Data for the first visit included in the analysis are shown.

Table 1.2: Estimated change (and 95% CI) in fasting blood glucose (FBG) level (mg/dL) per interquartile range (IQR) increase in PM\(_{2.5}\) (particulate matter with aerodynamic diameter \(\leq 2.5\ \mu m\)) concentration averaged over the corresponding time window before each visit.

Results from linear mixed-effects regression models accounting for correlation across multiple visits and adjusted for age, BMI, race, regular patterns of physical activity, smoking status, pack-years smoked, alcohol consumption, education level, statin use, temperature, and seasonality. Participants with diabetes were excluded.

Table 1.3: Odds ratio (OR) (and 95% CI) of impaired fasting blood glucose (IFG, defined as a fasting blood glucose level greater than 100 mg/dL and less than 126 mg/dL) per interquartile range (IQR) increase in PM\(_{2.5}\) (particulate matter with aerodynamic diameter \(\leq 2.5\ \mu m\)) concentration averaged over the corresponding time window before each visit.

Results from GEE models accounting for correlation across multiple visits and adjusted for age, BMI, race, regular patterns of physical activity, smoking status, pack-years smoked, alcohol
consumption, education level, statin use, temperature, and seasonality. Participants with diabetes were excluded.

Table 1.4: Mediation effect investigating whether blood *ICAM-1* methylation mediates the association between air pollution and fasting blood glucose level. Indirect effect represents the “mediated” effect through the *ICAM-1* methylation pathway. Estimates correspond to a standard deviation increase from the mean.

Results from linear mixed-effects regression models accounting for correlation across multiple visits and adjusted for age, BMI, race, regular patterns of physical activity, smoking status, pack-years smoked, alcohol consumption, education level, statin use, temperature, seasonality, batch effect, % of lymphocytes, and % of neutrophils. Participants with diabetes were excluded.

*a*Proportion mediated cannot be estimated in this case because $\beta_{PM2.5}$ and γ_M have opposite signs.

Table S1.1: Summary statistics of PM$_{2.5}$ (PM with aerodynamic diameter ≤2.5 μm) and temperature levels. PM$_{2.5}$ and temperature were summarized as cumulative averaged exposures up to the previous 28-day exposure window. PM$_{2.5}$ was estimated using spatiotemporal land-use regression models estimating levels at the participants’ residential addresses. Temperature values were obtained through the national climatic data center (NCDC); grid cells were matched to the closest weather station for meteorological variables.

Table S1.2: Estimated change (and 95% CI) in fasting blood glucose (FBG) level (mg/dL) per interquartile range (IQR) increase in PM$_{2.5}$ (particulate matter with aerodynamic diameter ≤2.5 μm) concentration averaged over the corresponding time window before each visit. We
additionally adjusted for dietary variables (total calorie intake and glycemic index).

Results from linear mixed-effects regression models accounting for correlation across multiple visits and adjusted for age, BMI, race, regular patterns of physical activity, smoking status, pack-years smoked, alcohol consumption, education level, statin use, temperature, seasonality, total calorie intake and glycemic index. Participants with diabetes were excluded.

Table S1.3: Estimated change (and 95% CI) in fasting blood glucose (FBG) level (mg/dL) per interquartile range (IQR) increase in PM$_{2.5}$ (particulate matter with aerodynamic diameter ≤ 2.5 μm) concentration averaged over the corresponding time window before each visit. We accounted for potential selection bias using inverse probability weighting.

Results from linear mixed-effects regression models accounting for correlation across multiple visits and adjusted for age, BMI, race, regular patterns of physical activity, smoking status, pack-years smoked, alcohol consumption, education level, statin use, temperature, and seasonality. Participants with diabetes were excluded. Potential selection bias due to loss to follow-up was accounted for using inverse probability weighting. In a logistic regression, we predict the probability of coming to a subsequent visit by covariates from the previous one, which include age, BMI, regular patterns of physical activity, smoking status, pack year smoked, FEV1 and FVC ratio, medication (diuretics and beta blocker), and education level.

Table S1.4: Estimated change (and 95% CI) in inflammatory candidate gene methylation with increase in fasting blood glucose [FBG (mg/dL)] concentrations at previous visits (Y_{ij} $\rightarrow M_{ij+1}$).
Results from linear mixed-effects regression models accounting for correlation across multiple visits, and adjusted for age, BMI, race, regular patterns of physical activity, smoking status, pack-years smoked, alcohol consumption, education level, statin use, batch effects, percentage of lymphocytes, and percentage of neutrophils (all from previous visits). Participants with diabetes were excluded. *ICAM-1 and TLR-2 DNA methylation measurements were log transformed.

Table S1.5: Sensitivity analysis of the mediation effect of ICAM-1 methylation on the association between PM$_{2.5}$ concentrations averaged over 28-day exposure window with fasting blood glucose (FBG) level (mg/dL). Natural indirect effect represents the “mediated” effect through the ICAM-1 methylation pathway. Estimates correspond to 1 μg/m3 increase in PM$_{2.5}$ concentration.

Results from linear mixed-effects regression models adjusted for age, BMI, race, regular patterns of physical activity, smoking status, pack-years smoked, alcohol consumption, education level, statin use, temperature, seasonality, batch effect, percentage of lymphocytes, percentage of neutrophils. Participants with diabetes were excluded. a We excluded current smokers to limit potential residual confounding by smoking. b We additionally controlled for dietary intake (total calorie intake and glycemic index), to reduce potential confounding by diet. c We restricted the analysis to participants with a C-reactive protein (CRP) level less than 10 mg/L, to partially removal potential effect from acute inflammation.

Table 2.1: Personal characteristics of participants from the Normative Aging Study, 2000-2012 (N = 646).
Table 2.2: Summary statistics of annual moving averages of PM$_{2.5}$ mass and PM$_{2.5}$ components, Normative Aging Study, 2000-2012.

Table 2.3: Spearman correlation between annual moving average concentrations of the air pollutants considered in the analysis, Normative Aging Study, 2000-2012.

*p<0.05; **p<0.01

Table 2.4: Association between annual averages of ambient air pollution and mtDNA abundance, measured as mitochondrial DNA to nuclear DNA copy number ratio (mtDNA/nDNA), Normative Aging Study, 2000-2012.

Results from linear mixed-effects regression models accounting for correlation across multiple visits and adjusted for age, BMI, race, regular patterns of physical activity, smoking status, pack-years smoked, education level, lymphocyte count, neutrophil count, platelet count, and seasonality. *Estimates are expressed as a SD change in mtDNA/nDNA ratio with a SD change in pollution concentration. \†We additionally adjusted for PM$_{2.5}$ mass concentration. PM$_{2.5}$ mass estimate is not reported because we used this set of models to obtain estimates for PM$_{2.5}$ components adjusted for PM$_{2.5}$ mass. Each individual model provided a different estimate for PM$_{2.5}$ mass.

Table 2.5: Association between annual averages of ambient air pollution and mtDNA abundance, measured as mitochondrial DNA to nuclear DNA copy number ratio (mtDNA/nDNA), Normative Aging Study, 2000-2012. Results are based on LASSO selected pollutants.
Results from linear mixed-effects regression models accounting for correlation across multiple visits and adjusted for age, BMI, race, regular patterns of physical activity, smoking status, pack-years smoked, education level, lymphocyte count, neutrophil count, platelet count, seasonality, PM$_{2.5}$ mass concentration and all other components that were selected by LASSO shrinkage method. *Estimates are expressed as a SD change in mtDNA/nDNA ratio with a SD change in pollution concentration.

Table S2.1: Comparison of estimated coefficients in the primary analysis and in sensitivity analysis restricted to observations with annual moving PM$_{2.5}$ average \leq 12 µg/m3 (i.e., the current NAAQS for annual PM$_{2.5}$ concentration).

Results from linear mixed-effects regression models accounting for correlation across multiple visits and adjusted for age, BMI, race, regular patterns of physical activity, smoking status, pack-years smoked, education level, lymphocyte count, neutrophil count, platelet count, seasonality, PM$_{2.5}$ mass concentration and all other components that were selected by LASSO shrinkage method. *Estimates are expressed as a SD change in mtDNA/nDNA ratio with a SD change in pollution concentration. †Sensitivity analysis where PM$_{2.5}$ annual moving average > 12 µg/m3 were excluded.

Table 3.1: Personal characteristics of participants (N=654).

Table 3.2: Summary statistics and Spearman correlation of environmental variables.

*p<0.05; **p<0.01
ACKNOWLEDGEMENTS

I would like to express my greatest appreciation to my advisor and committee chair, Dr. Andrea A. Baccarelli, for his academic mentorship and advice in pursuing a career in public health. Without his guidance and persistent help this dissertation would not have been possible. I would also like to thank my dissertation committee members, Dr. Joel Schwartz and Dr. Brent Coull for their time, supports and constructive comments in reviewing my research work.

I have had the great pleasure of working with research teams from The Laboratory of Human Environmental Epigenetics, the Environmental Epidemiology track and The Normative Aging Study (NAS), especially with Dr. Pantel Vokonas, Dr. Marie-Abele Bind, Dr. Letizia Trevisi, Dr. Marco Sanchez-Guerra, Dr. Itai Kloog and Anna Kosheleva, who provided great support over the course of my dissertation development. I would also like to thank Dr. Diane R. Gold, who gave me strong support, encouragement during my doctoral study, and advice in life. I also extend my gratitude to all participants from The Normative Aging Study, Dr. Petros Koutrakis and his team, in particular Dr. Choong-Min Kang and Dr. Mike Wolfson for spending their time help me to understand exposure measurements.

I am grateful to spend the past five years with my best friends, Changzheng Yuan, Yuanyuan Shen and Yuan Chen, and many other friends and classmates in the U.S. Their support and help has made all the difference.

Finally, I would like to give my deepest gratitude to my husband Peng Liu, my parents Gang Peng and Ru Li, my grandparents Sujie Peng and Suliang Zhu, for believing in me, and supporting my decisions at all important stages in my life.
INTRODUCTION
In recent years, the interplay between the environment and human genome has been extended beyond gene-environment interactions—in which genetic polymorphisms modify the effects of particular environmental exposures. Epigenetic mechanisms (refer to the heritable change in gene expression without changing the underlying DNA sequence), such as DNA methylation, histone modifications, and microRNA (miRNA) expression, have also been shown to change genome function in response to environmental challenges.\(^1\) DNA methylation, through the addition of a methyl group to the 5C position of cytosine in the CpG dinucleotide sequence, serves as an important epigenetic mechanism that often silences gene expression.\(^2\) In the first Chapter of this dissertation work, we evaluated the mediating role of promoter region DNA methylation of four inflammatory genes (\textit{IFN-}\(\gamma\), \textit{IL-}\(6\), \textit{ICAM-}\(1\), and \textit{TLR-}\(2\)) linking PM\(_{2.5}\) exposure and abnormal glucose metabolism in The Normative Aging Study. We hypothesized that higher PM\(_{2.5}\) levels associated with increased FBG, and part of this association was mediated through methylation of inflammatory genes.

In Chapter 2 and 3, we explored another set of novel molecular biomarkers—mitochondrial DNA (mtDNA) abundance and mtDNA lesions—both of which are measurements of mtDNA integrity. Mitochondrial DNA (mtDNA) is an emerging cellular target for environmental exposures that generate oxidative damage.\(^3\) Compared to the nuclear genome, the mitochondrial genome is more susceptible to oxidative damage due to lack of introns and protective histone proteins as well as limited capacity to repair.\(^4\) More important, oxidation of the mitochondrial genome can lead to increased mutation rate, and, in turn, damaged mitochondria may become themselves a source of endogenous oxidative species. This makes the mitochondrial genome a central site that both reflects and intensifies oxidative damage.\(^5\) Mitochondrial damage and dysfunction—as reflected in decreases in mtDNA abundance and increases in mtDNA
lesions—may provide a novel set molecular marker to assess oxidative stress that underlies PM$_{2.5}$/air temperature associated pathogenesis.6,7

Specifically, in Chapter 2, we evaluated associations between annual moving averages of PM$_{2.5}$ mass, PM$_{2.5}$ components [i.e., elemental carbon (EC), organic carbon (OC), sulfate (SO$_4^{2-}$), nitrate (NO$_3^-$)] and mtDNA abundance. We measured mtDNA abundance—an indicator for oxidative damage—as the ratio between mtDNA copies to the nuclear genome. We applied a regression shrinkage and penalization method (adaptive LASSO) to identify a subset of PM$_{2.5}$ components most predictive of the outcome, and conducted multi-pollutant regression modeling to estimate the relative effects of individual component on mtDNA abundance. We hypothesized that some PM$_{2.5}$ components may have higher potential for oxidative damage to mtDNA than others, and that PM$_{2.5}$ mass concentration alone may not fully represent oxidative damage potential to the mitochondrial genome.

In Chapter 3, we investigated the association between short-term changes in daily mean and daily standard deviation (SD) (variability) of air temperature and blood mtDNA lesions. MtDNA lesions were expressed as the number of mtDNA lesions per 10kb and types of mtDNA lesions include single- and double-stranded breaks, abasic sites, and base damage/ modification. We hypothesized that the older adults may be less adaptive to short-term changes in air temperature—especially at the extreme/sub-optimal ranges—which may lead to increased mtDNA lesions in blood.
References

CHAPTER 1

Particulate Air Pollution and Fasting Blood Glucose in non-Diabetic Individuals:
Associations and Epigenetic Mediation in the Normative Aging Study, 2000-2011

Cheng Peng¹, Marie-Abele C. Bind², Elena Colicino¹, Itai Kloog³, Hyang-Min Byun⁴, Laura Cantone⁵, Letizia Trevisi¹, Jia Zhong¹, Kasey Brennan¹, Alexandra E. Dereix¹, Pantel S. Vokonas⁶, Brent A. Coull⁷, Joel D. Schwartz¹,⁸, Andrea A. Baccarelli¹

Environ Health Perspective; DOI:10.1289/EHP183

¹Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA.
²Department of Statistics, Harvard University, Cambridge, MA, USA.
³Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Israel.
⁴Human Nutrition Research Center, Institute of Cellular Medicine, Newcastle University, UK.
⁵Molecular Epidemiology and Environmental Epigenetics Laboratory, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
⁶VA Normative Aging Study, Veterans Affairs Boston Healthcare System and the Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
⁷Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA.
⁸Channing Laboratory, Harvard Medical School, Boston, MA, USA.
Address correspondence to Cheng Peng, Department of Environmental Health, Harvard School of Public Health
Building 1, G-7, 665 Huntington Avenue, Boston, MA, 02115, USA. Email:
chp950@mail.harvard.edu

Running Title: Air pollution, fasting blood glucose, and DNA methylation
ABSTRACT

Background: In non-diabetic individuals, higher fasting blood glucose (FBG) independently predicts diabetes risk, cardiovascular disease and dementia. Ambient PM$_{2.5}$ (particulate matter with aerodynamic diameter ≤ 2.5 μm) is an emerging determinant of glucose dysregulation. PM$_{2.5}$ effects and mechanisms are understudied among non-diabetic individuals.

Objectives: Our goals were to investigate whether PM$_{2.5}$ is associated with increase in FBG and to explore potential mediating roles of epigenetic gene regulation.

Methods: In 551 non-diabetic participants in the Normative Aging Study, we measured FBG, and DNA methylation of four inflammatory genes (IFN-γ, IL-6, ICAM-1, and TLR-2), up to four times between 2000-2011 (median=2). We estimated short/medium-term (1-, 7-, and 28-day preceding each clinical visit) ambient PM$_{2.5}$ at each participant’s address using a validated hybrid land-use regression/satellite-based model. We fitted covariate-adjusted regression models accounting for repeated measures.

Results: Mean FBG was 99.8 mg/dL (SD=10.7), 18% of the participants had impaired fasting glucose (IFG, i.e., 100-125 mg/dL FBG) at first visit. Interquartile increases in 1-, 7-, and 28-day PM$_{2.5}$ were associated with 0.57 mg/dL (95% CI: 0.02; 1.11, p=0.04), 1.02 mg/dL (95% CI: 0.41; 1.63, p=0.001), and 0.89 mg/dL (95% CI: 0.32; 1.47, p=0.003) higher FBG. The same PM$_{2.5}$ metrics were associated with 13% (95% CI: -3%; 33%; p=0.12), 27% (95% CI: 6%; 52%, p=0.01) and 32% (95% CI: 10%; 58%, p=0.003) higher odds of IFG, respectively. PM$_{2.5}$ was negatively correlated with ICAM-1 methylation (p=0.01), but not with other genes. Mediation analysis estimated that ICAM-1 methylation mediated 9% of the association of 28-day PM$_{2.5}$ with FBG.
Conclusions: In non-diabetics, short/medium-term PM$_{2.5}$ was associated with higher FBG. Mediation analysis indicated that part of this association was mediated by $ICAM-1$ promoter methylation.
INTRODUCTION

Clinically diagnosed diabetes is preceded by a long latent period of abnormal glucose metabolism. In the asymptomatic, non-diabetic range of glycemia (<126 mg/dL) increased fasting blood glucose (FBG) levels are already independently associated with the development of diabetes, cardiovascular disease, and dementia. FBG variations in this range are often underappreciated and their potential determinants, especially those not directly related to lifestyle, are understudied. Ambient particulate matter (PM) pollution has recently been suggested as an emerging risk factor for metabolic disorders including impaired glucose regulation. Cross-sectional and longitudinal studies have revealed that PM is associated with increased risk of diabetes, and higher levels of markers of insulin resistance. However, the relationship between PM and glycemia in the non-diabetic range has yet to be studied.

The underlying mechanisms linking PM and abnormal glucose regulation are also not fully understood. Inflammation is central in both PM-associated responses and the pathogenesis of glucose dysregulation. Evidence from previous studies has linked exposures to ambient PM with lower DNA methylation in inflammatory genes. DNA methylation, through the addition of a methyl group to the 5C position of cytosine in the CpG dinucleotide sequence, is a well-studied epigenetic modification that usually silences gene expression. Conversely, lower or no methylation has been associated with upregulated gene expression. Lower global methylation content across the human epigenome has been associated with hyperglycemia and the up-regulation of inflammatory genes in peripheral leukocytes from patients with type 2 diabetes mellitus (T2DM). Yet, the role of methylation of specific genes related to inflammation in mediating the effects of PM on FBG has not been investigated.
In a repeated-measure study of older men in the Greater Boston Area, we investigated the association between ambient PM$_{2.5}$ (PM with aerodynamic diameter ≤2.5 μm) concentrations at the participants’ address—estimated over different time windows up to one month before the visit—and FBG levels among non-diabetic participants. Using recently developed repeated-measure mediation analysis, we further examined whether and to what extent PM$_{2.5}$ increased FBG through changes in blood leukocyte methylation in candidate inflammatory genes. We examined methylation of inflammatory cytokines (interferon gamma (IFN-γ) and interleukin-6 (IL-6)), intercellular adhesion molecule-1 (ICAM-1), and Toll-like receptor 2 (TLR-2). We hypothesized that higher PM$_{2.5}$ levels associated with increased FBG, and part of this association was mediated through methylation of inflammatory genes.

MATERIALS AND METHODS

Study Population

The Normative Aging Study is a prospective longitudinal cohort established in 1963 by the U.S. Veterans Administration in the Greater Boston area. Briefly, participants underwent examinations every 3-5 years. Self-administered questionnaires were collected at each visit providing information on social-demographic characteristics, medical history, medications, and lifestyle. Blood samples were collected at each clinical visit, after an overnight fast and smoking abstinence. Starting from 2000, estimated concentrations of PM$_{2.5}$ were obtained from a hybrid spatiotemporal prediction model, as described in the next section. A total of 656 participants had complete information on PM$_{2.5}$ measurements from the prediction model, FBG, and blood leukocyte DNA methylation for at least one and up to four visits between 2000 and 2011 (median=2, IQR=1). We excluded 105 participants who, at their first visit, were clinically
diabetic (FBG ≥126 mg/dL at the visit) and/or were taking diabetes medications. Therefore, our final study population included 551 participants. Fifty-two participants were diagnosed with diabetes during subsequent visits and, for these individuals, we retained observations from the visit(s) before they became diabetics. One hundred and eighty-six participants came to just one clinical visit, 163 participants came to two clinical visits, and 202 participants came to three or more clinical visits. Participants provided signed informed consent at each visit. The study was approved by the Institutional Review Boards of the participating institutions.

Air Pollution and Temperature

We estimated PM$_{2.5}$ concentrations at each participant’s residential address using a hybrid land-use regression and satellite-based model. In brief, we utilized MODIS (Moderate Resolution Imaging Spectroradiometer) satellite-derived Aerosol Optical Density (AOD) measurements to predict daily PM$_{2.5}$ concentration levels at a 10km spatial resolution. Daily AOD was calibrated using ground PM$_{2.5}$ measurements from 78 monitoring stations, land use regression and meteorological variables. To estimate PM$_{2.5}$ daily concentrations in each grid cell, we calibrated the AOD-PM$_{2.5}$ relationship using data from grid cells with both monitor and AOD values, using mixed models with random slopes for day and nested regions. In a later stage, we estimated exposures on days when AOD measures were not available (e.g., due to cloud coverage or snow). Model performance was good with high out-of-sample 10-fold cross-validated R2 (mean out-of-sample R$^2 = 0.83$ and 0.81 for days with and without available AOD data, respectively).

Temperature values were obtained through the national climatic data center (NCDC, 2010). Only continuous operating stations with daily data running were used (26 stations). Grid cells were matched to the closest weather station for meteorological variables.
DNA Methylation Measurements

Gene-specific DNA methylation was quantified on buffy-coat DNA using bisulfite polymerase-chain-reaction pyrosequencing. In the Normative Aging Study, we generated pyrosequencing-based methylation data for nine genes across pathways related to oxidation, blood clotting, and inflammation. We chose to focus our analysis on the four inflammatory genes included in these genes, including two inflammatory cytokines (IFN-γ and IL-6), intercellular adhesion molecule 1 (ICAM-1), and Toll-like receptor 2 (TLR-2). The choice of these four inflammatory genes was aligned with previous literature on PM and inflammation, as well as subclinical inflammation and the risk of T2DM. Specifically, IFN-γ and IL-6 encode for inflammatory cytokines that facilitate cell-to-cell communications in the inflammatory cascade, ICAM-1 encodes for a glycoprotein that is often expressed on the cell surface of endothelial cells and leukocytes, ICAM-1 glycoproteins are important for cell surface adhesion, transmigration and homing of leukocytes from the circulation to the target tissue. TLR-2 encodes for a surface receptor protein, which recognize conservative molecular patterns and serve as first line defense in innate immunity. DNA methylation levels were measured for each of these genes at two to five CpG sites within the promoter region except for IL-6 methylation, which was measured within 500 base-pair downstream of the gene’s promoter region where nuclear respiratory factor-1 (NRF-1) binding sites are located (see Supplementary Material, Figure S1.1). The methylation of NRF-1 region is known to suppress IL-6 gene expression. We calculated and used the mean level of position-specific DNA methylation for each gene because they are highly correlated and are likely to share most of the same functional complexes and traits, and we assumed that mean methylation across the promoter region reflects regional epigenetic regulation.
Fasting Blood Glucose Measurement

Blood glucose levels were measured at each visit, after an overnight fast and were analyzed using the enzymatic hexokinase method. According to American Diabetes Association criteria, FBG less than 100 mg/dL corresponds to normal levels and the 100-125mg/dL range to impaired fasting blood glucose (IFG), which in older individuals often progresses to diabetes over time. FBG larger than 125 mg/dL is defined as clinical diabetes 8,38.

Statistical Analysis of the Main Association of PM$_{2.5}$ Levels with FBG

We evaluated the association between PM$_{2.5}$ levels and FBG (modeled as a continuous dependent variable) using linear mixed-effects regression with subject-specific intercepts to account for the correlation among repeated FBG measurements within the same individual. Exposure variables included averages of PM$_{2.5}$ concentrations for 1-, 7-, and 28-day preceding each clinical visit; we considered each moving average in a separate regression model. Model estimates are expressed per interquartile range (IQR) increase in PM$_{2.5}$ concentration. In the models, we adjusted for the following covariates selected a priori, i.e., age (continuous), body mass index (BMI) (weight (kg)/height (m)2, continuous), race (white or others), regular patterns of physical activity (<12 hours/week, ≥12 and <30 hours/week, ≥30 hours/week), smoking status (never, former, or current smoker), cumulative pack-years of smoking (continuous), alcohol consumption (<2 or ≥2 drinks/day), education level (high school diploma or less, college degree, or graduate degree), statin use (nonuser, current user), temperature (continuous), and seasonality. Seasonality was modeled using Fourier series terms cos(2π*doy/365.25) and sin(2π*doy/365.25), where doy represents day of year. We checked the linearity assumptions of the continuous covariates using cubic splines, and found no deviation from linear dose-response.
The main regression model took the general form:

\[Y_{ij} = \beta_0 + u_i + \beta_1 X_{1ij} + \ldots + \beta_p X_{pij} + \beta_{PM2.5} PM_{2.5} + \epsilon_{ij} \]

where \(i \) corresponds to each participant, \(j \) to the visit; \(\beta_0 \) to the intercept for the population mean; \(u_i \) to the subject-specific random intercept. \(\beta_1 X_{1ij} \) to \(\beta_p X_{pij} \) correspond to the covariates we selected \textit{a priori}. \(\beta_{PM2.5} PM_{2.5} \) corresponds to PM\(_{2.5}\) levels 1-, 7-, or 28-day prior to the clinical visits, depending on the moving average used in each set of models. \(\epsilon_{ij} \) is the within-subject error term.

In a secondary analysis, we considered a dichotomized FBG variable for impaired fasting glucose (IFG) (categorized using the 0-100mg/dL and 100-125 mg/dL ranges) as the outcome and evaluated the association between PM\(_{2.5}\) and the odds of IFG using a logistic regression model with generalized estimating equations (GEE) and empirical variance estimates to account for repeated measurements per subject.

The logistic regression model took the general form:

\[\text{logit} \ [\text{Pr}(Y_{ij}=1)] = \beta_0 + \beta_1 X_{ij} + \ldots + \beta_p X_{pij} + \beta_{PM2.5} PM_{2.5ij} \]

where \(i \) corresponds to each participant, \(j \) to the visit. \(\beta_0 \) to the intercept for the population mean. \(\beta_1 X_{ij} \) to \(\beta_p X_{pij} \) corresponds to the covariates we selected \textit{a priori}. \(\beta_{PM2.5} PM_{2.5ij} \) corresponds to PM\(_{2.5}\) levels 1-, 7-, and 28-day prior to the clinical visits, respectively. \(Y_{ij} = 0 \) indicates subject \(i \) is not defined as IFG at visit \(j \); \(Y_{ij} = 1 \) indicates subject \(i \) is IFG at visit \(j \).

To account for potential selection bias due to loss of follow-up, we repeated our analyses used inverse probability weighting. Specifically, in a logistic regression, we predicted the probability of coming to a subsequent visit based on covariates from the previous one, including age, BMI, regular patterns of physical activity, smoking status, pack year smoked, FEV\(_1\) and FVC ratio, medication (diuretics and beta blocker), and education level.
Statistical Analysis of DNA Methylation and Mediation Analysis

Selection of mediators
We hypothesized that associations of PM$_{2.5}$ with FBG could be mediated through changes in gene-specific methylation of inflammatory biomarkers. We considered the four inflammation genes (i.e., IFN-γ, IL-6, ICAM-1 and TLR-2) separately in the mediation analysis. To approximate normality of the residuals, we used IFN-γ and IL-6 on their original scale and log-transformed ICAM-1 and TLR-2.

For DNA methylation of a specific gene to be considered as a potential mediator, we tested the following criteria (a) if there was an association between exposure and mediator; and (b) if there was an association between mediator and outcome.39,40 We also examined the presence of PM-mediator interactions, and found no evidence of interactions that changed FBG levels.

Underlying assumptions
To obtain valid estimates of the natural indirect effects, we adjusted for potential exposure-outcome confounders (denoted as C$_1$), exposure-mediator confounders (denoted as C$_2$) and mediator-outcome confounders (denoted as C$_3$), which included age, BMI, race, regular patterns of physical activity, smoking status, cumulative pack-years smoked, alcohol consumption, education level, statin use, temperature, seasonality, batch of methylation measurement, percentages of lymphocytes, and percentage of neutrophils. We assumed no unmeasured confounding for (a) PM$_{2.5}$-FBG relation, (b) methylation-FBG relation, (c) PM$_{2.5}$-methylation relation, after fitting the linear mixed-effects models with subject-specific intercepts and
controlling for C1, C2, and C3. In addition, we also assumed that no methylation-FBG
confounders would be affected by PM2.5 exposure.

Due to the longitudinal nature of the study, changes in FBG at one visit could potentially
affect gene-specific methylation at the subsequent visit \((Y_{ij} \rightarrow M_{ij+1})\) (dotted arrow in Figure
1.1). FBG at one visit therefore may serve as a potential mediator-outcome confounder for the
subsequent visit and may introduce bias in our estimates \(^{41}\). Therefore, we tested the presence of
an association between \(Y_{ij}\) and \(M_{ij+1}\), to check the assumption of time-varying confounding:

\[
M_{ij+1} = a_0 + u_i + a_1 Y_{ij} + \ldots + a_p X_{pij} + a_{PM2.5} PM2.5_{ij} + \epsilon_{ij}
\]

where \(i\) corresponds to each participant and \(j\) to the visit; \(a_0\) to the intercept for the
population mean; \(u_i\) to the subject-specific random intercept. \(M_{ij+1}\) corresponds to DNA
methylation at subsequent visit. \(Y_{ij}\) corresponds to FBG measurement. \(a_1 X_{1ij}\) to \(a_p X_{pij}\) correspond
to the covariates we selected a priori. \(a_{PM2.5} PM2.5\) corresponds to PM2.5 levels 1-, 7-, and 28-day
prior to the clinical visits, respectively. \(\epsilon_{ij}\) is the within-subject error term.

Mediation analysis

We fitted two linear mixed-effects models with random intercepts simultaneously, one modeling
the exposure-mediator association, and one modeling the mediator-outcome association \(^{42,43}\):

\[
M_{ij} = \beta_0 + u_i + \beta_1 X_{1ij} + \ldots + \beta_p X_{pij} + \beta_{PM2.5} PM2.5_{ij} + \epsilon_{ij}
\]

\[
Y_{ij} = \gamma_0 + g_0i + \gamma_1 X_{1ij} + \ldots + \gamma_p X_{pij} + \gamma_{PM2.5} PM2.5_{ij} + \gamma M_{ij} + \eta_{ij}
\]

where \(i\) corresponds to each participant and \(j\) to the visit; \(\beta_0\) and \(\gamma_0\) to the intercept for the
population mean; \(u_i\) and \(g_0i\) to the subject-specific random intercept. \(\beta_1 X_{1ij}\) to \(\beta_p X_{pij}\) and \(\gamma_p X_{pij}\) to
\(\gamma_p X_{pij}\) correspond to the covariates we selected \textit{a priori}. \(M_{ij}\) corresponds to DNA methylation
and \(Y_{ij}\) corresponds to FBG measurement. \(\beta_{PM2.5} PM2.5\) corresponds to PM2.5 levels 1-, 7-, and 28-
day prior to the clinical visits in the exposure-mediator association, and γ_{Mij} corresponds to DNA methylation in the mediator-outcome association. ε_{ij} and η_{ij} are the within-subject error terms.

$\gamma_{PM2.5}$ corresponds to the natural direct effect, and the natural indirect effect (also called “mediated” effect) is given by the product of $\beta_{PM2.5} \cdot \gamma_{M}$. The Delta method was used to calculated the variance of the natural indirect effect, which correspond to $\text{Var} (\gamma_{M}) \beta_{PM2.5}^2 + 2\text{Cov}(\beta_{PM2.5}, \gamma_{M}) \beta_{PM2.5} \gamma_{M} + \text{Var}(\beta_{PM2.5}) \gamma_{M}^2$. Proportion mediated is calculated as the percentage of natural indirect effect over the sum of natural direct and natural indirect effect (i.e., $[\beta_{PM2.5} \cdot \gamma_{M} / (\beta_{PM2.5} \cdot \gamma_{M} + \gamma_{PM2.5})]$).

In sensitivity analysis, we tested the robustness of the study findings to the no unmeasured-confounding assumptions: (a) we excluded participants who were current smokers to better control for residual confounding by smoking; (b) we additionally controlled for total calorie intake and glycemic index to reduce potential mediator-outcome confounding from diet; (c) we also restricted the analysis to participants with a C-reactive protein (CRP) level less than 10 mg/L, to partially remove potential effects from acute inflammation.

All analyses were conducted with SAS version 9.3 (SAS Institute Inc., Cary, NC), using PROC MIXED to fit the linear mixed effect models and PROC GENMOD to fit the GEE models.

RESULTS

Descriptive Statistics

A total of 1,152 FBG measurements were collected from the 551 non-diabetic participants in this study. Table 1.1 describes participant characteristics at their first visit. Mean FBG concentration
at the first visit was 99.8 ± 10.7 mg/dL (mean ± SD) and 18% of participants at the first visit had IFG (i.e., blood glucose between 100 mg/dL and 125 mg/dL). Summary statistics of PM$_{2.5}$ and temperature during the study period are presented in Table S1.1 (see Supplementary Material, Table S1.1).

Main Association of PM$_{2.5}$ Levels with FBG

PM$_{2.5}$ levels were associated with increased FBG (Table 1.2). For an IQR increase in PM$_{2.5}$ concentration in the previous 1-day (IQR=5.73 µg/m3), 7-day (IQR=4.25 µg/m3), and 28-day (IQR=3.12 µg/m3), FBG increased 0.57 mg/dL (95% CI: 0.02, 1.11, p-value=0.04), 1.02 mg/dL (95% CI: 0.41, 1.63, p-value=0.001), and 0.89 mg/dL (95% CI: 0.32, 1.47, p-value=0.003), respectively. We also found associations of PM$_{2.5}$ concentrations with IFG (i.e., FBG>100 mg/dl), particularly for the longer moving averages of PM$_{2.5}$ (Table 1.3). IQR increases in PM$_{2.5}$ in the previous 1-day (IQR=5.73 µg/m3), 7-day (IQR=4.25 µg/m3) and 28-day (IQR=3.12 µg/m3) exposure windows were associated with OR equal to 1.13 (95% CI: 0.97, 1.33, p-value=0.12), 1.27 (95% CI: 1.06, 1.52, p-value=0.01) and 1.32 (95% CI: 1.10, 1.58, p-value=0.003) for IFG, respectively. We also obtained similar estimates when we used inverse probability weighting to reduce potential selection bias (see Supplementary Material, Table S1.2).

DNA Methylation and Mediation analysis

PM$_{2.5}$ showed a negative association with ICAM-1 methylation, which, in turn, was negatively associated with FBG (Figure 1.2). Methylation of IFN-γ, IL-6 and TLR-2 showed no association with FBG. We also found no evidence of PM$_{2.5}$-mediator interactions that changed FBG levels. Since a mediator needs to be associated with both the exposure and the outcome39,40, we
conducted the analysis of mediation only for *ICAM-1* methylation. We examined the correlations between *ICAM-1* methylation and the other three genes, and found no substantial correlations, which suggests that the separate analyses are fairly appropriate.

Before conducting the mediation analysis, we examined whether FBG levels at one visit (Y_{ij}) affected *ICAM-1* methylation at the subsequent visit (M_{ij+1}) (i.e., FBG_{ij} -> ICAM-1_{ij+1}; dotted arrow in Figure 1.1), because it could potentially confound the mediator-outcome association, therefore may bias our estimates. We found no association between Y_{ij} (FBG_{ij}) and M_{ij+1} (ICAM-1_{ij+1}). Point estimates were negligible (see Supplementary Material, Table S1.3). When we introduced a lag time and examined the effect of *ICAM-1* methylation on FBG levels in the subsequent visit (i.e. ICAM-1_{ij} -> FBG_{ij+1}), we also did not find an association (point estimate=-0.14, 95% CI: -1.93, 1.65).

Table 1.4 presents the natural direct effect, the natural indirect effect, and proportion mediated for *ICAM-1* methylation over the different PM_{2.5} moving averages. We fitted the exposure-mediator and the mediator-outcome model simultaneously, and found substantial mediation effects of PM_{2.5} on FBG through a decrease in *ICAM* methylation for the 28-day exposure time window. The proportion mediated was larger (9%) for the 28-day exposure window, but small and negligible for the 1-day and 7-day moving averages.

We conducted further sensitivity analysis to examine if our results were robust to the no-unmeasured confounding assumptions required in the mediation analysis approach we used. Specifically, we excluded current smokers to limit residual confounding from smoking; we additionally controlled for total calorie intake and glycemic index to reduce potential confounding from diet; and we restricted the analysis to participants with a CRP level less than 10 mg/L to partially remove effect from acute inflammation. Proportion mediated for *ICAM-1*
methylation for the 28-day exposure time window was 9%, 7% and 10%, respectively (see Supplementary Material, Table S1.4).

DISCUSSION

In the present study, we showed that PM$_{2.5}$ concentrations estimated at the participants’ address were associated with higher FBG levels among non-diabetic individuals, as well as with higher odds of IFG. We also observed significant associations of lower blood ICAM-1 methylation, which is expected to up-regulate the expression of ICAM-1 in blood leukocytes, with both higher PM$_{2.5}$ levels and higher FBG levels.

Our study is consistent with previous epidemiology studies indicating that ambient PM is associated with metabolic dysregulation$^{14,16-18,45}$. Nevertheless, most previous studies either focused on T2DM or evaluated blood glucose over its entire range, including individuals with diabetes. The non-diabetic and pre-diabetic population represents an ideal target for primary prevention, which, however, has been understudied in air pollution research. Our findings of PM$_{2.5}$ associations with FBG in this group may help identify individuals who are particularly susceptible to changes in FBG in the non-diabetic range. It is important to notice that the small changes in FBG resulted in significant odds of IFG, owing to the fact that many people are very close to 100 mg/dL in this aged population, and a very small change in FBG may be enough to pass the threshold.

Our mediation analysis suggests that ICAM-1 methylation in blood leukocytes served as a mediator of the association between PM$_{2.5}$ and FBG, and we observed significant mediated effect at 28-day exposure time window. Our finding of higher concentrations of PM$_{2.5}$ associated with lower methylation of the ICAM-1 gene, which is expected to result in higher ICAM-1 expression,
is consistent with previous literature indicating that elevated concentrations of PM are associated with increase in expression of endothelial markers. The ICAM-1 glycoprotein is responsible for leukocyte adhesion, homing, and transmigration during inflammatory responses. Exposure to PM$_{2.5}$ may cause local inflammation in the lungs and promote circulating leukocytes in blood to transmigrate to the target tissue through the up-regulation of adhesion molecules on the endothelial cell surface. Recent observational and intervention studies have linked elevated concentrations of plasma endothelial adhesion molecules with markers of insulin resistance and increased risk of type 2 diabetes. The ICAM-1 glycoprotein may facilitate migration of leukocytes from the blood to the adipose tissue, which could result in local inflammation and subsequently insulin resistance. Alternatively, the ICAM-1 glycoprotein may also facilitate leukocyte transmigration to the pancreas, which could affect beta-cell function and result in impaired insulin secretion. Although the observed association was relatively modest, our estimates were comparable to many other studies evaluating the association between ambient air pollution and DNA methylation with similar exposure levels. DNA methylation is measured as a percentage, which indicates the proportion of cells, or more accurately of haploid genomes, which show methylation at the sequence being analyzed. The differences in DNA methylation reported in our study are related to the presence upon PM$_{2.5}$ exposure of higher number of circulating blood cells within no methylation at the ICAM-1 promoter. Further research is needed to determine whether these cells correspond to a specific leukocyte population with known function and their potential roles in relation to PM$_{2.5}$ effects.

Conversely, methylation on the cytokine genes investigated (i.e., IFN-γ and IL-6) was not implicated as a mediator in this study. Many pro- and anti-inflammatory cytokines act in concert
to trigger the inflammatory cascade. Future research may expand the number of inflammatory cytokines investigated and examine their joint effects.

One interesting aspect of the human methylome is that it exhibits both dynamic and static patterns. For instance, methylation of imprinted genes and genes drives tissue lineage commitment and differentiation is established during embryogenesis and persists through life \(^57\); on the other hand, DNA methylation of inflammatory genes may change rapidly after environmental insults \(^55,58,59\). Our results are consistent with the dynamic nature of methylation levels in inflammatory pathways, which allows for fine tuning of inflammatory responses. Nevertheless, we are aware that differences in DNA methylation do not necessarily translate into gene expression changes. DNA methylation is only one of the regulatory machineries that control gene expression. Other regulatory mechanisms, such a transcription factor activation, histone modification, chromatin remodeling and RNA silencing may also contribute to regulation of gene expression at various stages.

This study has a number of strengths. We estimated concentrations of PM\(_{2.5}\) at the residential address for each participant using a state-of-art hybrid model. Estimates from this hybrid model serve as better surrogates relative to the standard use of data from monitoring station for each participant’s actual exposure, and limit exposure misclassifications. We conducted analyses both on FBG as a continuous variable and on IFG, a dichotomized variable constructed using a well-established cutoff for preclinical alterations in glucose metabolism. These two sets of analyses produced highly consistent results. We used repeated measures, which were accounted for using linear mixed-effects models with subject specific intercepts for FBG and generalized linear equations (GEE) model with empirical variance for IFG. We conducted mediation analysis as a novel approach for DNA methylation studies. This approach is
particularly useful for investigating effects due to environmental exposures. While Mendelian randomization—a method that relies on genotype data used as instrumental variables—is often proposed to identifying epigenetic mediation, this approach cannot be used for external risk factors, such as PM, which, due to their nature, are not associated with the participants’ genetic sequences (such as single nucleotide polymorphisms). Finally, we measured DNA methylation in candidate genes by pyrosequencing, which yields high precision.

Our study has a few notable limitations. We focused on correlations among DNA methylation and FBG at the same clinical visit. It is therefore difficult to disentangle the temporal relationship between DNA methylation and FBG concentrations. However, when we examined the effect of DNA methylation on FBG for the subsequent visit (i.e., $ICAM-I_{ij} \rightarrow FBG_{ij+1}$), we did not find any association. We also found no association of FBG on $ICAM-I$ methylation at the subsequent visit (i.e., $FBG_{ij} \rightarrow ICAM-I_{ij+1}$). These analyses confirm that the effects we observed represent short-medium term responses to PM$_{2.5}$ and are not persistent over the 3-5 years between the medical visits. To obtain valid estimates for the natural indirect effects, we made the following assumptions: (a) no-unmeasured confounding between PM$_{2.5}$ concentration and FBG levels, (b) no-unmeasured confounding between PM$_{2.5}$ concentration and methylation, (c) no-unmeasured confounding between methylation and FBG levels, and (d) no methylation-FBG confounders affected by the exposure. We conducted a number of sensitivity analysis to test the robustness to the no-unmeasured confounding assumptions. We excluded participants who were current smokers to better control for residual confounding by smoking; we additionally controlled for total calorie intake and glycemic index, to limit potential confounding from diet; we also restricted the analysis to participants with a CRP level less than 10 mg/L, to partially removal potential effect from acute inflammation. In addition, we assessed the validity
of assumption (d) either based on subject-knowledge or empirically. From previous subject-knowledge, we assumed that PM$_{2.5}$ concentration would not affect participant’s age, race, smoking status, statin use, as well as batch of methylation measurements and seasonality. We also tested whether PM$_{2.5}$ concentration would influence participant’s BMI, regular patterns of physical activity, percentage of lymphocytes and percentage of neutrophils, by regressing PM$_{2.5}$ concentration on each of these potential confounders. None of the above mediator-outcome confounders in current analysis were affected by the exposure (p-values were 0.10, 0.54, 0.50 and 0.78, respectively). Another limitation of our study is the potential for measurement error in both the exposure and FBG. However, we expect both measurement errors to be non-differential and therefore to attenuate – rather than to cause – the observed significant associations.

CONCLUSION

In conclusion, we found that PM$_{2.5}$ concentrations are associated with higher FBG level, and this association was in part mediated through ICAM-1 gene methylation, particularly at the longer (28-day) moving average investigated. Our study demonstrates a novel approach of mediation analysis in epigenetic studies and highlights a mediating role of ICAM-1 gene methylation in air-pollution associated abnormal glucose metabolism. While the proportion mediated by ICAM-1 methylation alone is relatively modest, methylation of other genes not investigated in this study, independently or in combination with ICAM-1 methylation, may mediate larger proportions of PM$_{2.5}$ effects. Future epigenome-wide studies are needed to determine the extent to which DNA methylation contributes to mediate environmental effects on human metabolism.
ACKNOWLEDGEMENTS

The authors would like to thank all Normative Aging Study participants. We are also indebted to Johanna Lepeule for sharing with us the codes we adapted to perform inverse probability weighting.

FUNDINGS

This work was supported by National Institutes of Health [R01ES021733, R01ES015172, R01ES021357, and P30ES000002]; U.S. Environmental Protection Agency [RD-83479801]; and the Department of Agriculture, Agricultural Research Service [contract 53-K06-510]. The VA Normative Aging Study is supported by the Cooperative Studies Program/Epidemiology Research and Information Center of the U.S. Department of Veterans Affairs and is a component of the Massachusetts Veterans Epidemiology Research and Information Center, Boston, Massachusetts. The views expressed in this paper are those of the authors and do not necessarily represent the views of the US Department of Veterans Affairs.

DISCLOSURES

None of the authors has any actual or potential competing financial interest
Table 1.1 Characteristics of the Normative Aging Study participants included in the analysis, 2000-2011.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Visit 1</th>
<th>Visit 2</th>
<th>Visit 3</th>
<th>Visit 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean ± SD</td>
<td>73.3 ± 6.9</td>
<td>75.6 ± 6.4</td>
<td>77.9 ± 5.9</td>
<td>78.5 ± 5.8</td>
</tr>
<tr>
<td>BMI (kg/m^2), mean ± SD</td>
<td>27.8 ± 3.7</td>
<td>27.4 ± 3.7</td>
<td>27.1 ± 3.6</td>
<td>27.5 ± 3.9</td>
</tr>
<tr>
<td>Smoking status, N (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>165 (30%)</td>
<td>112 (31%)</td>
<td>71 (34%)</td>
<td>14 (33%)</td>
</tr>
<tr>
<td>Former</td>
<td>363 (66%)</td>
<td>244 (67%)</td>
<td>135 (64%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Current</td>
<td>23 (4%)</td>
<td>7 (2%)</td>
<td>5 (2%)</td>
<td>28 (65%)</td>
</tr>
<tr>
<td>Pack years, mean ± SD</td>
<td>19.9 ± 24.7</td>
<td>18.7 ± 23.1</td>
<td>17.1 ± 21.3</td>
<td>16.0 ± 11.5</td>
</tr>
<tr>
<td>Race, N (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>543 (97%)</td>
<td>354 (98%)</td>
<td>203 (96%)</td>
<td>42 (98%)</td>
</tr>
<tr>
<td>Other</td>
<td>17 (3%)</td>
<td>9 (2%)</td>
<td>8 (4%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Metabolic Equivalent of Task, N (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low (≤12 hours/week)</td>
<td>353 (64%)</td>
<td>222 (61%)</td>
<td>129 (61%)</td>
<td>26 (60%)</td>
</tr>
<tr>
<td>Medium (12-30 hours/week)</td>
<td>111 (20%)</td>
<td>89 (25%)</td>
<td>47 (22%)</td>
<td>10 (23%)</td>
</tr>
<tr>
<td>High (≥30 hours/week)</td>
<td>87 (16%)</td>
<td>52 (14%)</td>
<td>35 (17%)</td>
<td>7 (16%)</td>
</tr>
<tr>
<td>Two or more drinks per day, N (%)</td>
<td>102 (19%)</td>
<td>69 (19%)</td>
<td>35 (17%)</td>
<td>4 (9%)</td>
</tr>
<tr>
<td>Education, N (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 12 years</td>
<td>181 (33%)</td>
<td>119 (32%)</td>
<td>63 (30%)</td>
<td>11 (26%)</td>
</tr>
<tr>
<td>13-16 years</td>
<td>253 (46%)</td>
<td>163 (45%)</td>
<td>98 (46%)</td>
<td>24 (56%)</td>
</tr>
<tr>
<td>> 16 years</td>
<td>115 (21%)</td>
<td>81 (22%)</td>
<td>50 (24%)</td>
<td>8 (19%)</td>
</tr>
<tr>
<td>Statin use, N (%)</td>
<td>196 (36%)</td>
<td>180 (50%)</td>
<td>122 (58%)</td>
<td>24 (56%)</td>
</tr>
<tr>
<td>Fasting blood glucose (mg/dL)</td>
<td>99.8 ± 10.7</td>
<td>98.9 ± 10.0</td>
<td>99.0 ± 10.5</td>
<td>99.0 ± 11.5</td>
</tr>
<tr>
<td>Impaired fasting blood glucose, N (%)</td>
<td>100 (18%)</td>
<td>54 (15%)</td>
<td>38 (18%)</td>
<td>7 (16%)</td>
</tr>
<tr>
<td>Blood IFN-γ methylation, mean ± SD</td>
<td>84.3 ± 5.9</td>
<td>85.0 ± 4.8</td>
<td>85.3 ± 4.7</td>
<td>85.3 ± 5.5</td>
</tr>
<tr>
<td>Blood IL-6 methylation, mean ± SD</td>
<td>43.6 ± 10.3</td>
<td>43.5 ± 10.2</td>
<td>43.8 ± 10.3</td>
<td>42.8 ± 11.5</td>
</tr>
<tr>
<td>Blood ICAM methylation, mean ± SD</td>
<td>4.3 ± 1.8</td>
<td>3.9 ± 1.2</td>
<td>4.4 ± 1.2</td>
<td>4.8 ± 1.9</td>
</tr>
<tr>
<td>Blood TLR2 methylation, mean ± SD</td>
<td>3.1 ± 1.3</td>
<td>3.0 ± 1.4</td>
<td>2.5 ± 1.4</td>
<td>1.9 ± 1.0</td>
</tr>
</tbody>
</table>

Cohort participants with diabetes were excluded.
Table 1.2

Estimated change (and 95% CI) in fasting blood glucose (FBG) level (mg/dL) per interquartile range (IQR) increase in PM$_{2.5}$ (particulate matter with aerodynamic diameter ≤2.5 μm) concentration averaged over the corresponding time window before each visit.

<table>
<thead>
<tr>
<th>PM$_{2.5}$ concentration</th>
<th>N of participants</th>
<th>N of observations</th>
<th>PM$_{2.5}$ Interquartile Range (IQR)</th>
<th>Estimated change (95% CI) in FBG per IQR increase in PM$_{2.5}$ concentrations</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-day moving average</td>
<td>551</td>
<td>1152</td>
<td>5.71 μg/m3</td>
<td>0.57 (0.02; 1.11)</td>
<td>0.04</td>
</tr>
<tr>
<td>7-day moving average</td>
<td>551</td>
<td>1152</td>
<td>4.28 μg/m3</td>
<td>1.02 (0.41; 1.63)</td>
<td>0.001</td>
</tr>
<tr>
<td>28-day moving average</td>
<td>551</td>
<td>1152</td>
<td>3.09 μg/m3</td>
<td>0.89 (0.32; 1.47)</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Results from linear mixed-effects regression models accounting for correlation across multiple visits and adjusted for age, BMI, race, regular patterns of physical activity, smoking status, pack-years smoked, alcohol consumption, education level, statin use, temperature, and seasonality. Participants with diabetes were excluded.
Table 1.3 Odds ratio (OR) (and 95% CI) of impaired fasting blood glucose (IFG, defined as a fasting blood glucose level greater than 100 mg/dL and less than 126 mg/dL) per interquartile range (IQR) increase in PM$_{2.5}$ (particulate matter with aerodynamic diameter ≤2.5 μm) concentration averaged over the corresponding time window before each visit.

<table>
<thead>
<tr>
<th>PM$_{2.5}$ concentration</th>
<th>N of participants</th>
<th>N of observations</th>
<th>PM$_{2.5}$ Interquartile Range (IQR)</th>
<th>Odds ratio (95% CI) of IFG per IQR increase in PM$_{2.5}$ concentrations</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-day moving average</td>
<td>551</td>
<td>1152</td>
<td>5.73 μg/m3</td>
<td>1.13 (0.97; 1.33)</td>
<td>0.12</td>
</tr>
<tr>
<td>7-day moving average</td>
<td>551</td>
<td>1152</td>
<td>4.25 μg/m3</td>
<td>1.27 (1.06; 1.52)</td>
<td>0.01</td>
</tr>
<tr>
<td>28-day moving average</td>
<td>551</td>
<td>1152</td>
<td>3.12 μg/m3</td>
<td>1.32 (1.10; 1.58)</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Results from GEE models accounting for correlation across multiple visits and adjusted for age, BMI, race, regular patterns of physical activity, smoking status, pack-years smoked, alcohol consumption, education level, statin use, temperature, and seasonality. Participants with diabetes were excluded.
Table 1.4 Mediation effect investigating whether blood ICAM-1 methylation mediates the association between air pollution and fasting blood glucose level. Indirect effect represents the “mediated” effect through the ICAM-1 methylation pathway. Estimates correspond to 1 µg/m³ increase in PM$_{2.5}$ concentration.

<table>
<thead>
<tr>
<th>PM$_{2.5}$ concentration</th>
<th>Exposure to mediator association ($\beta_{PM_{2.5}}$)</th>
<th>Mediator to outcome association (γ_M)</th>
<th>Mediated effect of ICAM-1 methylation</th>
<th>Proportion mediated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-day moving average</td>
<td>0.004 (-0.008; 0.008)</td>
<td>-2.65 (-4.41; -0.89)</td>
<td>-0.01 (-0.02; 0.004)</td>
<td>-a</td>
</tr>
<tr>
<td>7-day moving average</td>
<td>-0.0004 (-0.007; 0.006)</td>
<td>-2.69 (-4.45; -0.93)</td>
<td>0.001 (-0.02; 0.02)</td>
<td>1%</td>
</tr>
<tr>
<td>28-day moving average</td>
<td>-0.01 (-0.02; -0.004)</td>
<td>-2.47 (-4.23; -0.72)</td>
<td>0.03 (0.0001; 0.06)</td>
<td>9%</td>
</tr>
</tbody>
</table>

Results from linear mixed-effects regression models accounting for correlation across multiple visits and adjusted for age, BMI, race, regular patterns of physical activity, smoking status, pack-years smoked, alcohol consumption, education level, statin use, temperature, seasonality, batch effect, % of lymphocytes, and % of neutrophils. Participants with diabetes were excluded.

*aProportion mediated cannot be estimated in this case because $\beta_{PM_{2.5}}$ and γ_M have opposite signs.

*ICAM-1 methylation is on the logarithm scale.
LEGEND TO FIGURES

Figure 1.1 Directed acyclic graph (DAG) for mediation analysis.

PM$_{2.5}^{i,j}$ represents air pollution exposure for i^{th} subject prior to j^{th} visit; $M^{i,j}$ represents gene-specific DNA methylation for i^{th} subject at j^{th} visit; $Y^{i,j}$ represents fasting blood glucose (FBG) concentrations for i^{th} subject at j^{th} visit. $C_{1}^{i,j}$ represents exposure outcome confounders, $C_{2}^{i,j}$ represents exposure mediator confounders; $C_{3}^{i,j}$ represents mediator outcome confounders.

Note: to be simplified, correlations between repeated measures of exposures (i.e. PM$_{2.5}^{ij}$ and PM$_{2.5}^{ij+1}$), repeated measures of mediators (i.e., M_{ij} and M_{ij+1}) and repeated measures of confounders (i.e., C_{ij} and C_{ij+1}) are not shown in this DAG.

Figure 1.2 Inflammatory candidate gene methylation mediator model of the relationship between PM$_{2.5}$ concentration and fasting blood glucose level.

$ICAM-1$ mean and $TLR-2$ mean DNA methylation is log-normally distributed and $IL-6$ and $IFN-\gamma$ are normally distributed. β is the coefficient of the independent variable (PM$_{2.5}$ 28-day moving average) when regressing the mediator (candidate gene methylation) on the independent variable, γ is the coefficient of the mediator when regressing the dependent variable (FBG) on both the independent variable and the mediator. Results from regression models are adjusted for age, BMI, race, regular patterns of physical activity, smoking status, pack-years smoked, alcohol consumption, education level, statin use, batch effects, percentage of lymphocytes, and percentage of neutrophils. Participants with diabetes were excluded.
Figure 1.1
Figure 2.2

Independent variable PM$_{2.5}$

- $\beta_{IFN-\gamma} = 0.02$ (95% CI: -0.06; 0.09) → $IFN-\gamma$ methylation → $\gamma_{IFN-\gamma} = 0.03$ (95% CI: -0.05; 0.1)
- $\beta_{IL-6} = 0.2$ (95% CI: 0.03; 0.3) → $IL-6$ methylation → $\gamma_{IL-6} = 0.003$ (95% CI: -0.04; 0.05)
- $\beta_{ICAM-1} = -0.01$ (95% CI: -0.02; -) → $ICAM-1$ methylation → $\gamma_{ICAM-1} = -2.3$ (95% CI: -3.4; -1.1)
- $\beta_{TLR-2} = -0.003$ (95% CI: -0.01; -) → $TLR-2$ methylation → $\gamma_{TLR-2} = 0.4$ (95% CI: -0.5; 1.3)

Dependent variable FBG
Table S1.1 Summary statistics of PM$_{2.5}$ (PM with aerodynamic diameter ≤2.5 μm) and temperature levels. PM$_{2.5}$ and temperature were summarized as cumulative averaged exposures up to the previous 28-day exposure window during the study period. PM$_{2.5}$ was estimated using spatiotemporal land-use regression models estimating levels at the participants’ residential addresses. Temperature values were obtained through the national climatic data center (NCDC); grid cells were matched to the closest weather station for meteorological variables.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>SD</th>
<th>Percentiles</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>10th</td>
<td>25th</td>
<td>50th</td>
<td>75th</td>
<td>90th</td>
</tr>
<tr>
<td>PM$_{2.5}$ (μg/m3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-day moving average</td>
<td>10.92</td>
<td>5.42</td>
<td>5.86</td>
<td>7.37</td>
<td>9.47</td>
<td>13.08</td>
<td>17.54</td>
</tr>
<tr>
<td>7-day moving average</td>
<td>10.59</td>
<td>3.48</td>
<td>6.75</td>
<td>8.09</td>
<td>10.06</td>
<td>12.37</td>
<td>14.79</td>
</tr>
<tr>
<td>28-day moving average</td>
<td>10.71</td>
<td>2.62</td>
<td>7.57</td>
<td>8.94</td>
<td>10.45</td>
<td>12.03</td>
<td>13.89</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-day moving average</td>
<td>11.93</td>
<td>7.59</td>
<td>1.92</td>
<td>6.24</td>
<td>12.11</td>
<td>18.00</td>
<td>21.80</td>
</tr>
<tr>
<td>7-day moving average</td>
<td>11.80</td>
<td>7.30</td>
<td>1.41</td>
<td>6.26</td>
<td>12.42</td>
<td>18.16</td>
<td>20.87</td>
</tr>
<tr>
<td>28-day moving average</td>
<td>11.85</td>
<td>7.14</td>
<td>1.54</td>
<td>5.86</td>
<td>12.82</td>
<td>18.38</td>
<td>20.52</td>
</tr>
</tbody>
</table>
Table S1.2 Estimated change (and 95% CI) in fasting blood glucose (FBG) level (mg/dL) per interquartile range (IQR) increase in PM$_{2.5}$ (particulate matter with aerodynamic diameter ≤2.5 μm) concentration averaged over the corresponding time window before each visit. We accounted for potential selection bias using inverse probability weighting.

<table>
<thead>
<tr>
<th>PM$_{2.5}$ concentration</th>
<th>N of participants</th>
<th>N of observations</th>
<th>PM$_{2.5}$ Interquartile Range (IQR)</th>
<th>Estimated change (95% CI) in FBG per IQR increase in PM$_{2.5}$ concentrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-day moving average</td>
<td>551</td>
<td>1133</td>
<td>5.71 μg/m3</td>
<td>0.51 (-0.04; 1.05)</td>
</tr>
<tr>
<td>7-day moving average</td>
<td>551</td>
<td>1133</td>
<td>4.28 μg/m3</td>
<td>0.91 (0.29; 1.53)</td>
</tr>
<tr>
<td>28-day moving average</td>
<td>551</td>
<td>1133</td>
<td>3.09 μg/m3</td>
<td>0.80 (0.21; 1.39)</td>
</tr>
</tbody>
</table>

Results from linear mixed-effects regression models accounting for correlation across multiple visits and adjusted for age, BMI, race, regular patterns of physical activity, smoking status, pack-years smoked, alcohol consumption, education level, statin use, temperature, and seasonality. Participants with diabetes were excluded.

Potential selection bias due to loss to follow-up was accounted for using inverse probability weighting. In a logistic regression, we predict the probability of coming to a subsequent visit by covariates from the previous one, which include age, BMI, regular patterns of physical activity, smoking status, pack year smoked, alcohol consumption, education level, statin use, temperature, and seasonality. Participants with diabetes were excluded.
Table 1.3 Estimated change (and 95% CI) in inflammatory candidate gene methylation with increase in fasting blood glucose [FBG (mg/dL)] concentrations at previous visits ($Y_{ij} \rightarrow M_{ij+1}$).

<table>
<thead>
<tr>
<th>Candidate gene methylation</th>
<th>N of subjects</th>
<th>Estimated change (95% CI) in M_{ij+1} per 1 mg/dL increase in Y_{ij}</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN-γ</td>
<td>472</td>
<td>-0.02 (-0.05; 0.02)</td>
</tr>
<tr>
<td>IFN-γ adjusted for M_{ij}</td>
<td>463</td>
<td>-0.02 (-0.06; 0.01)</td>
</tr>
<tr>
<td>IL-6</td>
<td>472</td>
<td>-0.04 (-0.11; 0.04)</td>
</tr>
<tr>
<td>IL-6 adjusted for M_{ij}</td>
<td>466</td>
<td>-0.03 (-0.09; 0.02)</td>
</tr>
<tr>
<td>ICAM-1*</td>
<td>472</td>
<td>0.001 (-0.002; 0.004)</td>
</tr>
<tr>
<td>ICAM-1* adjusted for M_{ij}</td>
<td>424</td>
<td>0.001 (-0.002; 0.004)</td>
</tr>
<tr>
<td>TLR-2*</td>
<td>472</td>
<td>0.003 (-0.002; 0.007)</td>
</tr>
<tr>
<td>TLR-2* adjusted for M_{ij}</td>
<td>415</td>
<td>0.003 (-0.002; 0.008)</td>
</tr>
</tbody>
</table>

Results from linear mixed-effects regression models accounting for correlation across multiple visits, and adjusted for age, BMI, race, regular patterns of physical activity, smoking status, pack-years smoked, alcohol consumption, education level, statin use, batch effects, percentage of lymphocytes, and percentage of neutrophils (all from previous visits). Participants with diabetes were excluded. *ICAM-1 and TLR-2 DNA methylation measurements were log transformed.
Table S1.4 Sensitivity analysis of the mediation effect of ICAM-1 methylation on the association between PM$_{2.5}$ concentrations averaged over 28-day exposure window with fasting blood glucose (FBG) level (mg/dL). Natural indirect effect represents the “mediated” effect through the ICAM-1 methylation pathway. Estimates correspond to 1 μg/m3 increase in PM$_{2.5}$ concentration.

<table>
<thead>
<tr>
<th>PM$_{2.5}$ concentration averaged over 28-day moving average</th>
<th>Exposure to mediator association ($\beta_{PM_{2.5}}$) (95% CI)</th>
<th>Mediator to outcome association (γ_M) (95% CI)</th>
<th>Natural indirect effect of ICAM-1 methylation (95% CI)</th>
<th>Proportion mediated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1a</td>
<td>-0.01 (-0.02; -0.006)</td>
<td>-2.30 (-3.43; -1.17)</td>
<td>0.03 (-0.002; 0.06)</td>
<td>9%</td>
</tr>
<tr>
<td>Model 2b</td>
<td>-0.01 (-0.02; -0.004)</td>
<td>-2.32 (-4.59; -0.05)</td>
<td>0.03 (-0.007; 0.07)</td>
<td>7%</td>
</tr>
<tr>
<td>Model 3c</td>
<td>-0.01 (-0.02; -0.005)</td>
<td>-2.99 (-4.13; -1.85)</td>
<td>0.03 (0.0006; 0.07)</td>
<td>10%</td>
</tr>
</tbody>
</table>

Results from linear mixed-effects regression models adjusted for age, BMI, race, regular patterns of physical activity, smoking status, pack-years smoked, alcohol consumption, education level, statin use, temperature, seasonality, batch effect, percentage of lymphocytes, percentage of neutrophils. Participants with diabetes were excluded.

a We excluded current smokers to limit potential residual confounding by smoking.

b We additionally controlled for dietary intake (total calorie intake and glycemic index), to reduce potential confounding by diet.

c We restricted the analysis to participants with a C-reactive protein (CRP) level less than 10 mg/L, to partially removal potential effect from acute inflammation.
Figure S1.1 Methylation of specific CpG sites for the four candidate genes (interferon gamma (*IFN-γ*), interleukin-6 (*IL-6*), Toll-like receptor 2 (*TLR-2*), and intracellular adhesion molecule-1 (*ICAM-1*)).

i. *ICAM-1* methylation CpG sites

Note: PCR: polymerase chain reaction; PSQ: pyrosequencing; PSQ CpG sites are the methylation sites where pyrosequencing was performed.
ii. *IFN-γ* methylation CpG sites
iii. *IL-6* methylation CpG sites
iv. *TLR-2* methylation CpG sites
Figure S1.2 Timeline of the study design.
REFERENCES

38. Eze IC, Hemkens LG, Bucher HC, Hoffmann B, Schindler C, Kunzli N, Schikowski T, Probst-Hensch NM. Association between Ambient Air Pollution and Diabetes Mellitus in...

CHAPTER 2

Associations of Annual Ambient PM$_{2.5}$ Mass and PM$_{2.5}$ Components with Mitochondrial Damage in Older Adults: A Multi-pollutant Approach in The Veterans Affairs Normative Aging Study, 2000–2012

Cheng Peng a, Akin Cayir b, Marco Sanchez-Guerra a, Qian Di a, Ander Wilson c, Jia Zhong a, Anna Kosheleva a, Letizia Trevisi a, Elena Colicino a, Kasey Brennan a, Alexandra E. Dereix a, Lingzhen Dai a, Jia Chen d, Brent A. Coull b, Pantel Vokonas e, Joel Schwartz a,f, Andrea A. Baccarelli a

a Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
b Vocational Health College, Canakkale Onsekiz Mart University, Çanakkale, Turkey
c Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
d Department of Preventive Medicine, Mount Sinai Hospital, New York, NY, USA
e Normative Aging Study, Veterans Affairs Boston Healthcare System and the Department of Medicine, Boston University School of Medicine, Boston, MA, USA
f Channing Laboratory, Harvard Medical School, Boston, MA, USA

Correspondence: Cheng Peng, Department of Environmental Health, Harvard School of Public Health, Building 1, G-7, 665 Huntington Avenue, Boston, MA 02115, USA. Email: chp950@mail.harvard.edu
ABSTRACT

Background: Fine particulate matter (PM$_{2.5}$) represents a mixture of components with different toxicities. However, little is known about the relative effects of PM$_{2.5}$ mass and PM$_{2.5}$ components on oxidative stress-related markers, such as mitochondrial DNA (mtDNA) abundance, that may lie on the pathway of PM$_{2.5}$-associated disease.

Methods: We studied 646 elderly male participants in the Normative Aging Study (2000-2012) to investigate associations of long-term exposure to PM$_{2.5}$ mass and PM$_{2.5}$ components with mtDNA abundance. Annual concentrations of pollutants were estimated at each participant’s residential address using spatial- and temporal-resolved chemical transport models. We measured blood mtDNA abundance using real-time PCR. We applied a shrinkage and selection method (adaptive LASSO) to identify pollutants most predictive of mtDNA abundance, and fit multi-pollutant linear mixed-effects models with subject-specific intercept to estimate the relative effects of individual PM component.

Results: MtDNA abundance was negatively associated with PM$_{2.5}$ mass concentration in the previous 1-year moving average exposure window and—after adjusting for PM$_{2.5}$ mass—several PM$_{2.5}$ components, including organic carbon, sulfate (marginally) and nitrate. In multi-pollutant models including as independent variables PM$_{2.5}$ mass and PM$_{2.5}$ components selected by LASSO, nitrate components of PM$_{2.5}$ were associated with mtDNA abundance. A standard deviation (SD) increase in annual PM$_{2.5}$-associated nitrate concentration was associated with a 0.12 SD (95% CI: -0.18; -0.07) decrease in mtDNA abundance. Analyses restricted to PM$_{2.5}$ annual moving average below the current 1-year EPA standard (\leq12 µg/m3) produced similar results.
Conclusions: Long-term exposures to PM$_{2.5}$-associated nitrate were related with decreased mtDNA abundance independent of PM$_{2.5}$ mass. Mass alone may not fully capture the oxidation potency of PM$_{2.5}$ to the mitochondrial genome.
INTRODUCTION

Epidemiological studies have demonstrated consistent associations between fine particulate matter (PM with aerodynamic diameter ≤2.5 μm, or PM$_{2.5}$) exposures and increased cardiopulmonary risks. However, PM$_{2.5}$ is a complex mixture, so mass concentration may not capture how individual PM components vary in physicochemical and toxicological properties. Further, because PM$_{2.5}$ chemical composition often reflects source of emission, identifying sources that contribute to greater risk could help inform more effective emission control strategies.

To foster understanding of differential toxicities of PM$_{2.5}$ components, recent epidemiological studies have studied the adverse health effects of PM$_{2.5}$ by its constituent components. A growing body of evidence suggests that PM from vehicle exhausts, diesel, residual oil burning, and road dust are associated with higher risks of respiratory and cardiovascular hospital admissions and mortality. Several studies also demonstrated that specific PM$_{2.5}$ components, such as elemental carbon (EC), silicon (Si), sulfate (SO$_{4}^{2-}$) and nitrate (NO$_{3}^{-}$), modify the associations between PM$_{2.5}$ and cardiovascular mortality. PM$_{2.5}$ containing higher proportions of metal components has also been shown to have stronger association with mortality. Oxidative stress is one of the primary pathways proposed to account for the association of PM$_{2.5}$ with health related outcomes. There is little information, however, about the relative effects of PM$_{2.5}$ components on early oxidation markers, especially for long-term exposures.
Mitochondrial DNA (mtDNA) is an emerging cellular target for environmental exposures that generate oxidative damage.\(^3\) Compared to the nuclear genome, the mitochondrial genome is more susceptible to oxidative damage due to lack of introns and protective histone proteins as well as limited capacity to repair.\(^4\) More important, oxidation of the mitochondrial genome can lead to increased mutation rate, and, in turn, damaged mitochondria may become themselves a source of endogenous oxidative species. This makes the mitochondrial genome a central site that both reflects and intensifies oxidative damage.\(^5\) Further, mitochondrial damage and dysfunction is associated with a wide range of cardiac outcomes, including atherosclerosis,\(^71\) hypercholesterolemia,\(^72\) ischemic heart disease,\(^73\) and hypertension.\(^74\) Mitochondrial damage and dysfunction—as reflected in decreases in mtDNA abundance relative to the nuclear genome—may provide a novel molecular marker to assess oxidative stress that underlies PM associated pathogenesis.\(^6,7\)

In this study, we examined associations between annual moving averages of PM\(_{2.5}\) mass, PM\(_{2.5}\) components [i.e., elemental carbon (EC), organic carbon (OC), sulfate (SO\(_4^{2-}\)), nitrate (NO\(_3^{-}\))] and mtDNA abundance in an elderly population. We estimated concentrations of PM\(_{2.5}\) mass and components at the residential address for each participant using spatial- and temporal-resolved models, which incorporated both land-use regression and chemical transport modeling. We measured mtDNA abundance—an indicator for oxidative damage—as the ratio between mtDNA copies to the nuclear genome. We applied a regression shrinkage and penalization method to identify a subset of PM\(_{2.5}\) components most predictive of the outcome, and conducted multi-pollutant regression modeling to estimate the relative effects of individual component on mtDNA abundance. We hypothesized that some PM\(_{2.5}\) components may have higher potential for
oxidative damage to mtDNA than others, and that PM$_{2.5}$ mass concentration alone may not fully represent oxidative damage potential to the mitochondrial genome.

METHODS

Study participants

We based this analysis on the Normative Aging Study, a prospective longitudinal cohort established in 1963 by the U.S. Veterans Administration in the greater Boston, Massachusetts area. A detailed study description was published recently.25 In brief, study participants underwent physical examinations every 3–5 years. Self-administered questionnaires—which included social-demographic characteristics, medical history, medications, and lifestyle—were completed during each visit. Blood samples were drawn after an overnight fast and smoking abstinence. Beginning in 2000, we estimated air pollution concentrations at the participant’s home address, including PM$_{2.5}$ mass and PM$_{2.5}$ components (OC, EC, SO$_4$$^{2-}$, NO$_3^-$), using hybrid spatiotemporal prediction models. In total, we collected complete information for 646 male participants, including air pollution measurements estimated from prediction models and mtDNA measurements for at least one visit between 2000 and 2012 (total mtDNA measurements = 1,178; number of visits per participant = 1–4) (Supplementary Figure 2.1). Of the 646 participants, 273 participants completed only one visit, 236 participants completed two visits, and 137 participants completed three or more visits. Participants signed informed consents at each clinical visit. Institutional Review Boards of the participating institutions approved this study.

Estimates of PM$_{2.5}$ mass and PM$_{2.5}$ components
We constructed separate hybrid models to estimate PM$_{2.5}$ mass and PM$_{2.5}$ components concentrations at each participant’s residential address. Each hybrid model integrates simulation outputs from a chemical transport model, land-use terms, meteorological variables, and other correction terms. In brief, we used Goddard Earth Observing System Chemistry (GEOS-Chem) model, a chemical transport model that simulates formation and transportation of atmospheric components, to obtain raw estimation of PM$_{2.5}$ mass and PM$_{2.5}$ components. Raw outputs were then calibrated by land-use terms, meteorological variables, and weighted sum of nearby monitoring station data using a backward propagation neural network. Neural networks were used to model possible complex and nonlinear relationships between variables. Land-use terms included road density, normalized difference vegetation index (a measurement of greenness in the surrounding space), elevation, population density, percentage of urban space, and EPA emission inventory. Meteorological variables included air temperature, accumulated total precipitation, downward shortwave radiation flux, accumulated total evaporation, planetary boundary layer height, low cloud area fraction, precipitable water for the entire atmosphere, barometric pressure, specific humidity at 2 m, visibility, and wind speed. Wind speed was computed as the vector sum of u-wind (east–west component of the wind) and v-wind (north–south component of the wind), both at 10 m. Ten-fold cross-validation showed that the calibration model performed well for PM$_{2.5}$ mass and PM$_{2.5}$ components, with total R2 between 0.70 and 0.80 for PM$_{2.5}$ mass and each component. Calibration models also revealed little bias—the slope of predicted versus measured was ~1.01. Annual moving average values were calculated when at least 75% of daily estimates were available.

Determination of mtDNA abundance using quantitative real time PCR
Relative mtDNA abundance was defined as total mtDNA content divided by total nDNA. A detailed protocol has been published. In brief, we used multiplex real-time PCR (RT-PCR), with minor modifications, to measure mtDNA content. We used a reference DNA pool consisting of a subset of 300 test samples from this same study to plot a titration curve for standardization ($R^2 \geq 0.99$). We calculated a ratio between mtDNA and nDNA, which we standardized using the reference DNA pool. The standardized ratio was used in subsequent statistical analysis. A ratio of 1 indicated that mtDNA/nDNA ratio for the test sample was equivalent to mtDNA/nDNA ratio in the reference DNA pool. All samples were run in triplicate.

Statistical analysis

We evaluated associations of annual PM$_{2.5}$ mass and PM$_{2.5}$ components with mtDNA abundance using linear mixed-effects regressions with subject-specific intercepts to account for repeated measurements of mtDNA abundance from the same individual. First, we used a single-pollutant linear mixed-effects model to estimate associations between each pollutant (PM$_{2.5}$ mass and PM$_{2.5}$ components) and mtDNA abundance in separate regression models. Since PM$_{2.5}$ total mass concentration often correlates with PM$_{2.5}$ components and with mtDNA abundance, single-pollutant models do not take into account potential confounding by PM$_{2.5}$ mass or by other PM$_{2.5}$ components. We consider two approaches to adjust for confounding by PM$_{2.5}$ mass and other PM$_{2.5}$ components. First, to obtain estimates for PM$_{2.5}$ components adjusted by total PM$_{2.5}$ mass, we added PM$_{2.5}$ mass as a covariate in each single-component model. This yielded a second set of model estimates of the association between each PM$_{2.5}$ component and mtDNA abundance, adjusted for confounding by PM$_{2.5}$ mass.
However, this method still does not take into account confounding by other chemical components of PM$_{2.5}$. Therefore, we also fit multi-pollutant models that adjust for PM$_{2.5}$ total mass concentration and other PM$_{2.5}$ components. To obtain more parsimonious models that only include exposures predictive of mtDNA abundance, we applied the adaptive least absolute shrinkage and selection operator (LASSO). LASSO is a regression analysis method with penalization on the absolute values of regression coefficient. The resulting estimates has regression coefficient for components that are not predictive of outcome set equal to zero. Hence, it provides a sparse selection of the PM$_{2.5}$ components that are associated with mtDNA abundance. We created a set of component-specific weights for the LASSO as the inverse of coefficients estimated with the ordinary linear mixed-effects models. LASSO requires specifying a tuning parameter, λ. We ran models across a range of λ values and chose the model that gave the smallest Bayesian information criterion (BIC). We only penalized PM$_{2.5}$ components and not PM$_{2.5}$ mass or other covariates.

We adjusted all models for the following covariates selected \textit{a priori}: age (continuous), body mass index (BMI) [weight (kg)/height (m)2, continuous], race (white, black, or other), regular patterns of physical activity (<12 kcal/kg*hours/week, 12–30 kcal/kg*hours/week, or >30 kcal/kg*hours/week), smoking status (never, former, or current smoker), cumulative pack-years of smoking (continuous), education level (high school diploma or less, college degree, or graduate degree), seasonality, and blood counts of lymphocytes, neutrophils, and platelets. Seasonality was modeled as Fourier series terms $\cos(2\pi \text{doy}/365.25)$ and $\sin(2\pi \text{doy}/365.25)$, where doy represents day of year. We standardized regression coefficients, and results were
expressed as a standard deviation (SD) change in mtDNA/nDNA ratio per a SD change in pollution concentration.

The main regression model took the general form:

\[mtDNA_{ij} = \beta_0 + u_i + \alpha X_{ij} + \beta Z_{ij} + \epsilon_{ij} \]

where \(i \) corresponds to \(i^{th} \) subject; \(j \) corresponds to \(j^{th} \) visit; \(\beta_0 \) is the intercept for the population average; \(u_i \) is the subject-specific random intercept; \(X_{ij} = (X_{ij1}, \ldots, X_{ijn})^T \) is a vector of PM\(_{2.5}\) major chemical component concentrations 365 days prior to each clinical visit; \(Z_{ij} = (Z_{ij1}, \ldots, Z_{ijP})^T \) is a vector of PM\(_{2.5}\) total mass concentration 365 days prior to each clinical visit and other covariates we adjusted for in the regression model. Therefore, \(\alpha \) is the fixed effect of PM\(_{2.5}\) mass and other covariates \((X_{ij}) \), and \(\beta \) represents the penalized effects of PM\(_{2.5}\) components \((Z_{ij}) \) selected by LASSO. The main regression analysis with adaptive LASSO accounts for confounding by PM\(_{2.5}\) total mass concentration as well as other PM\(_{2.5}\) components, reducing potential multi-collinearity issues via penalization.

In sensitivity analysis, potential selection bias due to loss of participant follow-up was accounted for using inverse probability of weighting. Using logistic regression, we predicted the probability of participants coming to a subsequent visit using covariates from previous visits that predicted if participants would return. The set of covariates in the logistic regression are: age, BMI, regular patterns of physical activity, smoking status, pack-year smoked, forced expiratory volume in one second (FEV1) versus forced vital capacity (FVC) ratio (a measurement of airway obstruction),
clinically diagnosed hypertension, clinically diagnosed diabetes, medications (diuretics and beta blockers), and education level. We also restricted our analysis to annual PM$_{2.5}$ total mass concentration of \leq12 μg/m3, which is the current National Ambient Air Quality Standard for annual PM$_{2.5}$.

All analyses were conducted with SAS version 9.3 (SAS Institute Inc., Cary, NC) or, with R 3.0.1 (http://www.r-project.org/).

RESULTS

Descriptive Statistics

Table 2.1 presents characteristics of the 646 Normative Aging Study participants at each visit. Mean age at first visit was 73.6 ± 6.8 years. The study population was predominantly white (97%). Four percent of participants were current smokers, and 66% were former smokers at first visit. Of the 646 participants, 373 participants came to more than one visit (58%).

PM$_{2.5}$ Mass and PM$_{2.5}$ Component Summary Statistics and Spatial Distribution

Tables 2.2 and 2.3 present summary statistics and Spearman correlations for annual moving averages of PM$_{2.5}$ mass and PM$_{2.5}$ components. Annual moving averages of EC, OC, SO$_4^{2-}$, and NO$_3^-$ were positively correlated with PM$_{2.5}$ mass ($\rho = 0.58, 0.68, 043,$ and 0.41, respectively). Notably, OC, SO$_4^{2-}$, and NO$_3^-$ contributed to a large proportion of PM$_{2.5}$ mass (Table 2.2).

Figure 21 shows the spatial and temporal distribution of annual concentrations of PM$_{2.5}$ mass and PM$_{2.5}$ components in the study area, including participants’ residential addresses and locations of
fixed monitoring stations. EC serves as a tracer for local traffic emissions. We observed higher concentrations of EC near major roadways. OC is either emitted from biomass or formed as secondary organic aerosols. OC concentrations are closely related to anthropogenic activities in the study region. SO$_4^{2-}$ particles mainly come from coal-burning power plants, they are regional air pollutants and show more dispersed concentrations. NO$_3^-$ originates from both power plants and traffic emissions. In the northeastern region, we observed higher NO$_3^-$ concentrations near major roadways, which suggests that traffic contribute to a significant part of NO$_3^-$ emission in this area.

Main Analysis

Table 2.4 reports the associations of PM$_{2.5}$ mass and PM$_{2.5}$ components with mtDNA abundance. MtDNA abundance was negatively associated with PM$_{2.5}$ mass concentration in the previous annual moving average exposure window. One SD increase in PM$_{2.5}$ mass concentration was associated with a 0.07 SD decrease in mtDNA abundance (95% CI: −0.13, −0.02). Several PM$_{2.5}$ components (OC, SO$_4^{2-}$, and NO$_3^-$) were negatively associated with mtDNA abundance in single-pollutant models. Further, OC and NO$_3^-$ remained statistically significant in two-pollutant models adjusted for PM$_{2.5}$ mass. Sulfate levels were also marginally negatively associated with mtDNA abundance in models adjusted for PM$_{2.5}$ mass.

Finally, we used multi-pollutant models, which included PM$_{2.5}$ mass and PM$_{2.5}$ components as independent variables in the same model, and applied LASSO to obtain a more parsimonious model that only included exposures predictive of mtDNA abundance. Figure 2.2 shows LASSO selection path as a function of the penalty term λ. We ran models across a range of λ values and
chose the model that gave the smallest Bayesian Information Criterion (BIC), which was $\lambda = 1.8$ (Supplementary Figure 2.2). At $\lambda = 1.8$, LASSO selected NO$_3^-$, dropping EC, OC, and SO$_4^{2-}$ in the regression. Models including PM$_{2.5}$ mass and pollutants selected by LASSO showed negative associations of NO$_3^-$ with mtDNA abundance (Table 2.5). Specifically, one SD increases in annual nitrate concentration was associated with a 0.12 SD (95% CI: -0.18; -0.07) decrease in mtDNA abundance.

Sensitivity Analysis

We conducted a sensitivity analysis restricted to observations with PM$_{2.5}$ mass concentration of $\leq 12 \, \mu g/m^3$, the current National Ambient Air Quality Standards (NAAQS) for annual PM$_{2.5}$ exposure. In this analysis, we also found a negative association between NO$_3^-$ and mtDNA abundance (Supplementary Table 2.2). Further, to account for potential selection bias, we repeated all analyses using inverse probability weighting and obtained result estimates similar to those from primary analyses (results not shown).

DISCUSSION

In this study of a cohort of older individuals, we showed that mtDNA abundance was negatively associated with long-term exposures to PM$_{2.5}$ mass and—after adjusting for PM$_{2.5}$ mass—certain PM$_{2.5}$ components, including OC, SO$_4^{2-}$ (marginally) and NO$_3^-$. In multipollutant models that included PM$_{2.5}$ mass and PM$_{2.5}$ components selected by LASSO, NO$_3^-$ remained negatively associated with mtDNA abundance, suggesting that NO$_3^-$ was associated with mitochondrial oxidative stress independent of PM$_{2.5}$ mass concentration. To our knowledge, this is the first
study describing long-term exposures to PM$_{2.5}$ mass and PM$_{2.5}$ components with changes in oxidative stress biomarker of mitochondrial damage.

Among the PM$_{2.5}$ components we examined, EC is a surrogate for traffic pollution, EC is highly poly-aromatic and exhibits redox cycling ability. OC is the organic fraction of PM$_{2.5}$, and it comprises a variety of redox-active chemicals, including organic acids, alkane, polycyclic aromatic hydrocarbons, and aldehydes. OC is either emitted directly from biomass and fossil fuel combustions or formed as secondary organic aerosols. SO$_4^{2-}$ and NO$_3^-$ are secondary aerosols derived from photochemical reactions of sulfur dioxide (SO$_2$) and nitrogen oxides (NO$_x$). Power plants are the major source of SO$_4^{2-}$, while NO$_3^-$ originates from both power plants and traffic emissions.

In this study, we first fit single- and two-pollutant models to estimate the associations between PM$_{2.5}$ components with mtDNA abundance. We included in the two-pollutant models PM$_{2.5}$ to avoid potential confounding by mass concentration. Further, we applied a multi-pollutant approach and used dimension reduction method a priori to reduce potential multi-collinearity issues while adjusting for exposure to other components. We found that NO$_3^-$ concentration in PM$_{2.5}$ negatively associated with mtDNA abundance in multi-pollutant modeling, suggesting that the oxidative stress potential of PM$_{2.5}$ may not be fully captured by mass concentration.

The biological mechanisms by which PM$_{2.5}$ may impact health are still not fully understood, but oxidative stress is thought to play a key role. In this study, we evaluated mtDNA abundance – a novel biomarker indicative of mtDNA damage. Distinct from nuclear DNA, mitochondria have
circular genomes due to their proteo-bacterial origin. Each cell contains hundreds to thousands of mitochondria, with each mitochondrion carrying 2-10 copies of circular DNA. Maintaining mitochondrial integrity is critical for short-term cellular homeostasis and long-term organism survival. Mitochondrial homeostasis is usually maintained through a dynamic process of fission/fusion, coupled with biogenesis/mitophagy. If damage to the mitochondrial genome accumulates and is beyond repair, mtDNA copies are cleared, resulting in lower mtDNA abundance. Mitochondrial damage may directly impact cellular processes that take place in the mitochondria, such as oxidative phosphorylation and hence ATP production. Mitochondria are also central sites for fatty acid beta oxidation, where fatty acids are catabolized into acetyl-CoA, which in turn feeds into the citric acid cycle. Mitochondrial damage may disturb fatty acid breakdown and dysregulate triglyceride metabolic pathways. In addition, mitochondria play important roles in calcium homeostasis via transient calcium ion uptake and storage for later release. Damage to the mitochondria therefore could disrupt calcium homeostasis and calcium signaling pathways. Further, increased production of oxidative species may cause damage elsewhere—e.g., to macromolecules, such as nuclear DNA, proteins, and lipids—ultimately disrupting normal cell structure and function.

Previous epidemiological studies have reported associations between ambient air pollution exposure and mtDNA abundance. However, most of these studies focus on occupational settings and report somewhat inconsistent results, possibly owing to variations in exposure concentration, exposure duration, type of exposure, and the dynamic balance between oxidative damage and anti-oxidative defense pathways. For instance, exposure to low-level benzene was associated with increased mtDNA abundance, probably due to an adaptive biogenesis response.
to compensate moderate oxidative damage. On the other hand, exposure to high levels of EC and PM$_{10}$ (particulate matter with aerodynamic diameter ≤ 10 µm) was associated with lower levels of mtDNA abundance. These studies focused on short-term exposures, which may not capture aggregated risk due to prolonged environmental exposure.

Our study has a number of strengths. Our study population consists primarily of the older individuals (mean age = 73.6 years at first visit), which represent a susceptible subgroup for air pollution exposures due to lower physiological functions and high prevalence of preexisting diseases. The National Research Council sets high research priority to understand population susceptibility to air pollution exposure, to inform more effective policy that yields maximal health benefits for the entire population. We estimated concentrations of PM$_{2.5}$ mass and PM$_{2.5}$ components at each participant’s residential address using state-of-the-art hybrid spatiotemporal prediction models, which incorporate chemical transport models, land-use terms, and meteorological variables. This method allowed us to estimate pollutant concentrations with a high degree of spatial and temporal resolution and introduced sufficient exposure variations among participants to study long-term exposure of ambient air pollutants. Estimated pollution concentrations from these models may serve as better surrogates for personal exposure and hence may reduce potential exposure misclassifications. Our assay for analyzing mtDNA yields high precision; within- and between-plate coefficients of variation were 3.35% and 3.26%, respectively. We used a multi-pollutant approach as our primary analysis, and applied LASSO shrinkage and selection \textit{a priori} to obtain a more parsimonious model. LASSO removes predictors that do not have explanatory power, which helps to address multi-collinearity issues and yielded more precise estimates. Further, we accounted for potential selection bias due to loss
to follow-up using inverse probability of weighting (IPW). Point estimates were similar for models using or not using IPW, indicating that little selection bias was introduced due to loss to follow-up.

Our study also suffers from several limitations. In the current analysis, we modeled four PM$_{2.5}$ components that contribute greatly to PM$_{2.5}$ mass; however, other components not included in our analysis—such as metals and specific organic species—may also adversely affect health. However, due to their minimal contribution to PM$_{2.5}$ mass, these components often fall below method detection limits, and are difficult to estimate with good accuracy. Additionally, exposure estimates from our cohort focused on the greater Boston area and may not be generalizable to other regions of the U.S. due to the variations in PM chemical compositions in different regions.

CONCLUSION

Long-term exposure to PM$_{2.5}$ mass and specific PM$_{2.5}$ components is associated with decreased mtDNA abundance in this elderly study population. Our findings from multi-pollutant modeling suggest that NO$_3^-$—as a chemical component of PM$_{2.5}$ was associated with higher mitochondrial oxidative stress independent of PM$_{2.5}$ mass concentration, and mass alone may not fully capture the oxidation potency of PM$_{2.5}$.

ACKNOWLEDGEMENTS

The authors would like to thank all Normative Aging Study participants. The authors also thank Johanna Lepeule for sharing the codes adapted to perform inverse probability weighting.
FUNDINGS

This work was supported by National Institutes of Health grants (R01ES015172, R21ES021895, R01ES021733, R01ES021357, and P30ES000002) and by U.S. Environmental Protection Agency funding (RD-83479801). The Normative Aging Study is supported by the Cooperative Studies Program/Epidemiology Research and Information Center of the U.S. Department of Veterans Affairs and is a component of the Massachusetts Veterans Epidemiology Research and Information Center, Boston, Massachusetts. Views expressed in this paper are those of the authors and do not necessarily represent views of the funding or supporting entities.

CONFLICTS OF INTEREST

None declared.
Table 2.1 Personal characteristics of participants from the Normative Aging Study, 2000-2012 (N = 646).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Visit 1 (N = 646)</th>
<th>Visit 2 (N = 373)</th>
<th>Visit 3 and 4 (N = 159)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age [years (mean ± SD)]</td>
<td>73.6 ± 6.8</td>
<td>76.2 ± 6.7</td>
<td>80.0 ± 6.2</td>
</tr>
<tr>
<td>BMI [kg/m² (mean ± SD)]</td>
<td>28.1 ± 4.0</td>
<td>27.8 ± 4.1</td>
<td>27.8 ± 4.3</td>
</tr>
<tr>
<td>Race [n (%)]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>627 (97%)</td>
<td>362 (97%)</td>
<td>155 (97%)</td>
</tr>
<tr>
<td>Black</td>
<td>13 (2%)</td>
<td>7 (2%)</td>
<td>3 (2%)</td>
</tr>
<tr>
<td>Others</td>
<td>6 (1%)</td>
<td>4 (1%)</td>
<td>1 (1%)</td>
</tr>
<tr>
<td>Smoking [n (%)]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>191 (30%)</td>
<td>109 (29%)</td>
<td>46 (29%)</td>
</tr>
<tr>
<td>Former</td>
<td>429 (66%)</td>
<td>253 (68%)</td>
<td>110 (69%)</td>
</tr>
<tr>
<td>Current</td>
<td>26 (4%)</td>
<td>11 (3%)</td>
<td>3 (2%)</td>
</tr>
<tr>
<td>Pack year smoked [year (mean ± SD)]</td>
<td>19.9 ± 24.2</td>
<td>20.9 ± 24.5</td>
<td>19.2 ± 22.9</td>
</tr>
<tr>
<td>Regular patterns of physical activity [n (%)]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low (≤ 12 kcal/kg*hours/week)</td>
<td>427 (66%)</td>
<td>247 (66%)</td>
<td>106 (67%)</td>
</tr>
<tr>
<td>Median (12-30 kcal/kg*hours/week)</td>
<td>119 (18%)</td>
<td>87 (23%)</td>
<td>26 (16%)</td>
</tr>
<tr>
<td>High (≥30 kcal/kg*hours/week)</td>
<td>100 (16%)</td>
<td>39 (11%)</td>
<td>27 (17%)</td>
</tr>
<tr>
<td>Education level [n (%)]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 12 years</td>
<td>226 (35%)</td>
<td>125 (33%)</td>
<td>50 (31%)</td>
</tr>
<tr>
<td>13-16 years</td>
<td>290 (45%)</td>
<td>171 (46%)</td>
<td>79 (50%)</td>
</tr>
<tr>
<td>> 16 years</td>
<td>130 (20%)</td>
<td>77 (21%)</td>
<td>30 (19%)</td>
</tr>
<tr>
<td>Lymphocyte count [cells/cm³ (mean ± SD)]</td>
<td>25.8 ± 9.2</td>
<td>25.1 ± 8.2</td>
<td>23.9 ± 9.1</td>
</tr>
<tr>
<td>Neutrophil count [cells/cm³ (mean ± SD)]</td>
<td>61.7 ± 9.5</td>
<td>62.4 ± 8.8</td>
<td>63.3 ± 9.4</td>
</tr>
<tr>
<td>Platelet count [1000/mm³ (mean ± SD)]</td>
<td>222.5 ± 56.0</td>
<td>225.6 ± 60.8</td>
<td>201.8 ± 45.4</td>
</tr>
</tbody>
</table>
Table 2.2 Summary statistics of annual moving averages of PM$_{2.5}$ mass and PM$_{2.5}$ components, Normative Aging Study, 2000-2012.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Mean</th>
<th>SD</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>25th</td>
</tr>
<tr>
<td>PM$_{2.5}$ mass (µg/m3)</td>
<td>10.24</td>
<td>1.62</td>
<td>9.16</td>
</tr>
<tr>
<td>PM$_{2.5}$ chemical components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC (µg/m3)</td>
<td>0.56</td>
<td>0.17</td>
<td>0.44</td>
</tr>
<tr>
<td>OC (µg/m3)</td>
<td>2.93</td>
<td>0.96</td>
<td>2.21</td>
</tr>
<tr>
<td>SO$_4^{2-}$ (µg/m3)</td>
<td>3.38</td>
<td>1.40</td>
<td>2.90</td>
</tr>
<tr>
<td>NO$_3^{-}$ (µg/m3)</td>
<td>1.13</td>
<td>0.34</td>
<td>1.17</td>
</tr>
</tbody>
</table>
Table 2.3 Spearman correlation between annual moving average concentrations of the air pollutants considered in the analysis, Normative Aging Study, 2000-2012.

<table>
<thead>
<tr>
<th></th>
<th>PM$_{2.5}$ (µg/m3)</th>
<th>EC (µg/m3)</th>
<th>OC (µg/m3)</th>
<th>SO$_4^{2-}$ (µg/m3)</th>
<th>NO$_3^-$ (µg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{2.5}$ (µg/m3)</td>
<td>1</td>
<td>0.58**</td>
<td>0.68**</td>
<td>0.43**</td>
<td>0.41**</td>
</tr>
<tr>
<td>EC (µg/m3)</td>
<td>-</td>
<td>1</td>
<td>0.64**</td>
<td>0.49**</td>
<td>0.40**</td>
</tr>
<tr>
<td>OC (µg/m3)</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0.46**</td>
<td>0.56**</td>
</tr>
<tr>
<td>SO$_4^{2-}$ (µg/m3)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0.32**</td>
</tr>
<tr>
<td>NO$_3^-$ (µg/m3)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

*p<0.05; **p<0.01
Table 2.4 Association between annual averages of ambient air pollution and mtDNA abundance, measured as mitochondrial DNA to nuclear DNA copy number ratio (mtDNA/nDNA), Normative Aging Study, 2000-2012.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Estimates* (95% CI)</th>
<th>p-value</th>
<th>Estimates* (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single pollutant model</td>
<td></td>
<td>Adjusted for PM₂₅†</td>
<td></td>
</tr>
<tr>
<td>PM₂₅ mass</td>
<td>-0.07 (-0.13; -0.02)</td>
<td>0.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Estimates are expressed as a SD change in mtDNA/nDNA ratio with a SD change in pollution concentration.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM₂₅ chemical components</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td>-0.04 (-0.10; 0.009)</td>
<td>0.11</td>
<td>-0.008 (-0.07; 0.05)</td>
<td>0.79</td>
</tr>
<tr>
<td>OC</td>
<td>-0.10 (-0.15; -0.05)</td>
<td>0.0001</td>
<td>-0.09 (-0.15; -0.02)</td>
<td>0.007</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>-0.07 (-0.12; -0.02)</td>
<td>0.01</td>
<td>-0.05 (-0.10; 0.004)</td>
<td>0.07</td>
</tr>
<tr>
<td>NO₃⁻</td>
<td>-0.13 (-0.18; -0.08)</td>
<td><0.0001</td>
<td>-0.12 (-0.18; -0.07)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Results from linear mixed-effects regression models accounting for correlation across multiple visits and adjusted for age, BMI, race, regular patterns of physical activity, smoking status, pack-years smoked, education level, lymphocyte count, neutrophil count, platelet count, and seasonality.

† We additionally adjusted for PM₂₅ mass concentration. PM₂₅ mass estimate is not reported because we used this set of models to obtain estimates for PM₂₅ components adjusted for PM₂₅ mass. Each individual model provided a different estimate for PM₂₅ mass.
Table 2.5 Association between annual averages of ambient air pollution and mtDNA abundance, measured as mitochondrial DNA to nuclear DNA copy number ratio (mtDNA/nDNA), Normative Aging Study, 2000-2012. Results are based on LASSO selected pollutants.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Estimates* (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{2.5}$ chemical components</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td>Not selected by LASSO</td>
<td>-</td>
</tr>
<tr>
<td>OC</td>
<td>Not selected by LASSO</td>
<td>-</td>
</tr>
<tr>
<td>SO$_4^{2-}$</td>
<td>Not selected by LASSO</td>
<td>-</td>
</tr>
<tr>
<td>NO$_3^-$</td>
<td>-0.12 (-0.18; -0.07)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Results from linear mixed-effects regression models accounting for correlation across multiple visits and adjusted for age, BMI, race, regular patterns of physical activity, smoking status, pack-years smoked, education level, lymphocyte count, neutrophil count, platelet count, seasonality, PM$_{2.5}$ mass concentration and all other components that were selected by LASSO shrinkage method.

* Estimates are expressed as a SD change in mtDNA/nDNA ratio with a SD change in pollution concentration.
Figure 2.1 Graphical illustration of annual PM$_{2.5}$ mass and PM$_{2.5}$ component concentrations for the study period Normative Aging Study, 2000-2012. The green dots indicate where the fixed monitoring stations are located, while the red dots dictate participants’ residential address.
Figure 2.2 LASSO coefficient paths: plot of PM$_{2.5}$ components as a function of penalty term lambda.

Based on the Lasso shrinkage method with BIC as a selection criterion, we identified NO$_3^-$ independently associated with mtDNA abundance.
Table S2.1 Comparison of estimated coefficients in the primary analysis and in sensitivity analysis restricted to observations with annual moving PM$_{2.5}$ average ≤ 12 µg/m3 (i.e., the current NAAQS for annual PM$_{2.5}$ concentration).

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Estimates* (95% CI)</th>
<th>p-value</th>
<th>Estimates* (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO$_3^-$</td>
<td>-0.12 (-0.18; -0.07)</td>
<td><0.0001</td>
<td>-0.11 (-0.16; -0.05)</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

Results from linear mixed-effects regression models accounting for correlation across multiple visits and adjusted for age, BMI, race, regular patterns of physical activity, smoking status, pack-years smoked, education level, lymphocyte count, neutrophil count, platelet count, seasonality, PM$_{2.5}$ mass concentration and all other components that were selected by LASSO shrinkage method.

* Estimates are expressed as a SD change in mtDNA/nDNA ratio with a SD change in pollution concentration.
† Sensitivity analysis where PM$_{2.5}$ annual moving average > 12 µg/m3 were excluded.
Figure S2.1 Flow chart of participants’ inclusion criteria (participants who came in year 2000 will be assigned to the yearly moving average of year 2000).

707 participants had blood mtDNA measurements at least one time point (1999-2012)

- 4 participants came only in 1999 (with no exposure coverage)

703 participants had blood mtDNA measurements at least one time point and came in between 2000-2012

- 57 participants were:
 1. either not geo-coded
 2. or lived outside of the geo-coded area for at least 75% of the time

646 participants included in the current study
Figure S2.2 The relationship between the penalty term lambda in LASSO regression and Bayesian information criterion (BIC).

We performed a mixed model version of Lasso regression, with subject specific intercepts, to account for correlation across multiple visits. We forced the following covariates in: age, BMI, race, regular patterns of physical activity, smoking status, pack-years smoked, education level, lymphocyte count, neutrophil count, platelet count, seasonality, and PM$_{2.5}$ mass concentration.
REFERENCE

G. Air temperature and the occurrence of myocardial infarction in Augsburg, Germany.
Circulation 2009;120(9):735-42.

CHAPTER 3

Short-term effects of air temperature and mitochondrial DNA lesions among older population

Cheng Peng a, Marco Sanchez-Guerra a, Ander Wilson b, Amar J. Mehta a, Jia Zhong c, Antonella Zanobetti a, Kasey Brennan c, Alexandra E. Dereix c, Brent A. Coull b, Pantel Vokonas d, Joel Schwartz a, c, Andrea Baccarelli c

a Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
b Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
c Department of Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
d Normative Aging Study, Veterans Affairs Boston Healthcare System and the Department of Medicine, Boston University School of Medicine, Boston, MA, USA
c Channing Laboratory, Harvard Medical School, Boston, MA, USA

Correspondence: Cheng Peng, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Building 1, G-7, 665 Huntington Avenue, Boston, MA 02115, USA. Email: chp950@mail.harvard.edu

Running Title: Temperature, mitochondrial DNA lesion, spline
Abstract

Background: Previous studies have linked both extreme and sub-optimal air temperature to cardiopulmonary morbidity and mortality, especially in older individuals. However, the underlying mechanisms are yet to be determined.

Objectives: We hypothesized that short-term increases in air temperature may induce blood mitochondrial DNA (mtDNA) lesions, which could contribute to the path of temperature related pathogenesis.

Methods: We repeatedly measured mtDNA lesions in blood sample from 654 participants in the Normative Aging Study from 1999 to 2013 (1142 observations). Hourly temperature data were obtained from the Boston Logan Airport weather station (located approximately 12 km from the clinical site). We calculated the 2-, 7-, and 14-day moving averages of 24-hour mean and 24-hour variability of temperature. We measured mtDNA lesions using real-time polymerase chain reaction, and mtDNA lesion was expressed as the number of lesions per 10kb. We fit covariate-adjusted linear-mixed models accounting for repeated measures to evaluate the association between short-term increases in mean and variability of temperature with mtDNA lesions.

Results: Interquartile increases in the 7-, and 14-day moving average of 24-hour mean temperature in summer were associated with a 0.15 (95% CI: [0.05; 0.25], p=0.0033), and 0.19 (95% CI: [0.07; 0.30], p=0.0011) increase in the number of mtDNA lesion per 10kb, respectively. We also observed positive associations between increases in mean air temperature and mtDNA lesions in winter. For example, an IQR increase in 7-day (5.2 °C) and 14-day (4.2 °C) moving average of 24-hour mean temperature was associated with a 0.26 (95% CI: [0.08; 0.43], p=0.0037), and 0.23 (95% CI: [0.08; 0.37], p=0.0019) increase in number of mtDNA lesions per 10kb, respectively. Results were similar when we further adjusted for temperature.
variability. We also observed significant associations between increases in temperature variability and mtDNA lesions independent of mean air temperature.

Conclusions: Short-term exposures to higher mean and variability of air temperature were associated with increased mtDNA lesions in older adults, supporting the hypothesis that changes in meteorological conditions may induce pathophysiological responses among susceptible populations.
Introduction

A growing body of evidence has shown that changes in air temperature are associated with increased cardiopulmonary morbidity and mortality, especially in the older population. However, the underlying mechanisms have not been clearly delineated. Previous epidemiological studies have linked changes in air temperature with abnormal cardiac output, myocyte dysfunction, increased blood pro-coagulatory and pro-inflammatory markers, as well as epigenetic modifications. Yet, the role of mitochondrial-related oxidative stress—an emerging contributor to a range of cardiovascular disorders, such as atherosclerosis, ischemic heart disease, and hypertension—has not been studied.

Mitochondrial DNA (mtDNA) is a critical cellular target for reactive oxygen species (ROS). Distinct from other cellular organelles, mitochondria contain their own circular double-stranded DNA molecules. Mitochondrial genome appears to be more vulnerable to oxidative attack than nuclear DNA, due to the lack of protective barriers, such as histone proteins and chromatin organizations, as well as the relative limited activity to repair DNA damage. Moreover, since 1%-2% of the molecular oxygen consumed by aerobic respiration is released as ROS via the electron transport chain (ETC) reaction in the mitochondria, disturbance of normal ETC activity may further exacerbate mitochondrial-ROS formation. As a result, damaged mitochondria may themselves become an important source of endogenous ROS generation and lead to further damage. Oxidative damage to the mitochondria may induce mtDNA lesions, and types of lesions include single- and double-strand breaks, abasic sites, and base damage / modification. Several lines of evidence indicate associations between mtDNA lesions and cardiovascular diseases, which suggest that mitochondrial genome damage, as reflected by
the increase in the number of mtDNA lesions, may represent a plausible biological mechanism of air temperature related cardiovascular events.

In a repeated-measure study of older men in the Greater Boston area, we investigated the association between short-term increases in 24-hour mean and variability standard deviation (SD) of air temperature and blood mtDNA lesions. MtDNA lesions were expressed as the number of lesions per 10 kb. We hypothesized that older adults may be less adaptive to short-term increases in air temperature—especially at the extreme/sub-optimal ranges—which may lead to increased mtDNA lesions in blood.

Materials and Methods

Study Population

Our study population came from the Normative Aging Study, a prospective longitudinal cohort established in 1963 by the U.S. Veterans Administration from the Great Boston area. A detailed protocol has been published previously. In brief, participants underwent clinical examinations every 3 to 5 years. At each visit, self-administered questionnaires were collected – providing information on social-demographic characteristics, medical history, medication and lifestyle. Blood samples were drawn after an overnight fast and smoking abstinence. A total of 654 participants had complete information on temperature measurements and blood mitochondrial markers for at least one and up to four visits between 1999-2013. Specifically, 173 participants came to one clinical visit, 387 participants came to two clinical visits, and 94 participants came to three or more clinical visits. This study was approved by the Institutional Review Boards of the participating institutions.
Ambient Temperature Measurements

We obtained hourly temperature and humidity data from the National Weather Service Station at Boston Logan airport – located approximately 12km from the examination site. For each calendar day, we calculated 24-hour mean and 24-hour standard deviation of temperature. We then computed moving average of the 24-hour mean and 24-hour SD of temperature (i.e., 2-, 7- and 14-day prior to clinical visit).

As a secondary analysis, we estimated air temperature at each participant’s residential address for each calendar day using a hybrid land-use regression and satellite-based model. Specifically, we utilized MODIS (Moderate Resolution Imaging Spectroradiometer) satellite-derived land surface temperature measurements to predict daily air temperature at a 1km by1km spatial resolution. The model showed excellent prediction performance with cross validation R² = 0.94 and a root mean square predicted error (RMSPE) of 1.48. For more in depth details please refer to Kloog 2014. We then computed moving average of 24-hour mean of temperature for 2-, 7- and 14-days prior to each clinical visit.

Mitochondrial DNA Lesion Measurements

MtDNA lesions were defined as the number of mtDNA lesions per 10kb. A detailed protocol has been published previously. In brief, we adapted a quantitative polymerase chain reaction assay (QPCR) to amplify a long fragment (8.9 kb) and a short fragment (222bp) of the mitochondrial genome. Because each mitochondrion contains multiple copies of circular DNA, the short fragment was amplified for normalization purposes, and this is based on the premise that the
short fragment would have no lesion due to its short in length. Oxidative damage associated mtDNA lesions, such as single- and double-stranded breaks, abasic sites, and base damage / modification would halt the progression of the DNA polymerase, which in turn lead to decreased amplification of the desire sequence. Therefore, only those mtDNA fragments with no lesions would be amplified as a result. We measured the intensity of the fluorescence using PicoGreen dsDNA (Thermo Fisher Scientific, Life Technologies, Carlsbad, California). The amount of fluorescence released is inversely proportional to the number of mtDNA lesions. All samples were run in duplicate. The between batch coefficient of variation for the current assay was 10%.

Statistical Analysis

In this study, we evaluated the associations of short-term increases in mean and variability of temperature with number of mtDNA lesions per 10kb in blood. Since previous literatures often indicated J- or U-shape relationships when modeling temperature with health-related outcomes,112-114 we examined the dose-response relationships between air temperature and mtDNA lesions using generalized additive mixed-effects models with penalized cubic splines. We observed deviations from linear dose-response relationships between increases in mean air temperature and mtDNA lesions, but not for increases in temperature variability and mtDNA lesions. We further tested for effect modification by the four categories of season (spring/summer/fall/winter) and observed significant effect modification by season when we modeled the relationship between mean temperature and mtDNA lesions. Within each seasonal category, however, we observed no deviations from linear dose-response. We therefore stratified
our analysis by season and modeled mean air temperature as a linear term in the primary analysis.

We fitted linear mixed-effects models with subject-specific intercepts to account for repeated measurements of mtDNA lesion from the same individual and examined the association of increases in mean and variability of air temperature and number of mtDNA lesions per 10kb. We modeled cumulative effects of air temperature as the 2-, 7- and 14-day moving average of 24-hour mean and 24-hour variability of temperature. We considered each moving average separately in the main analysis. Model estimates are expressed per interquartile range (IQR) increases in mean and variability of air temperature for the specific moving average.

In each model, we controlled for potential confounders and risk factors of mtDNA lesion: season (spring/summer/fall/winter), relative humidity (continuous), age (continuous), body mass index (BMI) (weight (kg)/height (m)^2, continuous), race (white or others), regular patterns of physical activity (<12 hours/week, ≥12 and <30 hours/week, ≥30 hours/week), smoking status (never, former, or current smoker), cumulative pack-years of smoking (continuous), education level (high school diploma or less, college degree, or graduate degree), platelet, lymphocyte and neutrophil counts in the blood, and batch effects.

The main regression model took the general form:

\[Y_{ij} = \beta_0 + u_i + \beta_1 X_{1ij} + \ldots + \beta_p X_{pij} + \beta_{\text{temperature}ij} T_{\text{temperature}ij} + \epsilon_{ij} \]

where \(i \) indexes participants, \(j \) indexes visit number; \(\beta_0 \) is the intercept for the population mean; \(u_i \) is the subject-specific random intercept. We assumed a linear effect of the moving
average of mean or variability temperature represented by $\beta_{\text{temperatureTemperature}_{ij}}$. Finally, $\beta_1 X_{1ij}$
to $\beta_p X_{pij}$ correspond to the covariates we selected *a priori*. ε_{ij} is the within-subject error term. We consider separate models for moving averages of mean temperature and variability temperature as well as a joint model that includes both a moving average of mean and variability temperature in the same model. Model estimates are expressed per interquartile range (IQR) increase in mean and variability of air temperature for the specific moving averages.

Sensitivity Analysis

Among the 654 participants included in our analysis, 27% of participants did not come for a subsequent clinical visit. We therefore accounted for potential selection bias due to loss to follow-up using inverse probability of weighting. Specifically, we predict the probability of coming to a subsequent clinical visit using covariates from the previous visits in a logistic regression: age, BMI, regular patterns of physical activity, smoking status, pack year smoked, forced expiratory volume in one second (FEV1) versus forced vital capacity (FVC) ratio, clinically diagnosed hypertension, clinically diagnosed diabetes and medication (diuretics, and beta blocker).

In the main analysis, we obtained temperature measurements from the stationary monitoring station, which is located approximately 12km from the clinical site. This may introduce potential exposure misclassifications, as two participants came on the same day would be assigned to the same value. As a sensitivity analysis, we obtained temperature measurements from a spatial and temporal resolved model, and examined the association between increases in mean air temperature from the modeling data and number of mtDNA lesions per 10kb.
All analyses were conducted with SAS version 9.3 (SAS Institute Inc., Cary, NC) or, with R 3.0.1 (http://www.r-project.org/).

Results

Study Population

Table 3.1 shows participant characteristics at each visit. Of the 654 participants who had blood mtDNA lesion measurements, 481 participants came to more than one clinical visit (74%). Mean age at the first visit was 73.1 ± 6.8 years, and mean BMI at the first visit was 28.1 ± 4.0 kg/m² (mean ± SD). Four percent of the participants were current smokers, and 66% were former smokers at the first visit. The study population was predominately white (97%).

Meteorological Data

Table 3.2 describes the summary statistics and Spearman correlations of the meteorological variables. Twenty-four hour mean air temperature was 13.0 ± 8.6 °C across the four different seasons, and was 21.8 ± 4.5 °C and 1.2 ± 5.0 °C (mean ± SD), respectively, in summer and winter. Minimum 24-hour mean temperature in the winter was -13.9 °C; while maximum 24-hour mean temperature in the summer was 31.2 °C. Twenty-four hour mean and 24-hour SD of temperature showed moderate correlation in spring and summer (ρ=0.33 and 0.36, respectively).

Air Temperature and Mitochondrial DNA Lesions

Short-term increases in mean air temperature were associated with increased mtDNA lesions in blood in summer. For example, an IQR increase in 7-day (3.6 °C) and 14-day (3.8 °C) moving
average of 24-hour mean air temperature was associated with a 0.15 (95% CI: [0.05; 0.25], p=0.0033), and 0.19 (95% CI: [0.07; 0.30], p=0.0011) increase in number of mtDNA lesions per 10kb, respectively. Further, we also observed positive associations between increases in mean air temperature and mtDNA lesions in winter (Figure 3.1). For example, an IQR increase in 7-day (5.2 °C) and 14-day (4.2 °C) moving average of 24-hour mean temperature was associated with a 0.26 (95% CI: [0.08; 0.43], p=0.0037), and 0.23 (95% CI: [0.08; 0.37], p=0.0019) increase in number of mtDNA lesions per 10kb, respectively (Figure 3.1). Similar associations were also observed when we further adjusted for temperature variability (Figure 3.2). Short-term increases in temperature variability were also associated with higher number of mtDNA lesions independent of mean air temperature (Figure 3.3).

Sensitivity Analysis

In the sensitivity analysis, we used inverse probability weighing to account for potential selection bias due to loss to follow up. Result estimates were similar compared with those from primary analysis (data not shown). In addition, we obtained temperature measurements from a spatial and temporal resolved model, and compared results from the modeling data to monitoring stations. Results were fairly comparable. For example, a 5°C increase in 7-day moving average of 24-hour mean air temperature was associated with a 0.21 (95% CI: [0.07; 0.35]) increase in number of mtDNA lesions per 10kb based on stationary monitoring station data; and a 5°C increase in 7-day moving average of 24-hour mean air temperature was associated with a 0.31 (95% CI: [0.50; 0.57]) increase in number of mtDNA lesions per 10kb from the spatiotemporal modeling approach.
Discussion

In this analysis of the association between increases in air temperature and blood mitochondrial DNA lesions in a cohort of older individuals, we showed that higher mean temperature in the short-term was associated with increased blood mitochondrial oxidative damage—measured as the relative number of mtDNA lesions per 10kb. For example, an IQR increase in 7-day and 14-day moving average of 24-hour mean temperature was associated with a 0.15 (95% CI: [0.05; 0.25], p=0.0033), and 0.19 (95% CI: [0.07; 0.30], p=0.0011) increase in mtDNA lesions, respectively, in summer. We also observed positive associations between increases in mean air temperature and mtDNA lesions in winter. Results were similar when we further adjusted for within day temperature variability. Further, we also found significant associations between increased within day temperature variability and mtDNA lesions independent of mean air temperature. To our knowledge, this is the first study describing increases in air temperature and mitochondrial DNA damage.

The observed increase in mtDNA lesions in the summer (~20 °C and above) may be due to heat stress. In human, core body temperature is usually tightly regulated and maintained within a narrow range (~ 37 °C). When external temperature increases, thermoreceptors under the skin would sense such change in temperature and send information to the integrating center in brain via the afferent neural pathway. The integrating center, located in the hypothalamus would sense such temperature discrepancy between external environment and the set point of core body temperature, and send signals via the efferent neural pathway to dissipate heat.115 There are both physiological and behavioral responses for heat dissipation. For example, increases in air temperature would impose large demand on the heart and the vasculature system, resulting in
blood jeopardizing from core organs to the body’s surface for heat dissipation. Animal studies have shown that heat stress increase metabolic demand, and reduce splanchnic blood flow, which in turn reduce visceral perfusion; the prolonged ischemic environment may results in the generation of reactive oxygen and nitrogen species, which may lead to visceral – and in turn – systemic oxidative stress. Therefore, the observed increased mtDNA lesions in response to higher mean temperature during hot days may be reflecting systemic oxidative stress due to heat stress. Further, higher temperature in hot days may increase basal metabolic rate, which in turn lead to increased mitochondrial activity. Since mitochondria are the primary site of endogenous ROS generation, increased mitochondrial activity in hot days may also contribute to mtDNA lesions.

Interestingly, we also observed positive associations between increase in mean air temperature and mtDNA lesions at low temperature range (~ -10 to 0 ºC). Previous literatures indicate J- or U-shape relationships between changes in mean air temperature and mortality. Epidemiological studies however reported inconsistent associations between changes in mean air temperature and blood biomarkers. For instance, Hampel et al. and Schauble et al. reported increases in blood inflammatory and coagulation biomarkers with decreased air temperature in patients with cardiopulmonary and metabolic diseases, whereas in individuals with stable heart failure, Wilker et al. showed increased blood B-type natriuretic peptide and C-reactive protein levels with increased mean air temperature. Nevertheless, these studies focused on diseased populations, and it is likely that individuals with chronic diseases, such as coronary heart disease (CHD) or diabetes spend less time outdoor at extreme or sub-optimal temperatures, which may result in potential exposure misclassifications. As sensitivity analysis, we excluded
participants with chronic disease status (CHD and diabetes) and we observed slightly stronger associations between increases in mean air temperature and mtDNA lesions. For instance, an IQR increase in 7-day and 14-day moving average of 24-hour mean temperature was associated with a 0.35 (95% CI: 0.09; 0.62), and 0.40 (95% CI: 0.18; 0.62) increase in mtDNA lesions, respectively. From the same cohort, Bind et al. found increased DNA methylation in several inflammatory and oxidative stress related genes with decreased air temperature.99 DNA methylation in inflammatory genes have been shown to change rapidly after environmental insults for fine-tuning of inflammatory responses,58,59,118 and it is well-known that increased methylation often silences gene expression.

The observed positive associations between increases in mean air temperature and mtDNA lesions in cold weather may have resulted from decreased metabolic rate, which in turn reduces mitochondrial activity. Mitochondria are the primary sites for cellular energy production, as well as endogenous ROS generation.119 Since ROS are the byproducts of ETC where glucose are metabolized to cellular energy of adenosine triphosphate (ATP),119 a decrease in ROS generation due to reduced mitochondrial activity may be coupled with reduced ATP production. Hence, although we observed decreased blood mtDNA lesions as mean air temperature decreases in cold weather, other cellular processes that are ATP-dependent—such as vascular control—may also be depressed.120 Impaired vascular control may be particularly of a problem to the elderly population.

Our study participants consist mainly of old adults (mean age = 73.1 years at first visit). In healthy young adults, increase in temperature may result in climate adaptation, which may
involve enhanced cardiovascular performance, activation of the renin-angiotensin axis and increased capacity to secrete sweats, and expansion of plasma volume. However, older individuals are less adaptive to changes in air temperature, due to their impaired homeostatic control mechanisms (i.e., impaired baroreceptor reflex mechanism, lower sweating rate, and diminished renal sympathetic nerve activity). As a result, increase in air temperature would disproportionately affect elderly individuals. Our study highlights the relevance of investigating temperature influences in such susceptible population.

Our study has a number of strengths. Our assay for analyzing mtDNA lesion yields high precision: the between batch coefficient of variation was 10%. Further, we accounted for potential selection bias due to loss to follow-up using inverse probability of weighting (IPW). Point estimates were similar for models using or not using IPW, indicating that little selection bias was introduced due to loss to follow-up.

Our study has several limitations. In the primary analysis, we obtained air temperature data from fixed monitoring station sites located approximately 12km away from the clinical site. This may introduce potential exposure misclassifications. In the sensitivity analysis, we estimated air temperature at each participant’s residential address for each calendar day using a hybrid land-use regression and satellite-based model, and examined the association between increases in mean air temperature and mtDNA lesions. Temperature estimates from our modeling approach would introduce sufficient spatial and temporal variability, and minimize exposure misclassifications. Results were similar when we compared estimates from stationary monitoring stations and modeling approach. Our exposure matrix is ambient air temperature, however, we
have no indoor measures and no information about how much time each participant spent outdoor. Therefore, our study may suffer from potential exposure misclassifications, as elderly tend to stay indoor during hot and cold days, where air conditioning is available. In addition, since our study is based in Boston Massachusetts, the ambient air temperature range in our study may not be generalizable to other climate zones.

Conclusion

In conclusion, we observed short-term exposures to higher mean and variability of air temperature with increased mtDNA lesions in elderly adults, supporting the hypothesis that changes meteorological conditions may induce molecular mitochondrial alterations in older individuals. The potential health consequences associated with increased mtDNA lesions must be further elucidated.

ACKNOWLEDGEMENTS

The authors would like to thank all Normative Aging Study participants.

FUNDINGS

This work was supported by National Institutes of Health [R01ES021733, R01ES015172, RO1ES025225, U34AG051918, P30ES009089 and T32ES007142]; U.S. Environmental Protection Agency [RD-83479801]; and the Department of Agriculture, Agricultural Research Service [contract 53-K06-510]. The VA Normative Aging Study is supported by the Cooperative Studies Program/Epidemiology Research and Information Center of the U.S. Department of Veterans Affairs and is a component of the Massachusetts Veterans Epidemiology Research and
Information Center, Boston, Massachusetts. The views expressed in this paper are those of the authors and do not necessarily represent the views of the US Department of Veterans Affairs.

DISCLOSURES

None of the authors has any actual or potential competing financial interests.
Table 3.1. Personal characteristics of participants (N=654).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Visit 1 (n = 654)</th>
<th>Visit 2 (n = 387)</th>
<th>Visit 3 and more (n = 94)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean ± SD</td>
<td>73.1 ± 6.8</td>
<td>76.1 ± 6.6</td>
<td>79.8 ± 6.2</td>
</tr>
<tr>
<td>BMI (kg/m²), mean ± SD</td>
<td>28.1 ± 4.0</td>
<td>27.9 ± 4.2</td>
<td>28.1 ± 4.2</td>
</tr>
<tr>
<td>Smoking status, N (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>196 (30%)</td>
<td>121 (32%)</td>
<td>31 (33%)</td>
</tr>
<tr>
<td>Former</td>
<td>432 (66%)</td>
<td>249 (65%)</td>
<td>60 (65%)</td>
</tr>
<tr>
<td>Current</td>
<td>26 (4%)</td>
<td>14 (4%)</td>
<td>2 (2%)</td>
</tr>
<tr>
<td>Pack years, mean ± SD</td>
<td>19.9 ± 24.2</td>
<td>20.3 ± 24.7</td>
<td>21.0 ± 25.0</td>
</tr>
<tr>
<td>Race, N (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>631 (97%)</td>
<td>372 (97%)</td>
<td>91 (97%)</td>
</tr>
<tr>
<td>Other</td>
<td>17 (3%)</td>
<td>11 (3%)</td>
<td>3 (3%)</td>
</tr>
<tr>
<td>Metabolic Equivalent of Task, N (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low (≤12 hours/week)</td>
<td>412 (63%)</td>
<td>247 (66%)</td>
<td>66 (70%)</td>
</tr>
<tr>
<td>Medium (12-30 hours/week)</td>
<td>145 (22%)</td>
<td>82 (21%)</td>
<td>13 (14%)</td>
</tr>
<tr>
<td>High (≥30 hours/week)</td>
<td>95 (15%)</td>
<td>48 (12%)</td>
<td>15 (16%)</td>
</tr>
<tr>
<td>Two or more drinks per day, N (%)</td>
<td>133 (20%)</td>
<td>61 (16%)</td>
<td>14 (15%)</td>
</tr>
<tr>
<td>Education, N (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 12 years</td>
<td>216 (33%)</td>
<td>128 (33%)</td>
<td>33 (35%)</td>
</tr>
<tr>
<td>13-16 years</td>
<td>306 (47%)</td>
<td>180 (47%)</td>
<td>49 (52%)</td>
</tr>
<tr>
<td>> 16 years</td>
<td>132 (20%)</td>
<td>79 (20%)</td>
<td>12 (13%)</td>
</tr>
<tr>
<td>Season, N (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring (March-May)</td>
<td>156 (24%)</td>
<td>95 (25%)</td>
<td>27 (29%)</td>
</tr>
<tr>
<td>Summer (June-August)</td>
<td>187 (29%)</td>
<td>104 (27%)</td>
<td>26 (28%)</td>
</tr>
<tr>
<td>Fall (September- November)</td>
<td>214 (33%)</td>
<td>124 (32%)</td>
<td>24 (26%)</td>
</tr>
<tr>
<td>Winter (December-February)</td>
<td>97 (15%)</td>
<td>63 (16%)</td>
<td>17 (18%)</td>
</tr>
<tr>
<td>Lymphocytes count [cells/cm³ (mean ± SD)]</td>
<td>25.9 ± 8.7</td>
<td>24.7 ± 7.8</td>
<td>23.6 ± 7.5</td>
</tr>
<tr>
<td>Neutrophils count [cells/cm³ (mean ± SD)]</td>
<td>61.7 ± 9.0</td>
<td>62.9 ± 8.5</td>
<td>64.1 ± 8.2</td>
</tr>
<tr>
<td>Platelets [1000/mm³ (mean ± SD)]</td>
<td>220.6 ± 55.7</td>
<td>220.8 ± 54.9</td>
<td>207.0 ± 57.5</td>
</tr>
<tr>
<td>mtDNA lesions, mean ± SD</td>
<td>1.9 ± 0.9</td>
<td>1.4 ± 0.9</td>
<td>1.8 ± 0.9</td>
</tr>
</tbody>
</table>
Table 3.2. Summary statistics and Spearman correlation of environmental variables.

<table>
<thead>
<tr>
<th></th>
<th>Summary statistics</th>
<th>Spearman correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD</td>
<td>Median (p25, p75)</td>
</tr>
<tr>
<td>Overall (n = 1141)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-hr T<sub>MEAN</sub> (°C)</td>
<td>13.0 ± 8.6</td>
<td>13.3 (6.7, 20.0)</td>
</tr>
<tr>
<td>24-hr T<sub>SD</sub> (°C)</td>
<td>2.4 ± 1.2</td>
<td>2.2 (1.5, 3.1)</td>
</tr>
<tr>
<td>Spring (n = 281)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-hr T<sub>MEAN</sub> (°C)</td>
<td>9.8 ± 6.1</td>
<td>10.2 (5.8, 13.1)</td>
</tr>
<tr>
<td>24-hr T<sub>SD</sub> (°C)</td>
<td>2.4 ± 1.3</td>
<td>2.1 (1.5, 2.9)</td>
</tr>
<tr>
<td>Summer (n = 318)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-hr T<sub>MEAN</sub> (°C)</td>
<td>21.8 ± 4.5</td>
<td>22.1 (19.0, 24.8)</td>
</tr>
<tr>
<td>24-hr T<sub>SD</sub> (°C)</td>
<td>2.6 ± 1.2</td>
<td>2.6 (1.7, 3.3)</td>
</tr>
<tr>
<td>Fall (n = 365)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-hr T<sub>MEAN</sub> (°C)</td>
<td>13.5 ± 5.6</td>
<td>13.7 (9.2, 17.7)</td>
</tr>
<tr>
<td>24-hr T<sub>SD</sub> (°C)</td>
<td>2.3 ± 1.0</td>
<td>2.1 (1.4, 3.0)</td>
</tr>
<tr>
<td>Winter (n = 177)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-hr T<sub>MEAN</sub> (°C)</td>
<td>1.2 ± 5.0</td>
<td>1.6 (-2.1, 4.0)</td>
</tr>
<tr>
<td>24-hr T<sub>SD</sub> (°C)</td>
<td>2.2 ± 1.3</td>
<td>1.9 (1.4, 2.6)</td>
</tr>
</tbody>
</table>

*p<0.05; **p<0.01
Figure 3.1 Estimated change (and 95% CI) in mtDNA lesions per IQR increase of daily mean of air temperature over 14-day moving average (by season).

Results from linear mixed-effects regression models accounting for correlation across multiple visits and adjusted for age, BMI, race, metabolic equivalent of tasks (low: ≤12 hours/week; medium: 12-30 hours/week; high: ≥30 hours/week), smoking status (current, former, never), pack-years smoked, alcohol consumption, education level, platelet count, lymphocyte count, neutrophil count, plates, and 24-hr relative humidity.
Figure 3.2 Estimated change (and 95% CI) in mtDNA lesions per IQR increase of daily mean of air temperature over 14-day moving average (by season). We additionally adjusted for within day temperature variability.

Results from linear mixed-effects regression models accounting for correlation across multiple visits and adjusted for age, BMI, race, metabolic equivalent of tasks (low: ≤12 hours/week; medium: 12-30 hours/week; high: ≥30 hours/week), smoking status (current, former, never), pack-years smoked, alcohol consumption, education level, platelet count, lymphocyte count, neutrophil count, plates, 24-hr relative humidity, and within day temperature variability of the corresponding moving average.
Figure 3.3 Estimated change (and 95% CI) in mtDNA lesions per IQR increase of daily variability of air temperature over 14-day moving average.

Results from linear mixed-effects regression models accounting for correlation across multiple visits and adjusted for age, BMI, race, metabolic equivalent of tasks (low: ≤12 hours/week; medium: 12-30 hours/week; high: ≥30 hours/week), smoking status (current, former, never), pack-years smoked, alcohol consumption, education level, platelet count, lymphocyte count, neutrophil count, plates, 24-hr relative humidity and season (spring/summer/fall/winter).

We additionally adjusted for within day temperature mean of the corresponding moving average.
REFERENCES

19. Mengel-From J, Thinggaard M, Dalgard C, Kyvik KO, Christensen K, Christiansen L. Mitochondrial DNA copy number in peripheral blood cells declines with age and is associated with general health among elderly. *Hum Genet* 2014;133(9):1149-59.

45. Kenney MJ, Fels RJ. Sympathetic nerve regulation to heating is altered in senescent rats.

SUMMARY AND CONCLUSIONS

The goal of this dissertation was to evaluate the use of epigenetic and mitochondrial biomarkers linking environmental stressors (i.e. PM$_{2.5}$ exposure and changes in ambient air temperature) and health in the field of Environmental Epidemiology. Our study leveraged an existing prospective longitudinal cohort – The Normative Aging Study. Through applying advanced statistical methods, such as causal mediation analysis and dimension reduction methods (adaptive LASSO), we sought to address three public health questions: (1) the potential mediating role of DNA methylation of inflammatory cytokines linking PM$_{2.5}$ exposure and health outcomes; (2) the relative oxidation potency of PM$_{2.5}$ components independent of PM$_{2.5}$ mass concentration; (3) short-term changes in mean ambient air temperature and oxidative damage.

The results from Chapter 1 showed that PM$_{2.5}$ concentrations were associated with higher FBG level, and this association was in part mediated through $ICAM-1$ gene methylation, particularly at the longer (28-day) moving average investigated. Our study demonstrates a novel approach of mediation analysis in epigenetic studies and highlights a mediating role of $ICAM-1$ gene methylation in air-pollution associated abnormal glucose metabolism. While the proportion mediated by $ICAM-1$ methylation alone is relatively modest, methylation of other genes not investigated in this study, independently or in combination with $ICAM-1$ methylation, may mediate larger proportions of PM$_{2.5}$ effects. Future epigenome-wide studies are needed to determine the extent to which DNA methylation contributes to mediate environmental effects on human metabolism.

In Chapter 2, our study showed that long-term exposure to PM$_{2.5}$ mass and specific PM$_{2.5}$ components were associated with decreased mtDNA abundance in this elderly study population.
We first fit single- and two-pollutant models to estimate the associations between PM$_{2.5}$ components with mtDNA abundance. We included in the two-pollutant models PM$_{2.5}$ to avoid potential confounding by mass concentration. Further, we applied a multi-pollutant approach and used dimension reduction method *a priori* to reduce potential multi-collinearity issues while adjusting for exposure to other components. We found that NO$_3^-$ concentration in PM$_{2.5}$ negatively associated with mtDNA abundance in multi-pollutant modeling, suggesting that the oxidative stress potential of PM$_{2.5}$ may not be fully captured by mass concentration.

In Chapter 3, we observed short-term exposures to higher mean air temperature with increased mtDNA lesions in elderly adults, supporting the hypothesis that changes meteorological conditions may induce pathophysiological responses among susceptible subgroups—such as the elderly population—which represents a group of unacclimatized and immunocompromised individuals. Nevertheless, the potential health consequences of increased mtDNA lesions must be further elucidated.

Taken together, our study highlight the use of two sets of novel molecular biomarkers (DNA methylation at the promoter region of inflammatory cytokines and oxidative stress-related mtDNA integrity) in environmental epidemiology studies. Since inflammation and oxidative stress are two of the plausible pathways linking environmental challenges and health, this dissertation work may span the scope of commonly used biomarkers today, and help to advance our current understanding of body’s response to external environmental stressors.