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Slow ionized wind and rotating disklike system associated with the high-mass

young stellar object G345.4938+01.4677

Andrés E. Guzmán1,2, Guido Garay1, Luis F. Rodŕıguez3, James Moran2, Kate J. Brooks4,

Leonardo Bronfman1, Lars-Åke Nyman5, Patricio Sanhueza 6,7, and Diego Mardones1.

ABSTRACT

We report the detection, made using ALMA, of the 92 GHz continuum and hydro-

gen recombination lines (HRLs) H40α, H42α, and H50β emission toward the ionized

wind associated with the high-mass young stellar object G345.4938+01.4677. This is

the luminous central dominating source located in the massive and dense molecular

clump associated with IRAS 16562−3959. The HRLs exhibit Voigt profiles, a strong

signature of Stark broadening. We successfully reproduce the observed continuum and

HRLs simultaneously using a simple model of a slow ionized wind in local thermody-

namic equilibrium, with no need a high-velocity component. The Lorentzian line wings

imply electron densities of 5 × 107 cm−3 on average. In addition, we detect SO and

SO2 emission arising from a compact (∼ 3000 AU) molecular core associated with the

central young star. The molecular core exhibits a velocity gradient perpendicular to

the jet-axis, which we interpret as evidence of rotation. The set of observations toward

G345.4938+01.4677 are consistent with it being a young high-mass star associated with

a slow photo-ionized wind.

Subject headings: ISM: jets and outflows — stars: jets — stars: formation — ISM:

individual objects (IRAS 16562−3959) — stars: individual (G345.4938+01.4677)

1. INTRODUCTION

Stars of all masses form by gravitational collapse within unstable regions of molecular clouds.

Observationally, low-mass star formation is characterized by the following inter-related phenomena:
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an infalling envelope, an accretion disk, and a highly collimated jet (Shu et al. 1987; Li et al. 2014).

Highly collimated jets, flowing outwards in a roughly symmetrical fashion are one of the most

spectacular phenomena occurring during the formation of stars (De Young 1991). The origin

and driving mechanism of these stellar jets are still major open issues, although the presence

of an accretion disk (Livio 2009) and magnetic fields are thought to be key in explaining the

efficient jet acceleration and collimation (Blandford & Payne 1982; Cabrit 2007). There is a jet-

disk symbiosis, well established observationally in the case of low-mass protostars, by which the

surrounding accretion disk feeds the jet by transporting gas and dust from the infalling envelope

to the protostar and the jet removes angular momentum and magnetic flux from the disk allowing

accretion to proceed (Frank et al. 2014).

High-mass stars (M? > 8M�) form by accretion within massive (∼ 103M�) and dense

(104-5 cm−3) molecular clumps, with typical diameters of 1 pc and generally supported by tur-

bulent motions (Garay 2005; Zinnecker & Yorke 2007; Tan et al. 2014). These clumps harbor the

luminous embedded infrared sources known as high-mass young stellar objects (HMYSOs), that

represent an early evolutionary stage of a single high-mass star or a multiple stellar system. It is

probable, also, that some high-mass stars are born forming tight binary systems that will eventu-

ally merge, populating the highest end of the stellar mass spectrum (Sana et al. 2012). Toward

some massive clumps, the following phenomena — analogous to the ones observed in low-mass star

formation — are detected:

• Extended infalling envelopes, with inflows motions involving a sizable fraction of the molecular

clump (Ho & Haschick 1986; Zhang & Ho 1997; Garay et al. 2002, 2003; Wu & Evans 2003).

• Bipolar molecular outflows, which are poorly collimated but much more massive and energetic

than in the low-mass case (Zhang et al. 2001; Beuther et al. 2002; Wu et al. 2004; Zhang et al.

2005; Beltrán et al. 2011).

• Rotation-flattened molecular structures surrounding the HMYSOs, ranging from transient

toroids with sizes ≥ 5000 AU (Zhang 2005; Beltrán et al. 2006) to more stable, disklike

structures of 500-2000 AU where centrifugal support may play a role (Patel et al. 2005;

Franco-Hernández et al. 2009; Qiu et al. 2012; Sánchez-Monge et al. 2013; Beuther et al.

2013; Hunter et al. 2014).

When both bipolar outflows and rotating molecular structures are detected, the symmetry axis of

the former and the velocity gradient of the latter are usually perpendicular. Most disklike struc-

tures around HMYSOs are, however, considerably different compared to low-mass circumstellar

disks: they are not thin or supported entirely by rotation, and they might be unstable to further

fragmentation. The closest analogs to low-mass circumstellar disks are the ones discovered around

HMYSOs that are not deeply embedded (e.g., Kraus et al. 2010; Fallscheer et al. 2011). In addition,

young high-mass stars emit copious amounts of UV radiation that ionize their surroundings (Keto

& Wood 2006; Keto & Klaassen 2008). Important unsettled questions are: Does the infall extend
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all the way to the molecular core? Do accretion disks exist within rotating cores? Are molecular

outflows driven by underlying collimated jets powered by accretion? Numerical models have shown

that disks (e.g., Kuiper et al. 2011) and jets (e.g., Vaidya et al. 2011) are theoretically possible to

form and sustain around young high-mass stars.

Optical and radio continuum observations indicate that a fraction of the matter in the young

stellar jet is in the form of ionized gas (Anglada 1996), i.e., the ionized jet. Examples of ionized

jets associated to HMYSOs observed in radio continuum are IRAS 18162−2048 (also HH 80-81,

Mart́ı et al. 1993), Cepheus A HW2 (Rodŕıguez et al. 1994), IRAS 20126+4104 (Tofani et al. 1995;

Cesaroni et al. 1997), G192.16−3.82 (Shepherd et al. 1998), W75N VLA 3 (Carrasco-González

et al. 2010), AFGL 2591 VLA 3 (Johnston et al. 2013), G35.2−0.7N (Gibb et al. 2003), NGC7538

IRS 1 (Sandell et al. 2009), G343.1262−00.0620 (Garay et al. 2003, 2007, also IRAS 16547−4247),

and G345.4938+01.4677 (Guzmán et al. 2010, 2011, also IRAS 16562−3959). Most of the present

knowledge about ionized jets comes from studies at optical and near-infrared (NIR) wavelengths of

low-mass young stars still associated with their protostellar disks, but no longer embedded in their

parental molecular cores, referred to as Class II objects (Ray et al. 2007). Young stars in earlier

evolutionary phases are still deeply embedded within their parental cores of dust and gas and are

thus undetectable at optical or NIR observations. This is the general situation in jets associated

with high-mass stars. Radio continuum observations, on the other hand, are not affected by dust

absorption and are able to probe the characteristics of deeply embedded ionized jets.

Physical parameters of ionized jets associated with high-mass stars, such as the degree of

collimation, ionization fraction, or kinematics, are not well determined, and they are usually con-

strained from observations of the lobes. In particular, estimates of the velocity of the gas in the jet

are derived from measurements of the lobes proper motion. In most cases, the estimates are close to

∼500 km s−1(Mart́ı et al. 1998; Curiel et al. 2006; Rodŕıguez et al. 2008), considerably faster than

the jet velocity of their low-mass counterparts. The dominant assumption in the literature has been

that the velocity of the ionized gas within the jet is similar to that of the lobes. Until now, the only

direct observational support for this assumption has been provided by hydrogen recombination line

(HRL) observations made by Jiménez-Serra et al. (2011) toward the B-type YSO Cepheus A HW2.

While HRLs have become standard tools to study regions of ionized gas (Mezger & Palmer 1968;

Brown et al. 1978; Gordon & Sorochenko 2002), this has not been true for jets, which have much

weaker flux densities and smaller sizes than classical H ii regions.

We present ALMA Band-3 observations of the HMYSO G345.4938+01.4677 (also IRAS 16562−3959).

This HMYSO is associated with an ionized wind and symmetrically located lobes detected in cen-

timeter radio continuum by Guzmán et al. (2010), an infalling envelope, and a bipolar molecular

outflow (Guzmán et al. 2010, 2011). In the following, we use the name IRAS 16562−3959 to refer

to the more extended, ∼ 40′′ angular size molecular clump characterized by single dish observa-

tions (e.g., Faúndez et al. 2004). G345.4938+01.4677 (G345.49+1.47 hereafter) is then the central

dominating HMYSO within IRAS 16562−3959. For the present work, we adopt a distance to IRAS
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16562−3959 of 1.7 kpc (López et al. 2011).1 The gas mass of IRAS 16562−3959 is ∼ 900M�.

Assuming that approximately 30% of this mass will end up as stellar mass in a cluster (Lada &

Lada 2003), and using the empirical relationship Mmax = 1.2M0.45
cluster where Mmax is the mass of

the most massive member of a cluster and Mcluster is the cluster’s mass (in units of solar mass, see

Larson 2003), we determine that the likely mass of the central star of G345.49+1.47 is ∼ 15M�.

In this work, we focus on results derived from the continuum, HRLs, and sulfuretted molecular

lines, and we leave the analysis of other observed molecular tracers (e.g., SiO, CH3OH, and C2H)

for upcoming publications.

Section 2 presents the ALMA observations toward G345.49+1.47 and data reduction. Section

3 presents the results from the radio continuum, from the three HRLs, and from the sulfuretted

molecules. We discuss and model the results in Section 4, where we suggest that the G345.49+1.47

radio continuum and HRL emission are best explained as arising from a photo-ionized disk wind.

Section 5 summarizes our main conclusions.

2. OBSERVATIONS

Data were obtained using the Atacama Large Millimeter/sub-millimeter Array (ALMA) during

Cycle 0 using the extended array configuration (longest and shortest baselines 453 and 21 m,

respectively). We observed G345.49+1.47 for ∼188 minutes on-source in Band-3, which covers the

3 mm atmospheric window, in 5 scheduling blocks. Two scheduling blocks were observed with 17 12-

m antennas, and the other three with 25. The phase center of the array was R.A.= 16h59m41.s63,

decl.= −40◦03′43.′′61 (J2000), the position of the central jet source identified by Guzmán et al.

(2010).

The observations covered four spectral windows (SpWs), each one spanning 1.875 GHz. Each

SpW consisted of 3840 channels of 488 kHz width and were centered at 85.4, 87.2, 97.6, and

99.3 GHz. We use these frequencies to refer to each SpW throughout this work. The effective

spectral resolution is approximately two times the channel width, that is 976 kHz, which corresponds

1Note that Lumsden et al. (2013) derived a spectro-photometric distance of 2.4 kpc.

Table 1. Spectral Setting and Angular Resolution

85.4 GHz 87.2 GHz 97.6 GHz 99.3 GHz

Spectral Window Limits (GHz) [84.42, 86.30] [86.18, 88.06] [96.68, 98.56] [98.38, 100.26]

Synthesized Beams 2.51′′×1.42′′ 2.47′′×1.40′′ 2.22′′×1.24′′ 2.18′′×1.26′′

Position Angle 97.8◦ 97.3◦ 97.2◦ 97.7◦
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to ∼3.0 km s−1. Table 1 gives the spectral limits of each SpW, and the synthesized beam of the

array at these frequencies, which was typically 2.′′3 × 1.′′3 with a position angle of 97◦ (Table 1).

The primary beam FWHM was 67′′, and the typical system temperature was 70 K.

We recalibrated the data using the Common Astronomy Software Applications (CASA) (v.4.0.1

Petry & CASA Development Team 2012). The sources Neptune and Titan were used as flux

calibrators,2 J1924−292 and 3C279 were used as bandpass calibrators, and J1717−337 was used as

a gain calibrator. The flux densities derived for J1717−337 were 1.46±0.03, 1.44±0.03, 1.37±0.03,

and 1.36± 0.03 Jy at 85.4, 87.2, 97.6, and 99.3 GHz, respectively.

Maps were generated by Fourier transformation of the robust-weighted visibilities (Briggs

1995), robust parameter = 0, and deconvolved using the clean task within CASA. The pixel size

used was 0.′′3 × 0.′′3 in all cases. Most of the flux density detected toward G345.49+1.47 arises

from a compact continuum source of ∼ 0.1 Jy, which allowed us to perform an additional phase

self-calibration iteration. All visibilities were calibrated in phase using this self-calibrated solution.

The spectral location of HRLs and strong molecular lines was masked out by visual inspection

to isolate the continuum emission. This continuum was subtracted from the visibility data using the

CASA task uvcontsub. The noise level achieved in the continuum maps for each SpW was typically

50 µJy beam−1, as measured by the rms of the final images. Deconvolved images per channel were

obtained for selected spectral lines using clean, achieving noise levels of 1-2 mJy beam−1. The

continuum and spectral cube noise levels attained are comparable to the theoretical sensitivity

calculated using the ALMA Observing Tool, which indicates 25 µJy per SpW for the continuum

and 1.4 mJy per channel for the spectral lines.

Fully reduced datasets, continuum, and spectral cubes are publicly available through the Data-

verse.3

3. RESULTS

3.1. Continuum emission

Figure 1 shows the 92 GHz deconvolved map of the continuum emission obtained combin-

ing the four SpWs (Table 1). The four SpW maps display similar morphology. Figure 1 shows

that the emission is dominated by a central, bright compact source (Source 10) associated with

G345.49+1.47, with an integrated flux density of ∼ 0.1 Jy. We also distinguish 17 additional

compact secondary sources, and extended emission partially recovered by the interferometer.

The continuum sources identified in Figure 1 correspond to compact emission detected above

2Butler-JPL-Horizons 2012 flux model.

3http://dx.doi.org/10.7910/DVN/24060
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Fig. 1.— Continuum emission detected at 92.3 GHz toward IRAS 16562−3959. Bottom panel: Con-

tours shown correspond to −15, 15, 30, 60, 120, 250, 500, 1000, and 2000σ, with σ = 50 µJy beam−1.

σ represents the r.m.s. variations of the dynamic range limited image measured at the edge of the

field. Compact sources are identified by the number given in Table 2. All sources are within the

primary beam.
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0.75 mJy in the combined continuum map. This threshold is ≥ 15 σ, where σ is the r.m.s. variations

of the image measured at the edge of the field. This number does not represent random noise, but

it arises mainly because of dynamic range limitations of the image. All sources, except perhaps

source 18, are embedded in somewhat extended and diffuse emission.

The positions of the continuum sources are given in Table 2. The coordinates correspond to the

position of the emission peak determined by using the CASA function maxfit, except for Sources

10 and 13, for which we fit two 2-D Gaussians using the CASA task imfit. For each source, the

coordinates determined in the four SpWs are consistent within 0.′′15. Note that the position of

Source 10 corresponds to the position of the jet source reported by Guzmán et al. (2010). The

deconvolved size of Source 10 is .0.′′4 in each SpW, which is less than one-third of the beam size.

Since Source 10 is not completely isolated, we refrain from further analyzing its deconvolved size

here.

Table 2 also lists the integrated flux densities in each of the SpWs and the derived in-band

spectral index. For Sources 10 and 13, integrated flux densities are derived from the Gaussian

fittings. For the rest of the sources, we integrated the flux density within boxes of two times the

size of the beam. The uncertainty assumed for each flux density is either 2σ ∼ 0.1 mJy or the

uncertainty derived from the 2-D Gaussian fit. Best-fit spectral indexes and their uncertainties were

obtained by weighted least-squares (or χ2) minimization using the procedure described in Lampton

et al. (1976). Unless stated otherwise, this is the procedure we follow throughout this work. The

last column of Table 2 shows χ2
r , that is, the least-square value divided by the number of degrees

of freedom (2).

3.2. HRL emission

HRL emission was detected toward the central Source 10 in three transitions: H40α, H42α,

and H50β, whose rest frequencies are 99022.95, 85688.39, and 86846.96 MHz, respectively. The

spatial distribution of the emission of the three HRLs is similar in all velocity channels and can be

described as an unresolved source located within 0.′′1 with respect to the phase center.

Figure 2 shows the spectra of the three HRLs detected toward G345.49+1.47. Table 3 gives

the observed parameters of the line profiles at the peak position. From this table and Figure 2 it is

evident that the HRL profiles exhibit extended wing emission. Two further characteristics in the

observed spectrum are worth mentioning: First, the line located at a velocity of ∼ +125 km s−1

in the H40α spectra. This line is narrower than the HRLs, and was identified as one of the SO2

rotational transitions (see §3.3). Second, an unidentified feature appears in the spectrum of the

H40α toward VLSR < −140 km s−1. We have excluded the velocity range affected by this emission

in the analysis of the HRLs.

3.3. Sulfuretted molecules

Table 4 shows the list of sulfuretted molecules detected in our observations toward G345.49+1.47
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Fig. 2.— Spectra of the HRLs detected toward G345.49+1.47. Blue dots: Observed data. Dashed

lines: Voigt profile fits to the spectra, using the same central velocity and thermal parameter for

the three lines. Left column: The flux density plotted in linear scale. The red lines indicate the

residuals from the fits. Right column: The flux density displayed in log scale in order to emphasize

the wing emission.
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and summarizes their main characteristics. The detected species are sulfur monoxide (SO) and its
34S isotopologue, sulfur dioxide (SO2), carbonyl sulfide (OCS), and carbon monosulfide (CS) and

its 33S isotopologue. We synthesized spatial maps of the emission for all the lines, except of SO2

287,21 → 296,24 (see next section). Columns 2-4 of Table 4 list the frequency, transition, and energy

associated with the upper level of the transition in K (Eu = kT ) obtained from the JPL (Pickett

et al. 1998) and CDMS (Müller et al. 2001) databases consulted through the Splatalogue4 (Remijan

et al. 2007). Column 5 indicates whether we detect a velocity gradient associated with the central

compact component. Column 6 gives the velocity integrated from VLSR −30 to 0 km s−1 line

flux within a 5′′×5′′ box centered on G345.49+1.47 (equatorial orientation). Finally, columns 7-9

display the results of Gaussian fittings to the line flux integrated in the same central 5′′×5′′ region.

The Gaussian parameters roughly describe the most important characteristics of each line, but we

stress that Gaussian models to the line profiles are generally poor. Additionally, since the spectral

resolution of our data is ∼3.0 km s−1, in the majority of the lines, we have only two independent

spectral sampling points per FWHM (column 9 of Table 4). This sampling is too scarce to attempt

a detailed modeling of the line profiles.

The main morphological features of the integrated line maps (or 0th moment) associated with

SO, 34SO, and SO2 (the sulfur oxides) are all similar. Taking SO JN = 45 → 44 as a representative

example, Figure 3 shows contours of the velocity integrated flux within [−30.0,0.0] km s−1. Most

of the emission comes from a central bright component with a peak position displaced about 0.′′4

northwest of Source 10. There is also emission from a weaker source located ∼ 4′′ east of Source

10, consistent with the position of Source 13. From Figure 3 we also see that the selected 5′′×5′′

region encloses well the emission associated with G345.49+1.47, whose parameters for each line are

in columns 7-9 of Table 4.

Figures 3 and 4 show the first moment of some of the sulfur oxide lines. There is a clear velocity

gradient associated with G345.49+1.47. The gradient directions and magnitudes are similar in all

4http://www.cv.nrao.edu/php/splat

Table 3. Observed parameters of the HRLs

Peak Flux VLSR of FWHM FWZPa Integrated

Density Peak (km s−1) (km s−1) flux

(mJy) (km s−1) (Jy km s−1)

H40α 42.6(1) −18.3 44.4 360 2.86(0.05)

H42α 32.7(1) −13.6 39.3 227 1.95(0.04)

H50β 9.1(1) −13.2 50.2 124 0.43(0.03)

aFull width at zero power.
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Fig. 3.— Moment 1 of the SO JN = 45 → 44 emission detected toward G345.49+1.47 in color scale.

Data below 20% of the peak = 0.158 Jy beam−1 are masked. Black contours display the emission

integrated in the velocity interval between −22.5 and −2.5 km s−1. Contours correspond to 10, 20,

30, 50, 70, and 90% of the peak value = 1.16 Jy beam−1 km s−1. The position of the continuum

Sources 10 and 13 are indicated by asterisks. The dashed square indicates the 5′′×5′′integration

region used to calculate the line fluxes reported in column 6 of Table 4.
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Fig. 4.— Moment-1 maps of the sulfuretted molecules that display clear velocity gradients asso-

ciated with G345.49+1.47. The color stretch is equivalent to that of Figure 3. In each panel, a

“+” sign indicates the continuum peak. Top left panel: The dashed black line corresponds to the

direction inferred for the jet as traced by the ionized lobes (Guzmán et al. 2010).
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these transitions.

The morphology of the emission in the other sulfuretted species (CS, C33S, and OCS) is

different than that of the sulfur oxides. Figure 5 shows integrated line maps of the CS 2→1, C33S

2→1, OCS 7→6, and OCS 8→7 transitions. The OCS emission is dominated by a single compact

source, but displaced from the center of the map by ∼0.′′7 to the northwest. The CS and C33S trace

significant extended emission in addition to a compact source near the map center but displaced

∼ 1.′′2 to the northwest. This source is relatively more prominent in the C33S map with respect to

the diffuse extended emission, when compared to CS.

Figure 6 shows first moment maps of the OCS lines and of the SO2 202,18 → 211,21 and

294,26 → 285,23 transitions. We do not detect any velocity gradient in these lines. Neither CS nor

C33S lines display velocity gradients analogous to the ones traced by the sulfur oxides. Finally,

we identify emission from the SO2 287,21 → 296,24 line near the H40α HRL. We expect this SO2

line to have an apparent velocity displacement of +126 km s−1 with respect to the H40α line,

consistent with the observations (see previous section and Figure 2). Having observed other strong

SO2 transitions strengthens this identification.

4. DISCUSSION

In this section, we discuss and analyze the continuum, HRL, and sulfuretted molecular line

emission detected toward the compact source G345.49+1.47 and the clump IRAS 16562−3959.

4.1. Continuum sources toward IRAS 16562−3959

We distinguish three groups of continuum sources associated with the IRAS 16562−3959 clump,

classified according to their spectral indexes given in Table 2. The indices allow us to propose three

plausible mechanisms for the emission.

1. Sources with spectral index ∼ 1 (Sources 6, 10, and 18): These indexes are characteristic of

ionized thermal jets and hypercompact H ii regions (HCH ii regions Guzmán et al. 2012; Keto

et al. 2008) and indicate partially optically thick free-free emission. Source 10 is coincident

with the jet detected by Guzmán et al. (2010), which is the main interest of the present work

and which we analyze in detail in the next sections. The position of Source 18 coincides with

the mid-IR source GLIMPSE G345.4977+01.4668 (Benjamin et al. 2003) . An exploration of

YSO models with mid-IR fluxes consistent with Source 18, made using the online fitter tool5

described in Robitaille et al. (2007), indicates that this source is likely an intermediate-mass

young star with a luminosity of ∼ 104 L�. The association with an OH maser (Caswell 1998)

supports this interpretation. The 92 GHz emission from Source 18 most likely arises from

5http://caravan.astro.wisc.edu/protostars/
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Fig. 5.— Velocity integrated emission of the CS and OCS lines. The color bars indicate the scale

in Jy km s−1. White contours correspond to continuum emission, dominated by Source 10, at 20,

40, 60, 80, and 90% of the peak (peak = 0.106 Jy beam−1).
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Fig. 6.— Moment 1 of the sulfuretted molecular line emission associated with G345.49+1.47 that

shows no velocity gradient (except for SO2 287,21 → 296,24).
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a photo-ionized HCH ii region or a stellar wind. This is also possibly the case for Source 6,

although it is one of the faintest sources detected in the field.

2. Sources with flat spectrum (Source 1): This spectrum is characteristic of optically thin free-

free emission. In Source 1, the excitation arises most likely from shocks, since it is associated

with one of the ionized lobes of G345.49+1.47 (see Figure 7).

3. Sources with spectral indices > 2. Fourteen of the eighteen sources are in this category. They

have a mean spectral index of 3.2. For the case of isothermal free-free emission, the spectral

index must remain between −0.1 and 2 for all density distributions (Rodriguez et al. 1993).

However, if the ionized medium has a temperature gradient, then large spectral indices can

be obtained (Reynolds 1986). A more likely explanation is, however, that the spectrum near

100 GHz is substantially affected by optically thin dust (e.g. Zhang et al. 2007; Beuther

et al. 2007; Zapata et al. 2009; Galván-Madrid et al. 2010; Maud et al. 2013). Since the dust

emissivity varies as νβ, optically thin emission in the Rayleigh-Jeans limit has a spectral index

of β + 2. Values of β ∼ 1 can be attributed to grain growth in dense environments (Draine

2006). However, our spectral indices were derived over a very narrow frequency range of 85-

100 GHz. Hence, since we cannot separate the free-free component from the dust component,

we do not draw any definite conclusions about the nature of the dust grains. We propose

that all these sources are associated with dust emission arising from molecular cores within

the young stellar population of IRAS 16562−3959. Among these, we highlight Sources 12

and 13. Source 12 position is consistent with IR sources GLIMPSE G345.4906+01.4655 and

2MASS 16594180-4003591 (Skrutskie et al. 2006), and the results of the YSO online fitting

tool indicate that it corresponds to a source with a bolometric luminosity of ∼ 1000L�.

Source 13 is the second most luminous source detected toward the IRAS 16562−3959 field,

and its position suggests that it may harbor the powering source of the North-South bipolar

molecular outflow detected by Guzmán et al. (2011). Finally, we note that Sources 9 and 14

seem to be associated with mid-IR point sources detected by IRAC at 4.5 µm (Fazio et al.

2004; Benjamin et al. 2003).

4.2. The ionized jet observed at 92 GHz

The three panels of Figure 7 show images of the 92 GHz emission observed toward the jet and

the lobe system reported by Guzmán et al. (2010), overlaid with contours at 8.6 GHz emission.

In this work, we refer to 92 GHz emission as the emission calculated combining the four SpWs.

Following the Guzmán et al. (2010) naming convention, the two outermost lobes are referred to

as outer-east (O-E) and outer-west (O-W) lobes, while the two innermost as inner-east (I-E) and

inner-west (I-W) lobes.

Source 10 coincides, within the uncertainties, with the jet source. Furthermore, the spectral

indexes of the radio continuum from the jet below 10 GHz (0.85±0.15) and of the 92 GHz emission
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Fig. 7.— Comparison between the 92 GHz continuum (color background image) and 8.6 GHz

emission (black contours) reported by Guzmán et al. (2010) following their naming convention. In

the bottom left corner of each panel, we show the synthesized beams, filled and outlined for the

92 GHz and 8.6 GHz data, respectively. Top and bottom panel: Emission detected toward the O-E

and O-W lobes, respectively. The central panel shows the emission toward the inner lobes flanking

the central jet source identified by Guzmán et al. (2010).
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of Source 10 (1.0 ± 0.1) are similar. We conclude that Source 10 is the 92 GHz counterpart of

the ionized jet and that the emission at both frequency ranges comes from partially optically thick

ionized gas.

Figure 8 presents the radio continuum spectra of the ionized jet in the range from 1 to 100 GHz.

This spectra is well fitted by a power law in frequency with an spectral index of 0.92±0.01 over the

entire frequency range, consistent with partially optically thick thermal free-free emission (Anglada

1996; Villuendas et al. 1996; Jaffe & Mart́ın-Pintado 1999). While this is the dominating emission

mechanism, it is likely that at the highest frequencies a small fraction of the emission arises from

thermal dust. We note that the ALMA spectrum of Source 10 is marginally steeper than the one

measured at centimeter wavelengths alone, which might be attributed to dust emission. By fitting

the data with two power laws, one for partially optically thick free-free emission and the other with

an spectral index equal to 3, representing the dust contribution, we find that the flux attributable

to dust is ∼ 11 mJy at 92 GHz, that is, ∼10% of the total flux coming from G345.49+1.47.

The ionizing photon flux needed to maintain the recombination equilibrium is ≥ 5.8×1046 s−1

(Guzmán et al. 2012), which is larger than the typical ionizing fluxes needed to maintain the

typical mJy-level flux of jets detected in centimeter bands. The momentum rate estimated for

G345.49+1.47, of ∼ 10−3 M� yr−1 km s−1(Guzmán et al. 2010), is approximately two orders of

magnitude smaller than the minimum required for the jet in order to shock-ionize itself (Johnston

et al. 2013; Curiel et al. 1989). Furthermore, as analyzed in the subsequent sections, the value of the

momentum rate computed for G345.49+1.47 is likely overestimated since the velocity of the ionized

gas is < 300 km s−1. We conclude that the ionizing UV photons come from the young high-mass

star itself, from which we expect fluxes larger than 1047 s−1 (see, for example Martins et al. 2005).

This is despite the evidence that G345.49+1.47 appears to be accreting at a high rate, which in

theory should quench the development of an H ii region (Walmsley 1995) or decrease substantially

the effective temperature of the young star (Hoare & Franco 2007; Hosokawa & Omukai 2009).

We also detected emission at the positions of the outer lobes of the jet, as shown in Figure 7.

Source 1 of Table 2 corresponds to the O-W lobe. This source has a flat spectrum, characteristic

of optically thin free-free emission, which is expected since the emission from the ionized lobes is

already optically thin at centimeter wavelengths. The O-E lobe is associated with diffuse emission

above 5σ, shown in Figure 7. This identification gives confidence that most features shown in the

color map of Figure 7 are real. The flux density of the outer lobes at 92 GHz, corrected for primary

beam response and integrated over the regions shown in Figure 7, are 4.5 and 5.8 mJy for the O-W

and O-E lobes, respectively. These fluxes are consistent with the ones reported by Guzmán et al.

(2010), scaled with frequency as ν−0.1.

Emission from the inner lobes is, however, difficult to disentangle from our data. This is partly

because the angular resolution of the ALMA data is approximately two times lower than that of

the centimeter wavelength observations, producing an overlap of the emission from the inner lobes

with that of nearby sources and from the jet. We expect the inner lobes to have ∼ 4 mJy each.
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Fig. 8.— Radio continuum flux density vs. frequency (log-log plot) for G345.49+1.47. The dashed

line indicates a least-squares power law fit over the whole frequency range, giving an spectral index

of 0.92. The fit parameters of the spectrum are shown in the figure. The inset displays a zoom over

the range of data from ALMA. ATCA data shown for frequencies below 10 GHz are taken from

Guzmán et al. (2010).
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Source 13, as remarked previously, displays a dustlike emission spectrum, and it is not a free-free

counterpart of the inner-east lobe.

4.3. Broadening of the HRLs associated with the jet G345.49+1.47

Theoretical work predicts that, in addition to thermal and turbulent broadening, HRLs should

be broadened by the linear Stark effect, namely, the splitting and displacement of the atomic energy

levels by an electric field. For interstellar ionized regions and for HRLs in the radio and millimeter

regions of the spectrum, the most important mechanism for Stark broadening is scattering with

electrons under conditions where the impact approximation is valid (Griem 1967). The Stark

broadening redistributes the energy in the line over a frequency interval larger than that produced

by the thermal and turbulent broadening. The predicted line shape is a Voigt profile, which

corresponds to the convolution of a Gaussian component, produced by the thermal and turbulent

motions of the recombining atoms, and a Lorentzian component, produced by the impacts with

electrons. Toward the center of the line, the profile is nearly Gaussian, whereas toward the wings,

it is nearly Lorentzian.

The theory of hydrogen Stark broadening was developed after a few setbacks (see Gordon &

Sorochenko 2002, for a historical account) in which astronomical observations played a crucial role.

Recently, the theory was again questioned by observations (Bell et al. 2000), triggering a debate

settled recently by Alexander & Gulyaev (2012). Direct detection of clear-cut Voigt profiles is an

important confirmation of the currently accepted broadening theory, and until now, these profiles

have not been unambiguously observed in the astronomical context.

Most of the reported HRL observations in the literature are not sensitive enough to detect the

wing emission from the Voigt profiles, and consequently, their profiles appear roughly Gaussian.

The presence of Stark broadening is inferred indirectly, usually from observations of two HRLs

with different principal quantum numbers. Because the pressure broadening increases with the

transition quantum number as n7.5, the thermal broadening is determined from the width of the

HRL with the smaller n (higher frequency), and the pressure broadening is estimated from the

increase of the line width of the high n transition with respect to that of the low n, assuming

optically thin conditions (Keto et al. 2008; Sewi lo et al. 2011; Galván-Madrid et al. 2012). In the

few cases where there is a direct wing detection, it is weak (e.g., Simpson 1973; Smirnov et al. 1984;

Foster et al. 2007; von Procházka et al. 2010). Apparently, the clearest previous case of pressure

broadening is shown in carbon recombination lines observed in absorption towards SNR Cas A (see

Stepkin et al. 2007, and references therein). The lack of direct detection of the wing emission in

Voigt profiles from HRLs is likely due both to their intrinsic low intensities and to the wide velocity

range they span, requiring for identification sensitive observations and flat or linear instrumental

baselines that just have become available with the new generation of radio telescopes.
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4.3.1. Voigt profile fitting

Figure 6 shows the HRL profiles at the peak position. They display evident wing emission,

which we fit using Voigt functions. Figure 2 also shows the results of Voigt profile fits and residuals.

The Voigt function is characterized by four parameters: the value at the peak, the central velocity,

and the Lorentzian and Gaussian widths. We parameterize the Gaussian width (∆G) using the re-

lation ∆G = 0.22
√
T (K) km s−1 (Gordon & Sorochenko 2002, § 2.2.2), where T is the temperature

of the gas that emits the HRL.

Best-fit parameters are obtained by minimization of the weighted-squared difference∑
HRLs

∑
Vl<vi<Vm

(
HRL(vi)− V(Peak, V0, δL, T ; vi)

σ

)2

, (1)

where σ = 1 mJy is the noise per channel, the first sum runs over the three recombination line

data (HRL =H40α, H42α, H50β), and the second sum runs over the channels (vi) between the

VLSR limits Vl = −80 and Vm = 100 km s−1. These velocity limits exclude the regions where

we expect contamination from He or C recombination lines, or molecular lines. The expression

V(Peak, V0, δL, T ; vi) represents the value of the Voigt function associated with its four parameters

(Peak, V0, δL and T ), evaluated at velocity vi. The Voigt function parameters are allowed to be

different between the HRLs, except for T . Our best-fit model indicates that this temperature is

T = 2000+6000
−1000 K. The 1-σ uncertainty range of best-fit temperatures is large since the thermal

Gaussian width is much narrower than the wings. However, the range of values is within what is

expected for ionized regions in the Galaxy. In particular, we do not find evidence of nonthermal

Gaussian broadening, as may be expected from turbulence. In the following analysis, we fixed the

value of the temperature of the ionized gas as T = 7000 K, which is close to the expected electronic

temperature for the galactocentric distance of G345.49+1.47 (6400 K, Paladini et al. 2004) and

within the uncertainty.

Table 5 lists the best-fit values and uncertainties of the Voigt-function fittings to the three HRLs

detected, assuming T = 7000 K. The central velocity of the three lines is the same within the errors.

The half-width at half-maximum of the Lorentzian portion of the profiles, δL, is between 18 and

20 km s−1. The Voigt function model, with and without constrained temperature, performs better

than single or double Gaussian models evaluated by a heuristic visual assessment and according

to the quantitative Akaike information criterion (AIC, Feigelson & Babu 2012, § 3.7.3). The AIC

penalizes the weighted least-squared difference by adding two times the number of free parameters

of the specific model. The free parameters of the Voigt model are 10, while for two independent

Gaussians per HRL they are 18. The correlation between adjacent channels introduced by the

Hanning smoothing of the data does not affect the validity of the application of the AIC.

4.3.2. Electron density

The electron density can be derived theoretically from Voigt fitting of the HRLs using the

relation between δL and the physical parameters of the ionized gas, first computed by Griem
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(1967). For the range of principal quantum numbers appropriate for this work, this relation can be

written to an adequate accuracy level as (Walmsley 1990)

δL = 2.72 km s−1
( n

42

)7.5
∆n−1

(
Ne

107 cm−3

)(
Te

104 K

)−0.1

. (2)

In Equation (2), the HRL is produced by the decay of an electron from the (n + ∆n) to the

n quantum level. Te is the electron temperature, and Ne is the free electron density. The last

column of Table 5 gives the electron densities derived from the observed values of δL. We find a

characteristic value for the electron density of 5× 107 cm−3.

4.4. Ionized wind model: continuum and recombination lines

In this section, we present a simple model of the jet that explains simultaneously the main

characteristics of the continuum and HRL emission.

4.4.1. Collimated ionized jet model and continuum spectrum

A useful parameterization of the jet structure is given in Reynolds (1986). This parameter-

ization is flexible enough to reproduce the continuum emission spectrum for most ionized jetlike

sources, including G345.49+1.47 (Guzmán et al. 2010). We use the same notation as Reynolds

(1986), with a few differences that are made explicit below. Figure 9 depicts the geometry of the

jet model. Quantities with a 0-subscript (r0, w0, etc.. . . ) correspond to those at a fixed fiducial

radius r0, rather than at the inner termination radius of the jet, as used in Reynolds (1986). We

choose as the fiducial radius r0 = 100 AU.6 For parameters at the the inner termination radius, we

6Reynolds (1986) used 1015 cm, which is 67 AU.

Table 5. Voigt fitting parameters of the HRLs

Peak Flux V0 δL Characteristic

Density (LSR) (km s−1) Density

(mJy) (km s−1) (107 cm−3)

H40α 41.4± 0.8 −14.8± 0.5 18.6± 1.0 9.7± 0.5

H42α 30.1± 0.8 −14.8± 0.7 19.2± 1.0 6.9± 0.4

H50β 7.7± 0.8 −13.3± 3.0 20.2± 4.0 3.8± 0.8

Note. — Assuming Te = 7000 K for the three lines.
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use an i-subscript (ri, wi, etc.. . . ), and for quantities at the outer limit of the jet, an f-subscript.

We use the following relations

w(r) = w0

(
r

r0

)ε
aperture power law, (3)

y(r) = r sin(i) projected distance, (4)

θ0 =
2w0

r0
collimation factor, (5)

s(r) =
2w(r)

sin(i)
path length. (6)

The shape of the jet is given by ε and θ0, with 0.5 < ε ≤ 1. A conical wind corresponds to ε = 1.

The physical size of the jet is given by w0, ri, and rf . We assume that the ionized gas consists only

of hydrogen, with a constant ionization fraction. Therefore, the density (in cm−3) of the ionized

gas is equal to two times the free electron density Ne(r). The density Ne(r), velocity v(r), and

temperature T (r) are assumed to depend as power laws with the distance from the origin as

Ne(r) = Ne,0(r/r0)qn , (7)

v(r) = v0(r/r0)qv , (8)

T (r) = T0(r/r0)qT . (9)

If we assume that the velocity of the ionized gas is in the axis direction and away from the origin,

qv > 0 and qv < 0 represent, respectively, accelerating and decelerating winds. Considering a

constant ionization fraction, mass conservation implies that qn = −qv − 2ε. We assume that the

free-free absorption coefficient (κν) has a power law dependence with temperature (∝ T−1.35) and

density (∝ N2
e , see, for example, Wilson et al. 2009, §10.6). This assumption implies that the free-

free optical depth associated with a line of sight that intersects the jet axis, given approximately

by τ(ν, r) ≈ κν(r)× s(r), also behaves as a power law on r given by

τ(ν, r) = τ(ν, 0)(r/r0)qτ , (10)

with qτ = ε+ 2qn − 1.35qT . (11)

The flux density predicted from the jet model presented here is derived in appendix A. In the

intermediate range of frequencies where the jet is neither completely optically thin nor thick, the

flux density is given by

Sν = Sν0

(
ν

ν0

)αop

, (12)

αop = 2 + 2.1(1 + ε+ qT )/qτ , (13)

where Sν0 is the flux at the fiducial frequency ν0. Equation (12) is a rising power law in frequency,

as observed in G345.49+1.47 over almost two decades in frequency (see § 4.2) and toward several
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Fig. 9.— Geometrical model of the jet plus a symmetrical counterjet. This figure is based on Figure

1 from Reynolds (1986). It represents a cut of the jet+counterjet system in the plane that includes

the axis of the jet and the line of sight. The jet+counterjet system is assumed to be axisymmetric.
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other jets and broad-HRL HCH ii regions (see Guzmán et al. 2012; Jaffe & Mart́ın-Pintado 1999,

and references therein).

The most important caveat associated with the model is that the data constraints on the

parameters are not tight. The selection of particular parameters is heuristic and starts with what

is considered the simplest choice. In our case, we will explore isothermal models (qT = 0) with

a constant ionization fraction. These constraints are not sufficient to determine uniquely the jet

parameters. There are still five free parameters: the inclination angle (i), the fiducial aperture (θ0),

the density at the fiducial radius (Ne,0), and two exponents: the shape exponent (ε) and the density

exponent (qn). The constraints imposed by the spectral energy distribution, given in Equation (12),

are only two: Sν0 and αop. The inclination angle i was estimated as ∼ 45◦ by Guzmán et al. (2010),

based on the appearance of the 2 µm image of the inner cavity, and we use this value throughout.

With these constraints, we find that the observed continuum spectrum of G345.49+1.47 is

well modeled as free-free emission arising from a fully ionized, isothermal (7000 K), conical (ε = 1)

wind, with a collimation factor θ0 = 0.33. There are still two degrees of freedom on the model, and

this particular selection of ε and θ0 is arbitrary.

4.4.2. Model prediction for HRLs

In this section, we discuss the HRLs expected from the model presented in the previous section.

The goal is to test whether we can reproduce the observed line fluxes and profiles using only Stark

and thermal Gaussian broadening. This would imply, at least as far our observations can constrain,

that the observed line wings are not due to bulk motions of the ionized gas. Even though the lines

seem to be well reproduced by Voigt profiles, there is a problem with the interpretation of the

pressure broadening: the observed ratio between the line widths of the α and β transitions is not

as expected from Equation (2), using a single characteristic density. Equation (2) predicts that the

FWHMs should be in the ratio ∼ (50/40)7.5/2 ≈ 2.7, while the observed value is ∼ 1. We will come

back to this issue at the end of the section.

The line flux expected from the jet model described in the previous section, Sν,L, under as-

sumptions of isothermality and local thermodynamic equilibrium (LTE), is derived in appendix B.

Sν,L is given by

Sν0

(
ν

ν0

)αop (
Γ

(
αop − 2

2.1

)−1 ∫ ∞
0

τ
αop−4.1

2.1

(
1− e−τ(1+∆νLφ(ν,Ne))

)
dτ − 1

)
, (14)

where φ(ν,Ne) is the line profile (
∫
φdν = 1), and ∆νL (defined in appendix B) depends only on

the specific transition and on the gas temperature. For the three lines considered in this work, ∆νL
takes the value

{∆νH40α,∆νH42α,∆νH50β} = {10.8, 7.9, 3.0} MHz×
(

Te
10, 000K

)−1.25

, (15)
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where the temperature dependence form is appropriate for frequencies around 100 GHz (Lang 1999).

The line profile φ(ν,Ne) is a Voigt function with density parameter Ne. This density is not constant

but depends on the integration variable (the continuum opacity τ) as Ne(τ) = Ne,0(τ/τ0)qn/qτ . This

relation can be deduced from Equations (7) and (10).

We test the hypothesis that the observed line wings are reproducible with negligible bulk

motions. We assume in Equation (15) that the line profiles have the same central frequency instead

of being displaced by their corresponding Doppler shifts and that the gas velocity behaves as

v0(r/r0)qv (Equation 8). Our hypothesis of negligible bulk motions is equivalent to v0 being small

compared to the line widths.

Figure 10 shows with a continuous red line the expected profiles derived from Equation (14)

using Sν0 = S100 GHz = 120.6 mJy, αop = 0.92, and T0 = 7000 K. Either of the following jet

parameters give indistinguishable predictions

ε = 1, θ0 = 0.33, Ne,0 = 2.19× 107 cm−3 (conical wind),

ε = 0.5, θ0 = 0.23, Ne,0 = 2.82× 107 cm−3 .
(16)

For each value of the geometrical aperture exponent ε, there is an optimal fiducial aperture

θ0 that predicts approximately the same HRLs. Therefore, the HRL observations have decreased

the degeneracy degree from 2 (see previous section) to 1. The optimal ε-θ0 curve has as extreme

points the conical (ε = 1) and ε = 0.5 aperture laws given in Equations (16). The dashed lines in

Figure 10 show the behavior of the model predictions for θ0 larger and smaller than the best-fit

aperture angle (θ0,opt). If θ0 > θ0,opt, a larger fraction of the gas is more diffuse, increasing the

peak-to-width ratio appearance of the line. This is illustrated in Figure 10 with the narrower and

sharp dashed curve, representing the prediction for a conical wind and θ0 = 0.4. On the other

hand, if θ0 < θ0,opt, more emission arises from more dense gas, and the HRLs widen, illustrated by

the flatter curve (θ0 = 0.2).

We find that the predicted flux level and shape of the lines are consistent with the data, which is

remarkable considering the simplicity of the model, namely, no bulk motions and LTE assumptions.

Quantitatively, LTE can be justified since the typical densities derived for G345.49+1.47 (∼ 5 ×
107 cm−3, see Table 5) are ∼ 1 order of magnitude larger than the critical electron density given

by Equation (3.1.6) from Strelnitski et al. (1996). These higher electronic densities increase the

collision rates and damp non-LTE effects.

The model also reproduces the relation observed between the line widths of the α and β

transitions, which are not in the ratio of 2.7 as would be expected from Equation (2). Usually in

the literature, a strong dependence of line width with quantum number is a common criterion to

identify pressure broadening in HRLs from young massive stars (e.g., see Lumsden et al. 2012, using

IR HRLs; and Keto et al. 2008). The reason for the unusual behavior of the G345.49+1.47 lines is

that α transitions, in contrast to β transitions, are associated with large line opacities that saturate

the line near the peak, increasing the line width. The flux-weighted line peak optical depth for the
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Fig. 10.— Blue dots: Spectra of the observed HRLs toward G345.49+1.47. Continuous red line:

Prediction of the emission arising from a jet model with negligible velocities and the parameters

given in Equation (16). The velocity scale is shifted to the common central velocity of the HRLs

of −14.8 km s−1. Dashed lines: Model predictions of the HRLs using a smaller and larger fiducial

aperture compared with the optimal value, predicting, respectively, the flatter and sharper curves.
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H50β line is ∼ 1, while for the α lines, it is > 6. Accordingly, we stress that the values deduced

for the density from independent Voigt profiles fittings, given in Table 5, represent average values

that need to be interpreted with care.

The agreement between the model and the data is not perfect, showing discrepancies near

the line center of H40α and in the width of the H50β line. Typically, the analysis of hydrogen

recombination lines in the millimeter and sub-millimeter wavelengths includes large corrections due

to non-LTE effects (Mezger & Palmer 1968; Peters et al. 2012; Báez-Rubio et al. 2013). We might

be observing these effects near the line center where we expect the largest opacities. Finally, we

note that despite the model reproduces a lower ratio between the widths of the β and α transitions

compared to that associated with optically thin LTE conditions, the data seems to accent this

feature even more.

4.5. Sulfuretted molecular emission from G345.49+1.47

Sulfuretted molecules, and specially sulfur oxides, seem to increase their abundance ∼3-4

orders of magnitude in high-mass star formation regions when evolving from IR luminous massive

cores (Herpin et al. 2009) to a hot core phase (van der Tak et al. 2003; Jiménez-Serra et al. 2012).

These molecules, particularly SO2, have become common tracers of rotation in disklike structures

associated with HMYSOs (see Fernández-López et al. 2011 and references therein; also Jiménez-

Serra et al. 2012). Figures 3 and 4 show that this also seems to be the case for G345.49+1.47.

The analysis presented in the following sections has made extensive use of the Splatalogue, JPL,

CDMS and Basecol7 (Dubernet et al. 2013) catalogs and databases to obtain transition frequencies,

energies, partition functions, Einstein coefficients, and collision rate coefficients.

4.5.1. Qualitative chemical analysis of the sulfuretted molecules emission distribution

All sulfuretted molecules in Table 4 display compact emission associated with the central source

G345.49+1.47. While the sulfur oxides emission coincides with the jet location and several of their

transitions show characteristic disklike velocity gradients, the OCS and especially the CS and C33S

lines peak away from the jet and do not exhibit velocity gradients. The morphological similarity of

the CS and C33S maps suggests that, at least for CS, self-absorption is not the main cause of the

observed displacement. Based on Earth sulfur isotopic ratios [ 32S : 34S : 33S] = [126.7 : 5.6 : 1.0]

given by De Biévre & Taylor (1993), we expect an opacity of the C33S line ∼ 130 times smaller

than that of the main isotopologue.

In the rest of this section, we address the following questions: i) What determines which

transitions trace the velocity gradient that we attribute to a disklike structure? ii) Why do sulfur

oxides seem to be intimately associated with the G345.49+1.47 jet free-free continuum? ii) Why

7http://basecol.obspm.fr



– 30 –

do the OCS and CS lines peak away from the jet location?

To answer the first question, we note that two groups of lines do not show the disklike velocity

gradient: the SO2 transitions associated with upper energy levels > 200 K, and the OCS and CS

transitions. We attribute the lack of detection of the velocity gradient in the first case to the

relatively poor angular resolution of our data. The emission from the high-energy SO2 lines most

likely arises from the hot inner regions of the disklike structure, located close to the central young

star (or stars). If this is the case, we should detect the velocity gradients in these transitions using

better angular resolution observations. On the other hand, emission from the CS and C33S lines

arises from a different location compared to the sulfur oxide lines.

The displacement between the OCS and sulfur oxides emission is smaller, but it is highly

unlikely the OCS emission is associated with an unresolved hot gas component because, as derived

in section 4.5.2, OCS is in a relatively low excitation state (∼ 40 K). Subthermal excitation does

not play a role, since the density estimation made from dust continuum in Guzmán et al. (2010)

(& 105 cm−3) is above the OCS transitions’ critical densities of approximately 3×104 cm−3 (Green

& Chapman 1978). Summarizing, we propose that the high-energy SO2 lines trace an unresolved

hot component and hence do not show a velocity gradient, and that OCS and CS arise from the

outer gas near the G345.49+1.47 core.

The close match of the SO and SO2 emission with the central free-free jet emission is consistent

with the hot core model of Charnley (1997). According to this model, SO and SO2 are created in

the gas phase on timescales ∼ 103-4 yr, while OCS and CS arise in ∼ 104-5 yr. Therefore, since

we expect G345.49+1.47 to be younger than 105 yr (Guzmán 2012), SO, 34SO, and SO2 have been

synthesized in the irradiated disklike structure, but only insignificant amounts of OCS or CS would

have been formed. This explains the absence of OCS and CS in the rotating disklike structure, but,

why does OCS appear to be associated with the G345.49+1.47 core? Charnley (1997), Hatchell

et al. (1998), and van der Tak et al. (2003), all report difficulties in reproducing the observed

abundance of OCS from observed hot cores, resorting to grain-mantle chemistry and evaporation

from solid-phase ices as additional sources of OCS. SO2 and OCS have been detected in interstellar

ices (Gibb et al. 2004), so we adhere to this as a plausible possibility. We propose that the OCS

emission originated from evaporated ices near the G345.49+1.47 core.

If evaporated ices are indeed the source of the gas-phase OCS, we have to ask why OCS is

absent from the rotating disklike structure. Why is there no ice-evaporated OCS associated with

the rotating core? The study made by Ferrante et al. (2008) may provide an answer: they report

that, under laboratory conditions, high-energy irradiation8 of ices synthesizes OCS in the solid

phase, but it is easily destroyed by prolonged radiation exposure. It is possible then that the UV-

exposed disk ices are depleted of OCS. This possibility is also consistent with the absence of CS in

8Ferrante et al. (2008) uses proton irradiation, but photo- and radiation chemical processing of ices is very similar

(Hudson & Moore 2000).
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the disklike structure, since CS is not produced as result of the OCS destruction (Ferrante et al.

2008). In fact, CS does not appear to be formed within sulfur-containing ices (Maity & Kaiser

2013).

At least qualitatively, there seems to be a consistent theoretical picture that explains the

presence of sulfur oxides in the directly irradiated disklike molecular structure and, at the same

time, explains the OCS distribution. We also note that the CS and OCS spatial distributions are not

the same: they peak at different locations, and the fraction of spread CS emission is larger compared

with OCS. In general, our results are compatible with the results of van der Tak et al. (2003) and

Wakelam et al. (2011) that find that CS traces the chemically inactive envelope surrounding the

HMYSOs and hot cores. It seems now clear that the strong CS 2→1 emission detected toward

IRAS 16562−3959, first reported by Bronfman et al. (1996) using single-dish observations, traces

the dense molecular gas on a clump scale with a limited contribution coming from the compact

central core.

4.5.2. Excitation temperatures

Deriving physical parameters from the observed molecular emission from a model assuming

single excitation temperature (SET) conditions (van der Tak 2011; Guzmán 2012) gives some

physical insight into the conditions of the gas in G345.49+1.47.

We briefly describe the main relations and hypotheses behind the modeling of molecular lines.

Detailed discussions are given in Garden et al. (1991), Sanhueza et al. (2012), and Wilson et al.

(2009). Assuming optically thin and SET conditions,

W =

∫ ∫
IνdΩdv = Bν(T )Ωs

∫
τν dv

=
hc

4π
ΩsAulNu ,

(17)

where W is the velocity-integrated line-flux density, Bν(T ) is the Planck function evaluated at the

excitation temperature, τν is the line opacity, Ωs is the solid angle of the source, Aul is the Einstein

A-coefficient of the transition, and Nu is the column density of the molecules in the upper level of

the transition. The integration in velocity covers the spectral extent of the line. We define the total

luminosity of the line L := 4πd2W , where d = 1.7 kpc. The relationship between the population

in the upper state and the temperature is given by the Boltzmann equation,

Nu

gu
=

NX

QX(T )
exp

(
−Eu
kT

)
, (18)

where NX is the total column density of species X (SO2, OCS, etc.. . . ), gu is the statistical weight

of the upper level, Eu is its energy (column 4 of Table 4) and QX(T ) is the partition function

evaluated at temperature T . Analogous to L, we define NX := d2ΩsNX , the total number of X-

molecules in the source. The critical density of the SO transitions is approximately 2.8×105 cm−3.
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We did not find rate coefficients for the high-energy SO2 transitions, so we assume them equal to

10−11 cm3 s−1. With this assumption, the critical density is 2 × 105 cm−3, close to that of the

SO transitions. These critical densities are similar to the density estimation for the inner parts of

the IRAS 16562−3959 clump (Guzmán et al. 2010). Therefore, we do not expect that subthermal

excitation has an important observable effect on our data.

We combine Equations (17) and (18) and obtain

LX
hcAu,lgu

=
NX

QX(T )
exp

(
−Eu
kT

)
, (19)

where the left side of the equation has observable quantities and the right side has two free param-

eters per molecular species (NX and T ).

Figure 11 shows the quantity corresponding to the left side of Equation (19) vs. the upper

energy of the transition for the three molecules that display the velocity gradient interpreted as

rotation. The velocity-integrated line fluxes are taken from column (6) of Table 4, with typical

uncertainties of 15 mJy km s−1. We find that a single SET model cannot fit simultaneously the

data of the low (. 50 K) and high (& 200 K) upper-energy molecular transitions. This is somewhat

expected, since the high-energy SO2 transitions trace the rotating core from locations closer to the

HMYSO compared with the low-energy transitions. However, the addition of two independent SET

models can reproduce well the emission of SO2 and 34SO. We fit a warm and a hot component, with

temperatures of 140+60
−20 and 35+25

−20 K, respectively. Dashed lines in Figure 11 show the prediction

of the model.

Departures from optically thin predictions are expected for lines whose opacity is greater than

1, and this may be so for the strong SO transitions. We evaluate this possibility by comparing the

transitions 32 → 21 and 45 → 44 of 34SO and 32SO. For two isotopologues under SET conditions,

the integrated line quotient between two matching transitions is given by

W1

W2
=

1− e−τ1
1− e−τ2

, (20)

where the optical depths are averaged in the line and the ratio τ1/τ2 is approximately equal to the

abundance ratio between the isotopologues. The right side of Equation (20) approaches the opacity

ratio under optically thin conditions and approaches 1 in the optically thick limit (Guzmán 2012,

§ 3.3.1). We assume that the abundance ratio between the 32SO and 34SO isotopologues is equal

to the terrestrial abundance ratio of the sulfur isotopes, that is, [32S/34S]= 22.5. The line ratio of

the 32 → 21 and 45 → 44 transition and derived 32SO opacities are

W32SO/W34SO 32 → 21 = 10.9 =⇒ τ32 = 1.8

W32SO/W34SO 45 → 44 = 24.1 =⇒ τ32 � 1 .
(21)

A simple opacity correction can be applied to the optically thin model by multiplying the right

side of Equation (19) by (1− exp (−τ))/τ , where τ is the line’s optical depth (Goldsmith & Langer
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Fig. 11.— Boltzmann plot of the SO, 34SO, and SO2 molecular line emission associated with

G345.49+1.47. Dashed lines represent fits using two independent thin-SET models, with the same

two temperatures fitted to the 34SO and SO2 transitions. The model for SO was derived from

the 34SO data, assuming the same temperatures and the isotopic ratio [32S/34S]= 22.5. Empty

diamond symbols are the opacity-corrected SO values.
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1999). We estimate the opacities of the SO 32 → 21 and 45 → 44 lines from Equation (21), and

that of 22 → 11 line from the SET model assuming the isotopic abundance ratio [32S/34S]= 22.5.

The yellow dashed line in Figure 11 displays the prediction of the right side of Equation (19) for

SO. Empty diamonds in Figure 11 indicate the opacity-corrected parameters of the SO lines, which

we find consistent with the SET model under the assumed isotopic abundance ratio. As derived in

Equation (21), no correction is associated with the 45 → 44 optically thin transition. We emphasize

that the SO lines were not used to derive the SET model (dashed lines).

To conclude, we mention that the temperature derived from the two OCS transitions is ∼ 40 K.

It is similar to the warm component temperature determined for the sulfur oxides, but as remarked

in the previous section, OCS does not trace the disklike rotating structure. Apparently, at the

physical scales probed by our observations (3000 AU, see next section), both a rotating and a

presumably larger non-rotating envelope coexist.

4.5.3. Dynamics of the molecular emission

Figure 12 shows the position-velocity (PV) diagram measured from the SO2 83,5 → 92,8 emis-

sion. The direction of the PV line is perpendicular to the line indicated in the top left panel of

Figure 4 — the jet direction — with zero offset at the position of the jet source. This direction

is consistent, within our angular and spectral resolution, with the direction of the largest velocity

gradient. It supports the interpretation that the molecular structure probed by our observations is

part of a rotating structure with angular momentum direction aligned with the jet axis.

In order to estimate a dynamical mass, we assume that the disklike structure is centrifugally

supported against the gravity of a central mass. We estimate the dynamical mass from the following

simplified version of Equation (1) from Franco-Hernández et al. (2009)

M?,dyn =
(
√

∆Θ2 − θ2
b ) d

2G sin2(i)

(
∆V

2

)2

, (22)

where ∆Θ is the source size, ∆V is the velocity breadth, d is the distance, i is the inclination of

the disk axis with respect to the line of sight, and θb is the beam size. From the 50% contour of

the PV diagram shown in Figure 12, we estimate ∆Θ = 2.′′5 and ∆V = 8 km s−1. Using a distance

of 1.7 kpc, θb = 1.′′7, and an inclination of 45◦ (Guzmán et al. 2010), we derive a dynamical mass

of 56M�. The approximate physical size of the rotating core, given by
√

∆Θ2 − θ2
b d, is 3000 AU.

We obtain the same results using instead the SO2 73,5 → 82,6 transition.

4.6. Gentle photo-ionized wind and rotating molecular core toward the HMYSO

G345.49+1.47

Our HRL observations indicate that the ionized gas toward G345.49+1.47 is not moving at a

very high velocity (∼ 500 km s−1), as observed toward similar objects such as the Cepheus A HW2

jet (Jiménez-Serra et al. 2011). As shown in §4.3.1, Voigt profiles fit the data adequately and they

relate naturally with the simple physical model presented in §4.4.2. In principle, however, the HRLs’
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Fig. 12.— Contour map of the position velocity diagram of the SO2 83,5 → 92,8 emission taken

across the direction with P.A.= 8.9◦, through the jet source position (Source 10), averaging 1′′

width. The contours correspond to 30, 50, 70, and 90% of the peak equal to 79.2 mJy beam−1. ∆V

and ∆Θ correspond to the extension of the 50% contour in velocity and angular size, respectively.
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wing emission could be produced by high-velocity outflowing gas analogous to the way molecular

line wings trace molecular outflows. Line-wing models of outflows are sufficiently flexible to allow

for any decay exponents between −1 and −4 (e.g., Masson & Chernin 1992; Downes & Cabrit

2003; Smith et al. 1997), and molecular outflow observations find a distribution of decay exponents

also covering this range (Richer et al. 2000). It would be fortuitous, however, if the ionized wings

produced by entraining ambient gas had a Lorentz-like and a symmetric shape. Furthermore,

between the red- and blue-shifted wing emission we detect no shift in the peak position larger than

0.′′2, an upper boundary limited by our angular resolution (see §3.2).

Four symmetrically aligned ionized lobes seem to be associated with the ionized wind of

G345.49+1.47 (Guzmán et al. 2010). If these radio lobes trace shocked-ionized gas, they must

trace high-velocity shocks. Proper motion studies have confirmed that radio-lobes associated with

objects similar to G345.49+1.47 move rapidly, determining velocities close to 500 km s−1 (Mart́ı

et al. 1998; Curiel et al. 2006; Rodŕıguez et al. 2008). Accordingly, it has been often assumed in the

literature (e.g. Garay et al. 2003; Su et al. 2004; Bronfman et al. 2008; Guzmán et al. 2010, 2011;

Carrasco-González et al. 2012; Johnston et al. 2013) that the continuum ionized source detected

toward the center of such systems is tracing high-velocity ionized gas, and even when no lobes are

apparent. In view of the results presented in this work toward G345.49+1.47, these assumptions

do not seem to be justified unless supported by complementary HRL data.

The dynamical mass determined in § 4.5.3 (56M�) is larger than that of a single high-mass star

producing the total luminosity of IRAS 16562−3959 (70, 000L�, 25M�) or the 15M� estimated

for the dominant HMYSO. Could the rest of the mass, 30-40M� or more, be in the molecular gas

phase? This is not likely for two reasons. First, most of the 92 GHz emission comes from ionized

gas, with at most ∼ 11 mJy attributable to dust emission. This is justified in § 4.2, but also by the

HRLs’ line intensities, which are consistent with the continuum. This flux corresponds to only 4

M� assuming 50 K (ref. § 4.5.2), a dust absorption coefficient of 0.3 cm2 g−1 (extrapolated from

the coagulated dust tables of Ormel et al. 2011), a gas-to-dust mass ratio of 100, and optically thin

conditions. Second, comparing the total number of SO2 molecules in the core, more than 30M� of

molecular gas imply an [SO2/H] abundance < 6×10−9, which seems low compared with the results

of Wakelam et al. (2011). We concede, however, that the SO2 is expected to vary greatly and this

is not an stringent constraint. We conclude that it is more probable that there are (likely more

than one) protostellar companions together with the central star. Other compact components will

need higher angular resolution studies to be resolved.

Even though there is no evidence from the observed HRLs to suggest that the ionized gas is

moving, it is unlikely to be in hydrostatic equilibrium. A coherent model for G345.49+1.47 is that

of a pressure-accelerated photo-ionized wind, whose main characteristics can be approximated by

a transonic Parker wind (Lamers & Cassinelli 1999, § 3.1.3) within a conical aperture (Lugo et al.

2004; Keto 2007). In the Parker wind, the velocity of gas increases very slowly with distance,

following (v/a) ≈
√

ln(r/rc), with rc = GM?/2a
2 and a = 9.8 km s−1 is the isothermal sound

speed of a solar composition ionized gas at 7000 K. The ε = 1 conical model presented in § 4.4 is a
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rough approximation to this solution, since it is conical and has the most shallow acceleration law

compared to models with a different geometry (ε < 1). The acceleration exponent (Equation 8)

takes the form qv = 0.97− 0.53ε, as derived from Equation (13) and mass conservation. It remains

to be seen what would be the effects of the inclusion of low wind velocities in the line radiation

transfer.

The wind collimation derived from the model is ∼ 3 (§ 4.4.2), which is not high but nevertheless

is comparable to the collimation derived from deconvolved resolved radio sources believed to be

thermal jets, such as NGC 7538 IRS1 (Sandell et al. 2009), AFGL 2591 (Johnston et al. 2013),

Cep A HW2 (Curiel et al. 2006), and G343.1262−00.0620 (Rodŕıguez et al. 2005). In addition,

the presence of aligned radio lobes in some cases allows us to infer a more collimated wind such

as in G343.1262−00.0620 and G345.49+1.47. However, what appears to be clear, at least for

G345.49+1.47, is that the hypothetical highly collimated fast jet that excites the ionized lobes does

not correspond to the central radio continuum source. For the moment, there are no proper motion

measurements toward the lobes of G345.49+1.47, but if they are rapidly moving (> 300 km s−1, as

in G343.1262−00.0620, Cep A, and HH 80-81), it would confirm that the “Jet” source of Guzmán

et al. (2010) and the lobes are not linked in the way previously thought.

An interesting possibility is that the ionized wind is analogous to the wide angle low-velocity

component observed toward low-mass protostellar jets (Torrelles et al. 2011, and references therein).

It is possible that inside this slow ionized wind exists a much narrower, denser, and faster jet,

powered by accretion, and responsible for the excitation of the radio lobes. The analogy should not

be taken very far, however, since low-mass stars do not produce photo-ionized winds.

5. SUMMARY

We made observations at frequencies 85-99 GHz using ALMA of the continuum, HRLs, and

sulfuretted molecular lines toward the massive molecular clump IRAS 16562−3959, which harbors

the HMYSO G345.49+1.47. The main results are summarized as follows:

1. We detect spatially unresolved emission in the H40α, H42α, and H50β HRLs toward the

collimated ionized wind source associated with G345.49+1.47. The lines display Voigt profiles

with Lorentzian wings of widths between 30 and 40 km s−1, which we interpret as pressure

broadening arising from ionized gas with average density of 5× 107 cm−3.

2. A parameterized model of a slow ionized wind is sufficient to simultaneously fit the HRLs

and the continuum emission between 1 and 100 GHz associated with G345.49+1.47. There

is no need for ionized gas moving at velocities in excess of 50 km s−1in order to explain the

HRL profiles.

3. We detect in the ALMA field of view (∼ 1′) at least 15 additional continuum sources, probably

associated with the IRAS 16562−3959 clump, with spectra consistent with part of the emission
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arising from optically thin dust. These sources are likely to correspond to dusty molecular

cores.

4. The emission in the SO2, 34SO, and SO lines with upper energy levels ≤ 50 K exhibits velocity

gradients that we interpret as arising from a rotating compact (∼ 3000 AU) molecular core

with angular momentum aligned with the jet axis. The estimated dynamical mass is 56M�.

5. Sulfuretted molecular emission associated with the core has excitation temperatures that

range between 35 and 140 K.

6. Qualitatively, the SO, SO2, and CS emission and morphology can be understood using the

predictions of hot gaseous phase chemical models (e.g., Charnley 1997 and van der Tak et al.

2003). Additional irradiated ice-chemistry might be necessary to explain the characteristics

of the OCS emission.

7. G345.49+1.47 is a ∼ 15M� HMYSO associated with a photo-ionized wind that dominates

the free-free emission. It is likely that within this photo-ionized wind, a highly collimated jet

is powered by an accretion disk, responsible for the excitation of the aligned radio lobes.
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A. Continuum flux expected from the jet model

Assuming that the Rayleigh-Jeans approximation is valid at the frequencies of interest (Bν(T ) ≈
2kTν2/c2) and that all relevant quantities along a line of sight through the jet are given by their

values at the jet axis (see Figure 9), the radio continuum flux density from the whole jet system

(jet+counterjet) can be written approximately as (see Equations 7 and 8 from Reynolds 1986)

Sν = 2×
∫ yf

yi

2kT (y)ν2

c2

2w(y)

d2
(1− exp(−τ(ν, y))) dy

= 2× 2kT0ν
2

c2

2w0y0

d2

∫ yf

yi

(
y

y0

)ε+qT
(1− exp (−τ0(ν) (y/y0)qτ ))

dy

y0
.

The extra factor 2 with respect to the equations in Reynolds (1986) takes into account the emission

from the two sides of the jet. Note that (r/r0) = (y/y0), making it trivial to change the dependence
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on r to a dependence on y. Defining Ω0 = 2w0y0/d
2 and making the change of variable u = y/y0,

we obtain

Sν = 2×Bν(T0)Ω0

∫ uf

ui

uε+qT (1− exp (−τ0(ν)uqτ )) du , (A1)

which, after the following change of variable, τ = τ0(ν)uqτ (note that qτ < 0), becomes

Sν = 2×Bν(T0)Ω0 (τ0(ν))
− ε+qT+1

qτ

∫ τi

τf

τ
ε+qT+1

qτ
−1

(1− exp(−τ))
dτ

(−qτ )
. (A2)

In this way, the integral over the source extension in the sky is re-written as an integral over the

values taken by the continuum opacity. Equation (A2) gives us the flux density of the source, which

is the only quantity we can actually probe since we do not resolve the jet structure.

Defining η := (1 + ε+ qT )/qτ (called “c” in Reynolds 1986), we finally obtain

Sν = 2×Bν(T0)Ω0
(τ0)−η

(−qτ )

(
τηi − τ

η
f

η
+ Γ(η, τi)− Γ(η, τf)

)
, (A3)

where Γ(η, τ) :=
∫∞
τ tη−1e−tdt is the incomplete Gamma function. Note that the frequency depen-

dence is in the Planck function and on the optical depth. The reason for changing to this formalism

is that under the limit τi →∞ and τe → 0 (valid for the frequencies where we see the spectrum is

a power law), Equation (A3) simplifies to

Sν = 2×Bν(T0)Ω0
Γ(η)

qτ
(τ0(ν))−η , (A4)

where Γ(η) is the Gamma function evaluated for η. No assumption regarding the dependence of

the opacity on frequency has been made. If we assume that τ0(ν) ∝ ν−2.1 — a valid approximation

for the frequencies of interest — we get the Equation (13) for the spectral index, equivalent to

αop = 2 + 2.1η ,

which is Equation (15) from Reynolds (1986). η is a negative number between −1 and 0. In

particular, when αop = 0.92, η = −0.51 and Γ(η) < 0 (Γ(−0.51) ≈ −2
√
π). After introducing a

fiducial frequency ν0 and replacing it in Equation (A4), we obtain Equation (12). Equations (A3)

and (A4) extend the derivation of Reynolds (1986).

A.1. Morphological constraints

Our observations give little information about the physical scale size of the jet. Both ALMA

and the centimeter wavelength observations (Guzmán et al. 2010) indicate that the jet is unresolved,

which imply that the optically thick portion does not extend farther than the size of the beam.

This condition is equivalent to

ȳ = d× FWHMobs/2 (A5)

τ(ȳ) = τ0

(
FWHMobs d

2r0 sin i

)qτ
< 1 (From Equation 4.) (A6)
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where FWHMobs is the full-width at half-maximum of the synthesized beam. It turns out that the

most stringent constraint is given by the ATCA data at 8.6 GHz. All the models consistent with

the data easily fulfill Equation (A6).

B. Line flux expected from the jet model

To derive the expected HRLs, we start in Equation (A1), which is also valid for the emission

at the frequencies of the lines, taking into account that the optical depth includes the continuum

and line contributions. The equation for the total flux (continuum+recombination line) is

Sν,L+C = 2×Bν(T0)Ω0

∫ uf

ui

uε+qT (1− exp (−τ(ν, u))) du , (B1)

where the integration is over u = y/y0 (see Figure 9). The total, continuum, and line optical depths

are given across the jet by

τ(ν, u) = τC(ν, u) + τL(ν, u) , (B2)

τC(ν, u) = τC,0(ν)uqτ , (B3)

τL(ν, u) = TL(u)× φ(ν, u) . (B4)

In the last equation, TL(u) represents the integrated optical depth of the line, and we assume

that
∫
φ(ν, u)dν = 1. The line profile φ(ν, u) depends on the line of sight, parameterized by u in

Equation (B1). The integrated optical depth TL(u) depends on u because it depends on the density

(∝ N2
e ) and on the path length. We use the formulae for HRLs described in Gordon & Sorochenko

(2002, § 2.3.5),

TL = s(u)×Nn
αh

2me
f(n,∆n)

(
1− e−hνL/kTe

)
, (B5)

where s(u) is the path length, Nn is the population in the n quantum level, νL corresponds to

the rest frequency of the line associated with the (n + ∆n) → n transition, and the rest of the

physical constants, including α ≈ 137−1, are in the usual notation. The oscillator strength of the

line, f(n,∆n), is given by

f(n,∆n) = nM(∆n)

(
1 + 1.5

∆n

n

)
,

where M(1) = 0.190775 and M(2) = 0.026332 are the Menzel constants (Menzel 1968). The

population level Nn under LTE is given by the Saha-Boltzmann ionization equation,

Nn = N2
e

n2h3

(2πmekTe)3/2
exp

(
mec

2

2kTe

(α
n

)2 mH

me +mH

)
, (B6)

assuming a purely hydrogen gas with mH being the hydrogen mass. Note that the statistical weight

associated with degeneracy of the n-th level, gn = n2, is already included.
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As in the appendix for the continuum, we assume that all relevant quantities along a line of

sight through the jet are given by their values at the jet axis.

Note that the optical depth of the continuum and the integrated optical depth TL are both

proportional to N2
e and to the path length s (see Figure 9). Therefore, the quotient TL/τC is

independent of density and path length and depends only on Te. Under the assumption of isother-

mality, it is also independent of the integration variable in Equation (B1). We call this quotient the

equivalent line width of the transition, defined by ∆νL := TL/τC. The value of ∆νL for the HRLs

observed in this work is given in Equation (15). We remark that these are not truly line widths,

but a measure of the area of the line compared to the continuum level.

Then, we change the variable of integration to the continuum opacity using

τ(ν, u) = τC(ν, u) + τL(ν, u)

= τC(ν, u) (1 + ∆νLφ(ν, u))

= τC,0(ν)uqτ (1 + ∆νLφ(ν, u)) .

(B7)

This allows us to calculate the limit τi → ∞ and τe → 0, which is the same procedure used to

derive Equation (12). Therefore, Equation (B1) takes the following form,

Sν,L+C = 2×Bν(T0)Ω0
(τC,0)−η

(−qτ )

∫ ∞
0

τη−1
(

1− e−τ(1+∆νLφ(ν,τ))
)
dτ , (B8)

where η = (αop − 2)/2.1. Combining the previous equation with Equation (12), we determine that

the line flux SL = SL+C − SC is given by

Sν,L = Sν,C

(∫∞
0 τη−1

(
1− e−τ(1+∆νLφ(ν,τ))

)
dτ

−Γ(η)
− 1

)

= Sν0,C

(
ν

ν0

)αop (∫∞
0 τη−1

(
1− e−τ(1+∆νLφ(ν,τ))

)
dτ

−Γ(η)
− 1

)
,

(B9)

which gives the line flux density predicted for HRLs in LTE from the ionized jet model presented

in the previous section. Equation (B9) corresponds to Equation (14).
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Güsten, R. 2008, ApJ, 672, 391

Bronfman, L., Nyman, L.-A., & May, J. 1996, A&AS, 115, 81

Brown, R. L., Lockman, F. J., & Knapp, G. R. 1978, ARA&A, 16, 445

Cabrit, S. 2007, in Lecture Notes in Physics, Berlin Springer Verlag, Vol. 723, Jets from Young

Stars I: Models and Constraints, ed. J. Ferreira, C. Dougados, & E. Whelan, 21–50
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Carrasco-González, C., et al. 2012, ApJ, 752, L29

Caswell, J. L. 1998, MNRAS, 297, 215

Cesaroni, R., Felli, M., Testi, L., Walmsley, C. M., & Olmi, L. 1997, A&A, 325, 725

Charnley, S. B. 1997, ApJ, 481, 396

Curiel, S., Rodriguez, L. F., Bohigas, J., Roth, M., Canto, J., & Torrelles, J. M. 1989, Astrophysical

Letters and Communications, 27, 299

Curiel, S., et al. 2006, ApJ, 638, 878
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